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This review is devoted to cumulative hydrodynamic processes in a plasma and to the possibility of
using them for controlled thermonuclear fusion. The cumulation of convergent shock waves and
the mechanisms of their limitation are discussed in greatest detail. Results are presented of study
of non-one-dimensional cumulative shock waves, which had practically not yielded to analysis
until recently.

INTRODUCTION

This review is devoted to cumulative hydrodynamic
processes in a plasma and the possibility of using them for
purposes of controlled thermonuclear fusion.

We mean by cumulation here the property characteris-
tic of certain hydrodynamic flows of a sharp increase (by an
order of magnitude or more) in the local energy density in a
certain zone of the flow. For example, it is known that a
high-velocity jet of metal is formed upon fast compression of
a metallic conical shell (the cumulative effect1). The veloc-
ity of the jet being formed can exceed by severalfold the ve-
locity of compression of the shell,2'3 and hence the cumula-
tion in the given case is manifested in a concentration of
kinetic-energy density in the cumulative jet. This effect is
discussed sometimes in connection with problems of con-
trolled thermonuclear fusion (CTF)—for creating plasma
jets4 or for accelerating macroparticles for impact initiation
of CTF,5 but here only minimal attention has been paid to it.

Of far greater interest for plasma physics are conver-
gent shock waves,6 as well as other examples of cumulative
flows7 that lead to a considerable increase in the tempera-
ture of the plasma. Some of these effects function in real
physical equipment, and others prospectively can be used to
attain thermonuclear temperatures. The possibility would
be most fascinating of creating a plasma flow with a relative-
ly low initial temperature (e.g., T~ 1 eV) so that the cumu-
lation would increase the temperature to the values neces-
sary for thermonuclear fusion. This approach to the problem
of inertial thermonuclear fusion (ITF) has both a certain
experimental history and definite prospects.

To discuss the possibilities of using the ideas of cumula-
tion to solve the fundamental problem of heating a thermo-
nuclear plasma with inertial confinement is one of the princi-
pal goals of this review.

While concretizing the set of phenomena to be dis-
cussed, we stress that the topic only covers the cases in which
the cumulation arises from concentration of the intrinsic en-
ergy of the flow, rather than from unbounded growth of an
external agent. For comparison we present two examples.7'
1' In the isentropic compression of a spherical target under
the action of a sharpened laser pulse (see Refs. 7, 10, and 11
and the studies cited there), the energy density is maximal at
the boundary of the mass being compressed. Its growth is
caused only by the increase in power of the laser pulse, rather
than by hydrodynamic cumulation.

We shall be interested in flows of another type. For ex-
ample, the propagation of a shock wave in a medium with a
power-law dependence of the density p0 on the coordinate x

(p0 ~xs, S = const) is accompanied by a temperature in-
crease following the front as the coordinate of the front ap-
proaches zero. The effect for xf-»0 ceases to depend on the
external agent (on the initial and boundary conditions).8'9

We shall take cumulative hydrodynamic processes to mean
precisely those phenomena in which the increase in energy
density is of purely hydrodynamic nature, i.e., caused by the
redistribution of the energy of the medium as it moves.

Among all the forms of cumulative flows, here we shall
discuss in greatest detail convergent shock waves.12'14 Such
waves arise in targets for ITF (spherical convergent shock
waves), in pinches,15 and in a plasma being compressed by
an exploding shell16 (cylindrical convergent waves), and at
a plasma focus'7 (axially symmetric noncylindrical waves).
Apparently they can be used to obtain thermonuclear tem-
peratures.18 All of this warrants the interest in this form of
cumulative flows.

We add the idea that cumulative shock waves—espe-
cially inhomogeneous ones—are one of the most interesting
objects of study for the contemporary theory of nonlinear
waves.9

The structure of this paper is as follows. Section 1 brief-
ly reviews the potentialities of using the known cumulative
flows except convergent shock waves in plasma physics. Sec-
tion 2 treats one-dimensional convergent shock waves
(spherically and cylindrically symmetric). Section 3 is de-
voted to the more complex case of non-one-dimensional cu-
mulative shock waves, which until recently had practically
not been studied.

1. EXAMPLES OF CUMULATIVE FLOWS AND THEIR ROLE IN
PLASMA PHYSICS

Here we shall discuss the role of various cumulative
hydrodynamic processes that can occur in a plasma. We
must note that these effects are well known, but the possibil-
ity (or more often the impossibility) of realizing them in a
plasma is rarely discussed.

Henceforth we shall assume the plasma to be ideal and
treat it in the hydrodynamic single-fluid approximation. The
latter is valid if the linear dimension L of the system exceeds
the dissipative scale /d associated with nonhydrodynamic
energy transport. Depending on the conditions, /d can arise
from electronic heat conduction, deviation of the electronic
temperature from the ionic temperature, and also from vis-
cosity, radiative heat conduction, or transport of a-particles.
The influence of these processes on cumulative shock waves
is discussed in Sec. 2.
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1.1. Cumulative jets in a compressible medium

We shall show that in a plasma the effect mentioned
above of formation of cumulative jets is weakly marked.

First we recall the fundamental formula of the theory of
cumulative jets in an incompressible liquid.2'3 Let two plane
layers of liquid collide at the velocities V0 at the angle 2a
with respect to one another (Fig. la). The process is a
steady-state one in a reference system that moves at the ve-
locity F0/sina, while the colliding layers have the velocity
F0cota (Fig. Ib). Hence the velocity of the cumulative jet
emerging forward in the laboratory system of reference
equals

= V0ctg^-. (1.1)

For small a we have F, > F0, so that the cumulation is
manifested in a strong concentration of kinetic energy in the
cumulative jet.

In a plasma the analogous effect is limited by compress-
ibility. For example, let us study the collision in vacuo of two
plane layers of plasma moving in the same way as in the
previous example (see Fig. la). We shall assume that

V ~S>r • d 21v o-^^o, ^ 1 .4. )

where c0 is the velocity of sound in the plasma.
We note that, if the condition (1.2) is violated, we must

take account of the expansion of the plasma. In expansion
into a vacuum, the gas at the boundary is cooled, and the
velocity of sound in it becomes much smaller than the veloc-
ity of the gas.'3 Therefore, even if the inequality (1.2) fails in
the bulk of the plasma, nevertheless in the collision of the
boundary layers the inequality (1.2) is unavoidably ful-
filled.

When (1.2) is fulfilled, the regime of interaction of the
colliding layers depends only on the angle a. If
a<acr = sin ~ ' (1/7) ( y = 5/3 is the adiabatic index for a
plasma), then a cumulative jet is not formed, and the fluxes
at the collision point of the layers are diverted into inclined
shock waves (Fig. Ic). When

a>cccr (1.3)

such a configuration is impossible.13 Precisely in this case a
cumulative jet is formed whose velocity can be estimated by

FIG. 1. Formation of cumulative jets in compressible and incompressible
media, a—Collision of plane layers, b—Diagram of the formation of jets
in a system of reference in which the process is a steady-state one. c—
Appearance of inclined shock fronts ( / ) in a compressible medium with
a < acr.

Eq. (1.1). The condition (1.3) leads to a limitation of the
velocity of the jet:

fi < V« (1 +lcos acr) (sin a^T1 = ̂ o IV + (f ~ I)"*! = 31/o.

(1.4)

which is a consequence of compressibility. We note that, for
media of low compressibility — water, metals — high values
of the effective adiabatic index are typical ( y~ 3-7 ) , and the
condition (1.4) becomes less rigid for them:

The results of numerical simulation of cumulative jets
in compressible media and in gases have been presented in
Ref. 19, while a calculation of the critical angle acr for differ-
ent equations of state is given in Ref. 20.

It would be incorrect to deny the possible role of forma-
tion of cumulative jets (not necessarily plasma jets) in cer-
tain experiments on a plasma, or to neglect the interesting
physical effects involving high-velocity plasma jets (not nec-
essarily cumulative). For example, it was proposed21 to use
a plasma jet from a coaxial magnetoplasma compressor to
accelerate granules of tungsten carbide to velocities ~ 106

cm/s. The possibility was noted in Ref. 22 of forming a jet of
metal particles with a velocity ~ 107 cm/s in the interaction
of a plasma flux with a thin-walled metallic hemisphere. A
numerical calculation of the compression of the plasma in a
conical cavity with a copper piston accelerated to —10
cm/s demonstrates the formation of a cumulative jet of met-
al at the site of contact of the piston with the wall of the
cavity and an influence of these jets on the compression of
the plasma.23

Nevertheless, in a plasma itself, we stress again, the ef-
fect of formation of a cumulative jet is restricted by com-
pressibility and can hardly lead to substantially new results.

1.2. Gradient acceleration of a shock wave

In the Introduction we have already mentioned that the
propagation of a shock wave in a medium having the power-
law density profile p0 ~xs, S = const in the direction
;t-» + 0 (against the density gradient) is accompanied by an
unbounded growth in the velocity of the wave, and corre-
spondingly, of the temperature behind the front. A self-simi-
lar solution with reference to the original literature has been
presented in Ref. 8. A number of studies have been devoted
to density profiles of another form (e.g., Refs. 24-27).

A simple but crude physical explanation of the effect of
gradient acceleration can be obtained if we take into account
the fact that the propagation of a shock wave is accompanied
by transport of hydrodynamic energy in the direction of
propagation. Transport of kinetic energy into a region of
declining density leads to increase in the velocity of the plas-
ma, and hence in the velocity of the shock wave.

