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This review presents a systematic account of the theory of the muon spin rotation method of
studying type II superconductors. Experimental investigations of the vortex structure and
antiferromagnetism in high- 7, superconductors are discussed and analyzed. Theoretical studies
show that the parameters of the vortex structure and of the superconductor itself can be
determined reliably only by using single crystal samples. Data obtained from polycrystalline
samples at present can only provide a qualitative analysis. Theory shows that to obtain the
required information with single-crystal high- 7, superconductors it is best to use two
orientations of the external magnetic field: along the axis of anisotropy and perpendicular to it.
The theory that has been developed makes it possible to analyze the behavior of the spin
polarization of the muon and to determine the parameters of the vortex structure, both for an
ideal lattice, and in the case of strong pinning. Experimental results of a study of
antiferromagnetic states in high-7, ceramics are analyzed and promising directions of research

are pointed out.

INTRODUCTION

Let us recall briefly the ideas behind the muon method.
It is based on the nonconservation of parity in the weak in-
teraction. As is well known, the muon, an unstable lepton,
decays according to the scheme u* —e™ +v, +¥,. The
average lifetime is 7, = 2.2-10 ~ °s. It has been shown in the
theory of the weak interaction that for the muon at rest the
angular distribution of the decay positrons of a given energy

is
dr', (6, ¢) _ 1 P
— =5 {(8 — 2€) ~cos 0 (1 — 2€)] e2dedQ,

and this expression integrated over energy and the angle ¢
becomes

are _ 1 1 0
T _2<1+3cose)dcos,

where T is the total-decay probability. The polar axis is cho-
sen in the direction of the muon spin; correspondingly, & is
the angle between the positron momentum and the spin di-
rection, and, finally,e = E_. /E,_,,, is the normalized energy
of the positron (E,,, =53 MeV). The decay scheme and the
directional diagram are shown in Fig. la. It is clear, there-
fore, that if sufficient statistics is collected it is possible to
determine the polarization of the muon P = (o). By distrib-
uting the events over small intervals of time of decay
(t;,t;,, ), which may be called time channels, one obtains a
histogram that describes the function P(#). The accuracy of
the measurements is determined mainly by the collection
statistics.

The principle of the muon method is quite simple. An
ensemble of muons with polarization P(0) is injected into
the sample, and then the time dependence of the polarization
P(1) is studied. The orthodox procedure that is used is as

FIG. 1. a) Decay scheme and directional diagram for the

decay of a muon into a positron, a neutrino, and an antineu-

trino. b) Origin of muon polarization in the decay (the thin

arrows indicate the momenta and the thick arrows the pro-

jections of the spins. ¢) Direction of the muon spin and mo-
Koz mentum in the decay (in the rest system of the pion and in the
\ laboratory system).
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follows. The time that the muon enters the sample is record-
ed (£, = 0) and the clock is started. Then counters (a posi-
tron telescope) are used to detect the time of the decay, ¢, .In
the time interval AT = t,~, only a single muon is within the
target (if there is more than one muon the event is discard-
ed). After the collection of the statistics (usually 10°to 108
decays) the histogram is plotted to determine P (7). In the
classical scheme the ensemble of muons is formed as a result
of the collection of a number of measurements much larger
than the number of single quantum objects.

It is obvious that the behavior of (& (z)) is completely
determined by the local magnetic field at the location of the
muon, including the external field and the internal fields in
the material. Since a muon can stop at any point in the sam-
ple, the experiment yields the average pattern over the entire
target. It should also be mentioned that the initial polariza-
tion P(0) of the muon remains essentially unchanged during
the time ¢, ~ 10 ~ '°s it takes to slow down (thermalize). In
fact, the angular frequency of precession is @=0.85-10°
B s~ ', and therefore in fields B~ 1-5 kG the angle of rota-
tion in the time ¢, is ¢ = wt,, <0.04 rad.

Beams of polarized muons are produced in proton ac-
celerators. The beam of protons impinges on a meson-form-
ing target, where positive and negative pions with a lifetime
of 2.6-10 ~? s are created. Magnetic lenses separate out the
7" beam, which, decaying, forms polarized positive muons.
The decay scheme is shown in Figs. 1a and 1b. Then the
beam of muons is directed onto the target. For the standard
conditions the muon momentum is p, ~ 10> MeV/c. The
range of these muons in matter is /~ 10 g/cm? (which for
copper is about 1 cm), and for this reason these beams are
usually slowed by means of filters (usually graphite) before
impinging on the target. In another version the muons that
are separated out are those in the muon beam that have come
from 7 that have been trapped on the surface of the meson-
forming target. These have a relatively small momentum
P, ~29.8 MeV/c. Their range is about 0.15 g/cm? (which is
/=0.017 cm for copper). Thus, the characteristic thick-
nesses of the metal targets is varied from 10 ~2t00.3-0.5cm.

The study of superconductors is one of the most effec-
tive applications of the uSR (muon spin rotation) method.
One can distinguish a hierarchy in the value of the informa-
tion obtained. In one case we learn the details of the “biogra-
phy” of a muon in matter (for example “anomalous muon-
ium” in semiconductors). This is very interesting, but the
physical interest in problems of this class narrows down to
the partial problem—the behavior of atomic hydrogen in
this material. In the other case, the one that we believe is the
most interesting, the muon method provides information on
the properties of the studied object per se. It is this version of
the method that is involved in the study of superconductors.
The conceptual aspect of the muon method reduces, as usu-
al, to the determination of the structure and the distribution
of the internal local magnetic fields in the superconductor.

The simplest muon experiment is the study of the inter-
mediate state of a type I superconductor.'® The intermedi-
ate state (usually a layered structure with alternating layers
of superconducting and normal phase) is found in regions of
a material, where, for reasons of geometry, the external field
exceeds the critical field. By the muon method it is possible
to determine the relative volumes of the two phases in the
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sample. Assuming that the external magnetic field is direct-
ed along the z axis and the initial polarization of the muon is
along the x axis, and that the magnetic field is totally ex-
cluded from the superconductor, we can write the polariza-
tion as

P.(t) = (1 --1) { cos (y4ht) p (h) dh + o,

(I.1)
Py(t) = (1 —) [ sin (wht) p () b

where v is the relative volume of the superconducting phase,
p(h) is the density of the magnetic field distribution (the
probability of a given field) in the normal phase. The initial
polarization is taken to be unity. It can be seen from formula
(1.1) that the value of v can be obtained from a measurement
of the initial precession amplitude and the conserved polar-
ization component.

By applying the muon method to type II superconduc-
tors one can obtain information on the distribution of the
microscopic fields within the sample and on the geometry of
the Abrikosov vortex structure, and in addition, determine
the London penetration depth A(7T) and the correlation
length £( T') of the superconductor. The methods of neutron
diffraction and nuclear magnetic resonance as applied to the
study of the vortex structure have a number of fundamental
limitations. In particular, neutron experiments are hindered
by small effective cross sections and are carried out at small
scattering angles (the characteristic Bragg angle is ~20’).
This limitation severely degrades the accuracy of the experi-
ments.* Because of the skin effect, studies of superconduc-
tors by NMR methods are limited to the study of the near-
surface layers of the sample.

The use of the muon method for the determination of
the characteristics of the vortex lattice in mixed states of
type II superconductors was first proposed in Ref. 5. The
idea underlying the application of the muon method to the
study of type II superconductors is trivial.

Let us consider the behavior of an ensemble of muons in
a two-dimensional periodic vortex lattice of a superconduc-
tor. We assume that the initial polarization of the ensemble is
perpendicular to the magnetic field (the experiment takes
place in a transverse field). Henceforth we shall assume that
the induction B is directed along the z axis of a Cartesian
coordinate system, and the initial polarization is equal to
unity and is directed along the x axis. We shall denote the
component of the polarization along the x axis as P(¢). Tak-
inginto account the periodicity of the vortex lattice, we write
the time dependence of the polarization as a two-dimension-
al integral over the unit cell of the lattice:

Plf) = j-é—cos (@ (p) 1) do, (1.2)
where S is the area of the unit cell, p is the two-dimensional
position vector, and w(p) = yyh(p) is the precession fre-
quency of a muon in the microscopic field, #(p). The Four-
ier spectrum P(w) of the polarization in fact coincides with

the distribution density p(k) of the microscopic magnetic
field:

P(w) = yap(h),

P) = 8@—0)d.

(1.3)
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Asisevident, one can thus determine the distribution of
the fields in the vortex lattice by means of the muon method.
In a number of cases the field distribution can be calculated
theoretically within the framework of the Ginsburg-Landau
(GL) theory.

Let us also introduce a helpful formula that describes
the behavior of the polarization if the mutual orientations of
h(p) and P(0) are arbitrary:

Po (£} = pag (1) Ps (0); (1.4)
where
Hap () = (nang) + ((8ap — nang) cos (@1))
+ eapy My sin (0f)), (L5)

and n, = h,/h, and the average is taken over the entire en-
semble of muons at time ¢ (see e.g., Ref. 3).

For many years the use of the muon method for study-
ing superconductors had not attracted much attention. Ac-
tive interest in this method was kindled after the discovery of
a new class of superconductors—high-temperature (high-
T, ) superconductors. (In the Soviet literature the properties
of high-T. superconductors have been examined in detail in
Refs. 6-9.) However, the interpretation of the experimental
results has so far been quite arbitrary, and the potentialities
of the muon method have not been used to their fullest. Be-
low, we shall examine in detail the potentialities of the muon
method as applied to type 11 superconductors and the pres-
ent state of the problem.

1. THE PRINCIPAL PROPOSITIONS OF THE GINSBURG-
LANDAU THEORY

Let us review briefly the principal propositions of the
Ginsburg-Landau theory. The free energy of a supercon-
ductor is written as'®

= [T —Tylpp+ER|pp

Tln‘l(“"”—%“)“"z“LsiﬂdV' (1.1)

where m is the effective mass, T, is the critical temperature,
h is the microscopic magnetic field, ¢ is the order parameter
(¥ = 0 in the normal phase), and c is the velocity of light.
Carrying out variations with respect to  and SA we obtain
the Ginsburg-Landau equations

a(T) T =19 +pD) Y+ - (— hT— 22 A p =0,

(1.2a)

curlh i eh (1.2b)

= = e (VT — ) —

4 2ic m

Alﬂ?lz-

to which it is necessary to add the boundary condition

n(—ihV—%A)xp =0 (1.2¢)

b

(nis the normal to the surface ), which states that the current
that passes through the surface of the sample is zero.

The solution of Eqgs. (1.2), v=1
= [a(T)(T, — TH/B(TH1"? in zero field, A=0, h=0
corresponds to the complete Meissner effect; that is, the
magnetic field is completely expelled from the interior of the
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superconductor. With an accuracy to terms of order 4 in the
quantity |¢|?in Eq. (1.2b) one can replace ¢ by the value of
|#/)? in the absence of a field. Taking the curl of both sides of
the equation we obtain the London equation

h + A2 curlcurth = 0, (1.3)
where
X(T) - __an_z_ 1/2
(Sne’\pg )

is the London penetration depth; this is the characteristic
length of screening of the magnetic field by the supercon-
ducting currents.

