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An orderly account is given of the processes of coherent propagation, amplification, and
generation of pulses in polyatomic resonant media. The characteristic features of the propagation
of solitons in resonant media of finite length are considered. Comparisons are made of the
exponential and "lethargic" amplification of pulses in resonant media. It is shown that an
allowance for the reflection of the field from the boundaries of an active medium gives rise to a
qualitatively different dependence of the parameters of the pulses on the reflection coefficients
under superradiance and lasing conditions, which makes it possible to introduce a criterion to
distinguish lasing from superradiance. An analysis is made of the characteristics of collective
superradiance, which is a new case of coherent generation of pulses. Experimental and theoretical
investigations of rf superradiance emitted by systems of nuclear spins are reviewed.

1. INTRODUCTION

Optical superradiance is one of the most striking exam-
ples of the cooperative behavior of polyatomic systems. It is
different from other collective processes because the system
itself goes over from an uncorrelated to a correlated state as a
result of internal interactions and then the correlation radius
of the moments of the transitions of the particles assumes a
macroscopic value. Superradiance was predicted by Dicke1

back in 1954 before the discovery of lasers. However, super-
radiance was detected experimentally only after lasers be-
came available2 and the requirements which pumping of the
active medium had to satisfy were fulfilled specifically by
laser radiation. It is well known that superradiance and las-
ing (stimulated emission) represent two limiting cases of the
same process. Any process generating oscillations is based
on the interaction of two subsystems, one of which is the
medium in which energy is stored and the other is the field to
which this medium transfers the stored energy. Coherent
radiation is generated if at least one of the interacting subsys-
tems is ordered, i.e., if it has the fewest possible number of
the degrees of freedom between which its energy may be
distributed. In the ideal case both the radiators in the active
medium and the field have the same resonance frequency co0

with infinitesimally small widths A<ya and A&>f and, more-
over, the angular distribution of the radiation field can be
extremely narrow. In lasers such ordering is attained by dis-
crimination of the radiation field modes. Narrowness of the
field line A&>f is achieved by the use of high-Q resonators.
Therefore, the field should remain sufficiently long in the
resonator, compared with the transit time across the resona-
tor, so that it would make at least several round trips. We
shall be interested in the free oscillation case, when an initial-
ly excited medium generates a radiation pulse as a result of
spontaneous decay. The field line width is then governed by
the length of the medium /. If no reflection of the field takes
place at the boundary of the medium, then Ao>f = 1/r,
where r — L /c is the transit time of a photon crossing the
medium. However, if reflection of the field does occur at the
boundaries of the medium, then

— In —

where /-, and r2 are the amplitude reflection coefficients. If
the length of the medium is much less than the resonator
length, then the resonator length L occurs in the above ex-
pressions. However, in this case the active medium has to be
excited synchronously with the arrival of a pulse so that we
are then dealing with the amplification of an external pulse
which should be considered separately. The line width of an
atomic transition is A^ua = \/T2. If Awf <^ A«a, the ordering
is produced by the field. In the opposite limiting case
A<yf > A<ya, it is produced by the medium. The former case is
close to lasing and in the case of mirror-free systems is called
superluminescence or amplification of spontaneous radi-
ation. The second case, when the ordering is due to the nar-
rowness of the atomic transition line, is called superra-
diance. Discrimination of the field modes (along the
direction of emission of the photons) is achieved in both
cases by selection of an acicular shape of the active medium.
A wave traveling along the axis is then amplified much more
strongly than waves traveling along other directions.

A system of atoms interacting with a radiation field can
be described by the following parameters: N / Fis the density
of atoms; Aa>a = 1/T2 is the width of an atomic transition
line; L is the length of the medium governing the width of the
field line A<uf = c/L; 7", is the spontaneous decay time of an
individual atom; rt and r2 are the reflection coefficients at
the boundaries of the medium. If the medium is character-
ized by inhomogeneous broadening, we have to add an inho-
mogeneous broadening parameter Aa>* =1/7"*. In the
present review we shall try to answer the following ques-
tions. How do the parameters of free oscillation pulses de-
pend on the parameters just listed? How and to within what
limits can the parameters of the output pulses be controlled?
Which regime—superradiance or superluminescence—is
more convenient from the point of view of the highest rate of
energy transfer from an excited medium to the radiation
field? In comparisons of the efficiencies of the different re-
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gimes it is, in our opinion, convenient to select such a norma-
lization of the field amplitude a(x, t) that the field energy
density is given by W(x,t) = &y0(7VW)n(x, t). In this case
n(x, t) = \a(x, t ) \ 2 represents the density of the number of
photons in units of the density of the number of particles.
Consequently, the time-integrated value of n(x, t) deter-
mines the number of the emitted photons, calculated per one
atom. The pulse duration unit can be conveniently the tran-
sit time T = L /c. Clearly, the minimum duration of a radi-
ation pulse or a train of pulses is a quantity of the order of T.
Such normalization is introduced in Sec. 2. The answers to
the questions posed above will provide information on the
feasibility of controlling the parameters of radiation pulses
and suggest ways of optimization of the oscillation process.

There are several methods which can be used to gener-
ate pulses with specified parameters (see, for example, Refs.
3-10). In all these cases a pulse is formed in a multistage
system. However, in our opinion, all the possibilities of gen-
eration of pulses with given parameters already in the first
stage have not yet been exhausted. This problem is becoming
even more urgent because the appearance of femtosecond
pulses has opened up extensive opportunities for ultrafast
excitation of media, which should make it possible to utilize
the regime of coherent collective oscillation. Theoretical and
experimental investigations of superradiance9'26 have been
usually carried out independently of the theory of lasing. In
our opinion, the time has come to unify and compare the
various theories.

The optimization of the oscillation process in terms of
parameters of the active media does not cover all the possi-
bilities of control of radiation parameters. In fact, the gen-
eral problem of the interaction of the atomic and field sub-
systems depends also on the initial and boundary conditions.
The boundary conditions are taken into account above by
including the two reflection coefficients r^ and r2 as param-
eters of the system. However, the initial conditions may in-
fluence greatly the nature of radiative decay of our system.
For example, supersymmetric solutions of the general sys-
tem of equations describing the interaction of an ensemble of
two-level atoms of the resonant field were obtained in Ref. 27
and it was shown there that the selection of the initial condi-
tions corresponding to these solutions results in generation
of pulses of maximum intensity. The process is essentially as
follows. The high rate of decay of superradiance systems is
due to the fact that the atomic subsystem reaches a state
which is fully symmetric under the transpositions of atoms.
It is known that this situation can occur only in two cases: in
a system with dimensions much less than the radiation wave-
length when an extended polyatomic system interacts with
one of the field modes. In real extended systems an inhomo-
geneity of the field amplitude along a sample disturbs the
symmetry of the atomic subsystem. This increases the dura-
tion of the output radiation pulses. It was shown in Ref. 27
that there are states which allow for the symmetry of the
complete atomic-field system and not only of the atomic
subsystem. The process of radiative decay in an extended
polyatomic system then occurs as if in a lumped system: it is
characterized by the maximum rate and the minimum dura-
tion for a given inversion density.

This range of topics is closely related to the problems of
propagation of pulses in resonant media under coherent in-
teraction conditions.28'37 One of the most striking effects

occurring in the course of such propagation is the self-in-
duced transparency, which had been the subject of thorough
experimental10'"'28'29 and theoretical30"35 investigations.
However, the recent developments in the theory of propaga-
tion of ITT pulses in resonantly absorbing media had been
accompanied by the growth of a theory of pulse propagation
in resonantly amplifying media (see Ref. 36 and the bibliog-
raphy given there). In the latter case, a theory of semiinfinite
media yields, for certain values of the parameters of the
problem, seemingly nonphysical predictions such as the
propagation of pulses at superluminal velocities, etc. It was
pointed out already in Ref. 36 that a correct interpretation
can be provided if we consider bounded media. We shall
derive soliton solutions for spatially inhomogeneous media
(including those which are spatially confined), which pro-
vide a clear interpretation of all the characteristics of soliton
propagation in amplifying media. We shall demonstrate the
feasibility of control of the state of a medium and extensive
opportunities for the generation of pulses with a given profile
particularly in multilevel systems.

A theory of superradiance has grown out of an analysis
of the problem of radiative decay of a polyatomic system of
dimensions much less than the radiation wavelength. For a
long time it has been assumed that this problem is of purely
model nature and its attractiveness is simply due to the feasi-
bility of providing an exact description of its dynamics.
However, recent experiments38'40 have shown that the mod-
el has a physical realization, which is undoubtedly of interest
in the theory of superradiance because it makes it possible to
test the fundamentals of this theory.

A discussion of the topics mentioned above represents
the bulk of the present paper. In Sec. 2, we shall derive equa-
tions of a semiclassical theory of resonant interaction of radi-
ation with matter, reduce the equations obtained to the di-
mensionless form, and discuss both the initial and boundary
conditions. We shall also determine the integrals of motion.
In Sec. 3 we shall analyze a linear stage of the oscillation
pulses. We shall show that this analysis allows us to find the
delay time of a pulse, the amplitude of the field at its maxi-
mum, and qualitative influence of inhomogeneous broaden-
ing on the parameters of the radiation pulses. We shall con-
sider the dynamics of the correlation properties of the field in
the process of oscillation and find the dependence of the cor-
relation radius of the field on the characteristic parameters
of the problem. In Sec. 4 we shall discuss the problems of
coherent amplification of pulses in resonant media and con-
sider the conditions for realization of the "lethargic" and
exponential amplification. We shall consider the character-
istics of propagation of soliton pulses in resonantly amplify-
ing media of finite length. We shall demonstrate that it is
possible to control the motion of level populations in an ac-
tive medium and the parameters of amplified pulses at the
exit from the medium. In Sec. 5 we shall present graphically
the dependences of the main parameters of the output pulses
(peak intensity and pulse duration) on the parameters of the
medium. We shall determine the limits of regions of satura-
tion of the intensity within which the peak value of the inten-
sity does not increase when the inversion density is in-
creased. We shall determine the dependences of these
parameters of the pulses on the amplitude reflection coeffi-
cients at the boundaries of the medium, demonstrating the
feasibility of optimization of the superradiance pulse param-
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eters and allowing for introduction of mathematical criteria
of the oscillation regime. An analysis of the feasibility of
optimization of the parameters of the output pulses by vari-
ation of the initial conditions will be shown to lead to a pre-
diction of a new regime which is the collective superra-
diance. A discussion of the characteristics of this regime is
given in subsection 5.3. In Sec. 6 we shall discuss the charac-
teristics of the superradiance emitted by a system of nuclear
spins generating coherent radiation with a wavelength much
greater than the size of the active medium. We shall propose
in the same section a variant of a theory of spin superra-
diance, which relates the main parameters of the output
pulses to the microscopic characteristics of an ensemble of
nuclear spins.