A generalization of a large amount of original results,
and also some nonrigorous analytical calculations, have per-
mitted the conclusion9'24 that the increase in the velocity D
of a shock wave moving against the gradient of the density p0

(gradient acceleration) is a rather universal effect. For a
strong wave in many cases it is described well by the simple
formula:

D- : 0,24. (1.5)
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The temperature following the front of the wave also in-
creases:

r^pH>.M, (1.6)

This can be important in many problems of plasma physics.
For example, in Ref. 28 the role was studied of gradient

acceleration of a shock wave in the explosions of supernovas,
It was shown that the emergence of the wave from the core of
the star into the stellar atmosphere can be accompanied by
an increase in the energy of particles following the front up
to ultrarelativistic values. The astrophysical consequences
of this conclusion have been discussed in Refs. 8,29, and 30.

References 31-34 have discussed gradient acceleration
of various types of magnetohydrodynamic shock waves.

A direct application of the idea of gradient acceleration
of a shock wave to obtain a hot plasma has been achieved in
Refs. 35-37. In the experiment a laser spark was created at
the center of a gas-filled glass sphere. After the laser pulse at
the center of the sphere, a spherical volume remained of
cooling laser plasma from which a spherical shock wave di-
verged (Fig. 2). Then the shock wave was reflected from the
glass wall of the cavity and returned to the high-temperature
region, where it was accelerated and heated the plasma
further.

For ITF this and similar schemes seem not very promis-
ing, since one must pay for a considerable increase in the
temperature of the plasma with a decrease in its density,
whereas the realization of ITF requires high values of both
the density and the temperature.

1.3. Cumulation in cavity collapse

The historically first hydrodynamic cumulative effect is
the unbounded increase in pressure in the collapse of a
spherical cavity in an incompressible liquid.7'13 An analo-
gous phenomenon arises also in a cylindrically symmetric
geometry, and is widely applied to generate pulsed magnetic
fields.38 High pressures can be created in the collapse of a
spherical cavity in a solid upon heating with a neutron
flux.39

Among the different factors that limit this effect,7'40 the
most substantial for a plasma is compressibility. Calcula-
tions for a medium with -y = 5/3 show that, in the collapse of
a spherical cavity in a plasma, the velocity Fof the boundary
increases with decreasing radius of the cavity, albeit ex-
tremely slowly:41

V~r- (1.7)

FIG. 2. Laser spark in a gas-filled glass sphere, a—The laser beam ( 1 )
forms a laser spark (2). b—The shock wave (3) breaks away from the
region of hot plasma, c—The wave is reflected from the walls of the cavity
and returns to the central region.

Thus this effect in a plasma is very weak and can be
neglected.

1.4. Cumulation in multillner systems

Let there be a system of plane-parallel alternating layers
of light and heavy substances such that the successively
numbered thicknesses of heavy layers bn and the successive-
ly numbered thicknesses of the light layers an form a geomet-
ric progression:

The theoretical study of this system performed by E. I.
Zababakhin showed that the energy density increases in a
shock wave propagating in the direction from the thicker to
the thinner layers.42 This conclusion was confirmed experi-
mentally.43 The phenomenon is discussed in detail in Ref. 7.

The effect is especially clear in the limiting case in
which the heavy layers (e.g., metallic) can be considered
incompressible, the density pt of the light layers is negligibly
small in comparison with that of the heavy layers ph, while
the velocity D of the shock wave satisfies the condition

\ 1/2

PA PI (1.9)

Here P0 is the unperturbed pressure in the system, and the
value ofan/bn does not depend on n. One can easily show
that in this case the interaction of the heavy layers is equiva-
lent to their successive pairwise elastic collision through an
intermediate layer of light gas.

Actually, owing to the condition D < (P0 /p,)l/2, we can
assume that the pressure in the light layers during approach
of the heavy layers varies adiabatically:
P = P0 (Snn _ , /«„) ~5/3. Heres,, „ _ , is the time-dependent
distance between the «th and the (n — l)th heavy layers.
Thus the interaction between the heavy layers hinders their
approach to an infinitesimally small distance (P-+ oo as
sn,n -i -»0). On the other hand, the long-range interaction of
the layers is negligibly small: owing to the condition
P0an/phbn <Z>2, the pressure P0 in the characteristic time
of compression of a light layer an /D cannot substantially
alter the momentum of the heavy layer phb,,D. Consequent-
ly the heavy layers move freely all the time apart from short
periods of strong pairwise interaction as any of the snn_l

approaches zero.
This remark allows us to express the velocity of the

nth heavy layer Vn in terms of Fn _ , by using the conser-
vation laws bn Vn + bn __, V'n _, = bn _, Vn _, and bn V\
+ bn _ , V'n

2_ , = bn _ , F2 _ , , where V'n _ , is the velocity of
the (n — 1 )th layer after collision with the wth layer (after
reflection). Hence we obtain

2PA-!

1 + (1.10)

Vn increases with increasing «.
Replacement of the plane-parallel layers with concen-

tric spherical shells leads to the well known concept of multi-
shell targets for ITF, which enable one to increase consider-
ably the energy flux density in the inner shell and are widely
applied in experiments to obtain a hot plasma. To accelerate
the outer shell, besides the traditional beam and laser meth-
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ods, it has been proposed to use the energy of chemical explo-
sives.44

A detailed review of the studies on shell targets lies out-
side our topic, and we wish only to stress their theoretical
connection with Ref. 42.

We note also that that the cumulative process in a mul-
tiliner system is highly unstable. The reason is that the prop-
agation of a shock wave in a multilayer system is accompa-
nied by multiple reflections and passage of the shock wave
through contact breaks, and this gives rise to and amplifies
the Richtmyer-Meshkov instability.45"47

In the first passage of the wave through the phase
boundary of two media, the boundary undergoes a pulsed
acceleration, and small perturbations on it begin to increase.
In contrast to the Rayleigh-Taylor instability, the perturba-
tions increase both in the case of passage from the light to the
heavy gas, and vice versa. The repeated interaction (after
reflection) of the shock wave with the perturbed boundary
can considerably distort the form of the front.

Thus we have discussed here some known cumulative
effects and noted the difficulties involved in realizing these
effects in a plasma.

In closing this section, we wish to stress again that here
we have adopted a restricted view of cumulation only as the
self-compression of the intrinsic energy of gasdynamic flow.
For this reason we have not discussed such interesting phe-
nomena as multiple compression of a plasma by a sequence
of shock waves as two plane-parallel walls converge,48 the
analogous effect in the convergence of walls at a small an-
gle,49-50 which is of practical significance,51 many phenome-
na in the compression of a plasma by a shell,52 etc.

2. ONE-DIMENSIONAL CONVERGENT SHOCK WAVES

Here a cumulative flow will be discussed that is of great-
est interest for purposes of plasma physics and CTF—con-
vergent shock waves having spherical or cylindrical symme-
try.

2.1. Hydrodynamic theory

As is well known, in the geometric-optics approxima-
tion a linear convergent wave with a spherically or cylindri-
cally symmetric front is amplified according to the law

:A2~S-'. (2.1)

Here A is the amplitude of the wave, and 5 is the area of the
wave front. In particular, the increase in the parameters
(e.g., the jump in the temperature T) at the front of a weak
spherical shock wave obeys the relationship (2.1):

•R-1; (2.2)
Correspondingly, for a cylindrical wave we have

(2.3)

Hereinafter R is the spherical and r the cylindrical radial
coordinate.

Equation (2.1) expresses simply the law of conserva-
tion of the energy of the wave. In a linear wave, energy is
transported with the constant velocity of propagation of the
wave (in acoustics — at the velocity of sound). Since the en-
ergy in a volume bounded by two infinitely close wave fronts
is proportional for a linear wave to the area of the front and

the square of the amplitude, the condition of conservation of
energy leads directly to (2.1).

In the opposite limiting case of a very strong shock wave
(7> T0, where T0 is the temperature ahead of the front), we
should also expect an enhancement of the wave as it con-
verges toward a center (or axis) of symmetry. Actually the
transport of part of the hydrodynamic energy in the direc-
tion of propagation of the shock wave (toward the center or
axis) is accompanied by a redistribution of the energy to an
ever diminishing area of the front, and the intensity of the
shock wave must increase.

Mathematically this is expressed in the existence of self-
similar solutions of the system of gasdynamic equations of
spherically or cylindrically symmetric motion of the gas ob-
tained by Guderley14 and by Landau and Stanyukovich.12-13

These solutions include a strongly converging shock wave
propagating through an unperturbed cold homogeneous
gas, and yield power-function laws of growth of the ampli-
tude of the wave ( y = 5/3):

7X/?)-/?-«••

for the spherical case, and

(2.4)

(2.5)

for the cylindrical case.7'8-12'13 The exponents in (2.4) and
(2.5) are expressed in terms of the self-similarity index,
which in turn is determined from the condition of physically
reasonable solution of the hydrodynamic equations and
which depends on y.

Since the self-similarity index is determined not by con-
siderations of dimensionality and is expressed by an irra-
tional number, the inclusion of new physical effects without
loss of self-similar character is possible only in special cases.
Thus, in Ref. 53 a cylindrically symmetric solution for a
convergent shock wave was found with account taken of the
magnetic field, including the action of the concentrated cur-
rent/at the symmetry axis with a special dependence of/on
the time t. The case was also studied in which a convergent
wave is reflected from a cylindrical piston that expands ac-
cording to a power-function law chosen such that self-simi-
larity was conserved. However, even without generaliza-
tions, the Guderley-Landau-Stanyukovich solutions are
very interesting and have been the object of many studies.
For example, in Ref. 41 the problem was discussed of multi-
ple values of the solution for y> 1.7. Numerical calcula-
tions54"56 have studied the transition of non-self-similar con-
vergent waves to a self-similar regime.

