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It is demonstrated that large-scale fractal structure in laboratory turbulence, the ocean, and the
clustering of galaxies may have a common percolation nature. The fractal dimensionality of all
these structures is shown to be approximately 4/3 (much smaller than 3, the dimensionality of
spatial motion). The author compares laboratory measurements and natural observations of

various scientists.

(Dedicated to the memory of the remarkable
scientists Ya. B. Zeldovichand A. N.
Kolmogorov)

In recent years fractal structures have attracted the in-
terest of specialists in hydrodynamics and astrophysics. Var-
ious theoretical models involving fractal structures have
been proposed and experimental observations, both in the
laboratory and in nature, have been carried out (see, for
example, Refs. 1-7). All this research points to a fundamen-
tal question: how general are the observed fractal properties?
In this note it is shown that similar large-scale fractal struc-
tures (of fractal dimension D ~4/3) are found in laboratory
turbulence (on a length scale of ~10 "' m), in the ocean,
and in the clustering of galaxies (on a length scale of up to
10* Mps). These structures have a percolation nature [8-
10].

1. We can break up the region of turbulent motion of a
liquid into cubical cells of edge length % (Kolmogorov
scale'! ). Vortices of this size are quickly damped out by
viscosity. At a given moment in time the motion will be tur-
bulent in some cells and laminar (vortex-free) in others.

We can introduce the probability p that a given cell ex-
hibits turbulence. When p = O there are no turbulent cells,
when p <1 the clusters of turbulent cells are small, whereas
when p = 1 all cells exhibit turbulence. There exists a critical
concentration p,, 0 < p, <1, corresponding to the situation
when an infinite cluster of turbulent cells first forms. This
infinite cluster radically alters the situation. Before its ap-
pearance any energy introduced to the system contributes to
dissipation and increases the number of turbulent cells. As
an infinite cluster forms, additional energy can be channeled
to “infinity”, i.e. out of the region of turbulence.

In the presence of an infinite cluster, the concentration
of turbulent cells can increase due to fluctuations. But the
new, fluctuation-induced turbulent cells will be damped out
by viscosity, since their energy is not constantly replenished.
For the same reason, the only stable part of the infinite clus-
ter is the backbone: the collection of cells belonging to infi-
nite paths through the cluster. The other, dead-end branches
of the cluster will decay due to viscosity that is not counter-
acted by a constant energy input. The critical clusters that
are formed in such percolation systems are fractal objects.®

2. The formation of an infinite cluster is a critical phe-
nomenon. The characteristic extent / of a vortex cluster near
p. diverges®

l~|pc_p|-v' (1)

The critical exponent v is universal, depending only on

1073 Sov. Phys. Usp. 33 (12), December 1990

0038-5670/90/121073-03$01.00

the topological dimensionality d of the space.

This exponent has been derived by various authors em-
ploying different models. For d = 3 one finds, approximate-
ly, v=0.9 (Ref. 8).

3. Let us relate the critical exponent to the fractal di-
mensionality D, of the cluster backbone. Given an initial
large-scale velocity field (only vortices of size /, are excit-
ed), the cascade process of scale division will produce a hier-
archy of vortices of size I, ~g ~ "l (q is the multiplicity of
the scale division). Since the energy transfer over the cas-
cade is chaotic, the anisotropy and large-scale inhomogene-
ity of the initial velocity field exerts less and less influence on
the statistical properties of pulsations on smaller scales.
Hence on a sufficiently small scale (/,>/,>7) one should
observe scale invariance and local isotropy. For isotropic
pulsations the energy distribution over length scales
(I~k —', where k is the wave number) is given by the spec-
tral density E(k). If we consider the characteristic period
T, of pulsations arising at the mth division, then from di-
mensionality arguments or simple physical considerations’’
we have:

T ~(E(RY )™, by ~ [ (2)

The characteristic period T,, can be interpreted as the
time required for vortices of size /,, to excite vortices of size
l,, . 1 - The excitation time of the total vortex cascade is

to~ 3 T (3)

m=0

Generally, expression (2) for T, cannot be substituted
into (3) because (2) is valid only for sufficiently large m.
However, we are really interested not in ¢, but in the quan-
tity

(te—tm) ~ 3 Tm, (4)
m=M

and therefore expression (2) becomes valid for sufficiently
large M.