In zero field Eq. (1.2a) takes the form

gzvz_=_____

. | v (1.4)

where we have introduced the quantity

K2 1/2
20 = [m (1) (Tc—r)}

which is the correlation length, or the characteristic length
of variation of the order parameter 1.

The temperature dependence of the phenomenological
parameters a(7T) and B(T) and, accordingly, A(7T) and
&(T) can be derived from microscopic theory:''

am—g(m(l—T\

c/

(1.5a)

MT):MO)(I—TL‘, (1.5b)
The experimental data are usually well described by the em-
pirical formula
i F T A=y
x(T)=x(0)[1—(T—)] (1.6)
It is well known that the value of the Ginsburg-~Landau
parameter x = A(T)/&(T) has a large effect on the proper-
ties of the superconductor.*'® For x < 1/v2 we have a type I
superconductor with an ideal Meissner effect in fields that
are lower than the critical field H,. For x > 1/vV2, we have a
type II superconductor. For type II superconductors it is
energetically favorable in a broad range of fields
(H,, <H,, <H,) tostratify into regions of the normal and
the superconducting phase—the so-called mixed state of a
superconductor—a two-dimensional regular lattice of vorti-
cal filaments. Each of the vortical filaments carries a mag-
netic flux ®, = hc/2e =2.07-10 77 Oe-cm? (h = 27#) and
consists of a cylindrical core, which is the region of the nor-
mal phase of dimension &, and a superconducting region of
dimension A around the core, in which the superconducting
current flows, screening the magnetic field (Fig. 2). The flux
quantum P, is sometimes called the fluxoid. Quantization of
the magnetic flux leads to a simple relation between the mag-
netic induction B and the average two-dimensional density
of vortices, p, in the mixed state
B= Q)npu. ( 17)

Here we can distinguish two cases. The London limit,
H,, <H_,, where the average distance between vortices is
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FIG. 2. Magnetic field #(p) and the order parameter || near the axis of
the vortex filament.

large, /> £. Equation (1.3) is applicable everywhere except
in the core of the vortex. The second is the Abrikosov limit
H,,, S H_, the cores of the vortices overlap. In this case it is
necessary to take into account the spatial variation of the
order parameter ¢ and analyze Egs. (1.2).

Asis well known, the Ginsburg~Landau theory is appli-
cable for 1-(T/T.) < 1. This limitation on the temperature
can be weakened if the true variations of A(7") and §(7T'), and
accordingly, @(T) and B(T) are taken into account in Egs.
1.2 and 1.3. In this case we find that the Ginsburg-Landau
theory is in reasonably good quantitative agreement with
experiment even at temperatures considerably below
T.(T./2<T<T,). The temperature range can be extended
by introducing into the Ginsburg-Landau theory the three
parameters x, (T), x, (T), and x, (T).'* These parameters
are related to the three macroscopic characteristics of a su-
perconductor: H,, (M /0H) 5, and H_,, respectively.

The solution of equations (1.2) in the limit H,,, SH,
and x> 1 was first derived by Abrikosov."? It was shown
that h and |¢|? are periodic two-dimensional functions in the
plane perpendicular to H,,, . The periodic solutions with the
symmetry of an equilateral triangle (triangular lattice) or of
a square are the energetically more favorable solutions. The
triangular lattice has the absolute minimum in energy, but
the energy difference is not much (of the order of 2%), and
both structures have been observed experimentally. The so-
lution has the form

=B —— (%P —(|bP),

where ||* is determined by the double Fourier series

(1.8)

WPE= (9P 3 (e

fn,m=—00

X exp [— (n® -+ m"’)%] exp [2mni Gn +ym)], (1.9a)

[PEP=dvP 3 (=1 exP<—in§>

n,m=-c

x exp[ (n* + m? — mn) ]exp [2mi (Xn + Ym)]

(1.5b)

for the square and the triangular lattices, respectively, with
the normalization

1.10
1+ By @2 —1) (1107
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where {...) means an average over the spatial coordinate, ﬂg
is a geometric factor, (B, =1.16, fn=1.18), and
b= (H, — B)/B. For the case H_,, S H,, b is a small pa-
rameter. In formulas (1.9a) and (1.9b) the Cartesian co-
ordinates x and y and the oblique coordinates ¥ and X are
chosen so as to make the zeros of the function |¢|? occur at
integral points. The real dimensions of the unit cell of the
lattice are determined from condition (1.7). The induction
B and the external field H,,, are connected by the relation
H,—B

118, = D’

Expressions (1.8)-(1.11) are valid for <1, and they are
the first terms in the expansion in powers of b (Ref. 14).

We shall solve the London equation (1.3) for the case
where H,, < H_, everywhere except in the cores of the vorti-
ces. The field in the vicinity of the core can be found by the
use of Egs. (1.2)."* The vortex filament can be described by
means of the London equation by the use of the boundary
conditions on the surface of the core (the interface between
the normal metal and the superconductor). In the limit
£ <a, this leads, as is well known, to a modification of Eq.
(1.3)

h -+ At curlcurl h = O, Zé(p— 0:);

Hext B+ (111)

(1.12)

where 8(p-p;) is the two-dimension delta function corre-
sponding to the /th vortex, p, is its coordinate, and @, is
directed along the axis of the vortex (|®,| = ®,). The solu-
tion h(p) of Eq. (1.12) has a logarithmic divergence at p,.
The field inside the core is usually taken tobe 4(p,, + &,0,,).
The solution of (1.12) for a rectangular vortex lattice is*

hmBor Y SRLEGtim) (1.13)
., m;'_w 4ot

here a and b are the sides of the rectangular unit mesh,
r=a/b, X =x/a,  =y/b, and o’ = a*/47*A *. Equation
(1.12) is linear, and therefore its solution can be written as a
sum of solutions of Eq. (1.13) for two rectangular lattices
arranged with the vertices of one on the intersections of the
diagonals of the other. For 7 = 1/\/3 we obtain the equilater-
al triangle lattice.

2.MUON METHOD FOR ISOTROPIC SUPERCONDUCTORS

Let us consider the characteristics of the muon spin ro-
tation spectrum for a vortex lattice. The magnetic field in a
periodic vortex lattice has three types of singular points:
Maxima, located at the nodes of the vortex lattice; these cor-
respond to the field in the core of the vortex; minima, in the
centers of the squares or triangles forming the lattice and
saddle points, in the middle of the edges of the unit cells. The
distribution density of this function, that is, the correspond-
ing Fourier spectrum of the polarization, has three Van
Hove singularities (Fig. 3). The quantities w,,;,, @4, and
@qpax are the fields (in units of the muon frequency) at the
minimum point, the saddle point, and the maximum point,
respectively.

Let us use formula (1.13) to find the characteristic fre-
quencies of the Fourier spectra for the vortex lattice in the
London limit. It is easy to carry out the summation over one
of the indices:'>™""
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where 8% = a® + m*r *. Formula (2.1) greatly simplifies
the calculation of w(p). For fields that are far from

1 (a*«€1) and the so-called intermediate field
H, <H.,, <H_ one can carry out the summation over the
second index and obtain an analytic expression for w(p).
For the two vortex lattice geometries the corresponding for-
mulas are

0 =(n)
Dy | 1n e (2m0y | §) B4 (200 | i) — Oy (201G | §) 09 (2m¥ | i)
T T [ In 82 (011 ]

(2.2a)

(o_(m)-{—yu = k’ [—1 n2

—In 04 (2uy | i%) 84 (2nx\ £/T) — Oy (2:ty | %) 9, (2nx ) i/T) J
l/"ﬁn (01it) 84(0|iv)

(2.2b)

where we have used the Jacobi & function (see e.g., Ref. 18),
and have set 7 = 1/V3.

Now, with the use of formulas (2.2) itis easy to find the
characteristic frequencies of the Fourier spectrum:

ofn =(0)— 'Vu -In2,
(2.3a)
(')mm = (U)> 0.79 ‘\’u -In2,
—_— — — 00 .
0Bt =(0) — gt In2, (2.3b)
0% = <w>———vu -In2,
ppee
O = (0) + u s Az(21 2be§-+ ln2)
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Besides the frequencies, the experimenter may find in-

terest in the Fourier amplitudes at w,,;, and o,,,:
22 2
PR = 23 pa 044 AT (2.42)
Yu(DD Yumo
Ak B A 4ma? B
PU = 2 ’ = =
max Y,_.,‘Do o max 'Yuoo VSGZ (24b)

It can be seen from Fig. 3 that it is possible to infer the
lattice type from the shape of the spectrum. The spectrum
for the triangular lattice differs from that of the square lat-
tice by a much higher amplitude of P, and a substantial
shift of w4 towards ., . The corresponding curves of P(¢)
are shown in Fig. 4. We note that the square lattice also
differs by the presence of pronounced beats in P(¢). In the
case of the triangular lattice the beats show up considerably
later and are hard to see. After determining the type of lattice
from formulas (2.3) and (2.4) one can calculate A(7T) and
().

The most useful formula from the experimental point of
view is (2.3b), which connects w,,; and (@). The actual
experimental spectra, of course, are different from the ideal
picture (see Fig. 3). The Van Hove singularities in the spec-
trum of P(w) are smeared out because of unavoidable ex-
perimental errors and because the experiment does not yield
P(t) as a continuous function, but as a histogram, deter-
mined by the width of the time channel. Therefore, the
points w,,, and w.,, can be determined with an accuracy
equal to half the width of the broadening of the edges of the
curve of P(w). On the other hand, the maximum value of the
density of P(w) is determined very well even for the
smeared-out peak. The carrier frequency {(w) is experimen-
tally determined with an accuracy to four places. Therefore,
the value of (w)-w,,4 (seeformula (2.3b)) is more conven-
ient for the determination of A.
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For the case a® <1 the shape of P(w) does not depend

on the value of B. If B changes then the spectrum of P(w)
shifts in frequency as a whole, but the values of (@) — w4,
(@) — @i, and P, remain unchanged. Thus, P(?) is self-
similar; it is the envelope of the oscillating function P(¢,
H_,.), which does not change when the carrier frequency is
changed. (Thereis a distortion of P(w) in the regionof v, ,
but because of its small amplitude: P,,, =& */a? the effect
on the shape of P(¢) can be neglected at these frequencies).

Wenote that fora> £ thevalueof P,,, (2.4b) isvanish-
ingly small. Therefore, it is impossible in practice to deter-
minew,,,, or P_,. , and hence £ experimentally. To measure
& one must operate in the range H,,, S H_,, whereaZ £.

Keeping the terms with n, m =0, 4+ 1 in (1.9) and
using formula (1.8) we obtain

@9 (%, §) = (0) + (@ext — (©)) b [cos (27x)

—+ cos (2n_t7) + 8gcos (2n;) +COoS (2:1})], (2.5a)
@b (X! f) = <(D>+ {(mext — <(U >) aA (COS (23'[/?)