With all the significance of the self-similar solutions,
the existence of simple concepts that treat the increase in the
amplitude of a convergent wave as the consequence of redis-
tribution of the energy of the wave over the decreasing area S
of the front leads to the idea of the possible construction of a
theory that would directly associate the amplitude of the
wave with S. An important step in this direction has been
taken by Chester,57 Chisnell,24 and Whitham.9 They pro-
posed on the basis of analyzing a large number of special and
limiting cases a general and rather precise expression for the
amplification of a shock wave owing to decreasing area S of
the front upon convergence:

\v-i :4.5. (2.6)
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(Here 7"> T0, where T0 is the temperature ahead of the
front). In particular, Eq. (2.6) approximates (2.4) and
(2.5) well, and can be applied to calculate the amplification
of a shock wave in slowly narrowing channels having solid
walls.57'58

This approach can be generalized to shock waves con-
verging in an inhomogeneous medium in which the amplifi-
cation of the wave owing to convergence is intensified by
gradient acceleration.59'60 Upon combining Eqs. (1.6) and
(2.6) we obtain

C-0,45 -0,48
o Po (2.7)

A good review devoted to calculations of convergent
waves with self-similar approximate numerical calculations
is presented in Refs. 61 and 62.

A convergent wave elevates not only the temperature
following the front. The density also increases, although not
by an unbounded law of the type of (2.4), but by a finite
factor. After convergence of a spherical wave to the center it
is reflected and the density following the front reaches
p2 x30p0, where p0 is the initial density of the plasma.

We shall try to estimate what initial radius R0 a conver-
gent spherical shock wave must have to initiate ignition in a
D-T mixture, if the initial temperature behind the front is
T-m =T (R0)~\ eV, and the density is p0 = 0.2 g/cm3

(condensed D-T). To initiate ignition, one must increase
the temperature of the plasma to ~ 10 keV in a region of
spatial scale R,,. Here, according to various sources, the pa-
rameter (pRf) must exceed approximately 0.3-0.5 g/cm2.
Upon determining the final radius /?c from the relationship

D 0.5 g/cm2

1CT1 cm, (2.8)

(2.9)

we find

K /JOkeV^ j
I ^in )

The estimate is impressive, but still too low, since, with
the adopted values of R0 and Tin, the law (2.4) loses force
before thermonuclear temperatures are reached. The corre-
sponding physical effects are discussed below.

2.2. On dissipative limitations of cumulation of a shock wave
in a plasma

The restricted applicability of the cumulative laws of
temperature increase (2.4) and (2.5) involve, first, the fail-
ure to take account of various physical processes that lie
outside the single-fluid approximation—radiation, thermal
conduction, and viscosity. Second, the laws were derived
from the one-dimensional solutions, whereas real non-one-
ditnensional flows always differ to some extent from their
one-dimensional models.

The estimate of the relative role of these factors has
been gradually changing in recent time. Earlier it was em-
phasized63'64 that taking account of dissipation in cases in
which it was possible to trace it to the end yielded no bound
on cumulation. Conversely, the instability of convergent
spherical and cylindrical shock waves discussed in Sec. 3
seemed to be a universal mechanism of limitation of cumula-
tion.

However, to counterpose these statements, it was final-
ly shown65 (and earlier in Refs. 15 and 17 and other studies
by the same authors) that taking account of plasma dissipa-

tive processes limits the growth of the parameters of con-
verging shock waves. Yet the role of non-one-dimensional
instability effects now seems more modest, although it is still
difficult to agree with the extreme statement that a conver-
gent wave is stable.37

The physical limitations introduced by dissipative in-
volve the fact that, when the radius of the front of a conver-
gent shock wave is comparable with the mean free path, non-
hydrodynamic energy transport begins to predominate over
the hydrodynamic process and suppresses the mechanism of
cumulative growth of the wave amplitude.

Let us present estimates characterizing the limitation of
cumulation in an equal-component D-T plasma on scales of
the order of the mean free path. We recall that the structure
of a shock wave includes a jump in the ionic temperature
whose width is of the order of the mean free path in ion-ion
collisions:8

• 4,4 . 10~14 (4JV0) 1 keV/

(2.10)

Here A is the Coulomb logarithm, while the characteristic
concentration A^ is given as its value for a condensed D-T
mixture. A wave of electronic heating propagates ahead of
the jump in ionic temperature in the front of the shock wave.
Its width Ac exceeds 4 severalfold:

4,5 • 10=2 / r \J

, 1 keV /

(2.11)

ICr-Dt,,, ~ (1CT4— l(T3)cm.

Here rei is the time of equalization of the electronic and ionic
temperatures (a detailed calculation is given in Refs. 8 and
66).

Owing to the difference between the scales lti and /le,
the limitation of the cumulative growth of the electronic and
ionic temperatures occurs with different values of the radius
xf of the front. Specifically for the electronic temperature,
the relationships (2.4) and (2.5) lose force at

*,**,, (2.12)

when the transport of energy of the electrons owing to elec-
tronic thermal conduction predominates over hydrodynam-
ic transport. In the region of (2.12) the cumulative growth
of the electronic temperature is replaced by a slower in-
crease. The maximum value of Te exceeds Te (A e ) by a factor
of ~ 3 in the cylindrical case15 and by a factor of ~ 5 in the
spherical case18 (the former number is for deuterium, and
the latter for D-T).

When x, </te cumulation of the ionic shock wave con-
tinues. The law of growth of the jump in the ionic tempera-
ture T, (xf) must be somewhat slower than (2.4) and (2.5)
owing to the cooling of the ionic by the electronic compo-
nent. Cumulation ceases when

*,-!„. (2-13)

Owing to continuation of cumulation in the region between
(2.12) and (2.13), the maximum ionic temperature exceeds
the electronic temperature by a factor of 2 to 4.15'18

The limitation of cumulation of shock waves owing to
various dissipative processes has been discussed also in Refs.
56 and 67.
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Interestingly, in calculating the possibilities of using cu-
mulative shock waves to ignite a D-T mixture, we can appar-
ently neglect the mechanism discussed here of limitation of
cumulation. The reason is that the dimension R,. at which
thermonuclear temperatures T must be reached substantial-
ly exceeds the dissipative scale.

Actually, according to (2.8) the dimension Re satisfies
the condition: R,, >/le >/M for T< 5 keV. Yet, beginning at
temperatures T> 5 keV, the transport of heat in thermonu-
clear a-particles begins to predominate over the electronic
heat conduction and becomes the dominant mechanism of
limitation of cumulation in D-T.

2.3. Radiative losses in convergent shock waves

This effect was analyzed in Ref. 68, and detailed studies
using numerical methods have been performed in Refs. 18
and 69-71,

The role of radiation depends strongly on the constant
in the amplitude growth laws (2.4) and (2.5). This constant
determines the magnitude of the amplitude of the wave for a
given value of the radius of the front. The action of radiation
on the limitation of cumulation has a qualitatively different
character that depends on which of the two conditions is first
satisfied in the course of the cumulation process, i.e., with
decreasing xf and increasing T (x():

or

xt=l,(T)

T—T .1 •* c>

(2.14)

(2.15)

Here lr ( T ) is the mean free path for equilibrium radiation,
and Tc is the so-called critical temperature,8 which is deter-
mined by the relationship

i.e., equality of the hydrodynamic and radiative energy
fluxes. In Eq. (2.16) <j is the Stefan-Boltzmann constant,
and D(T) is the velocity of the shock wave. In a D-T mix-
ture we have

D (T) = 0,64- 10s cm/s.
keV

(2.17)

Further, e# ( T) is denned as the energy density in the plasma
at a concentration N equal to the concentration N0 ahead of
the front of the shock wave, and at the temperature T, A
calculation of T,. in certain media is given in Sec. 2.5; in
particular, in condensed D-T we have Tc s; 190 eV.

We shall assume first that the equality (2.14) is at-
tained earlier than (2.15). That is, under the condition
(2. 14) the relationship T< Tc is fulfilled. Hence we find that
the power of the bulk losses due to radiation oTV/r multi-
plied by the characteristic time xf/D is small in comparison
with the energy density:

V^<!' (2-1 8>

Here, as xf decreases and T increases, the left-hand side of
(2.18) continues to decrease: lr~T7/2, and moreover,
x( < /r. This means that the radiative losses from the region
of cumulation are of bulk type and that these losses are negli-
gibly small and do not affect the cumulation up to the instant

Here, indeed, we must note that the left-hand side of
(2.18) is proportional to N and can increase as x( -> 0 if the
unperturbed concentration Nn is inhomogeneous and in-
creases strongly near the center (or axis) of symmetry. A
calculation of the convergent shock wave for this case is giv-
en in Ref. 72.

Now, conversely, let the temperature /"behind the front
reach the critical value Tc f o r x { > /,. (7^.). In this case we can
assume that the characteristic spatial scale of the flow con-
siderably exceeds the mean free path of photons, and the
radiative-heat-conduction approximation holds. As is
known,8 in supercritical shock waves (r>7"c) , radiative
heat conduction blurs the front of the wave by the width

(T)
i —
(T, (2.19)

This implies that a rise in the temperature above the
critical value is accompanied by an extremely rapid
( ~ ( T / T C )6) increase in the width of the front /•„,. When ̂
becomes comparable with x f , cumulative temperature in-
crease ceases (and is replaced by cumulative density in-
crease). In particular, in the numerical example of Sec. 2.1.
the maximum attainable temperature is not 10 keV, but
-0.3 keV.