2. SEMICLASSICAL SYSTEM OF EQUATIONS FOR THE
INTERACTION OF A TWO-LEVEL SYSTEM OF ATOMS WITH A
RESONANT ELECTROMAGNETIC FIELD

2.1. Wave equation

A system of semiclassical equations describing the in-
teraction of radiation with matter is obtained by averaging a
quantum system of equations (A 1.10) (see Appendix 1)
and by semiclassical decoupling of operators:

(o±i4) = (o±)(/4), (<JtA) = (0,)(A). (2.1)

If the interaction between radiators is via a transverse elec-
tromagnetic field, the system of equations becomes

(2.2)

*£. + p~Pe = iL(/*- D A,

i± = m = 2 (CT<3 m = em>

e is a unit vector of the wave polarization, T2 is the trans-
verse relaxation time, 7", is the longitudinal relaxation time,
andpe is the equilibrium value of the difference between the
populations. In the derivation of the system (2.2) we ig-
nored the effects of inhomogeneous broadening and as-
sumed that /ft, = m0, which is satisfied in the absence of
level degeneracy (i.e., in the case of a true two-level system) .
In the absence of relaxation, i.e., when T2 = 7\ = 00, the
system of equations (2.2) has a well-known integral of mo-
tion

(r, 0 + ~ P2 (r. 0 *=4
(2.3)

Using the analogy between a system of classical oscillators
and a two-level system of atoms, the equations (2.2) are
frequently written in the following equivalent form:

(2.4)

wherey'=y'+ +j . In this case if T2 = T, = oo, the integral
of motion (2.3) becomes

- + + I m I = const. (2.5)

Therefore, the system of equations (2.2) or (2.4) is
characterized in the T2 = 71, = oo case by the law of conser-
vation (2.3) or (2.5), which is the basis of the description of
the processes of coherent resonant interaction of radiation
with matter. It should be pointed out particularly that Eqs.
(2.3) and (2.5) contain quantities that oscillate at the opti-
cal frequency. Traditionally these conservation laws are de-
duced from the equations for slowly varying amplitudes.
Moreover, it should be pointed out that if/ ± are functions of
the complex variables in a system (2.2), then/' in the system
(2.4) is a real quantity.

We shall adopt the plane wave approximation. We shall
introduce slowly varying amplitudes At2(x, /) for the
right- and left-hand waves, described by the expression

A ( r , t)=At(x, t)s\n(&t — kx)+A2(x, t) sm (&t + kx + q) ,
(2.6)

where the wave vector k is determined by the condition
k = 2irn/L, L is the length of the medium, and a> — kc; we
shall assume that a> = <y0 . In this case the system of equa-
tions for slowly varying amplitudes assumes the form (the
corresponding system for the case when co^a>0 can be found
in the Appendix 2 ) :

dt

dt

dx
.=-— ;

"' dt dx

.
v. /2>

(2.7)

Tl

L.
2hc

where

/(r, t ) = j t ( x , t)cos(ut—kx)+jz(x, t)cos
p(r, t)=p<,(x, t ) + 2 p i ( x , t)cos(2kx+<f). (2.8)

It is clear from the last expression that the system (2.7)
allows for the possibility of inducing a population grating at
the spatial frequency K = 2k, which—in principle—can oc-
cur when oscillation takes place in a resonator under the
cooperative decay conditions. In fact, one of the conditions
for the observation of cooperative effects is

T,., r;>Tp, (2.9a)

where T$ is the inhomogeneous transverse relaxation time
and rp is the characteristic duration of a radiation pulse. If
we assume that T% is due to the Doppler broadening, the
condition (2.8) becomes

•TD. (2.9b)

Since A /VT is the transit time of a particle crossing the dis-
tance between the two consecutive nodes of an electromag-
netic field in a resonator, it follows from the condition (2. 9a)
that the thermal motion of atoms cannot destroy the popula-
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tion inversion grating induced in the active medium during
one output pulse. However, these effects can have a signifi-
cant influence on the dynamics of decay of the system only
for specific parameters of the problem (see, for example,
Sees. 2.5 and 4.1). An analysis of some of the aspects of the
dynamics of such decay is given in Refs. 41 and 42.

2.2. Normalized equations and main parameters of the
problem

We shall introduce a dimensionless coordinate
x' = x/L and a dimensionless time t' — t /r, where
T = L /c is the time taken by a photon to cross the sample,
and we shall also normalize the unknown functions as fol-
lows:

(2.10)

In terms of the new dimensionless variables, the system
(2.7) becomes

dt dx dt dx

dt

~dT

~nr
~dT

where

P =

(2.11)

fi<o V 2TS
(2.12)

The system (2.11) is simplified by dropping the primes of
the dimensionless variables x' and / '. The ratio of the coeffi-
cients (3 and a, deduced from the system (2. 11), represents
the steady-state gain. In fact, if

L = - - = 0
dt dt

it follows from the system (2.1 1 ) that

Consequently, in the case of complete inversion
[R0(0) = 1], we have

ft(o

N Tt .
4n V

(2.13)

Under the normalization conditions given by the system
(2.10), the quantity n(x, t) = \a(x, t)\2 represents the
density of the number of photons normalized to the density
of resonant atoms. In particular, the energy density of the
electromagnetic field can be expressed in terms of n, and n2

as follows:

WF (x, t) = »(•>„ — ("i (x, t) + it (x, 0), (2.14)

whereas the energy flux density (Poynting vector) is

S (x , t) = e,to0 £- (n, (x, t) - n2 (x, t)). (2.15)

2.3. Initial and boundary conditions

In investigations of spontaneous decay of polyatomic
systems the initial conditions for the field and polarization
should be homogeneous:

at(x, Q)=a2(x, 0)=pt(x, , 0)=0. (2.16)

However, the solution of the system (2.11) subject to the
initial conditions (2. 16) is identically zero. This is due to the
fact that the semiclassical decoupling of the operators de-
scribed by Eq. (2.1) suppresses the spontaneous radiation
sources. Therefore, we either have to supplement the system
of equations (2.11) by effective spontaneous polarization
sources or we have to select nonzero initial conditions. For
example, we can assume that

an(x, 0)=aon(x), , 0) =?„„(*), (2.17)

where either a0n orp0n may vanish. The quantity p0n can be
found if during the initial stage we do not use the decoupling
of Eq. (2.1), but allow for two-particle correlations of col-
lective atomic operators R ± (for details, see, for example,
Ref. 1):

we therefore have

/ B W2

fti-Pw- Urr • (2.18)

In the case of more rigorous theories the initial condi-
tions are specified in the form of a correlation matrix (see,
for example, Ref. 43):

where the angular brackets denote quantum averaging with-
in the framework of quantum theories or the averaging over
realizations in phenomenological theories.

The boundary conditions for slowly varying amplitudes
an (x, t) are of the form

(2.20a)

(2.20b)

where r, 2 are the amplitude reflection coefficients at the left-
hand (x = — 1/2) and right-hand (x = 1/2) ends of the
active medium. It should be pointed out that introduction of
a phase <p in Eqs. (2.6) and (2.8) makes it possible to allow
for the difference between the phases of the reflection coeffi-
cients: rl2 = 1^1,2 |exp(/^>,4 ), which leads to <p = tp2 — <pt.

2.4. Integrals of motion

Equation (2.11) readily yields the following expression
which has the meaning of a local law describing the change
in energy:

(2.21)

where

1000 Sov. Phys. Usp. 33 (12), December 1990 A. V. Andreev 1000



(2.22)

Integrating Eq. (2.21) with respect to time and over the
length of a sample, and also allowing for the boundary condi-
tions described by Eqs. (2.20a) and (2.20b), we obtain

0), where rtll2

1/2

( n ( x , t ) d x . (2.23)
-1/2

The above expression gives the law of conservation of energy
in its integral form.

The second integral expression can be obtained from
the last four equations in the system (2. 1 1 ) . This expression
is

Pn (x, t) |2 + (Rl (x, t) + 2R\ (x, t))

r f 2

2 1 \* % \Pn (*,?)]
J

«i - l ( l + RJ R9 + 2Rl\dt' = const. (2.24)

If a = a, =0, it reduces to the law of conservation of the
length of a Bloch vector:

Pi (x, t) + pi (x, f) + 1 (Rl (x, t) + 2R[ (x, t)) = const.
(2.25)

It follows directly from the system (2.11) and also as a result
of substitution of Eqs. (2.8) and (2.10) in Eq. (2.5) and
averaging of the latter over the period T = 2ir/co0 and over
the wavelength A = 2-tr/k.

2.5. Equations for slowly varying amplitudes

As pointed out in Sec. 2.1, one of the conditions for the
appearance of self-diffraction processes due to four-photon
scattering is the condition (2.9). However, this condition is
insufficient to ensure that a light-induced population grating
is readily established. It follows from the last equation of the
system (2.11) that R{ is close to R0 if \a^p^ \~\a{p2\. We
shall show in the next section that in the case of spontaneous
decay of open systems (r,,r2<0.9 we as a rule have
a\P\ I ^ \a\P2 1 - In this case the system of equations (2. 1 1 )

assumes the simpler form

OCl\ i OQ-^ Ou% OO%

~dT + ~dx~ = Pl' ~didx~ Pa.

= faR, ± + ap, = pa,/?, (2.26)

The laws of conservation (2.21) and (2.23) retain their pre-
vious form, whereas Eq. (2.25) becomes

Pi + Pi + 7 K2 =const-
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3. DYNAMICS OF A SYSTEM DURING THE LINEAR STAGE OF
OSCILLATION

We shall consider the dynamics of our system during
the linear stage when the condition ! — / ? ( / ) <^/?(0) = 1 is
obeyed.

3.1. HOMOGENEOUS BOUNDARY CONDITIONS

If we can ignore the reflection of the field at the boun-
daries of the medium, the boundary conditions given by the
system (2.20) become

= 0. (3.1)

In this case during the linear stage the right- and left-hand
waves grow independently of one another. If we assume that
RO ( x ) = 1» then the right-hand wave can be deduced from
the system (2.26) and it is then described by the following
system of two linear equations

dn . da dp , o , T ~ ^

Applying the Laplace-Carson transformation
TO

a(x, «)= (a(x, t)<ru'dt (3.3)

we readily find that the transform a(x, u) is described by

_da_(x,u) . /„ _ P \ ,„ ..-._„,„ n\ j_ P (*• °>
dx

. (3.4)

Let us assume that p(x, 0) = 0; then, applying the inverse
Laplace-Carson transformation, we find that a(x, t) is de-
scribed by

a (x, t)= \ a (x', 0) Ga (x — *', /) Ax',
-i/2

(3.5)

where the Green's function Ga (x — x',t) is given by the
expression

6+100

Ga(x—x1, / )=— f
2ni J

fl— (00

u + a

A (2 {P (*-*')['-— (x-x').

x exp {— a [t — (x — x')}} Q(t — (x — x')); (3.6)

here, 0(z) is the Heaviside step function:

8(z)-1, 2>0,
= 0, z<0. (3.7)

If we initially have a(x, 0) = 0 and the spontaneous polar-
ization p(x, 0) differs from zero, the solution of the system
(3.2) is

X

a(x,t)=i p ( x ' , 0 ) G p ( x — x',t)dx', (3.8)
-1/2

where

GP (x - x', t) = /„ (2 {{5 (X-x')[t-(x- x')]}l/*)
x exp {— a [t — (x—x')\} 0 (t — ( x — x 1 ) ) .