+ cos (2aY) 4 cos [2n/(X +- 7)1}, (2.5b)
where 5 =2 exp( ~ 7/2), and 8, =2 exp( — 7/V3).

The remaining terms in the series (1.9) can be neglect-
ed. It is easy to see that formulas (2.5) have an accuracy of
~ 1%. Transforming in formula (I.3) to an integration over
the isoline w = w(p):

P(0)= j (2.6)

dl ? dx
= dx,
| grad w| .S |0w (p}/0y|

we obtain the Fourier spectrum corresponding to the fields
(2.5) in the form

-~ ~ - — (8% __~a452 1/2 )
PD(m)=—612(1+mﬂ)-1/ﬂK((1 1O — o D]} ).
o

I+ ;
(2.7a)
P* (@)
RS (1 /T(5)+2R(5))‘/"‘) .~ ~
T 6T R \2 ( R@ for & >0
__2 8y K( (___R@ 12
T (7 (@) + 2R (@)1 2(T@>+2R <5)) )

for © << Wgag;
(2.7b)
where & = (0 — (@) )/ (@4, — (@)),
R @) = (2@ + 38,13, T (@) = 64 (3— f—) ,

PN

'Yﬁ(a)d&;:l,
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and K (...) is the complete elliptical integral of the first kind.
Below we present the characteristic frequencies and ampli-
tudes of the spectra:

~ ~. 36
05 = 8% — 200, O = — —
2

Ogg = — 8, 0%y =—8.,

Onax = 201 + 81, G = 38,

Piin = 2085 (1 — 80)[%, Py = 2 (1/376.),
Prax = [2n85 (14 80), P&,y = 21/ 3nb.) .

(2.8)

It can be seen that for H,,, S H,, we find that w_,, still tends
to shift towards i, , and P, is still higher in the triangular
lattice than in the square lattice.

From (2.5) one can easily obtain, using (1.2) an analyt-
ic expression for P(¢) (Ref. 19)

P (t) = J3 (pt) cos ({w) )+ 8ptJ? (pf) sin ({ 0) 1),
P (f) = J§ (pt) cos ({@) #) + ptJ} (pt) sin ((w) #),

(2.9a)
(2.9b)

where p = §, (w.,, — (®)). For the square lattice we have
pronounced beats ~J§ (pr), while for the triangular lattice
the beats are hardly visible, since the two termsin (2.9b) are
comparable in magnitude.

After measurement of the carrier frequency (w) of the
oscillations of the polarization, the Ginsburg-Landau pa-
rameter x can be calculated from the formula (see (1.11))
@y — @)

1+, 22— 1)

Recalling that we obtained the penetration depth A experi-
mentally in intermediate fields, we see that we can use for-
mula (2.10) to determine & of the superconductor. The dif-
ference w,,—{@w) determines the shape of the Fourier
spectrum P(w) and of the polarization P(¢), (2.7)-(2.9).
By a comparison of the experimental and theoretical curves
it is possible to judge whether the Ginsburg-Landau theory
and the Abrikosov approximation are applicable.

(2.10)

Oext — ((0) =

3. THE MUON METHOD FOR ANISOTROPIC HIGH-T,
SUPERCONDUCTORS

Since the discovery of a new type of superconducting
materials, the high-7, superconductors, a large number of
experimental papers have appeared, dealing with the muon
method of studying these materials. However, what the val-
ues are for A and £ in these materials is still essentially an
open question. The difficulties arise because, first, the high-
T. superconductors are highly anisotropic, and second, the
experiments are almost always (with rare exceptions) car-
ried out on polycrystalline samples consisting of a large
number of randomly oriented single crystallites (granules).
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FIG. 5. Structure of the crystal lattices of YBa,Cu,0O, and
(La,Sr),Cu0,.

The anisotropy of a superconductor can be taken into
account in the Ginsburg-Landau theory with the use of the
effective mass tensor m,s. All the known high- T, supercon-
ductors are, with high precision, uniaxially anisotropic su-
perconductors. The principal values of the tensor m s are

M= My ="My, M= (135 Ma; (3.1

Here y is the anisotropy parameter. In the @b plane and
along the ¢ axis we have for the critical fields and for A(T)
and £(T)

c 1/2
ﬁzﬁ_g=_§;‘b_=_7"-‘_=(.ﬂ) =1+ (32)
H®  H Mgy

c2

For typical high-T, superconductors the following esti-
mates are usually used: for YBa, Cu,0,, y =25, and for
(La,Sr),Cu0O,, y =10 (see Table I).

The free energy for an anisotropic superconductor is*

F =§dv[a(T)(T—Tc)l1l>l’+¥—’lw|‘

+ %m;‘é (ihvv—% Av) P (— ihVo—QTeAO) b+ a_hnl] )

Standard variational procedure gives the Ginsburg-
Landau equations

a(MT—TI)p+pT) [P}
+}mﬁﬁ4wy-%mﬂ—mn_%wgw=q

(3.4a)
curl, h i H 1w . 2
T = S (Vb — ) — 2 s [
(3.4b)

By analogy with the isotropic case we introduce the tensors

3 hmg 2 oy
So =1 (T —1) " Ao = 8ned |y P is
Houlim & (T) (T, —T) (3.3)
¢ B (T)

The principal values of the tensors &3, and A 2, are the
squares of the penetration depth and the correlation lengths
in the ab plane and along the axis of anisotropy (see (3.2)).
The corresponding modified London equation for an aniso-
tropic superconductor has the form?'

h + cur! Rﬂ.cur1h=0‘,,26(p—-p,~), (3.6)

where A 2 is the tensor operator with components A ;. We
note that the direction of the induction vector B and the axes
of the vortex filaments of the high-T, superconductor in the
general case are not the same as the direction of the external
magnetic field H,,, . Moreover, the macroscopic field h in the
vortex lattice has components that are perpendicular to B.
Therefore, (w) differs from y, B, that is, it is not equal to the
precession frequency in the field B, here ({w) = 7,(h)).
Exceptions are the cases with the orientations H.,, ||c and
H., lc (theexternal field is parallel to the axis of anisotropy
or the @b plane).

Let us choose a Cartesian coordinate system x,p,z such
thatc¢, = 0 (Fig. 6); thatis, ¢ and H,,, lie in the xz plane and
theinduction B is directed along the z axis and is perpendicu-

(3.3) lar to the plane xy of the vortex lattice.
TABLE L
Reference Sample Acipr A Agp. A her A 7. K
YBa,CugO;:
55 Polycrystalline >6000 0
58 > 908 14,8
54 » 700 10
53 » 1400 1065 6
47 » 1200 0
45 » 1550 1300 5000—8000 0
24 Single Crystal 1430 >7000 0
La, 481, 15Cu0q:
56 Polycrystalline 0
54 yery 3100 1300 0
49 » 2500 6
50 » 2000 10
55 » >3500 0
51 » 2650 0
52 » 2300 13
58 » 3690 5
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The solution of Eq. (3.6) for a rectangular vortex lat-
tice is?

hy () = DS, (0) S

By () = — DgctxSa (0) S,

b (p) = @y (S1(p)— ¢2S; (P)) STV,

(3.7

where we have introduced the notation

S1 —a? 2 exp[2ni (n7+ m?)]

< nt + 2
S. = X g3q2 m? exp [27 (% + my)] ,
T % "+ 69 (B B
S, = L gy 3 nmlexp 2 (ix + mig)]
= ",;,,, (7 + B9 (467

X=x/a, y=y/b, a*=a*/4mA %, T=a/b, ¥, =1+,
Yv2=1+cy.Bi=a*+m*r% B = (a*+x,m* 1)/,
and the summation is taken over all integral n and m.

The vortex lattice of an anisotropic uniaxial supercon-
ductor is obtained from an equilateral triangular or a square
lattice that is stretched along the y axis by a factor
[(1+x)/(1 + cZy)]"? and has the symmetry of a rectan-
gle or an isosceles triangle. The minimum in energy corre-
sponds to the orientation of the original regular lattice with
the x axis parallel to the edge of the unit cell.?* The geomet-
ric size of the unit cell, as before, is given by relation (1.7).

For an arbitrary orientation of the crystal the fields can
be calculated by formulas (3.7) only numerically (suitable
formulas for the numerical calculations are given in Ref.
22). We note only the qualitative features that arise as a
result of the anisotropy. The function w(p) now has two
nonequivalent saddle points, and so there are two Van Hove
divergences in the Fourier spectrum P(w») (Fig. 7). In the
case of intermediate fields (a®<1) the relative positions of
the characteristic frequencies of the spectrum (w), o,_,,,
D41, 80d @, 4, do not depend on the applied field, just as in
an isotropic superconductor. Therefore the function P(z) is
self-similar. It must be emphasized that the time dependence
of the polarization, P(t) of an anisotropic superconductor

FIG. 6. Orientation of the (x,y) plane, of the vortex lattice and the mag-
netic induction B relative to H,,, and the axis of anisotropy, c.

looks qualitatively like that for an isotropic semiconductor,
and therefore it is easy to obtain information directly from
the Fourier spectrum.

If we apply the external-field approximation to the
limiting orientations H,,, |lc and H,,, l¢, the Van Hove di-
vergences of the function P(w) merge together and we have
the Fourier spectrum of an isotropic superconductor. In
fact, the case H.,, ||¢ is equivalent to the isotropic case. Sub-
stituting ¢, = 1 and ¢, =0 in formulas (3.7) we obtain
expression (1.3) with the replacement 4 -4 _,. In addition,
the case H.,, L¢ reduces to the isotropic case by the transfor-
mation of coordinates

gy (1 +0"

Substituting ¢, = 0 and ¢, = 1 into formulas (3.7) we
have

;—» X,

(3.8)

hx=hy=0.

Q, o (%
=280 —Sie)=21 3| exp (2 (X + )]

M mtar

n,m

(3.9)

where 72 = (1 4+ y)a?/b? in accordance with the transfor-
mation (3.8). Thus, for the characteristic frequencies and
the amplitudes of the Fourier spectrum of an anisotropic
uniaxial superconductor we have the following expressions

>

)
=
£

)
T T T T T

- £

1l

FIG. 7. Fourier spectra P(w) for an anisotropic su-

I
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05, = (@) — Vi ‘In2,
}‘ab
o4 = (0) —0 T9vpu =t -In 2,
0Fs = <m>——1wu ne, (3.10)
2 M;
msad = <(1)> — %Wu .In 2,
4702
Pmln = ﬂ ,
V7D,
a 4nAl,
Pmln = 2,44 ’V‘}’“On ,
=1 7= ! f ex
v H xzb Agb or H t" c,
=14 xe, = xﬂ:% for Hex | c.
where v=1 and vw/A2, =1/42, for H,|c, and

v=(1+y)"?and w12, =1/4,4. for H,lec.
For fields H.,, = H_, the solution of the Ginsburg-Lan-

dau equations (3.4) in the cases of H,,, ||c and H,,, Lc also
have a simple form:
h=B— = (0 — (9, (3.11)
1% =?6:?2—%;—1)—. (3.12)
Hom By — =2 (3.13)

[+, G —1)

where % = 4,,/€,,, and H,, = ®,/27& 2, for H,,, | ¢, and
%= Ay/E., and H, = ®,/2r& &, for H,,, Lc, and [¢|* is
defined by formulas (1.9). The change in scale along the y
axisinthecase H,,, lc (see (3.8)) is carried out according to
a rule that is formulated for fields H,,, €« H_,. The Fourier
spectrum P(w) and the polarization P(t) are described by
formulas (2.7)-(2.9) for an isotropic superconductor.