An estimate of the energy, which must be supplied only
into the region of limited cumulation, is:

$—e,. (T) r"t — <?„ (Tc) fi(Tc) (TT ^ ' ) " l < . (2.20)

It shows that the attainment of temperatures T^> Tc in this
regime seems to be unrealistic owing to energy consider-
ations.

We can conclude that radiative losses limit the possibil-
ity of attaining temperatures 7> Tc. In the latter regime the
realization of such temperatures requires unimaginable en-
ergy expenditures ( — (T/TC)"), while in the former re-
gime these temperatures can be attained only in a small re-
gion, namely in the spherical case for

, T 1 1

(2.21)

[Otherwise the condition T< Tc cannot be fulfilled when
xf = lr ( T ) . ] For a condensed D-T mixture Eq. (2.21) has
the form xf < (T/2003B) ' • ' , and the value of the pa'ram-
eter/vcf proves to be clearly insufficient to ignite the reaction
in D-T.

We recall that the realization of the former or latter
regimes is determined by the value of the proportionality
constant in (2.4) and (2.5). The growth law in the case deli-
miting the regimes is

/ / (T ) \ ^'^
r«rc H-^H • (2.22)

In line with what is said above, in shock waves weaker than
(2.22) the radiative losses are insubstantial, while in strong-
er waves radiation limits the temperature growth to a value
somewhat exceeding 7^..

In completing the discussion of the role of radiative
losses, we must make two qualifications. First, we have im-
plicitly assumed here that at the onset of the cumulation
process we have Tm < 7 .̂ and x{ > /r (7"in). Both of these as-
sumptions can prove inapplicable to shock waves in targets
for CTF. In this case the conclusions drawn above require
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more precise definition. Thus, if the initial radius of the tar-
get is small enough (Rin 4>lr (Tm)), then the condition
(2.18) can prove to be satisfied even for shock waves with an
intensity exceeding (2.22). Further, if the initial tempera-
ture following the front of the shock wave created by a com-
pressed shell exceeds Tc, while the radius /?in of the target
satisfies the condition R ]„</"„,, then the radiative losses
strongly affect the shock wave, but the energy estimate
(2.20) is incorrect (one must replace /•„ with /?in).

The second qualification is: even in supercritical shock
waves there is a narrow zone of the flow (the temperature
peak8) in which the radiation is not at equilibrium with the
material and does not prevent the cumulative growth of the
temperature of the plasma.18

However, with all the remarks, the attainment of super-
critical temperatures T^- Tc by using only the effect of cu-
mulation of convergent shock waves by itself seems prob-
lematic.

2.4. Experimental possibilities of generating a hot plasma by
using cumulative shock waves

A considerable number of studies has been devoted to
experiments with cumulative shock waves, while many of
them are not associated with plasmas. Therefore we present
here only a cursory review of the methods of generating
shock waves, and present in barely more detail only the stud-
ies that are oriented toward obtaining a hot plasma produc-
ing thermonuclear neutrons.

In the first of the published experimental studies,73 a
convergent shock wave was created in the gap between two
plane walls by using a complex conversion of a plane shock
wave. This method has been used also in later studies.74 One
can also create a cylindrical wave in the gap between two
disks by using a peripheral explosion of a detonating materi-
al or the electrical explosion of a metal foil.75'77

A convergent cylindrical wave of large extent along the
axis was created with an induction electrical discharge in a
cylindrical gas-filled tube.78'80 One can generate the same
kind of wave in cylindrical charges of explosives with surface
initiation. Convergent detonation waves have been created
and studied in detonating gas mixtures.81 In Ref. 82 it was
proposed to use a cylindrical wave arising upon breakdown
of a gas by an annular laser beam.

The most serious technical applications of convergent
shock waves have involved using a spherical charge of solid
explosive initiated at the surface.83 The same or a similar
scheme of generation of a spherical wave is sometimes used
in physical experimentation.84'85 Interestingly, spherical

FIG. 3. A shock wave (7) entering a wedge-shaped or conical cavity can
be treated approximately as a portion of a cylindrical (or spherical) wave.

shock waves themselves have been hardly studied until the
present (apart from Refs. 35-37), since the source of such a
wave is not transparent for diagnostics.

If a shock wave is propagating in a wedge-shaped (or
conical) cavity in the direction toward the edge (or vertex)
(Fig. 3), in a crude approximation we can treat this wave as
part of a cylindrical (or spherical) convergent wave. Such an
experiment has been performed for a wedge-shaped cavity.85

Theoretical studies show86'87 that the mechanism of en-
hancement of the shock wave in the cavity has a considerable
resemblance, but also some differences, from cumulation in
the cylindrically and spherically symmetric cases.

Experiments on conical targets are described in Refs.
88-92. A conical cavity with a characteristic dimension of
~0.1 cm was created in a heavy material (usually lead) and
was filled with deuterium at a pressure of ~ 1 atm. The con-
vergent shock wave arose upon pressing into the cavity a
piston accelerated under the action of x-ray88 or laser90'91

radiation or with an explosion89'92 to velocities of the order
of several tens of km/s.

The measured yield of thermonuclear neutrons at the
level of 104-107 5 counts/s indicates that the temperature of
the plasma in the target reaches 0.3-1 keV. It is not clear
whether one can associate the generation of neutrons only
with the cumulation of the first shock wave—for example,
the data of numerical calculation in Ref. 91 show that, after
the front of the shock wave converges toward the vertex of
the cone and is reflected, the piston still continues for some
time to compress the plasma and to heat it.

We note that a study89 performed in Poland (IFPiLM)
on compression of a plasma in a conical target with a liner
accelerated with an explosive device is of fundamental sig-
nificance. This is the first publication that has experimental-
ly proved the possibility of using ordinary explosives for
ITF. Earlier such a possibility had only been briefly men-
tioned in 1958 in a report by L. A. Artsimovich.93

Only after Ref. 93, a report was published of a Soviet
experiment to detect thermonuclear neutrons arising upon
cumulation of a convergent spherical shock wave (the infor-
mation is given in Ref. 94 with a reference to the data of A. S.
Kozyrev, B. A. Aleksandrov, and N. A. Popov). The wave
was created with a spherical explosive device with an outer
radius of 70 cm. In targets filled with gaseous deuterium or
uranium deuteride, UD3, the neutron yield reached 3 X101 ].

We can mention further that the popular literature con-
tains statements that an analogous experiment was per-
formed in Germany during the Second World War.

Recently a series of proposals has been published on
experimental schemes for realizing a convergent spherical
shock wave specially for purposes of CTF—e.g., Refs. 119
and 120. They envisage the creation of a convergent spheri-
cal wave in a spherical chamber by using energy release at
the periphery of a plasma (e.g., by gas discharge)119 or by
using magnetohydrodynamic acceleration of the plasma to-
ward the center. In principle, such an acceleration can be
realized by using a system of spurting pinches capable of
bouncing the plasma off the wall at high velocity.120

2.5. On the possibility of using convergent shock waves for
initiating thermonuclear fusion

The results presented here seem unpromising from the
standpoint of their possible application for ITF. Actually,
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taking account of the radiative losses points out the diffi-
culty of obtaining supercritical temperatures 7"> Tc via the
effect of cumulation of a convergent wave. Here two ways
out are envisioned—either to create a wave by using high-
velocity shells so that it would have a supercritical tempera-
ture even at the initial instant, or to elevate the critical tem-
perature itself to several keV by preliminary compression of
a D-T mixture by a factor of 103-104 [ Tc ~Ng/5, as we see
from (2.16)]. However, both of them are difficult to realize.
The experimental results existing in the literature, as we
have seen, also cannot be considered encouraging.

Apparently extensive possibilities arise from combining
the effect of cumulation of shock waves with the most prom-
ising modern concept of ITF—conversion of the energy into
x-ray radiation.

Usually the conversion of laser radiation10 or the ener-
gy of a relativistic electron beam88 into soft x rays allows one
to increase the pressure on the thermonuclear target. More-
over, the conversion enables a more uniform irradiation and
compression of the target.95

Let us discuss the question of whether one can use the
thermal radiation of a convergent spherical shock wave as a
source for irradiating the target. It was noted70 that the radi-
ation of a convergent shock wave can create high pressure at
the surface of a metal sphere. Here it is proposed to study a
convergent spherical shock wave in a material (e.g., in the
same D-T mixture, which offers extra possibilities) as the
generator of x rays for compression of a thermonuclear tar-
get.

We recall that the intensity of a cumulative wave is
characterized by the proportionality constant in the law
(2.4). As the radiation source it seems optimal to use a con-
vergent spherical wave with a value of the constant corre-
sponding to Eq. (2.22).

Actually, in less powerful shock waves the flux of radi-
ation energy is always smaller than the flux of hydrodynamic
energy [see (2.18)] . This is identical to the statement that a
shock wave has low efficiency as an emitter. In more power-
ful waves, as we have already stressed, the increase in the
temperature of the plasma—and of the radiation—does not
compare favorably with the energy expenditures.

Finally, in a wave with the growth law (2.22) the criti-
cal temperature T= Tc is reached. That is, the condition
(2.16) is fulfilled and the flux of hydrodynamic energy is
effectively converted into radiation, with T~ Tc and the ra-
dius of the front being xf = lr(Tc).