(3.9)

3.2. Delay time

We shall now estimate the dependences of the charac-
teristic times of the change in the field amplitude on the
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parameters of the problem. We shall assume, for the sake of
simplicity, that

(3.10)

We then have

of!. A = (±)U / \2N]

X exp[-a(r— i.)]e(r-l). (3.11)

If/fr > 1, we can use the asymptotic form of a modified Bessel
function. We then have

-a It-(1/2)H

(3.12)

It then follows from the law of conservation (2.23) that

1/2

so that half the total number of photons is emitted in each
side if the initial conditions are symmetric. Using Eq.
( 3. 1 2 ) , we readily obtain

1/2

= - ! - G1 V [« (G1") - <S> (G1/z

( (72G ,\i/» .1exp 2a hr'« -'•I A « / J
1 - (20/J/G)1/1 •7' (3'13)

where

The delay time is determined by the moment when the inten-
sity reaches its peak value. The symmetric profile of the radi-
ation pulse means that up to that moment half of the total
number of photons is emitted. The following notation is used
inEq. (3.13):

a. 8n V
(3.14)

where F = l/27"2 is the homogeneous line width. The delay
time f0 is described by the following expression deduced
fromEq. (3.13):

On the other hand, the right-hand side of Eq. (3.12) reaches
its maximum at

1 20 (3.16)

Therefore, as long as G> ln(27rAO the delay time is given by
Eq. (3.15). It should be noted that G = [i0L, i.e., in the case
of strongly amplifying media the expression for the delay
time is given by Eq. (3.15). In particular, if

G(r)>ln(2jiAO

we obtain from Eq. (3.15)

/.„ -1 + — ln2(4jiJV).
0 2 8p * '

(3.17)

If G<ln(2trN), the left-hand side of Eq. (3.13) does not
reach 1/4, i.e., the total number of the emitted photons be-
comes less than the number of atoms and we are dealing with
the case of superradiance in weakly amplifying media.44 The
delay time is then described by Eq. (3.16). In the region of
G~ln(27rAO the delay time must be determined directly
from Eq. (3.13). It should be pointed out that if
G~ln(2irN), we can write Eq. (3.16) in the form

_2_
a

(3.18)

where Ncff is the effective number of the light-emitting atoms
(seeRef. 44).

3.3. Superradiance in a resonator

In contrast to the boundary conditions given by Eq.
(3.1) the boundary conditions specified by Eqs. (2.20a) and
(2.20b) relate the amplitudes of the counterpropagating
waves also during the linear stage of the evolution of the
system. If we assume that;?,, (x, 0) = 0 and repeat the pro-
cedure described in Sec. 3.1, we can readily show that the
amplitude of the right-hand wave is then given by the expres-
sion

X

a1(x,t)= j" a1(x',0)Ga(x~x',t)Ax'

-1/2

1/2

M*', 0)2

+. j a2 (x1, 0)
*=0

Ga (x + x' + 2k + 1 , t) d x'.

(3.19)

The meaning of the additional, compared with Eq. (3.5),
terms in Eq. (3.19) is obvious. The second term describes a
wave formed as a result of k reflections of the right-hand
wave from both ends of the medium. The third term de-
scribes a wave formed on reflection of the left-hand wave
from the left-hand end of the medium and by subsequent k
reflections from both ends. The upper limit of the sums on
the right-hand side of Eq. (3.19) is determined, in accor-
dance with Eq. (3.6), by the number of reflections which are
completed by the time t. In the special case when r, = r2 = r
anda2(x, 0) = a, ( — x, 0), Eq. (3.19) simplifies to

a, (x, t) = J" a(*', 0)G a (x-x ' , 0 Ax'

iff

-f a(x', r"Ga(x-x' + k, t)dx'. (3.20)

In the case when a, (x, 0) = a2 (x> 0) = 0 and nonzero val-
ues ofpt (x, 0) a.ndp2(x, 0), Eqs. (3.19) and (3.20) retain
their form when the substitutions an (x, 0) -<•/?„ (x, 0) and
Ga(x— x', t)-»Gp(x — x', t), are made, where
Gp(x—x', t) is given by Eq. (3.9).

3.4. Correlation properties of a superradiance pulse

We shall assume that the correlation properties of the
unrenormalized (bare) field an (x, 0) are given by a correla-
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tion matrix of the following type

Kn«(x, x', 0)=<an(x, 0)am(x', 0)y=A(x- (3.21)

For simplicity, we shall assume that all the amplitudes are
real. Generalization to the case of complex fields presents no
difficulty.

The dynamics of the correlation function is given by the
expression

, t) =
-1/2 -1/2

We can see that on increase in time t the initial correlation
properties of the field are "forgotten" and the correlation
radius begins to be governed by the values of the parameters
a and /?.

The main difference between the case of superradiance
in free space (r, = r2 = 0) and its decay in a resonator
(rt 7^0, r2 7^0) is that in the former case the correlation
function K 1°* ( 1/2, — 1/2, t) is always zero, i.e., the super-
radiance pulses emerging from both ends of the active medi-
um are uncorrelated if they are due to uncorrelated sources
of the renormalized field or due to spontaneous polarization.
However,ifr, ^0 and r2^0, it follows from Eq. (3.19)that

1/2 1/2 . co

"(i'~i' {} = \ dx f <^ (*-*') 2
\ ' '' . J . I.—

-1/2 -1/2

±-x + 2k,

o ;=o

(3.22)

We can see that if t > 1, a correlation is established between
the waves emitted from the opposite ends of the medium.
The degree of mutual correlation rises on increase in the
parameter 0 and on increase in the reflection coefficients
rl2, and decreases on increase in the parameter a.

3.5. Inhomogeneous broadening

We have ignored so far the effects of inhomogeneous
broadening of atomic lines. If we allow for such broadening,
the system of equations (2.11) becomes

J^- + ̂ -= r/5l(A)/(A)dA,-^---^-=- r /7 2 (A)/ (A)dA,

f)n l\\
^-^- + (a + ia'A) Pl (A) = P (a^,, (A) + a^ (A)),

(a + ia'A) p2 (A) = P (a,/?, (A) + a,R\ (A)), (3.23)

dt . Bl (1 + /?. (A)) = - 2 (alP[ (A) + a2/>; (A) + c.c. ),

a!/?! (A) = — 2 (atf (A) + a\Pi (A)),

dt
dRo (A)

where/ (A) is the profile of an inhomogeneously broadened
line satisfying the condition

J / ( A ) d A - l , (3.24)

a* = rA0, and A0 is the characteristic width of the function
/(A).

We shall now consider how the main parameters of the
radiation pulses emitted in the linear stage change under the

influence of the inhomogeneous broadening. Applying the
Laplace-Carson transformation, by analogy with the proce-
dure adopted in Sec. 2.1, we find that the transform of the
amplitude of the field of the right-hand wave is readily de-
scribed by the following equation

(x, u)"*
dx

/ (A)dA
(+ a + ta*A (3.25)

where R0(&) =R(&, x, 0). Let us assume that
Pi (x, 0) = 0; the Green's function Ga (x — x',t) used above
is then characterized by a singularity u0 = —a in the case of
homogeneously broadened systems [see Eq. (3.6) ]. If a me-
dium is inhomogeneously broadened, the function
Ga (x,x',t) is characterized by singularities of the following
function

f (A) /?0 (A) dA
u + a + io*A

(3.26a)

We shall now assume that R0 (A) = 1, i.e., that all the atoms
within the inhomogeneous line width of the transition are
excited equally.

For convenience in interpretation of the above expres-
sions, let us return for a moment to the dimensional quanti-
ties, when a is replaced with F= l/(27'2), and the function
F(u) is

/ (A) dA .F (u) = ,v ' J u + r + ,

we shall assume that/(A) is of the form

(3.26b)

(3.27)

where A0 is the half-width of the function/( A) and the func-
tion^ A) still satisfies the condition (3.24). Substituting Eq.
(3.27) into Eq. (3.26a), we obtain

I
u + r + AO

(3.28)

Consequently, the expression for the field amplitude
0i (x, t) again retains the form of Eqs. (3.5) and (3.6), but
instead of the homogeneous line width F it now contains the
following expression:

Therefore, in the case when the whole inhomogeneous spec-
trum is excited uniformly, the nature of growth of the field is
governed not by the ratio fi /a, but by /? /a*, which is of the
form

a r+A 0 4n V 71!
(3.29)

If initially only a part, of half-width A , , of the inhomo-
geneous spectrum is excited, so that

(3.30)

the function F(u) becomes

-A!
. (3.31)
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In particular, if A0 > A,, we obtain

F (u) = — 1
A0 "

(3.32)

Consequently, the nature of growth of the field is now deter-
mined by the parameter

" iljj UQ^ — ————— -_^^ — — _ _^_^_ £^ ^ 0 , J J ^

where 27"^ = (T + A , ) ~ ' . The process of superradiance
now involves only the atoms with frequencies lying within
the band F + A, near the resonance line of the transition
under consideration. The number of these atoms is given by

If the part of an inhomogeneous spectrum of a line of
width A, is excited and this happens not at the center of a
frequency, but as a result of detuning A2 from the line center,
i.e.,

«o(A) =

then if A0 > A,, we obtain

F(u)
A S

0 +A°

(3.34)

(3.35)

Consequently, the wave amplitude is an oscillatory function
with the frequency A2 in the time domain and with the wave
vector A2/c in space. The dynamics of oscillation during the
initial stage is given by the parameter

4.TT I/ A 2 I A 2 T*•" ' ij -j— A * 1

Therefore, it follows from a comparison of Eqs. (3.11)-
(3.17) and Eqs. (3.29), (3.33), and (3.36) that the dynam-
ics of oscillation during the initial stage is given by Eqs.
(3.11)-(3.17) when the substitutions /?-»/?eff and a->aeff

are made and the new parameters aeff and /?eff are described
by the following expressions:

a) if /?.(A)-1,

-r±^L- . . . , .
rPeff = P, «eff = «

b)if

—i. «eff :
r +

A?/[(A-A2)2-f- A?],

, aeff = a •

A change in @ corresponds to a reduction in the density of
the number of the excited atoms and a change in a corre-
sponds to an increase in the line width.

4. ONE-WAVE PROBLEMS

It follows from the results of the preceding section that,
in the absence of reflection on the boundaries of an active
medium, two counterpropagating waves evolve indepen-
dently of one another during the linear stage. In this case the
characteristic parameters of the radiation pulses can be de-
termined using the one-wave model. The class of one-wave
tasks includes also the tasks of amplification and propaga-
tion of coherent pulses.

4.1. Interaction of counterpropagating waves

In the one-wave case the system of equations (2.26)
becomes

da , da

subject to the initial conditions

a(x,0)=aa(x), p(*,0)=0

or

a(x, 0)=0, p(x, 0)=p0(x)

and subject to the boundary condition

« - ! , < = A(t).