If M is large enough, the system exhibits scale invar-
iance and scaling behavior:'"

E(k) ~k™ (5)

From (5) and (2) we obtain

(o —th) ~ § 1G>0, (6)

m=M

Taking /,, ~g ~ ™I, as before, one then obtains from (6)
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(tm — tM) ~ § q—m(s—a)/z ~ qM(a—a)/z (7)

m=M

(for sufficiently large M).
After M divisions a single initial vortex of size /, will
break up into

No~g™ (8)

vortices of size /,, ~g ~*I,. In the intermediate asymptotic
region (/, > [,,>n) we obtain from (8) and (7)

N (tm) ~ (to — tm)¥@, (9

This system of vortices (vortex cluster’ ) will occupy some
volume in a region of effective size ,, with

N~ (10)

where D, is the fractal dimension of the vortex cluster.’
Then, from (9) and (10) we find

L (tm) ~ (too — ta)/ P, (1)

If we interpret this result within the framework of percola-
tion theory, ¢ approaches the critical value 7 just as p ap-
proaches p.. Let us define (¢ —¢t) = 7. Clearly as 7-0,
(p. — p) —0. Under the usual assumption that the depen-
dence of (p. — p) on 7 is analytic for small r, we obtain
(p. — p) ~7. Comparing expressions (1) and (11) one finds

—2 _.uD. (12)

3—a

If we take D, in (12) to reflect the stable fractal dimensional-
ity of the vorticity (dissipation) field, then it follows from
Ref. 3 that @ = D, (for d = 3) and hence, from (12),

3 9 2\12
DS“?*(T—T) . (13)

Substituting the value v~ 0.9 from Ref. 8 obtained from
numerous percolation studies into (13) we find

(14)

Q

w]h“’lc‘

D
Dys= —. (15)
Since for d = 3, @ = D, (Ref. 3), the first value (14) yields
the well-known Kolmogorov—Obukhov spectrum.’' As for
the second value D, =4/3 (15), it probably corresponds to
the large-scale percolation structures usually described in
percolation theory as the “elastic backbone™.!* This sub-
structure of the infinite cluster backbone comprises only the
shortest paths connecting sufficiently remote points. Nu-
merical simulations reported by Herrmann et. al.'? yielded
D = 1.35 4 0.05, in agreement with (15).

4. The spatial scale required for the formation of the
“elastic backbone” in percolation turbulence should corre-
spond to the integral scale of the turbulence (L) (Ref. 11),
i.e. to the characteristic scale of the velocity pulsation field
over which there still exists a noticeable correlation between
field values at two different points. Consequently, the forma-
tion of the ‘“‘elastic backbone” is blocked by spontaneous
scale invariance breakdown over distances of order L (Ref.
13). Nonetheless, it appears that under certain, as-yet-unde-
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FIG. 1.

termined conditions the “elastic backbone’ appears despite
this spontaneous scale invariance breakdown. Figure 1, tak-
en from Ref. 14, illustrates the energy spectrum of turbu-
lence observed experimentally beyond a hydrodynamic lat-
tice. The data are plotted logarithmically and the straight
lines emphasize the effects of scaling laws with @ =~5/3 and
a=4/3.

In Fig. 2, taken from Ref. 15 (see also Ref. 16, p. 181),
we find analogous results in the measurements of oceanic
thermoclines on a 100 m horizon. Here also the large-scale
end of the spectrum contains regions exhibiting @ =4/3 scal-
ing (shown by labeled line segments).

In this regard, the direct observation of turbulence-in-
duced fractal structures that apparently occurs in radar
measurements of cloud structure'”'® is of considerable in-
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terest. Which of the structures: the unstable one, the back-
bone or the elastic backbone is seen in such a direct observa-
tion? Once again, the answer here probably depends on the
range of length scales D!’ used in the measurement.

5. Another example of a direct observation of large-
scale fractal structures has been provided by astrophysicists.
If we assume that the matter in the universe is in turbulent
motion, then the large-scale aggregations of matter—galax-
ies and galaxy clusters®”’ —should occur in regions charac-
terized by active energy dissipation, i.e. the fractal dimen-
sionality of the turbulent dissipation (vorticity) field should
coincide with the fractal dimensionality of the matter den-
sity field, as given by the galaxies and their clusters. Observa-
tions of the fractal character of the large-scale structures in
the universe (galaxies and galaxy clusters) have produced*
7 a fractal dimension D = 1.3 + 0.1, close to the “4/3” val-
ue.

Thus we find that the same type of large-scale fractal
structures can be observed in laboratory turbulence, in the
ocean and atmosphere, and over length scales comparable to
the size of the visible universe.

" The author is grateful to B. M. Smirnov for drawing his attention to this
point and to S. Lovejoy for explaining the variability of cloud structure
observations.
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