Let us present the results of calculating the critical tem-
perature Ts taking into account the ionization losses for
shock waves in condensed materials—frozen hydrogen, deu-
terium, D-T mixtures, lithium deuteride, and in diamond.
The data for 7J. and Jc = aT^ are given in Table I.

Ahead of the density jump in a shock wave of critical
amplitude (details given in Ref. 8), the plasma is heated to
the temperature Tc, but is compressed weakly. This permits
us to estimate the mean free path lr(T,.) by the well-known
formula

/r(Tc)*2,5(-py7/VJ^
uooev (2.23)

with the temperature and concentration of Tc and N0, re-
spectively. These values are also given in the Table I.

For a gas (hydrogen isotopes) whose state ahead of the
front of the shock wave corresponds to room temperature
and the pressure P0, the critical temperature, the flux Jc, and
the mean free path lr (Tc) are described by the formulas

100 eV . P«
BOatm

1013 W/cm2

130atm'

AT0'2,

U'6AT' (2.24)

Ir (Tc) & 7 cm f po
\130atm AT

M is the atomic weight.
The results of calculation indicate the possibility of at-

taining high (1013-1014 W/cm2) values of the flux of radi-
ation onto the target, which lies in the region R<lr( Tc). In
condensed D-T, ~ 4 MJ of radiation is incident on a target
of 1 cm radius in 3 ns, while a target of 0.7-cm radius receives
more than 20 MJ of radiation, but over a longer time. Appar-
ently these values suffice for a thermonuclear target to give a
considerable energy yield.

If a convergent shock wave is created in D-T, then the
capability of the D-T mixture for ignition96 creates a great
possibility for multiplying the energy yield of the thermonu-
clear target. Actually, a cumulative spherical shock wave
not only yields radiation to compress the target, but also
compresses the D-T mixture by a factor of ~ 30. If now the
energy release & in the target suffices to heat to ~ 10 keV a
volume of the D-T mixture of radius (2.8) & £ 30 MJ, then
a burning wave that elevates the energy yield arises in the D-
T outside the target.

Perhaps adding Li to the D-T mixture will enable one
to decrease somewhat the energetics of the convergent wave
owing to lowering of /r ( T c ) . However, the addition must be
small; otherwise the mixture loses the capability for ignition.
Under optimistic assumptions, estimates of the overall ener-
gy of the experiment (wave generation—fusion in the tar-
get—ignition of the mixture outside the target) yield
108-109 J.

TABLE I.

T, , eV
J, , W/cm2

l:(T,),cm

H

220
2-1011

2

D

190
Id14

1

D— T

185
1014

1

Li

240
3-1014

0.1

DLi

310
9-10"

0.1

c

520
7-1015

nr2
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3. NON-ONE-DIMENSIONAL CUMULATION OF SHOCK
WAVES

The use in theory and in practice of the cumulation laws
of growth of the amplitude of convergent shock waves al-
ways involves the problem of how applicable these laws,
which were derived from one-dimensional (spherically or
cylindrically symmetric) solutions, are to actual, non-one-
dimensional shock waves. For a plasma and other gases the
problem is complicated by the instability of the one-dimen-
sional solutions for convergent waves with respect to small
non-one-dimensional perturbations.

Another problem involves the possibility of cumulation
of a noncylindrical (and nonspherical) axially symmetric
shock wave. For example, the compressed current shell of a
Z-pinch can give rise to a convergent shock wave and, since
the shell is subject to instability with respect to formation of
sausage instabilities, analogous perturbations arise also in
the shock wave (Fig. 4). It is convenient to start the discus-
sion of cumulation of non-one-dimensional shock waves spe-
cifically with this problem.

3.1. Cumulation of an axially symmetric noncylindrical shock
wave

For theoretical description of non-one-dimensional cu-
mulative shock waves, G. B. Whitham9 proposed a special
method of geometric dynamics. If one describes the position
of the front at each instant of time with the relationship

, y, z)+t=0 (3.1)

(jc, y, and 2 are the coordinates), and applies Eq. (2.6) for
each element of area of the front, then one obtains the follow-
ing nonlinear equation for the unknown function 4> (while
taking n from (2.6)):

div grad(D

I grad <D |n+1
= 0. (3.2)

In particular, a cylindrical convergent shock wave is
described by the function9

<D~r1+(1/'l). (3.3)

The velocity of the front derived from (3.1) and (3.3) is
found to agree with Eq. (2.6) if we consider that T~D2.

Now let small sausage-type perturbations be applied to
the cylindrical convergent wave at the initial instant of time:
r = r0 (1 + eco&qz), where r, z, and <j> are the cylindrical co-
ordinates, and r0, s, and q are constants, with e-^l. Lineari-

zation of (3.2) with respect to (3.3) allows one to obtain a
solution for the convergent perturbed cylindrical wave in the
form97

r Ni+d/n) n+i

'0

— e cos I const. (3.4)

Equations (3.1) and (3.4) imply that, as the wave con-
verges toward the axis (in the region of small r), the pertur-
bation increases as r ~ l/", and at the instant of arrival at the
axis the amplitude becomes of the order of r0e

n/("+ n. Thus
the perturbation increases by an unbounded factor

although it remains infinitesimally small

The physical reason for the instability is directly asso-
ciated with the cumulative, accelerated character of the mo-
tion of the front: the regions of the front closest to the axis are
accelerated more strongly than those remote, whereby the
amplitude of the perturbation of the front increases.

The instability has the result that the front of a per-
turbed wave, in contrast to an unperturbed one, reaches the
axis at separate, isolated points (see Fig. 4a). The same
property is inherent in a shock wave at a plasma focus (see
Fig. 4b), as well as an annular shock wave in a gas, which is
formed upon energy release in a region having the form of a
thin circular ring (see Fig. 4c).

The behavior of an axially symmetric convergent wave
near an isolated point where it arrives at the axis was first
studied in Ref. 98 by numerical methods for the case of a
shock wave at a plasma focus. References 99 and 100 experi-
mentally proved the cumulation of a convergent noncylin-
drical wave with the example of an annular shock wave in a
gas (air) (Fig. 5). Theoretical analysis of Eq. (3.2) shows
that such a cumulation with dissipation neglected is un-
bounded in character and the law of growth of the shock
wave near the axis asymptotically goes over into (2.5).101

Let us present the local expansion found in Ref. 101 of
the solution of Eq. (3.2) near an isolated point at which the
shock wave reaches the axis:

jp = R0 I" n I_r_\i+i/n i^ /_z_\s _ 1 / r \a"1

~ V o U + l l / ? o J ~2\Kj 2n-2 UJ J '

(3.5)

Here V0 and R0 are arbitrary constants, with V0 having the
dimensions of velocity and R0 the dimensions of length. In
particular, Eq. (3.5) implies that the local equation (valid
near the axis) of the surface of the front at the instant of
arrival at the axis is

(f

FIG. 4. Axially symmetric, noncylindrical convergent shock
waves, a—Cylindrical front with sausage-type perturbations,
b—Shock wave in a plasma focus, c—Annular (toroidal) shock
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FIG. 5. Results of studying an annular shock
wave created in air by using a special annular
discharger. The radius of the discharger is 5 cm.
a—Form of the wave near the axis (shadow
photography; the plane of the diagram coincides
with the plane of the ring). b—The pressure Ptt

behind the front of the wave as a function of the
distance r to the axis at different pressures P of
the unperturbed gas. The increase in P!r at small
r indicates cumulation. P (atm) = 1 ( / ) , 0.4
(2), and 0.1 ( 3 ) .

R, cm

r~z!"'"+". (3.6)

It amounts to a nonquadratic paraboloid of rotation r~zk,
where 1 < k < 2. The radius of curvature of the parabola at
the vertex (z = 0) vanishes. This sharpening is caused by the
accelerated character of the motion of the front toward the
axis, to which we have called attention above.

The law of approach of the velocity of the shock wave at
the vertex to infinity as the wave approaches the axis (r-»0)
is implied by (3.1) and (3.5) (D = -(d$>/dr) ~ ' ) :

\ -1/rt

'"'
The velocity increases somewhat more slowly than in the
case of a cylindrical shock wave [for which D~ (r/R0) ~>/n,
as is clear from (2.5)]. The difference involves the noncylin-
drical form of the front in (3.6). However, the principal
terms remain the same as r-»0.

The fact of cumulation of a noncylindrical wave that
reaches the axis at an isolated point (Fig. 4) is not trivial
since, in contrast to a cylindrical wave, hydrodynamic ener-
gy can escape in the direction along the axis," and since the

local form of the front near the axis substantially differs from
cylindrical.

A numerical calculation for an annular shock wave is
given in Refs. 100, 102, and 103. We note that, in view of the
universal character of the behavior of a shock wave near a
point of cumulation,101 the laws of behavior of a perturbed
cylindrical wave, a wave at a plasma focus, and an annular
wave near the axis are fully analogous. Therefore the experi-
ment with an annular shock wave99'100 and the numerical
calculation can also be considered as a hydrodynamic simu-
lation of a shock wave at a plasma focus.104

This approach enables one, for example, to confirm the
hypothesis97 that a convergent shock wave at a plasma focus
gives rise to a plasma jet in the axial direction, whose velocity
exceeds severalfold the velocity of the convergent wave. The
appearance of such a plasma flux might explain both the
yield of thermonuclear neutrons and their anisotropy. A de-
tailed experimental study of the reflection of an annular
wave from the symmetry axis104'105 actually enabled detect-
ing such a jet (Fig. 6).