(4.1)

(4.2a)

(4.2b)

(4.3)

In the case of spontaneous decay, we have A ( t ) =0. The
solution of the system of equations (4.1) is identical with the
solution of the system (2.26) if in the latter the initial and
boundary conditions for the left-hand wave are selected in
the form

a, (x, 0) = p2 (*, 0) '0. (4.4)

By way of illustration, Fig. 1 shows—for the sake of
comparison—the radiation profiles in two cases:

p,(x, 0)=p0, p2(x, 0)=0,
pi(x,0)=p2(x,0)=pa,

(4.5a)
(4.5b)

when in both cases the initial and boundary conditions for
the field amplitudes are the same. It follows from Fig. 1 that
in the case described by Eq. (4.5a), we have a2 (x, t) = 0,
whereas in the case described by Eq. (4.5b), we find that
a2 (x, t) — a, ( — x,t). It is also clear from this figure that
the interaction between counterpropagating waves is quite
unimportant up to the moment of formation of the first max-
imum of the radiation intensity and begins to manifest itself
only in the region of formation of the subsequent maxima.
This is due to the fact, as can be demonstrated by the system
(2.26), that the interaction of the counterpropagating waves
is entirely due to the change in the population difference. It
follows from Fig. 2a that the bulk of the energy of the right-
hand wave up to its maximum is concentrated in the interval
0<x< 1/2 and only depletion of the inversion near the right-
hand end of the medium causes the maximum of the ampli-

FIG. 1. Influence of the initial conditions on the radiation intensity pro-
file. Curve 1 corresponds to the initial conditions of Eq. (4.5a), whereas
curve 2 corresponds to Eq. (4.5b).
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1/2 -1/2

we obtain

FIG. 2. Spatial distributions of the amplitude of the field of the right-hand
wave (a) and of the corresponding polarization (b) at different moments
in time: a) / = 24; b) t = 35.

tude of the right-hand wave to shift to the center of a sample
(Fig. 2b), so that the effects of the interaction of the waves
via mutual depletion of the inversion begin to manifest them-
selves.

Figure 2 reflects one other characteristic of spontane-
ous decay of the open systems. Since in the case of symmetric
initial conditions of Eq. (4.5b) we have
a-i (x, 0) = a, ( — x, 0) and p2 (x, 0) = /> , ( — x, 0), it
follows from Fig. 2 that within the limits of the first radiation
pulse we obtain \a, (x, t)p\(x, t)\>\a^(x, t)p2(x, t ) \ . In
particular, for the case shown in Fig. 2, we have

I <h (x, /o) Pi (•*• 'o) Imax _ , «,-,

. /o) Pa (*• 'o) Imax

Consequently, the effects of a light-induced grating of the
population inversion do not influence the formation of the
first radiation pulse and can manifest themselves only in the
afterglow.

4.2. Soliton propagation of pulses in unbounded media

One of the most interesting phenomena described by
the system (4.1) is the soliton propagation of pulses. The
soliton solutions appear in the coherent regime if
a = a, = 0. In this case the Bloch integral of motion is

Hence, assuming that

/?=/?„ cose,

(4.6)

(4.7)

1 38

2(51/2

and the next equation for the Bloch angle d(x, t) is

.
dt* dtdx

= P/?0sin6.

(4.8)

(4.9)

The one-soliton solution of Eq. (4.9) for an unexcited reso-
nant medium, when R0 = — 1, has the familiar form28'33

6 (*, (4.10)

where the soliton velocity and its duration are related by
(Fig. 3a)

'(iVT- or v = (4.11)

In an excited resonant medium (jR0 = 1) we can again ex-
pect soliton propagation of the pulses (for a review see Ref.
36), but in this case their propagation is characterized by a
whole range of special features. For example, the relation-
ship between the soliton velocity and its duration now be-
comes

I 1 / 1 I t I *'*

*o = hr l-- , or » =
>/« (4.12)

Therefore, it follows from Fig. 3b that whereas in the case
R0 = — 1 the velocity is i>< 1 for all values of r0, in the case
when R0 — 1 the velocity is y> 1 if /fr2, < 1, but v<0 if
/fro > 1. Consequently, the velocity of the maximum of a
pulse is either higher than the velocity of light or is negative.
In the latter case we have \v\ > 1 if 1 </3r^ < 1 and |y|< 1 if
/?TO >2, i.e., the negative velocity can also exceed the velocity
of light.

The field amplitude is described by the same expression
in both cases (R0 = + 1):

(4.13)

4.3. Exponential and lethargic amplification

The solution of Eq. (3.4) for a(x, u) is generally

a (x, u) = A9 (u) erKx

X

+ j!(fl(*',0) + exp [- X (* - *')] Ax',

(4.14)

-3 -2 -1 0 1 2 3

-3 -2 -1\ FIG. 3. Dependence of the soliton velocity v on its duration TO:
a) absorbing media, R0 = — 1; b) amplifying media, R0 = \.
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where

Let us now assume that a(x, 0) = 0 and/?(•*» 0) = 0, so that
oo

a (x, u) = ir*-* f e-"fa0 (0, /) At. (4.15)
0

Consequently, we have
oo

a(x, /) = Ja(0, f)Gb(t — t', x)dt' + a(Q, t), (4.16)
0

where

C« (/ — *', AT) = /———Y/1! /! (2 [fix (t — f — *)]1/2)
\t — t' — x]

x e \ p ( — a ( t — t ' — x ) ] Q ( t ~ t ' — x). (4.17)

In this section we shall consider, for the sake of convenience,
the problem in question in the interval [0, oo ] and not in the
interval [ — 1/2, 1/2], which we have used so far. There-
fore, a(0, ?) determines the shape of a pulse incident on the
boundary of the active medium.

If the boundary condition is of the form

a(Q,t)=aae", (4.18)

then using Eqs. (3.16) and (3.17), we obtain

a (x, t) = Ia0 exp 6 (t — x) -\———

oo

+ ac exp[— a (/ _ x)] V [ (a + 6) (^Y 21"
L \ P* / Jn—ft u \ r / j

(4.19)

If a pulse of constant amplitude (5 = 0) is incident on the
medium, it then follows from Eq. (4.19) that

< &x °° r /t — x\i/*i"a ( x , f ) = a0exp-^- + a0exp[— a(t — x)\^ a -—
I a ^ I \ p* ; J

(4.20)

In the case when a = 0, Eq. (4.19) transforms to

a(x, t) _ (a0expf-^ + 6(t -x)] + a0 \ f f i fc
I L 6 J £.1. \ PX

x 7 r t ( 2 l p x ( < — x)]I/:

If a = 5 = 0, then

a(x, <) =a0

(4.21)

x). (4.22)

It follows from the above expressions that if at least one of
the parameters a or S differs from zero, then in the fix <£ 1
case we have the usual exponential amplification of a pulse
characterized by the gain

As the product /3x(t — x) rises this type of amplification
changes to one characterized by a lower rise along x:

a(x, 0« exp {2 [£*(*— x)]1/2},

which is known as the lethargic amplification regime. If
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a = S = 0, it follows from Eq. (4.22) that the lethargic am-
plification regime applies right from the beginning.

4.4. Soliton solutions in spatially inhomogeneous media

The results obtained in Sees. 4.2 and 4.3 allow us to
formulate the following problems which require further
thought. Can the soli ton velocity exceed the velocity of light,
as shown in Fig. 3? What is the meaning of the divergence of
the velocity v when &r\ = 1 (Fig. 3b)? The soliton is an
eigenvalue solution of Eq. (4.9) for an infinite medium.
What happens if a radiation pulse of the type described by
Eq. (4. 1 3 ) is transmitted by an amplifying medium bounded
along the coordinate xl Is a soliton obtained again at the exit
or is its profile deformed by the boundaries of the medium?

We shall show that the answer to the last question pro-
vides also answers to the preceding questions. For example,
we shall consider the propagation of radiation pulses in spa-
tially inhomogeneous media under the coherent amplifica-
tion conditions (a = 0). The Bloch integrals of motion de-
scribed by Eqs. (2.24), (2. 25), and (4.6) have the property
that they are satisfied at each point x. Therefore, assuming
that the medium has a certain profile of the particle density,

R(x, 0) =£„(*),

we can rewrite Eqs. (4.7) and (4.8) in the form

R(x,t)=R,(x)cosQ(x,t),

p (X, t)=,££-R0 (x) sin 9 (x, t),

(4.23)

(4.24)

,,(,./)- !-*>('''>

As a result of substitution of these expressions into the sys-
tem ( 4. 1 ) in the case when a = a , = 0, we obtain the follow-
ing equation for the Bloch vector:

~P«.(*>sin8<*. 0- (4-25)

We shall seek the solution of Eq. (4.25) in the form

Q(x, 0 = 4arctg«•"(*•'>. (4.26)

Then, in the case of the variable 4>(;c, f), we obtain

*B. /a<D i g(I)\ _ R/? Cr}
* U «*/ (42?)

_a_/ao a®\ = 0

a/ ^ a; a« ;

It follows from the last equation that

(4.28)

whereas the first equation yields
d<S> _ PR0 (x)
dt C (x)

or

(X)
(4.29)

Substituting Eq. (4.29) into Eq. (4.28), and integrating the
latter, we obtain

X

= fJ
(4.30)
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Comparing Eqs. (4.29) and (4.30), we can readily demon-
strate that

where r0 is a constant. Finally, we find that <P(x, t) is de-
scribed by

fl> (x, t) =

j.

pr0 f /?„ (x') d*'.
J

(4.31)

It therefore follows that the constant rQ determines the pulse
duration outside the medium where R0 (x) = 0.

We shall determine the form of 4>(x, t) for a number of
R0(x) profiles:

a)

f) = th a,*;

b) tf o (x) = /?„ [th a,* + th a0 (L — x)]/2 :

c)

= Llf + fi5!«» In
Tn ^ 2a0 cha0(L-jr)

x) = R0 [sgn x + sgn (L — x)]/2 :

d) #„ (x)

<D (x, /) =

sgn(L —

sin a0*

(4.32a)

(4.32b)

(4.32c)

(4.32d)

Since Eq. (4.25) is a consequence of the equations for slowly
varying amplitudes, it follows that (within the limits of the
validity of this approximation) we can ignore the reflections
of the field at the boundaries of the medium. The length of
the medium is designated L in Eqs. (4.32b) and (4.32c) and,
in the normalization adopted by us above, we have L = 1.