From this discussion it is clear that the most complete
information can be obtained by using single crystal samples.
However, to the present time almost all # SR experiments
(except that reported in Ref. 24) have used polycrystalline
samples. We shall, therefore, consider what information can
be obtained with the use of polycrystalline samples. A quan-
titative analysis is difficult because of the lack of reliable
theoretical models for the behavior of a magnetic field in the
interior of the sample. On the boundaries of the single crys-
tals forming the polycrystalline sample the magnetic field
can differ from H,,, both in magnitude and direction, and
thus it is in general not entirely clear how to carry out the
averaging. Moreover, the influence of the demagnetizing
factor of the microparticles introduces an additional uncer-
tainty in the pattern of the distribution of the microscopic
field h(r). We shall, therefore, make only some qualitative
remarks.

The lower critical field of an anisotropic superconduc-
tor depends on the angle between H,, and ec:
y(HS<H,, (y)<HS,), and for H*<H,,, <H,, the mag-
netic field penetrates only into some of the microparticles,
while the Meissner phase remains in the rest. Experimental-
ly this situation will show up as a growth of the amplitude
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P(r) of the precessing component from zero at H,, = H?,
and as asaturation at H_,, = H,. Thus, from the amplitude
saturation curve one can infer the characteristics of the su-
perconductor. Following Ref. 21 we write H,, (¥) in the

form

He () = Hey (14 3 sin?y) 7%,

H,= -2 inx, HY= Do (19

. —— __In=«.
4:1:%.30 4nhcA g

Making the crude assumption that all the microparticles are
in the same field H.,,, and neglecting the demagnetizing fac-
tor, we have an expression for the fraction of the particles
into which the field penetrates®

, H \2 |2
n=(_l_—i__'x-)l/2 [1—(;1) :l for H‘g<Hext< z1.
X Hext

(3.15)

Heren =Ofor H.,,<Handn = 1forH,, >H:, Itisclear
that the relative amplitude A ( H.,, ) of the precessing compo-
nent increases with the same slope as n, but, because of the
change in the direction of h(n) within the single crystallites,
n does not determine the field uniquely. One can only state
(neglecting the demagnetizing factor) that in the initial in-
crease in A(H,, ) corresponds to the field H,, ~H“ and
saturationto H,,, ~H ¢, .

Under the same assumptions, the Fourier spectrum of a
polycrystalline sample can be obtained by averaging P(w)
for a single crystal over the various angles . Taking into
account that the relative weighting of microparticles with
orientation y is proportional to sin ¥, we have a smooth in-
crease in the Fourier component from zero for
=l (H,,) and a peak value that is shifted towards

sad (Hexl ) .

4. PINNING AND DISTORTION OF THE VORTEX
STRUCTURES

A large number of papers have treated the topic of pin-
ning in type II superconductors. Here two main questions
arise. Firstis the theoretical determination of the parameters
of the distorted lattice on the basis of the theory of collective
pinning®® for given pinning parameters in the sample. In this
model the vortices are regarded as essentially rigid and par-
allel to each other, and the pinning is weak. The elastic prop-
erties are characterized by an elasticity matrix &, (k) (here
k is the wave vector, and a, 8 = x,y,z). The distortion of the
lattice is characterized by a correlation function of the dis-
placement field. A detailed analysis of this problem can be
found in Refs. 26-29. Expressions have been derived for the
elasticity matrix and the correlation function. Analogous ex-
pressions near H,, for T<0.625 T, in the BCS approxima-
tion were derived in Ref. 30. The smearing of the muon spec-
trum for small distortions of the regular lattice depends on
the local magnetic field 4. The expression for the second
moment o(A4) of the smearing was obtained in Ref. 31. The
problem of temperature-induced fluctuations of the lattice
and muon diffusion has been discussed in Refs. 31-35. It was
shown that the frequency of the fluctuations of the lattice,
particularly in high-T, superconductors, is much higher
than the frequency of the muon precession, and therefore
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these fluctuations have no influence on the spin of the muon.
The second problem that arises is to estimate the value of the
critical current density j. and determine its dependence on
the external magnetic field within the theory of collective
pinning.2%*¢

It has been shown experimentally*®*” that for a certain
field B, a sharp jump is observed in the critical current, and
this jump is usually attributed to a transition from two-di-
mensional to three-dimensional pinning. No consistent the-
ory of three-dimensional pinning has yet been put forth.
Computer simulations have been carried out, however, and
their results are in qualitative agreement with experimental
data, and they support the hypothesized cause of the jump in
j..

The muon method is extremely convenient for investi-
gations of the structure of vortex lattices in the presence of
pinning. Let us consider an idealized model of a two-dimen-
sional vortex lattice with randomly arranged (uncorrelated)
vortices. Of course, this model has a limited range of applica-
bility, primarily because the bending of the vortices is ig-
nored (“three-dimensional” pinning). However, for thin
plates (H,,, ||z and perpendicular to the plane of the plate)
the two-dimensional structure is preserved if the thickness d
of the sample satisfies the condition d /2 < L_, where L. is
the longitudinal correlation length of pinning (not related to
the correlation length £ in the Ginsburg-Landau theory).?
The assumption of an uncorrelated vortex structure presup-
poses that the ‘“excluded volume,” where the vortices
strongly repel each other, is small. This assumption is almost
always valid in weak and intermediate fields, as long as the
density p of the vortices is not substantially greater than
A ~2. A quantitative estimate will be given later. The model
we are considering is helpful for estimating the different
kinds of arrangements of the local fields for the case of strong
pinning in real samples. We shall consider the case of exter-
nal fields H,,, <0.25H.,, where the London equation is ap-
plicable over essentially the entire volume of the sample.?® Tt
is obvious that (k) = H,,, even for H,, < H, . Neglecting
edge effects, we can assume that the vortex structure is uni-
form over the volume of the plate. The analysis that follows
is valid for isotropic as well as anisotropic superconductors if
the external field is directed along one of the principal
axes.” The latter case is of particular interest in the study of
high-T, superconductors. We also note that for high- 7, su-
perconductors, where H_, is very high, the London approxi-
mation is valid for a broad range of H_,, .

The local magnetic field in the London limit is a super-
position of the fields from the separate vortices

hip) = Dhs(p—e:l- (4.1)
The field of an individual vortex is

= DK, (& 42
ho(p) = o Ko[ 7). (4.2)

where K|, is the modified Bessel function.

To find the probability density for the distribution of
the internal field W (k) for a stochastic lattice of uncorrelat-
ed vortices we shall use the method of Holtzmark.?° For the
function W(h) we have the well-known relation
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’ N
W(h)=5§... ”o (‘h—glhi) Wi(h)dhy dh, . .. dh.

(4.3)
For the Fourier transform we have
W (vs) = i X W (h) ™" dn (4.4)
and obtain the convenient formula
N
W (va) =TT W (), (4.5)
i=1
where
57 1 ;
W, (w) = 275 W, (h) ™" dh. (4.6)

Let us choose a region of sufficiently large radius R .
The number of vortices within the region is N = np,R %,
where p, = H_,, /®, is the density of vortices.
One can readily derive the distribution function for the
field W, (v, ):
RN an

Wi = = [ [ papt. 4.7
Ry ¢ H

2

Taking into account that the integrand is independent

of @ and taking the upper limit of integration over p to be «
we have

Wi =l—im | — ivphg(p) . (4.8)
(va) R?VOX( e )pdp

Substituting (4.8) into (4.5) and going to the limit N— o
we have

W (vs) = exp [—2npu°§(1 —e”h""”)rdr]. (4.9)

The distribution of the internal fields is obtained by the in-
verse Fourier transformation

V)= j W (vs) "8 dv, (4.10)

In the present case the integrals in (4.9) and (4.10)
cannot be expressed in terms of elementary or known special
functions. The results of numerical calculations for specific
values of the parameters A, £, and H,,, are shown in Fig. 8.
However, the second moment (Ah 2) can be derived analyti-
cally. For this purpose we take the average h *(p) over the
sample. From formulas (4.1) and (4.2) we have

k3 (p) =;h:(Ip—pd)+%Zlha(|p—ml)lk(lp—ml).
9,

(4.11)
Averaging the first term in (4.11) gives

<2 hs (o —ps |)> = P,
i

The second term in (4.11), as expected, is proportional
to pZ, and, precisely, is equal to {h)? (this result can be
obtained by direct calculation). In the end we obtain the
simple and beautiful result for (Ah 2):

®p,
(AR 4n)s ’
or

(4.12)
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FIG. 8. Distribution function W(h) of the local magnetic
field in a superconducting sample (4 = 1450 A, £ =20 A)
for a triangular and a random lattice.
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A comparison of the distribution function W(h) with
the distribution functions for the triangular and square lat-
tices'"'>? reveals significant differences: first, the logarith-
mic Van Hove singularities are replaced by smooth maxima,
and, naturally, the jumps in the distribution function, corre-
sponding to the maximum and minimum of the local field,
disappear. Second, for a random lattice an important factor
in the analysis of the experiment is the difference between the
average field and the most probable field () — % (here
W(h) = W,..) can turn out to be 2-10 times larger than in
the case of a regular lattice. Third, (Ah?) 4> (Ah?) .,
and finally the character of the dependence (Ah?) on the
external magnetic field is different from that for regular lat-
tices. In Ref. 23 we find the incorrect statement that for a
random lattice (Ah 2) does not depend on the external field.

Let us now return to the question of the applicability of
the model of a lattice of uncorrelated vortices. A good crite-
rion is the free energy, but for all other parameters being
equal (H.,, 4, &, etc.), it can be entirely replaced with the
energy of interaction of the vortices. For the interaction en-
ergy we use the expression in Ref. 40. For the volume density
of the interaction energy we have

Hext
ﬁnt‘_{f;"
12
L
10 |
: Stochastic Lattice
o8t
L Tri tti
06} riangular Lattice
0.4 F
r
a2k
L IR S i I T N
a 7 2 3 4 5 & i
AV,

FIG. 9. Volume density of the interaction energy of vortices as a function
of the external magnetic field in units of H 2, /87 in the approximation
£<A.

921 Sov. Phys. Usp. 33 (11), November 1990

do? p;
flnt=pvmt2yKo<T>- (4.14)
For the density of the interaction energy in a random
lattice an averaging leads to a replacement of the summation

by an integral. We have as a result

frat = -Bjt—ﬂzxt. (4.15)

It was not possible to calculate the interaction energy
analytically for an ordered lattice. The results of a computer
calculation are shown in Fig. 9. For an external field of the
order of H_, the difference between the ordered and the ran-
dom lattices is about 20%. The pinning must compensate
just this amount. Therefore, if the pinning parameters are
known it is not a difficult matter to determine whether it is
possible to form a random vortex structure.