It was shown that the appearance of jets involves the
specific ("Mach") character of the reflection of an annular

FIG. 6. Appearance of a Mach configuration in the reflection
of an annular shock wave from the axis: shadow photography
in a direction perpendicular to the axis. /—converging front
of the shock wave; 2—reflected wave; 3—high-velocity jet of
gas propagating along the axis.

969 Sov. Phys. Usp. 33 (11), November 1990 I. V. Sokolov 969



(or generally noncylindrical) axially symmetric shock wave
from the axis.106 The problem of such a reflection is better
known for the case of a conical shock wave.107'110 Unfortu-
nately, here we cannot present in any detail the rather com-
plicated physics of the Mach interaction of shock
waves,58'107 and all the more so—the features of this interac-
tion with axially symmetric geometry.106'107'"0 We note
only that the temperature of the jet behind a Mach shock
wave (Fig. 6) exceeds by approximately two- or threefold
the temperature behind the reflected shock wave.

The complicated connection between one-dimensional
and non-one-dimensional cumulation is manifested in the
example of a noncylindrical, axially symmetric shock wave.
Actually, the amplitude of axially symmetric perturbations
of the sausage type increases, but remains infinitesimally
small. While remaining infinitesimally small, the perturba-
tion qualitatively alters the type of cumulation. The altered
law of growth of the amplitude proves to be slower than that
for a cylindrical wave, but it asymptotically goes over into
the latter. Finally, the weaker noncylindrical cumulation is
accompanied by formation of jets with higher temperature
than in the cylindrical case.

3.2. The influence of azimuthal perturbations on the process
of cumulation of a shock wave

As we have already mentioned, strongly differing opin-
ions have been expressed in the literature on the question of
the influence of non-one-dimensional perturbations of the
front on the cumulation of shock waves. They range from the
assertion that convergent waves are stable with respect to
perturbations37 to the conclusion that instability with re-
spect to non-one-dimensional perturbations offers a univer-
sal mechanism of limitation of cumulation.7'63'64

We can consider it to be proved that convergent cylin-
drical and spherical shock waves are unstable with respect to
infinitesimally small perturbations that depend on the azi-
muthal angle.9'59'97'1 [' For a cylindrical wave, if we linearize
Eq. (3.2) against the background of (3.3) and solve it, we
can easily find the law of evolution, which depends on the
perturbation as the wave converges on the axis. The solution
has the form

const f 1 + e ( -
L \ ra

,,

where

(3.8)

2 1 1} ] •
(3.9)

If we introduce the quantity Sr, the small deviation of
the distorted surface of the front from the cylindrical surface
of radius (r) (Fig. 7), the distortion of shape characterized
by the ratio 8r/(r) increases with decrease of (r) -.

</•>
_..

= 5/3; «~4.5). For a spherical wave we have

(3.10)

(3-11)

FIG. 7. The magnitude of ̂ characterizes the deviation of the form of the
front from cylindrical symmetry.

Reference 111 is very important, where the result
(3.11) was obtained within the framework of a rigorous gas-
dynamic approach without adducing the approximate equa-
tion (3.2). This conclusion confirms the applicability of the
theory of Whitham for describing non-one-dimensional cu-
mulative shock waves.

The fact of growth of a linear perturbation leads to the
need to analyze the nonlinear effects, the first of which is the
formation of shock waves transverse to the main front of the
convergent wave.9'112'114 The reason for the effect is simple:
since the velocity of the shock wave with respect to the medi-
um following its front is subsonic, then compression and
rarefaction waves can propagate behind the front in a direc-
tion transverse to the front. Therefore the growth of the dis-
tortions of the front of the cumulative wave leads to propaga-
tion of compression and rarefaction waves transverse to the
front, and the reversal of the compression waves—an effect
well known in hydrodynamics13—forms shock waves trans-
verse to the main wave (Fig. 8; taken from Ref. 113).

Reference 112 experimentally demonstrated the forma-
tion of transverse fronts at an artificially perturbed conver-
gent cylindrical wave. Numerical calculations of a weakly
perturbed convergent wave"3 indicate the possibility of for-
mation of nonlinear structures with the form of a convergent
front resembling a polygonal prism. The law of amplification
of such a wave on the average coincides with Eq. (2.4) for a
cylindrical wave.

In was shown experimentally114 that a convergent ellip-
tical wave gives rise in the region of the foci of the ellipse to a
complicated configuration of fronts recalling in form the ge-
ometry of linear waves near a caustic, but modified by non-
linear effects (an excellent study of a nonlinear caustic of a
shock front is presented in Ref. 115) (Fig. 9). Here the am-
plitude of the shock wave remains bounded, instead of the
unbounded growth according to Eq. (2.4). Thus, sufficient-
ly strong perturbations with the azimuthal number m = 2

FIG. 8. The appearance of transverse shock waves upon perturbation of
an axially symmetric convergent shock wave.
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FIG. 9. Shadowgrams of a convergent elliptical shock
wave. 1-6—sequential stages of formation of the con-
vergent ( / ) and divergent (2) fronts.

(i.e., depending on <p as cos2<p) can in principle prevent un-
bounded cumulation.

However, it was shown in the same article that even
strong perturbations with large m do not prevent unbounded
cumulation. In general there are grounds for assuming that
the formation of transverse shock fronts is a factor that
strongly stabilizes the instability of a convergent shock wave
with respect to azimuthal perturbations.

From the practical standpoint the cumulation of an an-
nular wave has proved to be rather stable. At a radius of the
source, and correspondingly, the initial radius of the shock
wave of Rn = 5 cm, the cumulation of a wave was ob-
served"4 down to a distance from the axis of r < 10 ' cm,
while in Ref. 104, according to indirect data, cumulation was
established at r < 10 ~ 2 cm. In other words, 50- and 500-fold
degrees of stable convergence of the front were achieved (the
degree of convergence is taken to be the ratio R0 /r). In this
regard we note that, to create a spherical convergent wave in
D-T with critical amplitude, the stability of the cumulation
must be conserved at a degree of convergence of
Rm/Re~\02.

As regards the general conclusion already mentioned
above of the universal role of non-one-dimensional perturba-
tions in limiting cumulation that was made in Refs. 7, 63,
and 64, it seems to be not fully proved. First, there are special
results that explicitly contradict this general conclusion. For
example, models are known if media (a liquid with 7 = 7
(Ref. 117) and an ideally inelastic medium"8) in which a
convergent shock wave is stable even in the linear approxi-
mation, and infinitesimally small perturbations are known
not to be able to limit cumulation. Second, the possibility
seems to be disputable of identifying the mathematical prop-
erty of cumulative flow proved in Ref. 7 (it was shown that
the mapping of the set of initial states of the flow onto the set
of states in which unbounded cumulation is attained cannot

be in a one-to-one relationship and be mutually continuous)
with the property of stability of cumulation.

In any case, as we have seen, the instability has not
proved to be catastrophic for experiment.

CONCLUSION

Thus we have attempted here to draw attention to a set
of interesting phenomena—cumulative hydrodynamic pro-
cesses—and to the prospects of using them in plasma phys-
ics.

We can hope that the results presented here are of sepa-
rate scientific interest independent of applications. How-
ever, in the review we have repeatedly touched on the ques-
tion of the possibility of using cumulative shock waves to
initiate ITF, which obliges us to formulate here the final
conclusion on this problem.

We must acknowledge that a final solution of the prob-
lem of igniting a plasma by using convergent shock waves
has not yet been presented in the literature. At the same time,
possibilities can be seen of overcoming the main difficulties
(radiation, instability) that impede the attainment of this
result. Apparently, despite repeated attempts to act along
this line, the path has not yet been pursued to the end.

I am grateful to all those who have facilitated the writ-
ing of this article, and especially thank S. V. Bulanov, G. A.
Askar'yan, V. S. Imshennik, L. M. Kovrizhnykh, I. A.
Kossyi, L. I. Rudakov, and K. Jach for critical remarks and
advice, and also E. M. Barkhudarov and V. E. Terekhin,
who furnished original photographs for the review.

1 Physics Encyclopedic Dictionary (in Russian), Nauka, M., 1983.
: M. A. Lavrent'ev and B. V. Shabat, Problems of Hydrodynamics and Its
Mathematical Models (in Russian), Nauka, M., 1973.
' F. A. Baum, L. P. Orlenko, K. P. Stanyukovich etal., Physics of Explo-
sion (in Russian), Nauka, M., 1975.

4L. A. Artsimovich, Controlled Thermonuclear Reactions, Gordon and

971 Sov. Phys. Usp. 33 (11), November 1990 I. V. Sokolov 971



Breach, N.Y., 1964 [Russ. original, Fizmatgiz, M., 1961].
5B. Manzon, Usp. Fiz. Nauk 134, 611 (1981) [Sov. Phys. Usp. 24, 662

(1981)].
6 A. Kolb, Plasma Physics and Magnetic Hydrodynamics [Russ. transl.,
IL, M., 1961].

7E. I. Zababakhin and I. E. Zababakhin, Unbounded Cumulation Phe-
nomena (in Russian), Nauka, M., 1988.

8 Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena, Academic Press, N.Y., 1966,
1967 [Russ. original, Nauka, M., 1966].

9G. B. Whitham, Linear and Nonlinear Waves, Wiley Interscience,
N.Y., 1974 [Russ. transl., Mir, M., 1977].