The expressions relating a (x, t) and R (x, t) to <£ (x, t)
are obtained by substituting Eq. (4.26) into the expressions
in the system (4.24), and are as follows:

1 ( (4.33a)

R(x, 0-1?. (1 —

\x,t)

2
chz <P (*, 0

(4.33b)

Hence, it follows that if <J> (x, t) = 0, the field amplitude
a(x, t) reaches its maximum and we have R (x, t) = — RQ.
We shall represent <1> (x, t) in the form

®(x,t) = —(t — (((x)). (4.34)

A graph of the dependence op (x) in the case of media excited
right from the beginning (R0 > 0), corresponding to the pro-
files described by Eqs. (4.32b) and (4.32d), is given in Fig.
4. It is clear from Fig. 4a that at a moment ?, in the region
defined by — oo < x < oo we have a solitary pulse with its
maximum at a point X j , found from the condition
q>(xl) = t { , and this pulse is moving in the positive direction
of the x axis. At a moment t = t2 we have three pulses, two of
which are outside the amplifying medium and move in the
positive direction of the x axis, whereas the third, which is
inside the medium, is traveling opposite to the incident
pulse. At a moment / j we again have one pulse traveling in
the direction of the incident pulse. The occurrence of three
maxima at the moment ?2 is due to the fact that as a result of
amplification of the leading edge of a pulse of the type
(4.33a) incident on a sample at a moment t0 the difference
between the populations at the end of the sample becomes
R(L, t0)= -RQ. lf/3roR0 = 2 anda0 = 10, which is the
case illustrated in Fig. 4a, we have ?~0. Figure 5 shows the
transformation of a pulse near the end of the sample. It is
clear that if t > 0, a pulse splits into two parts, one of which
leaves the sample and the other travels opposite to the inci-
dent pulse. If PT^RQ = 2, these two halves are symmetric
relative to a point x = 1. This is due to the fact that the rising
and falling parts of the <p(x) curve in the case when
PT^RO = 2 have the same slope relative to the ordinate.
Therefore, the projections onto the x axis of those parts of
the cp(x) curve which are cut off by the straight lines t2 and
t2 + TO, have the same values. If /3ii,R0 >2, the linear di-
mensions of a pulse become shorter in the active region,
whereas if pr^RQ <2, the pulse becomes elongated in the
sample.

It should be pointed out that at t = t0 the amplitude of
the incident or input pulse at the entry face to the active
medium is

FIG. 4. Interpretation of Eqs. (4.32)-(4.34): a) function q>(x) in the
case described by Eq. (4.32b) when a0 = 10, L = 10, and Pr^Ra = 2,
and the spatial distribution of the field at three different moments in
time;b) function q>(x) in the case described by Eq. (4.32d), calculated
assuming that a,, = 0.5, /?„ = 0, and 13-r^R, = 5 in the case of curve 1
and that aa = 0.5, Ra = 0, and fhiR\ = 1 for curve 2.
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to 15 x

FIG. 5. Dynamics of formation of a pulse at the exit end of the active
medium-./) t= -2;2) t= - 1-3) t = Q;4) t= 1; J) ( = 2.

[(I/to) (Prj*o-1)1

-exp

whereas at the exit face of the active medium the amplitude
of the same pulse is

a-m(L, /„) = —~-

Since the amplitude of the output pulse at t = 0 is

we can define the gain as follows:

which yields

Comparing this expression with Eq. (4.21), we can readily
see that the value of the gain corresponds to the first term in
Eq. (4.21). In fact, it follows from Eq. (4.18) that 5= l/r0;
assuming that R0 = 1, we obtain P/S= PTO. Therefore,
amplification of an exponential input signal of the form
a(0,r) = a0exp(f/r0) results in the formation of a soliton
pulse of the form given by Eq. (4.33a) at the exit from the
medium; the duration of this soliton pulse TO is governed by
the growth increment of the input signal.

If/3r^R0 = 1, the curve <p(x) assumes the form shown
in Fig. 6. In this case we can expect uniform motion of the
population inversion over the whole length of the sample,
This pulse propagation regime is undoubtedly of interest for

three-level systems of pulse generation and amplification.
For certain durations of a pulse due to a resonant transition
from the ground state we can ensure a homogeneous, over
the whole length of the sample, inversion for the next transi-
tion.

Further opportunities for controlling the pulse profile
in a medium are provided by active media with a periodic
profile of the excitation or of the concentration of active
atoms. It is clear from Fig. 4b that variation of the param-
eters RO,RI, r0, and a0 [see Eq. (4.32d) ] can create a peri-
odic excitation profile for the adjacent transition in a three-
level medium. This profile can be realized simultaneously
over the whole length as well as in several local regions of the
active medium.

It therefore follows from the above analysis that a soli-
ton pulse can propagate across resonantly amplifying or ab-
sorbing media of finite length without a change in its profile.
The shape of the profile in the medium can then be modified
significantly, but it is still described by the same expression
[Eq. (4.3 3a)]. A pulse of the type described by Eq. (4.33a)
may have several maxima (Fig. 5) or it can reach its maxi-
mum value within the limits of the macroscopic region along
x, as in Fig. 6. The soliton velocity becomes infinite, as dem-
onstrated by an analysis of the problem in an unbounded
medium (Fig. 3) when maxima appear at the leading edge of
a pulse because of the amplification in the medium. In fact, it
follows from Eq. (4.34) that the velocity of the pulse maxi-
mum is

= — =. /d(P V"1

max~ At ^UJ '

At the point x0, defined by the condition

= 0,dip

dx

at a moment t0 = <p(x0) a pulse of the type described by Eq.
(4.33a) reaches its maximum value which is
a(x0,t0) = l/r0/3

1/2. This corresponds to an infinitely fast
jump to the pulse maximum. However, as we can see from
Fig. 5, the rise of the pulse at the exit of the sample takes a
finite time in reality. The amplitude of the output pulse
I/TO/? I/2 is limited by the fact that the maximum polariza-
tion for a resonant transition is restricted by the law of con-
servation of the Bloch vector [Eq. (4.6)].

5. TWO-WAVE PROBLEMS

In the present section we shall study the dependence of
the nature of generation and amplification of pulses on the
parameters of a medium and we shall employ models that
allow for the interaction of one-dimensional counterpropa-
gating waves. The system of equations describing the dy-

-ro

<p(X)

10

10 20 -10
X

10 20

FIG. 6. a) Form of the function <p(x) in the case de-
scribed by Eq. (4.23b), calculated on the assumption
that aa = 10, L = 10, and (Sii,Ro = 1; b) dynamics of
the pulse profile in the case when ftr^R0 = 1, shown
for t — 1,4, and 5 (curves /, 2, and 3, respectively).
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FIG. 7. Radiation intensity profile plotted for three values of the
parameter 0 at a fixed value of the gain f^0L=fi/a:a) a = 10 \
P= 10 ' ; b ) a = \Q-\P = 1; c) a= 10 ',£ = 10.

namics of the field amplitudes, polarizations, and difference
between the populations of inhomogeneously broadened me-
dia is

(5.1)

+ (ex + fa'A) p,., (A) = (A),

The initial conditions corresponding to spontaneous decay
of a system of excited atoms can be selected in the form

a,(x, 0)=a,(*, 0)=0, R(x, 0, A) =*.(*, A),

p,(x, 0, A)=po,(x, A), p2(x, 0, A)=po»U, A),
(5.2)

wherepw (x, A) andp02(;c, A) determine the initial spon-
taneous polarization. The boundary conditions are generally
given by

(5.3)

It follows from Eq. (5.1) that the main parameters influenc-
ing the nature of dynamics of decay of the system are the
ratios of the transit time (r — L/c) to the homogeneous
a = T/2T2 and inhomogeneous a* = r/2T$ relaxation
times, and the ratio of T to the coherence time P = r/ rc. We
shall investigate the influence of these parameters on the
intensities and shapes of radiation pulses.

5.1. Superradiance and super-luminescence

We shall consider first the decay occurring in free (with
no mirrors) systems. We then have

/•, = /•,=(), (5.4)

and the boundary conditions of Eq. (5.3) become homoge-
neous. Figure 7 shows the intensity profile of the radiation
generated in media excited completely and uniformly at the
initial moment

/?.<*, 0) = 1 (5.5)

in the absence of inhomogeneous broadening

/(A)—*(A). (5.6)

In all three cases the ratio 0 /a has the same value
13 /a = 100, whereas the parameter {} varies as follows:
P = 0. 1 in Fig. 7a,£ = 1 in Fig. 7b, and/3 = 10 in Fig. 7c. It
is clear from this figure that the intensity profile is practical-
ly unaffected by variation of £S, but the maximum intensity of
the pulse and the time when it occurs ( delay time t0 ) depend
strongly on (3. The intensity rises on increase in /? and the
delay time falls ( approximately as ft ~ l ) . Figure 8 illustrates
the nature of the dependence of the peak intensity of the first
pulse on the value of the parameter /3 for a fixed value of a
(Figs. 8a and 8b) and on the parameter a for a fixed /9 (Fig.
8c). We can see that an increase in the parameter ft in the
range /?> a first increases the pulse intensity linearly, which
then reaches saturation as 70 reaches 70[max = 1. We recall
that the field amplitude in the system (5. 1 ) is normalized in
such a way that

is the photon number density normalized to the density of
atoms. In turn, we have

/(O = « ,

Consequently, the fact that /(r) becomes equal to unity
means that the photon density at the end of a sample reaches
the density of resonant atoms. It is clear from Fig. 8c that in

FIG. 8. Dependence of the peak value of the intensity on the parameter 0
for fixed values of a = 10 ' (a) and a = 10 2 (b), and on the value of or
for fixed 0= 10 (c).
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FIG. 9. Dependences of the delay time (a) and of the pulse duration (b)
on the parameter/? for a fixed a = 10 ~'.

10'

FIG. 10. Peak intensity of a pulse plotted as a function of the parameters a
and/5.

the range a </? the maximum intensity of a pulse is indepen-
dent of the parameter a, but the "saturation" intensity de-
pends on P. As a tends to/3, the maximum radiation intensi-
ty begins to fall strongly and vanishes at as;/?. The dashed
curve in Fig. 8b represents the curve in Fig. 8a. We can there-
fore see that in the range /9> a the value of /0 is independent
of a and is influenced only by the parameter 0. As 0 ap-
proaches a, the gain /j.0L=/3/a falls and the radiation in-
tensity decreases. Figure 9 shows the dependence of the de-
lay time t0 (Fig. 9a) and of the pulse duration rp (Fig. 9b)
on the parameter ft for a fixed value of a. As pointed out
earlier, f0 oc/7 ~ ' and rp oc/J ~ ' in the range/?>a. Figure 10
illustrates the behavior of the peak value of the intensity in
the plane of the parameters (a,0). It is clear from this figure
that the coherent radiation intensity exceeds the spontane-
ous radiation background when 0>a. The pulse intensity
rises further in the range/? > a along straight lines parallel to
the linear dependence log a = — log 0. The intensity is ap-
proximately constant along lines parallel to the line log
a = log 0.

Figures 11 and 12 illustrate the influence of inhomogen-
eous broadening on the profile and intensity of the radiation
pulses. It is clear from these figures that, in full agreement
with our analysis in Sec. 3.5, coherent radiation is generated
when /? /a* > 1. If a* <x 0, the peak value of the pulse intensi-
ty is close to the spontaneous background level.