To verify these calculations we carried out a computer
modeling of the fields in a random lattice. As shown in Fig.
10, we obtained agreement with a high degree of accuracy.

The results obtained show that the spectra and, conse-
quently, the time dependence of the muon polarization P(#)
in uncorrelated vortex lattices is quite different from the be-
havior of P(¢) in regular structures. As can be seen, with the
muon method one can observe strong pinning and investi-
gate its characteristics.

Numerical calculations have shown that for these lat-
tices the spectrum of W(h) is close to a Gaussian distribu-
tion, and therefore it is correct to approximate the polariza-
tion by the function e~ "2'2, which is frequently used in
analyzing the experimental data.

We shall now examine the possibilities of the u SR
method for the determination of the rate and the characteris-
tics of creep of the vortex lattice during the conduction of
current. As is well known, the onset of resistance and the
value of the critical current for real superconductors is asso-
ciated with the vortex creep*' resulting from action of the
Lorentz force on the vortices. It is also obvious that in real
samples there are pinning centers of various strengths, and
the creep starts with the separation from the pinning centers
of the most weakly bound vortices, although the latter can
then become attached to stronger centers. As the current is
further increased all the vortices of the lattice participate in
the motion, and for j=j. the superconductivity is de-
stroyed.

It is clear that the study of creep is of primary impor-
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FIG. 10. Distribution function W(h), obtained by Monte
Carlo modeling of the internal fields for 4 = 1450 A, £ =20
A, compared to the results obtained by the Holtzmark
method.
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tance for all the problems in the technical aspects of super-
conductivity, However, as far as we know, there is no meth-
od in existence by which one can study directly the creep of a
vortex lattice. In particular, to determine the most impor-
tant characteristic, the creep rate ¥, a phenomenological
approach and empirical relations are used.

As we shall show, the u SR method holds out the great-
est promise for the study of the characteristics of creep. Be-
low, we shall consider isotropic superconductors, but it
should be noted that the results obtained can be carried over
practically without modification to polycrystalline aniso-
tropic high-T, superconductors.

The appearance of resistance with creep is related to
viscous losses (energy dissipation) in the motion of the vor-
tices.* To estimate the viscosity we use the empirical formu-
1a41

ahH 0

Ne=—"",
éec

(4.16)

where o is the conductivity of the sample in the normal state.
The Lorentz force acting on a unit length of a vortex is

L =®T° [nj], (4.17)

where n is the unit vector directed along the core of the vor-
tex and j is the current density. Thus, the velocity of a vortex
is given by the formula

(4.18)

f
Ve= %
.

Experiments have been carried out in which a variation
in the muon depolarization rate has been observed during
the passage of a current through the sample (see section 5c of
Ref. 42), but there was no direct observation of the creep per
se. It is obvious that in the presence of creep the magnetic
field on a muon at rest is not stationary, and as a result the
Fourier spectrum of the muon polarization changes. In what
follows we shall assume that the muons do not diffuse. In a
superconductor with a large concentration of defects this
assumption is clearly satisfied at a sufficiently low tempera-
ture. A rough estimate of the characteristic time of variation
of the field at the muon in the presence of creep yields the
result
Ho0
i H1/a

v 1/2

)
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(4.19)

~d~
TCN'V‘N

[

=
éec
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where d is the characteristic dimension of the lattice,
d=(®,/H)'2,

A numerical estimate gives 7, =10 ~’-10 ~*s, both for
type II superconductors (H,, ~10* G, o~ 10°S/cm, j~ 10°
A/cm? and H~300 G) and for high-T, superconductors
(H,~10° G, 0~10~* S/cm, j~10* A/cm?, and H~300
G). The estimates thus arrived at agree in order of magni-
tude with the experimental data for the creep rate.*' As can
be seen, one can attain either a slow creep (7. > 7, ) or a fast
creep (7. €7, ) by varying j or H.

The most illustrative and interesting results are ob-
tained for the case of fast creep. The field at the muon can
conveniently be written as the sum of a constant component
and a rapidly varying component

h(t)=<h)+Bh(t). (4.20)

The characteristic time of variation of the field is
o, €7,, and the mean square value {6h ?), the second mo-
ment of the distribution of the field in the stationary lattice,
does not exceed H? . For the polarization of the muon we
have the well known formulas

t
P,({)=P, (0)exp (ivu gh(T) dT) ’

v
0

(4.21)
t
P, (t) = P, (0) exp (iyu (h) 1) exp (m (o) dt). (4.21")

Expanding the second exponential in (4.21) in a series we
retain only the linear and the quadratic terms. In the averag-
ing over various realizations of §A(¢) only the quadratic
term survives, and for the transverse polarization we have

t T
P, (t)=P (0) (1 -V <6h”>j dt j dv,f (v —n)) y (4.22)

where {6k 2)f(7) is the autocorrelator of 54(¢).
Since 7, €7, we obtain, as usual

P (t)y=P (0)e™, (4.23)

where A = 37 (6h *) 7, is the depolarization rate.

The Fourier spectrum of the polarization (4.23) has a
Lorentzian shape, and hence the characteristic width can be
taken as the half-width at half-maximum, Aw,,, = 4, rather
than the second moment. Therefore, if the spectrum has a
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shape that is close to Lorentzian we can estimate the rate of
creep as
V. o Ju S8 (90_)’“.
Aoy, \H

It is interesting to note that in the contraction that is
obtained the difference between the external and internal
field, H,,,~(h ) remains unchanged. Of particular interest is
the case of highly nonuniform pinning (for example in poly-
crystalline high-T, superconductors), in which the creep
can occur in places where the pinning is weak (for example
along the intergranular region; see Section 5). Although
there is no creep in the rest of the sample, the sample ac-
quires a finite resistance. Clearly, the Fourier spectrum of
the polarization is the sum of the spectra from the mobile
and the immobile “sublattices.” The characteristic shapes of
such spectra is shown in Fig. 11.

Let us turn now to “slow” creep. We shall first consider
a sub-ensemble of muons with a given value of the field at the
initial moment of time. The local field A(¢) is

B () = o+ VaVah () + o VaVbVah (t) Veh (r),  (4.25)

where ¥/, is the ath component of the velocity of the ith
vortex, r' is the coordinate of the ith vortex, and the summa-
tion convention is understood for pairs of indices.

If we substitute (4.25) into (4.21) we obtain with an
accuracy to the first significant terms

Pu) =P O)exp i (et -+ (V) (A1

x (1 — V5 (Ve) D (grad? h(rf))o’T‘) ,
4

(4.24)

(4.26)

where the averages (grad*4(r ‘) ), and (Ah ), are taken over
the isolines of A,:
_(®
AR =<ax, + o ) h,
Ak = D) AR (1),
{

and (Ah) = A ~?h, over the entire volume of the sample
except the core.

In this way we can find P(w, A, ), the spectrum of the
sub-ensemble of muons for which the field at the initial time
is equal to /,. The complete spectrum is obtained from a
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convolution of P(w, £) with the field distribution in the ab-
sence of creep.

A detailed analysis is extremely tedious, and so we offer
only the conclusions. “Slow” creep leads to a smoothing of
the spectrum (different for different frequencies) and to a
nonuniform compression in frequencies, proportional to
(V7). Thereisa natural separation of the cases of strong and
weak pinning. For strong pinning the available information
on creep can be obtained from the second moment, but the
case of weak pinning is more informative. Averaging along
the isolines can be carried out numerically, and in addition
to the second moment, the smoothing of the spectrum at the
singular points can also provide interesting information.

5.EXPERIMENTAL STUDIES OF THE VORTEX LATTICE OF
HIGH-7. SUPERCONDUCTORS

In experiments on the vortex structure of high-7,, su-
perconductors by the u SR method the following method is
usually used: The field cooling (FC) method, in which the
sample undergoes the superconducting transition under an
external magnetic field H,,, which is applied when the tem-
perature is above the critical point, and zero-field cooling
(ZFC), in which the sample goes into the superconducting
state in zero field and then the field is turned on at T< T,,.
The experiments are carried out in a transverse,
H,,.lP(r=0), as well as in a longitudinal, H.,, [|P (¢ = 0),
magnetic field.

To estimate the penetration depth A one ordinarily uses
the second moment of the distribution of fields in the vortex
lattice. The calculation of the second moment is still the only
procedure for determining A for a superconductor with the
use of the Fourier spectrum P(w). In Sections 2 and 3 we
formulated a method based on the determination of the posi-
tions of the Van Hove singularities.

In the London limit the second moment in units of the
muon frequency is

(A0%) = (@) —(©¥) = y3B* D) (1 +Mk%%,  (5.1)
k

where the summation 2’ is taken over all the vectors k0 of

the reciprocal lattice. As can be seen, (Aw?) contains suffi-

cient information to determine A. Replacing the summation

with an integration for a>» A yields the well-known approxi-

mate formulas (see, e.g., Ref. 4)
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for a square lattice, and

N = (V3
(bat) =B f2V3a (L2

(5.2b)

for a triangular lattice.
As can be seen, when a €A (an intermediate field) the
second moment {Aw?) is independent of the applied field:

(Aw?) = (ls::’r‘( Y“‘D") ~ 0,00201 <Y"°°) (5.3a)

for a square lattice, and

(Aw?y =V/3 (32m0)1 (mo) ~0,00175 (“ﬁ”)’ (5.3b)

for a triangular lattice.

In general, going over to an integration entails substan-
tial errors, and it is simpler to sum directly the series (5.1),
which converges quite rapidly (see, e.g., Ref. 43). The sum-
mation of even the first terms shows that the formulas for the
second moment (5.3) greatly underestimate it. An exact cal-
culation yields the result*?

{ Aw?) 2 0,00386 (i’ﬁ(:—@"—)2 (5.42)

for the square lattice, and

YuDo \?
(Aa?) 20,0037 ( ) (5.4b)
for the triangular lattice.

Fortunately, the second moment {Aw?) is proportional
to A ~*, and so even though the numerical coefficients in
(5.3) are underestimated by almost a factor of two, their use
only results in at most a 20% error in the determination of 4.

The results of the calculations for the two types of lat-
tices are shown in Fig. 12. It can be seen that, depending on
the external field H.,,, (the induction B), we have three re-
gions. For small fields, H_, S H,,, € H_,, the second moment
increases with B, and the dependence of (Aw?) on B s given
by formulas (5.2).

@F
<Aw® \Units of 7774 Zkﬂ

-74 =72 -1 -8 -6 -4
i (8/4,5)

FIG. 12. Second moment {Aw?) of the Fourier spectrum, calculated by
different methods for square and triangular vortex lattices (x = 70); I3
Lattice of London vortices (5.1); 2) the vortex core approximated by a
Gaussian of width & (5.6); 3) summation replaced by an integration
(5.2); 4) for an Abrikosov lattice (5.5).
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For the case of intermediate fields, H., < H,, <H,,the
second moment is practically independent of the applied
field and formulas (5.4) are applicable. The further decrease
in {(Aw?) with increasing H.,, is related to the overlapping of
the cores of the vortices. Using the solution of the Ginsburg—
Landau equations for the case H,,, SH_, (2.5) we find*

2 2
(Am”)~0000944(}’" ) (1—i) (5.52)
c2
for the square lattice, and
D,
(A02)~0000819LV“ °> (1 —Hi)z (5.5b)
c2

for the triangular lattice.