10J. H. Nuckolls, Physics Today 35(9), 24 (September 1982) [Russ.
transl., Usp. Fiz. Nauk 143, 467 (1984) ].

" N. V. Zmitrenko and S. P. Kurdyumov, Dokl. Akad, Nauk SSSR 218,
1306 (1974) [Sov. Phys. Dokl. 19, 660 (1975)].

12 K. P. Stanyukovich, Unsteady Motion of Continuous Media, Pergamon
Press, Oxford, 1960 [Russ. original, Gostekhteorizdat, M., 1955].

13 L. D. Landau and E. M. Lifshits, Fluid Mechanics, 2nd edn., Pergamon
Press, Oxford, 1987) [Russ. original, 3rd edn., Nauka, M., 1986].

14G. Guderley, Luftfahrforschung 19, 302 (1942).
'5V. F. D'yachenko and V. S. Imshennik, Vopr. teor. plazmy, No. 5,

Atomizdat, M., p. 394 [Rev. Plasma Phys. 5, 447 (1970)].
16V. I. Afonin, Yu. D. Bakulin, and A. V. Luchinskii, Zh. Prikl. Mekh.

Tekh. Fiz., No. 6, 3 (1980) [J. Appl. Mech. Tech. Phys. (1980) ].
I 7V. F. D'yachenko and V. S. Imshennik, Vopr. teor. plazmy, No. 8,

Atomizdat, M., 1974, p. 164, [Rev. Plasma Phys. 8, 199 (1980) ].
18N. A. Bardin, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 52 (1984). [J. Appl.

Mech. Tech. Phys. (1984)].
19 L. V. Shurshalov, Izv. Akad. Nauk SSSR Ser. Mekhanika Zhidkosti i

Gaza (MZhG),No. 4, 116 (1975) [Fluid Dynamics (1975)].
20 V. Ya. Ternovoi, Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 68 (1984) [J.

Appl. Mech. Tech. Phys. (1984)].
21 V. Ts. Gurovich, G. A. Desyatkov, V. L. Spektrov et al., Dokl. Akad.

Nauk SSSR 293, 1102 (1987) [Sov. Phys. Dokl. 32, 300 (1987)].
22 E. M. Bardukharov, M. O. Mdivnishvili, I. V. Sokolov, and M. I. Tak-

takishvili, Pis'maZh. Tekh. Fiz. 15, No. 5, 50 (1989) [Sov. Tech. Phys.
Lett. 15,393 (1989)].

"A. V. Bushman, I. K. Krasyuk, B. P. Kryukov et al, ibid. 14, 1765
(1988) [Sov. Tech. Phys. Lett. 14, (766) (1988)].

24R. F. Chisnell, J. Fluid Mech. 2, 286 (1957).
25 Yu. P. Raizer, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 49 (1964) [J. Appl.

Mech. Tech. Phys. (1964) ].
26 A. A. Rumyantsev, Zh. Tekh. Fiz. 42, 2435 (1972) [Sov. Phys. Tech.

Phys. 17, 1893 (1973)].
27R. A. Glatman, Zh. Tekh. Fiz. 44, 2250 (1974) [Sov. Phys. Tech.

Phys. 19, 1390(1975)].
28S. A. Colgate and R. H. White, Astrophys. J. 143, 626 (1966).
29 V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays, Gor-

don and Breach, N.Y., 1969, [Russ. original, Izd-vo AN SSSR, M.,
1963].

30 V. S. Berezinskil, S. V. Bulanov, V. L. Ginzburg et al., Astrophysics of
Cosmic Rays (in Russian), Nauka, M., 1984.

31 A. E. Voitenko, Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 51 (1968) [J. Appl.
Mech. Tech. Phys. (1968)].

32 Yu. K. Kalmykov and A. A. Rumyantsev, Zh. Prikl. Mekh. Tekh. Fiz.,
No. 3, 24 (1972) [J. Appl. Mech. Tech. Phys. (1972)].

33 V. V. Zakaidakov, V. P. Isakov, V. I. Kirkov, and V. S. Synakh, Zh.
Prikl. Mekh. Tekh. Fiz., No. 5,46 (1976). [J. Appl. Mech. Tech. Phys.
(1976)].

34 V. A. Pavlov, Izv. Vyssh. Uchebn. Zaved. SSSR Ser. Radiofizika 30,
797 (1987) [Radiophys. Quantum Electron. (1987)].

35 G. Einaudi, F. Giammanco, A. Giuletti, and M. Vaselli, Nuovo Ci-
mento 851,280(1979).

36 A. Giuletti, M. Vaselli, and F. Giammanco, Opt. Commun. 33, 251
(1980).

"M. A. Harith, V. Palleschi er a/., J. Phys. D 22, 1451 (1989).
38 A. D. Sakharov, Usp. Fiz. Nauk 88, 725 (1966) [Sov. Phys. Usp. 9,294

(1966)].
19G. A. Askar'yan and V. A. Namiot, Pis'ma Zh. Eksp. Teor. Fiz. 20, 332

(1974) [JETP Lett. 20, 148 (1974)].
40 V. V. Ermakov, Zh. Prikl. Mekh. Tekh. Fiz., No. 2,28 (1986) [J. Appl.

Mech. Tech. Phys. (1986)].
41 K. V. Brushlinskii and Ya. M. Kazhdan, Usp. Mat. Nauk 18, No. 2, 3

(1963) [Russ. Math. Surv. (1963)].
42 E. I. Zababakhin, Zh. Eksp. Teor. Fiz. 49, 642 (1965) [Sov. Phys.

JETP 22, 446 (1966)].
43 A. S. Kozyrev, V. A. Kostyleva, and V. T. Ryazanov ibid. 56, 427

(1969) [Sov. Phys. JETP 29, 233 (1969)].
44S. Kaliski, J. Techn. Phys. 19, 291 (1978).
45 R. D. Richtmyer, Commun. Pure Appl. Math. 13, 297 (1960).

46 E. E. Meshkov, Study of Hydrodynamic Stability Using a Computer (in
Russian), ed. K. I. Babenko, Institute of Applied Mathematics, Acade-
my of Sciences of the USSR, Moscow, 1981, p. 163.

47 A. N. Aleshin, E. G. Gamalii, S. G. Zaitsev et al., Pis'ma Zh. Tekh. Fiz.
14, 1063 (1988) [Sov. Tech. Phys. Lett. 14,466 (1988)].

48V. A. Belokon', Dokl. Akad. Nauk SSSR 222, 575 (1975) [Sov. Phys.
Dokl. 20, 343 (1975)].

49A. E. Voitenko, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 112 (1966) [J.
Appl. Mech. Tech. Phys. (1966)].

50 V. P. Isakov and A. S. Nuzhdov ibid.. No. 5, 5 (1986). [ J. Appl. Mech.
Tech. Phys. (1986)].

51 V. B. Mintsev and V. E. Fortov, Teplofiz. Vys. Temp. 20, 745 (1982)
[High Temp. (USSR) 20, 623 (1982)].

52 E. G. Gamalii, Dokl. Akad. Nauk SSSR 301, 603 (1988) [Sov. Phys.
Dokl. 33, 529 (1988)].

53 A. L. Velikovich and M. A. Liberman, Zh. Eksp. Teor. Fiz. 89, 1205
(1985) [Sov. Phys. JETP 62, 694(1985)].

54 A. S. Kiselev, Yu. M. Lipitskii, and A. V. Panasenko, Pis'ma Zh. Tekh.
Fiz. 16, No. 2, 82 (1990) [Sov. Tech. Phys. Lett. 16, 118 (1990)].

55 V. P. Parkhomenko, Izv. Akad. Nauk SSSR Ser. MZhG, No. 1, 194
(1979). [Fluid Dynamics (1979)].

56 E. P. Berchenko and V. P. Korobemikov, Dokl. Akad. Nauk SSSR 230,
1306 (1976) [Sov. Phys. Dokl. 21, 557 (1976)].

57 U. Chester, Problems of Mechanics, No. 4 (in Russian, transl. from
English, ed. Kh. Dreiden and T. Karman), IL, M., 1963.

58 T. V. Bazhenovaand L. G. Gvozdeva, Time-dependent Interactions of
Shock Waves (in Russian), Nauka, M., 1977.

59 Yu. S. Vakhrameev, Prikl. Mat. Mekh. 30, 774 (1966) [PMM. J. Appl.
Math. Mech. (1966)].

60 S. Kaliski, Bull. Acad. Sci. Pol. Ser. Sci. Tech. 26, 55 (1978).
61 J. Tyl and E. Wlodarczyk, J. Techn. Phys. 25, 35 (1984).
62 J. Tyl and E. Wlodarczyk ibid. 26, 3 (1985).
63E. I. Zababakhin, Usp. Fiz. Nauk 85, 721 (1965) [Sov. Phys. Usp. 8,

295 (1965)].
64E. I. Zababakhin, Pis'ma Zh. Eksp. Teor. Fiz. 30, 97 (1979) [JETP

Lett. 30, 87 (1979)].
65 V. S. Imshennik, Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 10 (1980) [J.

Appl. Mech. Tech. Phys. (1980)].
66V. S. Imshennik, Fiz. Plazmy 1, 202 (1975) [Sov. J. Plasma Phys. 1,

108 (1975)].
67 A. A. Makhmudov and S. M. Popov, Izv. Akad. Nauk SSSR Ser.