The results of our analysis allow us to draw the follow-
ing conclusions. Firstly, in the case of media characterized
by homogeneous broadening the threshold of generation of
coherent radiation is given by the condition /3/a> 1. Sec-

ondly, in the case of media characterized by inhomogeneous
broadening, when excitation is distributed uniformly across
the whole inhomogenous line profile (Figs. 11 and 12 illus-
trate this case) the condition of generation of coherent radi-
ation becomes 0/(a + a*) > 1. Thirdly, the nature of the
dependence of the peak value of the intensity on the param-
eter 0 allows us to distinguish two ranges of 0 which differ
qualitatively. We can see from Fig. 8 that if 0 < 10, the peak
intensity is a quadratic function of the initial inversion den-
sity. In fact, if 0 < 10, then /„ oc/?. Using the normalization
introduced by us earlier [see Eqs. (2.10) and (2.14)] and
Eq. (2.12), we obtain

(5.7)

The regime with the quadratic dependence of the peak inten-
sity on the inversion density is usually called superradiance.
We can also see from Fig. 8 that in the range 0 > 10 the peak
intensity of the first pulse rises more slowly on increase in/0,
tending in the limit to the linear dependence /max <*N /V.
This is usually called superluminescence or amplification of
spontaneous radiation.

5.2. Superradiance, superluminescence, and self-excitation
in an optical resonator

We shall now consider the dependence of the intensity
and profile of a radiation pulse on the parameters of a medi-
um when generation of radiation occurs in a resonator. We
must point out straightaway that we are not dealing here

-0,02

-0,01

-10- -10

-5-10

-3

-5-10'

FIG. 11. Influence of inhomogeneous broadening on the profile
of the radiation intensity plotted for a= 10 ~2 , f)= 1, and
a* = 0.1 (a),a* = 1 (b), and a* = 5 (c).

0 10 20 SO 40 t 0 100 200 t 0
a b

100 200 t
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FIG. 12. Influence of inhomogeneous broadening on the profile
of the radiation intensity plotted for a = 10 2, f}= 10, and
a* = 0.1 (a),a*= 1 (b), and a* = 5 (c).

with the case of an active medium inside a high-Q optical
resonator, but with the more general problem of the influ-
ence on the nature of the dynamics of reflection of the field at
the boundaries of the active medium on the nature of the
dynamics of generation of radiation. We shall assume that
the reflection coefficients rli2 occurring in the boundary con-
ditions of Eq. (5.3) vary from 0 to 1. Therefore, generation
of radiation in a high-Q optical resonator is a special case of
the general problem considered by us. It is necessary to allow
for the reflection of the field because in all cases of practical
importance the coefficient of reflection at the boundary of an
active medium does not vanish, because the permittivity of
such a medium always differs from the permittivity of the
environment. This difference is important even when an ac-
tive medium is a low-pressure gas and it can alter consider-
ably the nature of dynamics of generation of radiation in the
case of solid-state active media. Therefore, decay in open
systems (r, = r2 =0) and decay in a high-Q resonator
(r, x r2 s 1) are two limiting cases of our general discussion.

Figure 13 illustrates changes in the radiation intensity
profile when the reflection coefficients are varied. Figure 14
gives the resultant dependences of the peak intensity on the
reflection coefficient for various values of the parameters a
and P. Figures 14a-14d show the dependence of the field

inside the resonator/0 = |a, (1/2, ?) |2 and outside the reso-
nator / = J0 (1 — i\) in two limiting cases: when both mir-
rors have the same reflection coefficient (r, = r2 = r) and
when the left-hand mirror is totally reflecting (r, = 1) and
the reflection coefficient of the right-hand mirror varies
from 0 to 1. It is clear from these figures that in superradiant
media (a</7< 1) the peak intensity rises quadratically on
increase in r. On the other hand, in superluminescent media
(1 < a 4,13) an increase in r reduces the peak value of the
intensity. The behavior of the superradiant and superlu-
minescent media differs also qualitatively as r approaches 1.
It is clear from Fig. 15a that in the case of superradiant me-
dia when r = 1 the energy is transferred regularly from the
field to the medium and back again. The peak value
/„ = 1/2, i.e., the maximum total number of photons in two
counterpropagating waves, is equal to the number of atoms.
On the other hand, when r = 1 in superluminescent media,
several consecutive oscillations do not alter the field ampli-

12 18 24 SO t

FIG. 13. Dependence of the radiation pulse profile on the reflection coeffi-
cient /•, =r±= r'm the case when a = 10 ~ 2 and 0 = 1.

FIG. 14. Peak value of the radiation intensity inside (curves / and 3) and
outside (curves 2 and 4) the active medium, plotted as a function of the
reflection coefficient. Curves 1 and 2 correspond to r, = r2 = r, whereas
curves 3 and 4 correspond to r, = 1, r2 = r.
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FIG. 15. Influence of the reflection coefficient ran the
intensity profile inside the active region
70(0 = |a(l/2, 0 | 2 : a )a= 10-2,/3 = 1; b) a = 10,
P= 100.

5 t

tude and 70 assumes the value 1/4. This means that the reso-
nant atoms emit N/2 photons and then the population differ-
ence vanishes so that the medium no longer interacts with
the field inside the resonator.

Figure 16 shows the dependence of the delay time on the
reflection coefficient r for the same parameters a and 0 as in
Fig. 14. We can see that whereas in superradiant media the
delay time is inversely proportional to r, in superluminescent
media it is practically independent of r.

It is traditional to divide media into superradiant and
superluminescent in accordance with the value of the param-
eter a = r/Ti. When the transit time of a photon across a
sample T = L /c is less than the homogeneous relaxation
time T2, then superradiance appears in such media. If a > 1,
i.e., when T2 <T, it is assumed that superluminescence is
emitted. It is clear from Fig. 14 that the division of media

0,2 0,4 0,S 0,8 r ° 0,2 0,4 0,8 0,8 r

0,2 0,4 0,6 0,8 r ° 0,2 0,4 0,B 0,8 I-

into these two classes in accordance with the parameter a
alone is quite rough. The parameter /3 is very important.
Figure 17 gives the dependences of 70 and I on r for media
with a = 10 ~ 2 and different values of the parameter /?. We
can see that if /? < 1, the value of /0 increases with r and for
media with/?> 1, we have a reduction. Therefore, introduc-
tion of a self-consistent definition of the regime of generation
of coherent radiation should be based on the use of qualita-
tive differences between the dependences of the characteris-
tic parameters of the output pulses on the parameters of the
medium. In our opinion a suitable criterion is that based on
the sign of the derivatives dI0/dr\r = 0 and dI0/dr\r=,:

a/o
dr

' dr

— superradiance,

— superluminescence,

— transition regime •

FIG. 16. Dependences of the delay time on the reflection coefficient.
Curves labeled 7 correspond to the case r, = r2 = r, whereas curves la-
beled 2 correspond to the case /•, = 1, r2 = r.

The rise of /„ with r in superradiant media is due to the fact
that in this case the width of a field line A<af zzl/ris greater
than the width of an atomic transition line A<oa = l/T2.
Placing of a medium inside the resonator then reduces the
field line width

Aw,- = — In —
i r

on increase in r, which results in a stronger interaction of the
field and atomic subsystems. In the case of superluminescent
media we have A«f < A&>a already for r = 0, so that an in-
crease in r—which reduces A<yf—simply reduces the
strength of the interaction between the field and atomic sub-
systems.

We shall now consider the influence of inhomogeneous
broadening on the nature of the dependence I 0 ( r ) . Figure 18
shows the dependences of / on r for various values of the
inhomogeneous broadening parameter a*. We can see that if
a*>a, the radiation intensity decreases on increase in a*.
However, the qualitative nature of the dependence /0 (r) is
practically unaffected. In particular, the sign of the deriva-
tive dI0/dr\ r = , remains unaltered. The reduction in the ra-
diation intensity on increase in a* is related, as shown in Sec.
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FIG. 17. Influence of the parameter/Son the nature of the dependences
/„(/•) and /(/•).

0,2 0,4 0,6 0.8 r 0,2 0,4 0,S 0,8 r ° 0,2 0,4- 0,6 0,8 r

2, to a reduction in the density of resonantly interacting
atoms.

5.3. Collect! vesuperradiance

We considered above the dependences of the intensity
and profile of the output pulses on the main parameters of a
light-emitting medium: a, (3, a*, r{, r2. The first three are
the internal energy parameters, for example, an increase in/7
requires an increase in the pump power, whereas the param-
eters a and a* can be reduced by supplying energy so as to
establish a more ordered state in the atomic subsystem. The
parameters r} and r2 are external. Variation of these param-
eters in a certain range available in experiments makes it
possible to control the parameters of the output pulses, i.e.,
to some extent it is possible to optimize the process of extrac-
tion of the energy stored initially in the atomic subsystem.

Optimization in respect of these parameters does not
exhaust all the possibilities for optimization of the process of
generation of radiation by extended polyatomic inverted me-
dia. One other opportunity is provided by control of the ini-
tial conditions described by Eq. (5.2). This is more difficult
than the method of control described above, in which case
the dependence of the solution on the parameters of the
problem can be obtained simply by varying these parameters
in a certain range, as was done above. Therefore, 70 is a func-
tion of the parameters a, /?, a*, r,, r2, and it is also a func-
tional in the space of the initial conditions. This problem
cannot be solved simply by suitable selection of the initial
conditions. However, we shall be interested only in the extre-
mal regions of the functional. We can therefore adopt a more
direct approach involving an analysis of the symmetry of the
investigated mathematical or physical problem. For exam-
ple, in the case of point-like systems, i.e., systems with di-

0,2 0,4 0,6 0,S r
a

0,2 0,4 0,6 0,8 r

b

FIG. 18. Influence of inhomogeneous broadening on the nature of the
dependences/0(r) and/(r)-.a) a = 10 2,#= 1, r, = l,a* = 0.1,1, and
5 for curves 1, 2, and 3, respectively; b) a = 10~2, ff = 10, r} = 1, and
a* = 0.1, 1, and 5, for curves 1, 2, and 3, respectively.

mensions much less than the radiation wavelength, the sym-
metry of the atomic subsystem in the superradiant state
ensures the maximum decay rate proportional to N2. We
demonstrated above that in the case of extended systems this
symmetry breaks down. This is due to the fact that in the
case of point-like systems the symmetry of the atomic sub-
system determines the symmetry of the total system, since
the field intensity is the same at all the points in the active
medium and field photons leave the light-emitting region
almost instantaneously. However, in extended systems an
inhomogeneity of the field along the active medium results
in breaking of the symmetry of the atomic subsystem, be-
cause the rate of emission of stimulated radiation depends on
the field amplitude. Therefore, the states symmetric only
relative to the variables of the atomic subsystem are not
characterized by the highest radiative decay rates, which is
true only of the states that allow for the symmetry of the
complete atomic-field system.