Within the London approximation, representing the
core of a vortex by a Gaussian of width £, we obtain an ap-
proximate expression for the second moment, which is valid
in a wide range of fields**

(A0®) = y3B80 D) (L 4 Askoy2 ek, (5.6)
k

We note that formulas (5.4) and (5.5) remain valid for
orientations H,,, ||c and H_,, L¢ for an anisotropic supercon-
ductor. It is necessary only to make the substitution
A2-42, in the case H,,||c and A*=A,4, in the case
H,, lc.

We recall that the width (second moment) of the Four-
fer spectrum P(w) results not only from the distribution of
fields of the vortex lattice, but also from the interaction with
the magnetic fields of the nucleus (dipole and quadrupole
interactions). The characteristic broadening due to the nu-
clear dipole and quadrupole interactions is {Aw?)?~2-10°
to 10°us ™!, whereas the broadening due to the nonuniformi-
ty of the field, according to formulas (5.4) in intermediate
fields with 4 = 1000 A is (Aw?)"?~ 107 us~', while for
A = 3000 A it is (Aw?)'?~1.2-10° s~ '. Thus, the distor-
tion of the second moment of P(w) may be more pronounced
in superconductors with A>3000 A. This is particularly true
in the case of anisotropic high-T, superconductors with the
orientation H,,, L¢ (for YBa,Cu,0,, {A,,4. ]2 =3250 A).
The nuclear broadening mechanism has no effect on the po-
sition of the Van Hove singularities in P(®), and therefore
the method that is based on the determination of the charac-
teristic frequencies is more reliable.

In the majority of the experiments to the present time
the second moment has been determined incorrectly. Spe-
cifically, the time dependence of the polarization has been
approximated by a Gaussian or exponential relaxation

(5.7a)
(5.7b)

ext

Pg () oc e,

P (f)ox eto,
The second moment of a Gaussian relaxation has the form

(A0}, = 202, (5.8)

In the case of an exponential relaxation the Fourier
spectrum is P, (w) xo[d® + (@ — {(w))*]1™"' (the Lorent-
zian line shape). In this case the second moment is unde-
fined, and one ordinarily uses the quantity Aw, = V2o as the
“halfwidth” of the spectrum. However, as we have seen
(Fig. 3), there does not in general exist a spectrum of an
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ideal vortex lattice that is either Gaussian or Lorentzian.
Therefore, fitting P(¢) with curves (5.7) and then interpret-
ing the quantity 2o > as the second moment of the spectrum
is incorrect. This can be seen even from the fact that for
various choices for the approximation to P(#) for the same
experimental data we find a considerable spread in the sec-
ond moment: from a finite value for a Gaussian to infinity for
the exponential decay. Accordingly, this situation leads to
error in the determination of P(¢). The correct method of
analyzing the experimental data involves the determination
of (Aw?) directly from the Fourier spectrum P(w) (and not
from P(t)). Henceforth we shall use formulas (5.4) for the
determination of A.

It has been shown rather recently*® that in the case of a
polycrystalline sample the fitting of the experimental data
P, (1) by means of curves with a Gaussian relaxation
(5.7a) results in relatively small errors in the determination
of the second moment (Aw?). Piimpin et a/.,** used untex-
tured polycrystalline samples of YBa,Cu,0, (H,, = 3.5
kG, T = 10 K, field-cooling). The experimental data were
analyzed by four different methods:

a) fitting by a single Gaussian line P, () —A4 cos
(wt) exp( — 0 ’t?) - (Aw?) =203

b) fitting by two Gaussian lines P, (¢) -4, cos(w,?)
Xexp( — o 1t?) + A4, cos(w,1) exp( — o 31%) - {(Aw?)
= 20 ? (the signal that is proportional to 4, is the interfer-

ence due to muons that have stopped in the window of the °

cryostat and precess in the field H,,, );

¢) a numerical Fourier transformation Re F(P,, (1))
=P, (@) ~(Ao®);

d) fitting P,,, (¢) with a sum of sinusoidal functions
3.4, cos(w;t + @), where ; and ¢ are specified and the
Fourier components A, are adjustable parameters.

The numerical calculation of the Fourier spectrum (c
and d) for a polycrystalline sample showed that this spec-
trum is more symmetrical than in the case of an ideal vortex
lattice in a single crystal, and in its shape it is reminiscent of a
Gaussian. This result may be due to strong pinning (Section
4, Fig. 8) or may be an artifact of the summation over gran-
ules of various orientations. Therefore, systematic errors as-
sociated with methods a) and b) are relatively small. The
values of (Aw?)!/? obtained by methods a)~d) differ from
their mean value by 4-7%, which is an estimate of the corre-
sponding systematic errors. Thus, the use of a Gaussian re-
laxation in the fitting is partially justified. It should be em-
phasized that the results obtained in Ref. 45 are for
untextured polycrystalline samples.

The great majority of experiments, as we remarked pre-
viously, have been conducted with polycrystalline samples
(high-T, ceramics). The “isotropic” values of A that have
been obtained for polycrystalline high-T, superconductors
are in fact some sort of average characteristics 4., over the
sample. For granules that are oriented with ¢|/H,,, the sec-
ond moment is {Aw?) « 4 _, *, and for the orientation cLH,,,
itis (Aw?) « (4,,A4,.) ~ 2. Therefore, the estimate of 4 from
formulas (5.4) for an isotropic superconductor gives in the
first case the value A, and in the second
(AgpA )2 =4, (1 + 1) For YBa,Cu;0, these
numbers differ by more than a factor of two, and for
(LaSr), CuO, by almost a factor of four.® Incorrect analysis
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of the experimental data can thus lead to a severalfold error
in the determination of 4.

A simple estimate of the second moment {Aw?) and
some features of the Fourier spectrum for polycrystalline
samples can be obtained for intermediate fields H,, > H .

In this approximation, the vectors H,,,, B, and h(r) are
parallel to each other within a small angle for any orienta-
tion of the single crystal in the magnetic field. Here H_,, and
B are related by (see, e.g., Ref. 21)

o H, (0) \v?
Ho B4+ —2_g(® 1n(___°2 ) ny,
t 4“7~§bg() M I

ext

(5.9)

where 6=B% g6 =I[(1+ycos’®/(1+x)1"7
H,(0) = b,/ (27 2,8(6)), and n is a unit vector parallel
to B.

The microscopic field in the vortex lattice of an aniso-
tropic high-T. superconductor can be written in the form

h(r) = B[6h: () x + SR, ()y + (1 + SR @) z:.  (5.10)

It can be shown that the scale of variation of 84, ,, inno case
exceeds 2H ¢, /B, and the average over the cell of the lattice is
(6h,,.)=0. The quantity y,h is proportional to
(1 =6h%)/{1 — 8h2) (we assume that the initial polariza-
tion is P(0)||x and the axis of observation is the x axis). Up
to terms of order [2H ¢, /B |* we have

h® = B* 8k}, + Ohy + (1 + 8h.)?),

(5.11)

Sh2 Sh?
h~B (——x— ) .

Y
5 - + 1+ 8a,

From this it can be seen that the effect of the transverse
(x and y) components of the field on the Fourier spectrum
can be neglected in comparison to the effect of the longitudi-
nal, zcomponent (with an accuracy to ~H ¢, /H,,,). In this
case the distribution of the fields and the Fourier spectrum
coincide, and, clearly, they have a single Van Hove singular-
ity. (The nonequivalence of the saddle points of the function
h(x,y) shows up only in considerations of the transverse
components of the field, Aw,,4 «< 1/B.)

For a correct determination of the second moment of
the spectrum {Aw?) « (HS,/H_,)?, we shall carry out cal-
culations, retaining in formulas (5.11) the transverse com-
ponents of h:

(%) = 7B (A (1 — 8h3)) (1 — BhL )™

= vuB? (1 4 (8h3) + (8Ky) 4 (8h2)),
(@) = yuB(h(1 —BhY)) (1 —8h3))?
8h?> <6h§>>

(5.12)

2+2

Ultimately, we find that (Aw?®) in this approximation is de-
termined by the z component:

(A0®) = () — (0)? = VuB (8K;). (5.13)

A calculation of the field in the vortex lattice of an an-

isotropic high-T. superconductor is carried out with the use

of formulas (3.7). Assuming that a®<1 for H,,, > H,,, we
rewrite the expression for 4, as

hy= B+ @, 2(0) 2 exp [2ni (nx + my)] '

25 m n 4 m"

(5.14)
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where 7 = (a/b)g(8). 1t can be seen that when the replace-
ment 7' — 7 is made formula (5.14) coincides with (1.13) for
an isotropic superconductor (a’*<1). Accordingly, by anal-
ogy with the isotropic case we have a minimum in the free
energy for 7 =1 (for the rectangular lattice) and for
7' = 1/v3 (for the triangular lattice).

The expressions for &, (5.14) for various angles 8 differ
only by the factor g(8). The corresponding field distribution
is obtained by a change in scale. In particular,

®Omin(sad) (e) - ((0) = (@min(sad) (0) — ((0)) g (e)n
(A (0)%) = (Aw (0)%) g (9)?,

= gy P©/2(®),0)
P8 =="re

where @ = (w — {(0))/{w), P(&,0) is the field distribution
(the Fourier spectrum) in the vortex lattice, and w,,;, (0),
Wq (0), and (Aw(0)?) are given by formulas (3.10) and
(5.4).

The formulas that have been obtained can be used to
describe the Fourier spectrum of polycrystalline high-7, su-
perconductors. However, it is necessary to stipulate a mode}
for the distribution of the magnetic field over the granules of
the polycrystalline sample. The case that is usually consid-
ered is the most simple one, where B(r) is a constant over the
sample and is uniform at the boundaries of the granules.
(B(r) = (h), the local induction, averaged over a region of
dimensions of the order of the unit cell of the vortex lattice).
The density of vortex filaments is taken to be the same over
the entire granule, the geometry of the vortex lattice depends
on the orientation of the ¢ axis of the granule, and the effect
of the distortion of the vortex filaments at the boundaries of
the granules is ignored. The construction of a model for the
behavior of the field in a polycrystalline material is attended
with considerable complexities (the necessity to take into
account the geometry of the granules, the nonuniformities of
the field in the granules, and other factors).