MZhG, No. 2, 167 (1980) [Fluid Dynamics (1980)].
68 E. I. Zababakhin and V. A. Simonenko, Prikl. Math. Mekh., No. 4,774

(1966) [PMM J. Appl. Math. Mech. (1966) ].
69 K. Gac and K. Jach, J. Techn. Phys. 25, 241 (1984).
701. V. Nemchinov, I. A. Trubetskaya, and V. V. Shuvalov, Zh. Prikl.

Mekh. Tekh. Fiz., No. 2, 112 (1986) [J. Appl. Mech. Tech. Phys.
(1986)].

71 A. I. Marchenko and V. V. Urban, ibid., No. 6, 15 (1988) [J. Appl.
Mech. Tech. Phys. (1988)].

72 A. V. Bud'ko, Proc. 19th Intern. Conference on Phenomena in Ionized
Gases, ed. J. M. Labat, Univ of Belgrade, Belgrade, 1989, p. 70.

"R. W. Perry and A. Kantrowitz, J. Appl. Phys. 22, 878 (1951).
74Dzh. Kh. T. Vu, R. A. Nimekh, and P. P. Ostrovskii, Raketn. Tekhn.

Kosmonavtika 18, No. 3, 55 (1980).
75H. Matsuoand Y. Nakamura, J. Appl. Phys. 51, 3126 (1980).
76H. Matsuo, K. Ebihara, and K. Nagayama ibid. 55, 271 (1984).
77 H. Matsuo, K. Ebihara, Y. Ohya, and H. Sanematsu ibid. 58, 2487

(1985).
78 P. N. Baronets, A. I. Saprykin, and M. I. Akushin, Izv. Akad. Nauk

SSSR Ser MZhG, No. 1, 129 (1981) [Fluid Dynamics (1981)].
7g P. N. Baronets, Cylindrical Shock Waves in a Pulsed Induction Dis-

charge (in Russian), Preprint of the Institute of Problems in Mechan-
ics, Academy of Sciences of the USSR No. 212, Moscow, 1983.

80P. N. Baronets,Zh. Tekh. Fiz. 55,2054 (1985) [Sov. Phys. Tech. Phys.
30, 1208 (1985)]

81 J. H. Lee and B. H. K. Lee, Phys. Fluids 8, 2148 (1965).
82G. A. Askar'yan, Pis'ma Zh. Eksp. Teor. Fiz. 10, 392 (1969) [JETP

Lett. 10, 250 (1969)].
83A. S. Kompaneets, Shock Waves (in Russian), Fizmatgiz, M., 1963.
84L. V. Al'tshuler, Usp. Fiz. Nauk 85, 197 (1965) [Sov. Phys. Usp. 8, 52

(1965)].
85V.E. Fortov ibid. 138, 361 (1982) [Sov. Phys. Usp. 25, 781 (1982)].
86 V. A. Belokon', A. I. Petrukhin, and V. A. Proskuryakov, Zh. Eksp.

Teor. Fiz. 48, 50 (1965) [Sov. Phys. JETP 21, 33 (1965)].
87 R. E. Setchell, E. Storm, and B. Sturtevant, J. Fluid Mech, 56, 505

(1972).
88 S. L. Bogolyubovskii, B. P. Gerasimov, V. I. Liksanov et al., Pis'ma Zh.

Eksp. Teor. Fiz. 24, 206 (1976) [JETP Lett. 24, 182 (1976)].
89 H. Derentowicz, S. Kaliski, J. Wolski, and Z. Ziolkowski, Bull. Akad.

Sci. Pol. Ser. Sci. Tech. 25, 897 (1977).

972 Sov. Phys. Usp. 33 (11), November 1990 I. V. Sokolov 972



90 V. I. Vovchenko, A. S. Goncharov, Yu. S. Kas'yanov et al., Pis'ma Zh.
Eksp. Teor. Fiz. 26, 628 (1977) [JETP Lett. 26, 476 (1977) ].

91 S. I. Anisimov, V. I. Vovchenko, A. S. Goncharov et at., Pis'ma Zh.
Tech. Fiz. 4, 388(1978) [Sov. Tech. Phys. Lett. 4, 157 (1978)].

1)2 S. I. Anisimov, V. E. Bespalov, V. I. Vovchenko et al, Pis'ma Zh. Eksp.
Teor. Fiz. 31, 67 (1980) [JETP Lett. 31, 61 (1980)].

93L. A. Artsimovich, Proc. 2nd Internal. Conference on Peaceful Uses of
Atomic Energy: Reports of Soviet Scientists (in Russian), Vol. 1, Ato-
mizdat, M., 1959, p. 5.

94 A. Galkowski, R. Swierczynski, and E. Wlodarczyk, J. Techn. Phys.
22,349 (1981).

95 T. Mochizuki, S. Sakabe, and Ch. Yamanaka, Jpn. J. Appl. Phys. 22,
No. 2, 2 (1983).

96 E. N. Avrorin, A. A. Bunatyan, A. D. Gadzhiev et al., Fiz. Plazmy 10,
514(1984). [Sov. J. Plasma Phys. 10, 298 (1984)].

971. V. Sokolov, Convergent Axially-Symmetric Shock Waves. Behavior of
WavesNeara Cumulation Point (in Russian), Preprint ot the Institute
of General Physics, Academy of Sciences of the USSR No. 244, Mos-
cow, 1986.

98 V. F. D'yachenko and V. S. Imshennik, Zh. Eksp. Teor. Fiz. 56, 1766
(1969) [Sov. Phys. JETP 29, 947 (1969) ].

99 N. K. Berezhetskaya, E. F. Bol'shakov, S. K. Golubev et al., ibid. 87,
1926(1984) [Sov. Phys. JETP 60, 1108 (1984)].

1001. A. Kossyi, K. V. Krasnobaev, I. V. Sokolov, and V. E. Terekhin,
Kratk. Soobshch. Fiz., No. 11, 3 (1987) [Sov. Phys. Lebedev Inst.
Rep. (1987)].

1011. V. Sokolov, Zh. Eksp. Teor. Fiz. 91, 1331 (1986) [Sov. Phys. JETP
64,784(1986)].

102 V. M. Khudyakov, Dokl. Akad. Nauk SSSR 287, 802 (1986) [Sov.
Phys. Dokl. 31, 298 (1986)].

103 N. S. Zakharov and V. P. Korobemikov, Izv. Akad. Nauk SSSR Ser.
MZhG, No. 6, 179 (1988) [Fluid Dynamics (1988)].

1041. V. Sokolov and V. E. Terekhin, Proc. 1989 Intern. Conf. on Plasma
Phys., eds. A. Sen and P. K. Kaw, Univ. of Delhi, New Delhi, 1989, p.
293.

105 E. M. Barkhudarov, M. O. Mdivnishvili, I. V. Sokolov et a!., Mach

Reflection of Ring Shock Wave from the Axis of Symmetry, Preprint of
the Institute of Physics, Academy of Sciences of the Georgian SSR No.
PP-13, Tbilisi, 1989.

10(11. V. Sokolov, Izv. Akad. Nauk SSSR Ser. MZhG, No. 4, 148 (1989)
[Fluid Dynamics (1989)].

107 R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,
Wiley, N.Y., 1948 [Russ. transl., IL, M., 1950].

108 G. A. Askar'yan, N. P. Datskevich, N. V. Karlov et al., Pis'ma Zh.
Tekh. Fiz. 4, 966 (1978) [Sov. Tech. Phys. Lett. 4, 389 (1978)].

109 O. V. Bazanov, V. E. Bespalov, A. P. Zharkov et al., Teplofiz. Vys.
Temp. 23, 976 (1985) [High Temp. (USSR) 23, 781 (1985)].

1101. V. Sokolov ibid. 26, 560 (1988) [High. Temp. (USSR) 26, 420
(1988)].

"' K. V. Brushlinskii, On the Stability of a Convergent Spherical Shock
Wave, Preprint of the Institute of Applied Mathematics, Academy of
Sciences of the USSR No. 81, Moscow, 1980.

1 1 2 Dzh. Kh. T. Vu, R. A. Nimekh, and P. P. Ostrovskil, Raketn. Tekhn.
Kosmonavtika 19, No. 4, 3 (1981).

1" D. W. Schwendeman and G, B. Whitham, Proc. R. Soc. London Ser. A
413,297 (1987).

114 E. A. Barkhudarov, I. A. Kossyi, M. O. Mdivnishvili etal, Izv. Akad.
Nauk SSSR Ser. MZhG, No. 2, 176(1988) [Fluid Dynamics (1988)].

"!B. Sturtevant and V. A. Kulkarny, J. Fluid Mech. 73, 651 (1976).
'"•M. De Rosa, F. Fama, M. A. Harith et al., Mutual Interaction of

Spherical Shock Waves in Air: Mach Waves Generation, Preprint of
IFAM, Pisa, Italy, 1990.

117 R. M. Zaldel' and V. S. Lebedev, Dokl. Akad. Nauk SSSR 135, 277
(1960) [Sov. Phys. Dokl. 5, 1166(1961)].

1181. V. Simonov, Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 82 (1975) [J. Appl.
Mech. Tech. Phys. (1975)].

"9E. Panarella, J. Fusion Energy 6, 285 (1987).
120 V. S. Komel'kov, V. S. Imshennik, and V. V. Paletchik, Fiz. Plazmy 14,

1341 (1988) [Sov. J. Plasma Phys. 14,787 (1988)].

Translated by M. V. King

973 Sov. Phys. Usp. 33 (11), November 1990 I. V. Sokolov 973