Such high-symmetry solutions of the system of equa-
tions (5.1), subject to the boundary conditions (5.3), were
found in Ref. 27. These solutions are

ai(x,t)

Pi

x, t)
2pl/2 dt

cos<p(.*),

ftl/4

n sin 6 (x, t) . cos <p (x), (5.8)

p2 (x, t) = "— R0 sin 6 (x, t) -sin-tp (x),

R(x, /)=/?„ cos 9(*, t ) ,

where the Bloch angle 0(x, t) is given by the expression

Q(x,t)=A(ch®(x))l/iu(t); (5.9)

here,

4s =•

sin 2<p (x) —

1(1-^/'i]+ 1(1-'D

I

(5.10)

(5.11)

(5.12)
ch d> (x)

It is clear from the expressions (5.8)-(5.12) that the spatial
dependence of the difference between the populations, field
amplitudes, and polarization waves is determined uniquely
by the boundary conditions. The dynamics of all five un-
known functions a{ (x, t), a2(x, t), p{(x, t), p2(x, t),
R(x, t) is described by one equation:

d2U i d« -a n • ffl1\-—- + Y— = p/<oSinu, (5.13)
d/2 dt
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PIG. 19. Angles 0(x, t) and <p(x, t) specify uniquely the position of the
Bloch vector in the pseudospin space (p,, p2, R).ln general, the end of
the Bloch vector winds itself on the Bloch sphere, which increases the
radiative decay time. The highest decay rate is exhibited by the states
corresponding to the motion of the end of the Bloch vector along the
azimuth.

where

= In-
\l/2

It is clear from the system (5.8) that tp(x) is the azi-
muthal angle in the energy pseudospin space (/>,, p2,R),
where the Bloch angle 6(x, t) is the polar angle. These two
angles specify completely the position of the polarization
vector on a sphere of radius R0 . The difference between the
supersymmetric solution of Eq. (5.8) and the arbitrary solu-
tion of the system of equations (5.1) characterized by
a = a* = 0 is that in general the angle <p depends on time
<p(x, t). We can therefore say that in general the end of the
Bloch vector winds itself on a Bloch sphere in the course of
radiative decay of our system (Fig. 19) which accounts for
an increase in the radiative decay time and a consequent
reduction in the intensity. On the other hand, in the case of
the solution (5.8) the end of the Bloch vector moves from
the uppermost point on the Bloch sphere to the lowest one
following the shortest path along the azimuth, which en-

sures the maximum radiative decay rate.
Using Eqs. (5.8)-(5.12),we can show readily that the

intensity of the radiation emitted from the right-end of the
medium, where the reflection coefficient has the value r2 is
given by the expression

A (0 =

where

(0

(5.14)

1/2

The total intensity of the radiation emitted from both ends of
the medium is

»/,(') +/»(0"=*rfl'(0. (5.15)

The intensity of the field within the active medium is

n(x, t)=nt(x, t)+n2(x, t)=A*a*(t) chO(x). (5.16)

The integrated intensity of the field in the medium is given
by

1/4

/ 0 (0= t n ( x , t ) d x = a?(t). (5.17)

Let us assume that initially a state of complete inversion
is established in the medium, so that R0 = 1. We shall now
introduce a new dimensionless time

so that Eq. (5.13) can be rewritten in the form
d*u . t du

1- 0 — =
dia dx

where

(5.18)

8 = -^-. (5.19)

Consequently, the profile of a radiation pulse depends on

a(f)

0,5 •

FIG. 20. a) Profile of a collective superradiance pulse, S = 0.5; b) de-
pendence of the delay time ra on the value of the parameter CT;C) depend-
ence of the peak value /0(r0) = a2(r(1) and I(r0) — 2Sa2(r0) on the
parameter S.

to f
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just one parameter S. Figure 20 shows the pulse profile for
one of the values of the parameters S, as well as the depend-
ence of the delay time TO and of the square of the maximum
amplitude a2(r0) on the parameter S. The quantity
2<Sa2(r0), determines, as can be deduced from Eq. (5.15),
the intensity of the radiation emitted from both ends of the
medium. We can see that it has an extremum where the max-
imum of the peak value of the radiation intensity is reached.

It should be pointed out that if r{ = r2 = 1, the solution
ofEq. (5.13) assumes the familiar form

a(f)
ch[(51/2 (/-/„)]

where

31/2

from which it follows that the expressions for the wave am-
plitudes a, 2 (x, t) have the following form in the interval
(0,2r0):

«i (x, /) = a, (x, t) = • - -J --- L-

and they are then repeated periodically at intervals
[2nt0, 2(n+ 1)?0].

Systems exhibiting inhomogeneous broadening were
also investigated in Ref. 27. In this case we have

6(x, t, A)=A(chOW) 1 / 2 M(# , A),

where the functions u ( t, A ) satisfy the equations

, A) , , . ,.. du (t, A)
— — - -T (7 — '« A) — — — -dt" u ' dt

.20)= P f exp [— i (A — A') a**] sin u (t, A')-/(A')dA'. (5

It is clear from Eq. (5.8) that an(x, t)andpn(x, t) can
be represented in the form

a, (x, t)=a (x, t) cos q> (x, t ) , a2 (x, t) = a (x, t) sin cp (x, t ) ,
Pi(x, t)=p(x, t) cos<p(;c, t ) , p2(x, t) =p(x, t) sincp(x, t).

The high symmetry of the solutions given by Eq. (5.8) and of
the corresponding states of the atomic-field system is re-
flected also in the fact that for these solutions, in addition to
the Bloch conservation integral

p2 (x, t) + ^R* (x, t} = p2 (x, 0) + 4 R* (x, 0).
4 4

there are two further integrals of motion:

After finding our supersymmetric solutions, we can
readily identify the initial conditions that ensure that these
solutions are obtained. It follows from Eq. (5.13) that we
can select two main types of the initial conditions:

(I) W(0) = «0> -(0)=0,

(II) «(0)=0,
at at

In the former case the initial conditions for an (x, t),
pn (x, t) and R (x, t) are

flx (x, 0) = a, (x, 0) = 0,
1/'^] _ ft^X Au, ^

2

Rl/2 > sin [A (ch (P u0]

ch <

_P'*R0 Au0

" 2 A 2

R (x, 0) = .R0 cos [̂  (ch 0) (x))1/2 «„].

In the latter case, the initial conditions are given by the fol-
lowing set of equations:

fli(*. 0) =
A du0

dt

".<*,<>)—4™*-•

=p,(*. 0)=0,
(5.22)

In the former case we have to create a certain spatial distri-
bution of the initial population inversion and of the polariza-
tion current density. In the latter case we have to find the
initial field distribution given by Eq. (5.22).

A clear illustration of the feasibility of optimization of
the process of energy extraction from an excited medium
under conditions of collective spontaneous radiation is pro-
vided by Figs. 21-23. Figure 21 shows how the profile of a
radiation pulse depends on the parameter/? (for example,
the inversion density in the medium) for a fixed value of the
parameter a = r/T2 and a uniform excitation of the medium

n

0,0'J

0,02

0,01 -

n
1-.5

0,5

SO 120 t
a

2,0

n

1 2

FIG. 21. Dependence of the radiation intensity profile on
the parameter 0 = 1 (a), 100 (b), and 10' (c) for fixed
a = 10 •' and the initial conditions
a, (x, 0) = a2 (x, 0) = an, Pn (x, 0) = 0, and
R(x, 0) =/?„.
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FIG. 22. Dynamics of the area under the pulses shown in
Fig. 21.

R (x, 0) = 1. We can see that as the inversion density rises, a
radiation pulse is transformed into a sequence of pulses with
an irregular variation of the peak intensity of the separate
pulses. In all the cases considered above, we are dealing with
generation of coherent radiation, which is confirmed by the
time dependence of the area under a pulse shown in Fig. 22.
We can see that

Figure 23 shows, for the sake of comparison, the profiles of
the radiation pulses corresponding to the initial conditions
of Eqs. (5.21) and (5.22). We can see that, instead of a train
of pulses, we can again have a pulse of the shape shown in
Figs. 20a and 2la. The intensity of the main peak exceeds
considerably the intensity of any pulse in a train and the
energy in this pulse is equal to the total energy of a train of
pulses.

6. SUPERRADIANCE OF A SYSTEM OF NUCLEAR SPINS

One of the remarkable recent results of experimental
investigations of superradiance is that emitted by a system of
proton spins.38"40 These experiments demonstrated the va-
lidity of the model, regarded for a long time as artificial, of
superradiance of a point-like system which allowed Dicke to
predict superradiance and which has continued to attract
the interest of theoreticians for several decades. The impor-
tance of these experiments is that a detailed comparison of

their results with theoretical predictions makes it possible to
test the validity of the models proposed earlier. In this sec-
tion we shall derive the equations of the dynamics and ana-
lyze the characteristic features of the superradiance emitted
by a system of proton spins.

6.1. Experimental investigations

Investigations of rf superradiance emitted by a system
of nuclear spins were carried out using a high-Q oscillatory
circuit with an induction coil containing a solid sample char-
acterized by an initial negative polarization of the nuclear
spins. The active medium was an insulator with a high pro-
ton concentration in the form of propanediol (C3H8O2)
containing paramagnetic Cr + v impurity ions. Cooled
spheres 1 mm in diameter were poured into a chamber where
3He was dissolved in 4He and they were magnetized by a
static field. The spin concentration was N/y=3.&X 1022

cm~3 in the experiments reported in Ref. 38 and
N/V= 4.5X 1022 cm ~ 3 in those reported in Ref. 39. In the
latter case the population inversion of the Zeeman proton
levels was induced by the method of dynamic polarization of
nuclei in a field of 2.45 T, which corresponded to a proton
magnetic resonance frequency vp = 104.3 MHz. A sample
was located in a multimode cylindrical microwave resonator
of 14 cm3 volume. An inductance coil was placed inside the
resonator and it consisted of three turns of an isolated wire.
The diameter of the turns was 12 mm and the length of the
coil was 8 mm. The polarization measurements were made

10
FIG. 23. Comparison of the profiles of the collective superradiance
pulses (continuous curve) and conventional superradiance (see
Figs.21band21c):a)a= 10-\/3 = 102;b) a = 10 ',/?= lO'.In
case b the height of the dashed rectangle is equal to the maximum
peak value of the intensity, whereas the width is equal to the charac-
teristic duration of a train of pulses shown in Fig. 21c.

2 t
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FIG. 24. Dependences of the amplitude of the rf pulse t/and of the final
value of the polarization Pf on the initial polarization Pt observed in the
experiments reported in Ref. 39.

by connecting the coil to a Q meter. The initial polarization
was first measured and then the Q meter was disconnected
and the applied magnetic field was reduced at the rate of
0.005 T/s. The inductance coil in a section of the cable inside
a cryostat formed an oscillatory circuit resonating at a fre-
quency vr = 54 MHz. When the proton resonance frequen-
cy vp approached the resonance frequency vr, an rf pulse
appeared in the oscillatory circuit and this was recorded
with a storage oscilloscope. Figure 24 shows the depen-
dences, on the initial polarization, of the amplitude of the rf
pulse and of the finite value of the polarization observed in
Ref. 39. It is clear from Fig. 24 that there was a critical value
of the initial polarization above which the final polarization
began to rise linearly. Reversal of the polarization was ob-
served for \R01 > }R0c | = 0.32.