The results of averaging of the second moment of the
spectrum over all equal-probability orientations of the ¢ axis
of the granules of the polycrystalline sample for this model
are

(B0%)po1 = (A0 (07*) 3 + W) {3 (1 + 1™

(5.15)

(5.16)

When y is large, ¥ > 1, formula (5.16) for a triangular lattice
becomes

(A = L (A0 Oy =L 3,71 - 107 ( V—""L) (5.17)
3 3 Agb
Thus, in the case of a strong anisotropy the second moment
of the Fourier spectrum is expressed only in terms of A _,.
Formula (5.17) can be used to estimate A, in a u SR experi-
ment if it is known a priori that 1, >4, .
The discrepancy between the result (5.17) and the data
of numerical calculations*® comes about because the au-
thors of Ref. 46 actually averaged the quantity

(Aw?) + (0)* — vuB* = yuB* ((Bh) + (Bhy) + (8H2)),
(5.18)

(see (5.12)), which is an overestimate of the second mo-
ment. Therefore, the expression for A in Ref. 46 needs cor-
rection; namely:
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Aeti = 37Ny & 1,32 Aas (5.19)

which is the effective penetration depth for a polycrystalline
sample as determined from the second moment of the Four-
ier spectrum according to the formulas for an isotropic su-
perconductor (5.4) under the condition y> 1. We empha-
size that because of the arbitrariness of the model used, the
distributions of the fields over the granules in formulas
(5.17) and (5.19) are only rough estimates.

In the analysis of the experimental data, most investiga-
tions do not take into account the disruption of the ideal
representation of the vortex lattice and of the field distribu-
tion due to pinning. In granular samples containing defects it
is obvious that these distortions must be very important. Be-
cause of pinning, thermodynamic equilibrium of the state of
the high-7, superconductor is not attained in the sample.
This fact is unambiguously demonstrated by the difference
between the results of field-cooled and zero-field-cooled ex-
periments and the observation of hysteresis phenomena. In
this connection we should mention in particular the work
reported in Ref. 47, where substantial magnetic fields were
observed to be frozen in; that is, residual fields remained in
the superconductor after the external field H,,, was turned
off. It is quite clear that all these properties of the vortex
lattice and, correspondingly, of the Fourier spectrum P(w)
refer to the equilibrium states of the superconductor. In the
conduct of the experiments it is essential to monitor the de-
parture from equilibrium of the sample studied.

The first systematic and extremely important investiga-
tions of the equilibrium and nonequilibrium states of high-
T, superconductors were carried out in Refs. 42 and 48.
Piimpin et a/.,** measured the average muon precession fre-
quency v, and the rate of depolarization o as functions of the
temperature for a ceramic sample of YBa, Cu,O,. Both the
FC and the ZFC processes were studied. The data obtained
(Fig. 13) indicate the irreversible behavior of the sample
prepared by zero-field cooling at temperatures T < 7 *, and
the reversibility in the case of field cooling at any tempera-
ture. The irreversible behavior in the case of ZFC is an indi-
cation of the pinning-induced nonequilibrium nature of the
state of the vortex lattice in the superconductor. As the tem-
perature is increased, vortices are detached from the pinning
centers, and the degree of equilibrium increases as the lattice

e

6F — T T T T
YBa, Cuz0,_p,
T.=92 K, 1
B=20mT

1 L <
50 200 300

L 1
0 50 10
Temperature, K

FIG. 13. Muon precession frequency v, and rate of depolarization o as
functions of the temperature (H,, =2 kG; ceramic sample of
YBa, Cu, O,, field-cooled (FC) and zero-field-cooled (ZFC) (Ref. 48).
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becomes more regular. The temperature T *isclose to T, and
corresponds to the complete detachment of the vortices from
the pinning centers for a given value of B
(T*(0) — T*(B)« B*?). For T> T* the states that are
obtained with field cooling and those obtained with zero-
field cooling are identical.

The effect of a dc current on the vortex lattice in high-
T, superconductors (ceramic samples of YBa, Cu;0,) has
been studied in Ref. 42. Figure 14 shows the experimentally
determined curves of v, (1) and o (1) for the case of ZFC and
FC. These curves show that for the state prepared by the FC
procedure the relaxation rate and the average precession fre-
quency do not depend on the current in the sample. Those
workers showed that the observed pattern is reversible when
a current is flowing (Fig. 14), where the maximum current
j =40 A/cm? exceeded the critical current in the sample,
J. =34 A/cm®. These results show quite convincingly that
the vortex lattice that is formed in the field-cooled process is
in equilibrium. Contrarily, for the zero-field-cooled case, ei-
ther with a current passing, or with variation in sample tem-
perature, its behavior is markedly irreversible. This situation
corresponds to the detachment of the vortices from the pin-
ning centers under the action of the Lorentz force generated
by the electric current. Here the current passes with the dis-
sipation of energy, which is manifested in an increase in the
resistance. The critical current /_, indicated in Fig. 14, is
measured by a sharp increase in the voltage drop in the cir-
cuit. Pimpin et al., hypothesized that this current corre-
sponds to the intergranular current ( j, ), which is some 10°
to 10° times lower than the intragranular *“‘true” critical cur-
rent .. Therefore, even for j > j, the superconducting state
remains within the granules and the distribution of the mag-
netic fields in the vortex lattice is virtually unchanged.

We should also mention the interesting results of Ref.
42, in which it is demonstrated that flux is captured in the
superconductor after the magnetic field is turned off abrupt-
ly (field-cooled, H,,, =1 kG, T= 20 K, polycrystalline
YBa, Cu, 0, ). The envelope of the distribution of the inter-
nal fields (Fig. 15a) resembles the distribution in the case of

T T T
\Z:Ff YBa,0uz0,,
T=6,968,
40 K, 100 mT

jﬂ A
l

0 2

1 1
g 7 2 3 4
Transport current, A

FIG. 14. Muon precession frequency v, and rate of depolarization o as
functions of the current (H,,, = 10 kG, T =40 K, ceramic sample of
YBa, Cu,0,, FC and ZFC). The dashed line corresponds to the preces-
sion frequency in the field H,,, (Ref. 42).
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| £=6.968,
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FIG. 15. 1 SR spectrum of a sample with trapped flux (ceramic sample of
YBa,Cu,0,, H,,, =10 kG, FC, T=20 K) after rapid turn-off of the
field. a) No current; b) current of 1.5 A. The dashed line corresponds to
the precession frequency in the field H,,, (Ref. 42).

a random vortex lattice with strong pinning (Section 4, Fig.
8). The sharp peaks in the distribution can be interpreted as
being the result of local order in a random vortex structure of
the superconductor. When a dc current flows, much of the
flux is expelled from the sample (Fig. 15b). The expulsion of
the flux is observed already at a current j = 1.6 A/cm?
which is very low compared to j. . This fact appears to indi-
cate that the expulsion is related to the detachment of weak
pinning at the intergranular interfaces. It is not understood,
however, in what way the vortices are detached from the
strong pinning centers within the granule. In accordance
with the Bean—Anderson models we can propose that the
density of pinning centers near the surface of a granule is
much higher than in the bulk, but the “force” of surface
pinning is highly anisotropic, and for the motion of a vortex
along the surface it is considerably less than for motion in the
interior or for the bulk centers. In zero applied field expul-
sion of the surface vortices from the sample is possible along
the intergranular boundaries even for a small current. Here
the equilibrium of the bulk lattice is unavoidably disrupted,
and strong forces arise that force the vortices to the surface
of the granule, from which they are again removed by the
current. However, at present only the first results have been
obtained, and therefore it is premature to presume that the
interpretation is reliable. The pioneering experiments of Ref.
42 should be repeated with single crystal samples. We em-
phasize that the # SR experiments under conditions of cur-
rent flow are of extreme interest, not only for high-7, super-
conductors but also in that they open up completely new
possibilities for the study of the pinning and creep of flux in
technological superconductors.

Estimates of the penetration depth A, made in various
investigations for various high- T, superconductors are list-
ed in Table I. As a rule, the temperature dependence A(7),
formula (1.6), is experimentally verified, and the listed val-
ues of A (0) are the result of extrapolation to 7 = 0. Because
of the features of the experiments noted above, and because
the experimental data were analyzed improperly, the values
listed can be regarded only as qualitative estimates. This
conclusion is also supported by the large spread in the results
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obtained by the various investigators.

The first investigations of the vortex lattice in
La, 45Sry,5CuQ, ceramics were carried out in the work re-
ported in Refs. 49 and 50. The measured value of 1 at 7= 6
K (ZFC) was 2300 A. The temperature dependence, A(T),
differed from that predicted by formula (1.6), and this dis-
crepancy was explained by the nonuniformity of the high- 7,
sample. Measurements made in longitudinal fields indicate
that there are transverse components in the microscopic
field in the sample, and these are due to pinning and anisot-
ropy. The investigators note the presence of hysteresis in the
rate of polarization relaxation, which depends on the history
of the sample. Experiments on La, 4,Sr,,sCuO, (Refs. 51,
52) yield good agreement with the temperature dependence
A(T) given by formula (1.6). The values of A extrapolated to
T =0 are 2650 A and 2300 A, respectively.

In studies of the YBa, Cu; 0, ceramic,**** the results
of averaging® were used to estimate the value of 1., (see
Table I).

Schenck’®® has taken into account the distortion of the
regularity of the vortex lattice due to the granular structure
of the high-T, ceramic. In the polarization of the ensemble
of muons, these investigators distinguished two compo-
nents, each of which is characterized by its own amplitude,
oscillation frequency, and relaxation rate. The “fast” com-
ponent (with a high relaxation rate) is presumably related to
a region of the sample in which the granules are randomly
oriented. The “slow” component is related, the authors be-
lieve, to regions in which the vortex lattice is regular, i.¢., the
granules are ordered (there is a preferred orientation of the ¢
axis). Thus, the analysis of the slow component yields infor-
mation on the penetration depth A. The investigators®*-
concluded that the predominant orientation of the granules
was clH,,, and estimated A.: 4,(0)>6000 A for
YBa,Cu;0, and 4, (0)> for La, 4;Sry,sCuO,. The two
components of P(¢) also have been reported in Refs. 56 and
57.

A detailed investigation has been made®’ of the pene-
tration of the magnetic field into a sample during magnetiza-
tion (zero-field cooling). The general features of the field
penetration were obtained with the integrated method. This
method is based on the measurement of the integrated count-
ing rate of decay positrons

At
ne = g n(fdt (At=x107%¢)

0

(5.20)

as a function of the external field and of the temperature, and
from it one can draw qualitative conclusions about the pro-
cesses taking place in the superconductor. In particular,
Barsov ez al.*’ note that the penetration of the field into the
sample proceeds in two stages at temperatures 7 < 60 K. The
proposed interpretation of this phenomenon is, however,
quite arbitrary: In the first stage, according to the authors,
the magnetic field penetrates into the intergranular space at
H,, = H, (H, <H_,), and as the external magnetic field is
further increased the field penetrates from the intergranular
space into the granule near H.,,. The investigators*’ were
not able to explain by means of this model the properties of
the “intergranular” field in the range H,, <H, <H,,
where the integrated count rate was essentially independent
of H,

ext*
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The most reliable results are those reported in Ref. 24
by Harshman ef al., who used the muon method to study
YBa, Cu, 0, single crystals. They postulated the following
form of the Fourier spectrum P(@):

P (@) = (07 exp [— (0 — @c)/@g] for @ > e,
(5.21)
=0 for o <@,

where w_ corresponds to the minimum field in the vortex
lattice, while the maximum field (in the vortex core) is taken
to be infinite (£—0). The assumed shape of the spectrum
(5.21) is different from the theoretical shape, but it de-
scribes the field distribution in an ideal lattice more accu-
rately than a Gaussian or a Lorentzian does. To determine A
we used the formula for the second moment {Aw?) = w3.
For a field direction H,,, ||c we derived the value 4, = 1430
A. Measurements carried out with other field directions
gave the estimate A_ »>7000 A.

