A solution to the density matrix equation

G. A. Vardanyan and G. S. Mkrtchyan

Erevan State University
Usp. Fiz. Nauk 160, 187-188 (December 1990)
The authors derive a solution for the density matrix of an electron moving in a spatially periodic field. The solution corresponds to a mixed state of the system.

Consider the motion of a one-dimensional electron in a periodic field described by the Hamiltonian

$$
\widehat{H}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+U \sin k x,
$$

where U and k are arbitrary real constants.
The corresponding equation for the density matrix can be written as follows: ${ }^{1}$

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \rho\left(x, x^{\prime}, t\right)=\left(\widehat{H}--\hat{H}^{\prime *}\right) \rho\left(x, x^{\prime}, t\right) ; \tag{1}
\end{equation*}
$$

where H^{\prime} is the same operator acting on x^{\prime}. It is easy to verify by direct substitution that equation (1) has an exact, steadystate solution:

$$
\begin{align*}
\rho\left(x, x^{\prime}\right)=C \exp & \left\{-\frac{m}{\alpha}\left(\frac{2}{\hbar k}\right)^{2} \cos \left[\frac{k}{2}\left(x-x^{\prime}\right)\right]\right. \\
& \left.-\alpha U \sin \left[\frac{k}{2}\left(x+x^{\prime}\right)\right]\right\} ; \tag{2}
\end{align*}
$$

where C is a normalization constant and α is an arbitrary constant.

Let the one-dimensional motion occur in a segment $x \in[0, L]$. We impose the periodic boundary conditions

$$
\begin{equation*}
\rho\left(x+L, x^{\prime}\right)=\rho\left(x, x^{\prime}\right), \quad \rho\left(x, x^{\prime}+L\right)=\rho\left(x, x^{\prime}\right) \tag{3}
\end{equation*}
$$

Substituting (2) into (3) one finds that the boundary conditions are satisfied only if

$$
\begin{equation*}
k=\frac{4 \pi}{L} v, \quad v=1,2,3, \ldots \tag{4}
\end{equation*}
$$

The normalization constant C is determined by the condition

$$
\int_{0}^{L} \rho(x, x) \mathrm{d} x=1
$$

whence

$$
\begin{aligned}
C & =\exp \left[\frac{m}{\alpha}\left(\frac{2}{\hbar k}\right)^{2}\right]\left[\int_{0}^{L} \exp (-\alpha U \sin k x) \mathrm{d} x\right]^{-1} \\
& =\widetilde{C} \exp \left[\frac{m}{\alpha}\left(\frac{2}{\hbar k}\right)^{2}\right]
\end{aligned}
$$

where

$$
\begin{equation*}
\widetilde{C}=\left[\int_{0}^{L} \exp (-\alpha U \sin k x) \mathrm{d} x\right]^{-1} \tag{5}
\end{equation*}
$$

For $\rho\left(x, x^{\prime}\right)$ we find, ultimately,

$$
\begin{align*}
\rho\left(x, x^{\prime}\right)=\widetilde{C} \exp [& {\left[-\frac{m}{\alpha}\left(\frac{2}{\hbar k}\right)^{2}\left\{\cos \left[\frac{k}{2}\left(x-x^{\prime}\right)\right]-1\right\}\right.} \\
& \left.-\alpha U \sin \left[\frac{k}{2}\left(x+x^{\prime}\right)\right]\right] . \tag{6}
\end{align*}
$$

Let us now derive the Wigner function corresponding to solution (6). We proceed from the general formula ${ }^{2}$

$$
\begin{equation*}
f(p, x)=\int_{0}^{\infty} \rho\left(x+\frac{t}{2}, x-\frac{t}{2}\right) \exp \left(-\frac{i p t}{\hbar}\right) \frac{\mathrm{d} t}{2 \pi \hbar} . \tag{7}
\end{equation*}
$$

Substituting (6) into (7) we obtain

$$
\begin{align*}
f(p, x)= & \widetilde{C} \exp (-\alpha U \sin k x) \\
& \times \exp \left[-\frac{m}{\alpha}\left(\frac{2}{\hbar k}\right)^{2}\right] \sum_{n=-\infty}^{\infty} I_{n}\left(\frac{m}{\alpha}\left(\frac{2}{\hbar k}\right)^{2}\right) \delta\left(p-\frac{n \hbar k}{2}\right), \tag{8}
\end{align*}
$$

where $I_{n}(z)$ is the modified Bessel function of order $n ; \delta(z)$ is the delta function; $n=0, \pm 1, \pm 2, \ldots$. One can verify by direct substitution that the normalization condition is satisfied: ${ }^{2}$

$$
\int f(p, x) \mathrm{d} p \mathrm{~d} x=1 .
$$

From expression (8) we can solve for the mean value of the electron momentum

$$
\langle p\rangle=0 .
$$

Analogously, we find using (8) that

$$
\left\langle\frac{p^{2}}{2 m}\right\rangle=\frac{1}{2 \alpha} .
$$

The classical limit of $f(p, x)$ can be easily obtained by taking the $\boldsymbol{\hbar} \rightarrow 0$ limit of (8):

$$
\begin{equation*}
f(p, x)=\widetilde{C}\left(\frac{\alpha}{2 \pi m}\right)^{1 / 2} \exp \left(-\frac{\alpha p^{2}}{2 m}-\alpha U \sin k x\right) . \tag{9}
\end{equation*}
$$

Note that if parameter α^{-1} is interpreted as a temperature T (in energy units), then solution (9) transforms into the classical Gibbs distribution for a particle in a field $U \sin k x$:

$$
f(p, x)=\frac{\widetilde{C}}{(2 \pi m T)^{1 / 2}} \exp \left(-\frac{H(p, x)}{T}\right) .
$$

Recall that the C of this formula is given by equation (5).
We are deeply grateful to L. P. Pitaevskiĭ for a discussion of this paper.

[^0]Translated by A. Zaslavsky

[^0]: ${ }^{\prime}$ L. D. Landau and E. M. Lifshits, Quantum Mechanics: Non-Relativistic Theory, 2nd ed., Pergamon Press, Oxford, 1962 [Russ. original, Nauka, M., 1963].
 ${ }^{2}$ R. Feynmann, Statistical Mechanics, Benjamin, N. Y., 1972 [Russ. transl., Mir, M., 1975].