6.2. Theory of spin superradiance

As pointed out above, the spin superradiance obeys the
Dicke model for a point-like system of radiators. However,
the actual model has a number of features which distinguish
it from an open system of two-level radiators. These features
are discussed partly in Refs. 38-40. One of the main differ-
ences is the presence of a high-Q resonator ensuring frequen-
cy discrimination of the radiation modes. The other is that
the characteristic duration of superradiance pulses is com-
parable with the homogeneous transverse relaxation time
T2. In this case the duration of the radiation pulses depends
strongly on T2. A theory of superradiance allowing for the
finite nature of the time T2 is developed specifically for opti-
cal systems in Ref. 44.

We shall derive equations describing the dynamics of a
system of spins interacting with one another and with cur-
rents in a resonant circuit. If the Hamiltonian of this interac-
tion, described by Eqs. (A1.1)-(A1.4), is modified by sub-
stituting the expression for the current density j in the form

j = c curl M,

where M is the magnetization vector

M=2|i,8(r-r,),

the Hamiltonian of Eq. (A1.4) becomes

(6.1)

(6.2)

(6.3)

here, B is the magnetic induction vector defined by B = curl
A. Assuming that the magnetic field B includes a constant
component B0 directed along the z axis and two transverse
components oscillating at a radio frequency, we can reduce
the Hamiltonian of Eq. (6.3) to

N N

Hs = — by 2 1<B (r<> $ = —;f 2 B° W a'3
i=i >=i

N

i=l

where I is the spin operator related to the magnetic moment
operator \i and the spin matrices a by

I = - L < r = J L . (6.5)
2 ft?

Changing the components Bt and B2 to circularly polarized
components

Bj^etB^+e-B-, (6.6)

where

B±=*l- (B! ± iBa), e± = B! ± ie-j,

we can rewrite Eq. (6.4) in the form

- ̂  SH* - — ̂ - V"s- o 2i

where

(6.7)

(6.8)

Applying the commutation relationships for the Pauli matri-
ces, we can readily obtain the following equations of motion
for a ± and cr3:

3(Ji+
IT

a°f3

df

(6.9)

The equation for the vector potential of the rf field

has two terms on the right-hand side: jc is the conduction
current density and js is the magnetization current density.
The last is described by Eqs. (6.1) and (6. 2). The current jc
is due to the motion of free charges along wires, whereas the
current js is due to the rotation of spins. In view of the linear-
ity ofEq. (6.10) the vector potential can also be represented
by two terms. The former is related to the conduction cur-
rent given by

I r - r' I

Jo (<) »" ,, exp ( < x | r — r'
(6.11)
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where t ' = t — ( |r — r'\/c), J0 (t) is the amplitude of the
current in a resonant circuit, and Jz? is the integration con-
tour which is identical with the lines of flow of the current in
the resonant circuit. Equation (6.11) is derived on the as-
sumption that jc (r

1, t ') can be represented in the form

jc(r', 0 = io(r'.')exp(-iio* + ixlr-r'|). (6.12)

Thus, part of the magnetic field due to the conduction cur-
rents in the resonant circuit can be described by

Bc = curl AC

IT (1 - ix | r - r' |) exp (ix | r - r' |).

(6.13)

If the magnetization vector M is represented in a form simi-
lar to Eq. (6.12),

M (r', O = Mo (r', 0 exp (- to/ + ix | r - r' |) , (6. 14)

the following expression is readily obtained for the field Bs :

Bs.
a-itsst (r-r')exp(iH|r-r' |)

(6.15)

Therefore, if w< 1, the positive-frequency part of the mag-
netic field can be represented by

B+(r, t)=bJ+

where

(6.16)

«* [dl', r— r']

+ = 2 (6.17)

Using Eqs. (6.11)-(6.17), we obtain the following expres-
sion for the current in the oscillatory circuit:

dV (6.18)

where £ is the inductance of the circuit

.R is the active resistance, and C is the capacitance of the
circuit. The magnetic field flux Bs through a plane 2 sup-
ported by the contour ̂  is

(6.19)d»3 = f BsdS = <j> Asdl =
i j?

where

J +•

Finally, the equation for the current in the resonant circuit
becomes

At1 it df* '
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where

26 = —, Q" = — , v = -^-.
I tc Lc

Assuming that L can be represented in the form

r d S = — Z

the expression for v can be rewritten as follows:

v =
i-c

(6.21)

It should be noted that the quantities v and 6, can be com-
plex, whereas £2 is real. Therefore, according to Eq. (6.16)
there may be a phase shift in the fields Bc and Bs .

Combining the equations for the spins [Eq. (6.9)] with
the equations for the conduction current, we obtain the final
result in the form of a system of equations

«* (/, A) 3 (t, A).

(t. A) B. - (t, A)),

(6.22)

B+ (/) = V+ (Q + 62 j «
+ (*, A) / (A) dA.

The system (6.22) allows for an inhomogenous broadening
of the proton magnetic resonance lines:/( A) is the profile of
an inhomogeneously broadened line, <u0 is the central fre-
quency of this profile, and A = ca — co0 . Neglect of the delay
effects, justified for systems with dimensions much less than
the radiation wavelength, reduces the wave equation (6. 10)
to a simple functional dependence of B + (t)onJ+ (t) and
R +(t). This approximation is used in Eqs. (6.12) and
(6.14).

In an analysis of the qualitative characteristics of the
spin superradiance we shall confine ourselves to the case
when /(A) =<5(A) . The system of equations (6.22) con-
tains two characteristic relaxation times: T2 which is the
relaxation time of the spin system and 8 ~ ' which is the life-
time of the field in a resonator. The relationship between
these times will determine, in the first approximation, the
nature of generation of radiation. If 8T2 > 1, we obtain su-
perradiance, whereas superluminescence is limited if
ST2 < 1. A more detailed classification of the radiation gen-
eration regimes was given earlier in Sec. 5 and it can be ap-
plied directly to the present case if the decay constant 8 and
the reflection coefficients r, 2 are expressed in terms of the Q
factor of the resonator. During the initial (linear) stage
when J?3 ~ — \RM \, the equation for the amplitude of the
current in the oscillatory circuit is

dr
f A) J+ =

Consequently,/+ is given by

J+ (t) «= J+ (0) exp [(g — \) 8t — j (Q — a) /],

where

ff =

(6.23)

(6.24)
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The condition for the growth of the current amplitude in the
circuit is

£>!• (6.25)

We shall consider the case when ST2 > 1. We can then as-
sume that

+ x ' 2(6 + /(Q-o>))

so that the expression for R3 becomes

where

• = TDln [if^rl1 /J '

6s + (Q — u)a
1 —

(6.26)

(6.27)

(6.28)

(6.29)

The pulse of a current in the circuit is in the form of a classi-
cal superradiance pulse:

I-M<) I1

<o» | v |
4

i
-«)f ch»[(<-f0)/2TpJ

(6.30)

Therefore, it follows from the above expressions that we are
dealing here with a regime of superradiance in weakly ampli-
fying media, predicted in Ref. 44. For optical systems the
quantity g(a>~) is the gain. The threshold of emission of radi-
ation is given by the condition g(co ) > 1 . Only a certain effec-
tive number of atoms

participates in the superradiance process, so that in the
course of generation of a superradiance pulse only N spins
are inverted. Therefore, if the initial value of the polarization
of the target is given by

Pi- IK*,)

the final value of the polarization of the target is described, in
accordance with Eq. (6.26), by the expression

— w( N
) "Left part of Eq. missing" (6.31)

/ .

Consequently, ifg(co) > 2, the polarization is reversed. Such
dependences are in agreement with the experimental results
reported in Ref. 39.

In the opposite limiting case (ST2 < 1) the rotation of
spins occurs in a time much shorter than the time taken to
establish oscillations in a circuit, which amounts to S~l.
Consequently, the duration of an output radiation pulse is of
the order of <5 ~ ' and its leading edge exhibits a peak or a
sequence of pulses due to the motion of spins.

APPENDICES

1 . Derivation of the equations for the interaction of a system
of two-level atoms with radiation

The Hamiltonian of a system of two-level atoms, inter-
acting with an electromagnetic field, is of the form

(Al.l)

where //a is the Hamiltonian of the atomic system:

Hf is the Hamiltonian of the free field

H, = j \2nc*W(r, t) + ^(curl A(r, /))*] dV, (A1.3)

and H,m is the interaction Hamiltonian

is a
In Eq. (A1.3) the quantity A(r, t) is the operator of the
vector potential of the electromagnetic field and B(r, f ) « °
canonically conjugate generalized momentum

(A1.5)

The density of the current representing a transition in Eq.
(A 1.4) is related to the Pauli matrices <r+ and cr_ used in
describing the dynamics of two-level atoms:

N

J <r. 0 - 2 «+ I JJ (r - rt, t) | -) a* (t)

- \K(r-rt,

where j0
+ (r) is the positive-frequency part of the current

density operator describing a transition in a single atom;
| + ) and | — ) are the wave functions of the excited and
ground states of an atom. In a model of point-like atoms, the
expression (A 1.6) becomes

j (r, 0 = 2 (nw*+ (0 + "W-- (0) « (r - r,), (A1.7)

where m, is the matrix element of the current representing a
transition in the rth atom.

Using the commutation relationships for the operators
AandB

, 0. 4(r', 01 = [B0(r, 0, fipfr', 01 = «,
(A1.8)

(r, 0, Bp (r', 01 = «M (r - r'), «, p = *, y, z,

and the Pauli spin matrices

[ai+, a,_l = <Xi38,,-, [ai±, a/,] = T 2ai±6l/, (A 1.9)

we can readily obtain the following system of the operator
equations:

dt v ' "

—£-1 = — — curl curl A (r, t) -{ j (r, t),
at 4?i c

~- = tartan. + -f- m<A (r,-, t) ai3,ot he

~- — -i- (m,-a,-+ — m'ai-.) A (r,-, t).
ot nc

(A1.10)
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2. System of slowly varying equations in the nonresonance
case

We shall represent the vector potential A (r, t) and the
density of the polarization current j(r, t ) , occurring in Eq.
(2.4), in the following form

A(r, t) =Al(x, t) sin (at—kx) + Az(x, t) sin (a>t+kx+<p)

+ A,(x, t) cos (<at—kx) +Ai(x, t) cos (a>t+kx+<p),
(A2.1)

/(r, t) =ji(x, t) cos (ott—kx) + J2(x, t) cos (®t+kx+y)

+j,(x, t) sin (at—kx) +jt(x, t) sin (®t+kx+y),

where/4,, (x, t)andjn(x, t) are slowly varying amplitudes.
Substituting the expressions from the system (A2.1) into the
system of equations (2.4), we obtain the following system
for slowly varying amplitudes

dt

= ~-

- »„) h (x, o

rp/3 (*, 0 - (« - <•>„) /i <*, 0
// 2

3 J i^ + T /« (*, 0 - (« - "O) /. (*,

(A2.2)

IT

where

P (*, 0 = Po
= Po (*,

, 0 + P+ {*, 0 «'2fe

+ 2pi (*, /) cos (2£*
+ P- (*, 0 e-'2**
q>) — 2p8 (x 0 sin (2kx + <p).

(A2.3)
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