Investigations of high-T, ceramic superconductors
basedonY, La, Bi, and T1 have been reported in Ref. 59. For
various stoichiometries measurements have been made of
thecritical temperature T, and the muon depolarization rate
o(T-0) in the mixed state of the superconductor (with the
approximation of Gaussian relaxation (5.7a)). With in-
creasing o the critical temperature of the sample increases at
first, and then it saturates and falls off. As has been shown
experimentally, an initial increase in 7, is linear
T. = ao(T—0), where a is a universal constant for all the
superconductors studied. The temperature T, at which satu-
ration sets in, depends on the type of high-T, superconduc-
tor. Uemura and his coworkers have interpreted the value of
20 ? as the second moment of the Fourier spectrum (as we
have seen for polycrystalline materials, this is only partially
valid). Using formulas (5.17) in the case 4,34, and
expression (3.5) for 4,5 we have

0(T—0)oc —— (T—0) oc— |
ab Mab
wheren, « |, |*is the carrier concentration in the supercon-
ductor. Thus, we have the simple relation

(5.22)

IZ

Te o -+, (5.23)
M

which relates the critical temperature to the effective mass
and the carrier concentration in the high- T, superconduc-
tor. The general relation (5.23) has been corroborated in the
experiments described in Refs. 60-62, while some discrepan-
cies have been noted in Ref. 63. The curve o(7T) in yttrium
ceramic superconductors with various stoichiometric com-
positions have also been studied in Ref. 64.

Because it is difficult to prepare large single-crystal
samples of high-7, superconductors many investigators
have used textured polycrystalline samples of superconduc-
tors®®®*% and packets (mosaics) of single crystals®’ to
study the anisotropic properties of the superconducting
state. In particular, a detailed study has been made®’ of the
dependence of o on the orientation of the sample (a mosaic
of crystals) of YBa, Cu, O, and the temperature dependence
of A./A,, has been investigated®® for a textured polycrystal-
line sample of this material. Barsov ef al.%® have estimated
A4 and 4, in Bi, Sr, CaCuOQ,. Interesting investigations of
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the mixed state in untextured high-7, ceramics based on Gd
and Bi have been carried out in Refs. 68 and 69.

6.LOCAL MAGNETIC FIELDS ANDMAGNETIC ORDERING IN
HIGH-T, SUPERCONDUCTING COMPOUNDS

In a recent review® the magnetic properties of high-T.
compounds were analyzed, but the results of # SR studies
were hardly mentioned. Since i SR experiments provide in-
formation that is inaccessible by neutron diffraction and
NMR methods, it therefore appears timely to publish a re-
view of investigations of the magnetic properties of high-T,
superconducting compounds by the u SR method.

Before going on to the review, let us consider some fea-
tures of the behavior of the muon spin polarization in anti-
ferromagnets. Of course, the time dependence P(¢) of the
polarization is considerably different in single-crystal and
polycrystalline materials. The most complete and clear-cut
information is provided by experiments with single crystals.
As can be seen from formulas (I1.4)—(1.5) if the muon occu-
pies equivalent sites in the magnetic lattice, it is possible to
determine the local field h(r) at the muon.!’ By carrying out
experiments in external magnetic fields that differ in magni-
tude and direction one can also identify the location of the
muon in the lattice.

Neutron diffraction experiments show that in high- T,
superconducting compounds there is collinear antiferro-
magnetism (see, e.g., Ref. 8). By studying single crystals by
the muon method one can uniquely determine the magnetic
structure independently and find the value of the internal
magnetic field at the location of the muon.

The behavior of the muon spin polarization obviously
depends to a large extent on whether or not the muon dif-
fuses in the lattice. The experiments show that in high-T,
superconductors the muon begins to diffuse at a very high
temperature (7> 100 K). Similar results were obtained in
experiments with magnetic oxides ( Fe, O;, Cr,0;, etc.) and
rare-earth orthoferrites (ReFeO,, where Re is a rare-earth
element; see, e.g., Refs. 70-72). The orthorhombic lattice of
these compounds is similar to that of the high- T, supercon-
ductors. The following interpretation was advanced for the
behavior of the muon in these compounds. The muon forms
a complex M>* —0? - * (Fig. 16), where M’ * is the tri-
valent metal ion.”® The length of the muon-oxygen bond
(0? —u ") is =1 A. In the formation of such a complex a
part of the spin density of the electrons in the complex are
transferred to the muon, producing in the latter an addi-
tional contact field (see, e.g., Refs. 70, 73):

B, = ¢ > [(A5 — A%) cos? 8, + AX] n,, (6.1)

where A2 and 4 2 are the spin densities of the o and 7 orbi-
tals of the oxygen and n, is the unit vector along the direc-
tion of the magnetic moment of the metal ion. The summa-
tion is taken over all the M*> * -0 ~—u * complexes formed
by the muon.

When the temperature is changed the muon that is
bound in the M**-0?~—u * complex can change its posi-
tion.” Accordingly, the local field at the muon changes be-
cause of the change in the dipole field and in the contact field
(6.1).

The precession frequency of the polarization is com-
pletely determined by the modulus of the local field at the
muon (1.4)-(1.5). If the muon can occupy interstitial sites
with different local fields, a multifrequency pattern is seen.

Let us now consider the behavior of the polarization in
magnetic polycrystalline materials, where the muon occu-
pies interstitial sites having identical moduli of the internal
local field. We assume that the muon does not diffuse. In
formula (I.5) one must then average over equal-probability
orientations of the time-independent internal field h, (r) at
the muon.? In the absence of an external field the averaging
is trivial, and we have

Hap = H -}—%cos(mt)] Bep. (6.2)

Thus, 2/3 of the polarization precesses with the fre-
quency w = y, h,. Strictly speaking, the internal field at the
muon cannot be regarded as static because of the contribu-
tion of the fluctuating magnetic field 4, created by the nu-
clear magnetic moment. Since 4, =1 G, we should see a slow
relaxation of the polarization with a rate A=~10°s~".

In an external field H,,, the picture changes qualitative-
ly.>> We shall examine two simple limiting cases: weak
(B<hy) and strong (B> A, ) external fields. We take the z
axis parallel to B. In both cases the precession frequency can
be written as

® =y, |hy 4 B|
=yu (B -+ BY)"*[1 4 b B cos 8 (k2 + B?'] = © +Qcos®,
(6.3)

where &=y, (hi+B*"?, and Q=y, h,B(h?
+ B?)~ "2 It can readily be seen that Q <&. Accordingly,
the unit vectors are

n— hy, + B
‘ (B2 + B? -+ 2hyB cos )12
o, foCOSOL'B . hoB .
Ty ( 1 K+ B cos_G) ’ (6.4a)
hox
fly =
(g ++ B2 ~.2hoB cos 6)'/
_ hysin8 - cos @ ___hB
~-————(h§+32)‘/2 (1 h§+32cos G) . (6.4b)

For an analysis of the muon experiments it is sufficient

to consider two cases: a longitudinal (B||P(0)) and a trans-
verse (BLP(0)) field. In the longitudinal field only one of
the components of the tensor (I1.5) is nonzero:

FIG. 16. Diagram of the complex M* " Q% "—u *
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o + (r2/3) 207 cos () [cos Q) — sin (Q¢) ]
h?, +8 Rs @ o
2h3B sin () 3 cos (m)
_—— ~ sin (Qf) 4- 3 ===
(k24 B2 (Q)° {[ (Qt)’] A8 + }
(6.5)
Correspondingly, P,(t) =p,,()P(0), and P (2)
=P, (1)=0.

As we can see, the oscillating component of the longitu-
dinal polarization relaxes with a characteristic rate £). In a
weak field we have 1 =, B, and for B < 10 G and an obser-
vation time 7 < 1 us, formula (6.5) can be written approxi-
mately as

2z R -;— + —:,23- ( L ) cos () ~ — + Z cos (at) - e,

(6.6)

In a strong field the polarization P, (¢) is quickly re-
stored with a rate®’ Q=7, 4,

1ot % cos (0f) __sin(Q) 6.7
oz = 1 2(3) o [cos(Qt) o } (6.7)

Let us examine now the case of transverse polarization.
We take the x axis to be parallel to P(0). In this case the only
nonzero component for an untextured polycrystalline sam-
ple is

1 hy cos (o)
T3 H 4 B Qt
hy 1 sin (QY)
Qr I3
{sm( )+ T [cos Q) — ry :”
2mB  sin (0f) 3 . cos ()
Thip @) i e }sm @ +3 =70}
(6.8)
Correspondingly, P, (#) =, ()P(0) and P, (2)
=P, (1)=0

In a weak field for “short” observation times we have

Q2

Hxx N% + -z— ( 5 ) cos (0)1-‘) ~— —l— = cos (mt) iy,

(6.9)

In a strong field the transverse polarization relaxes quickly
practically to zero:

Par 2 ( B) + = cos (@) cos (©).

(6.10)

As can be seen from (6.10) the depolarization time is
determined by the “spread” 6h in the moduli of the local
fields (h + B| at the muon. In the present case the character-
istic values are Sh= h,.

Atlow temperatures high-T, ceramic superconductors
transform into a magnetically ordered state. However, the
magnetic properties of the ceramics ReBa,Cu,0, and
La,CuO, _, ((LaSr),Cu0,) are different. We shall consid-
er then separately. We note that practically all z SR experi-
ments have been performed with polycrystalline samples.

Antiferromagnetic ordering was first seen clearly in the
non-superconducting tetragonal phase of the ceramic
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FIG. 17. Oscillations of the polarization ofa muon in the tetragonal phase
of YBa,Cu,0, (Ref. 75).

YBa,Cu, 0, (x =6.2)." For T <300 K oscillations were
observed in the polarization, with a frequency depending on
the temperature and equal to v, =4 MHz at 7= 5K (Fig.
17). Oscillations in the polarization were observed for 70%
of the muons that stopped in the target. The polarization of
30% of the muons was “lost.”” Subsequently, the experi-
ments were carried out more thoroughly.” It was found that
no magnetic ordering was observed in the superconducting
orthorhombic phase for 7> 2 K, butin a YBa, Cu; O, 4 sam-
ple (7, =60 K) the depolarization rate increased as the tem-
perature was lowered, which is an indication of an increased
magnetic correlation. Those investigators” proposed that a
spin-glass type of magnetic structure appears.

In the tetragonal form of YBa, Cu;0,, the oscillation
frequency decreased with increasing temperature. For
T>250 K the oscillations were not observed (Fig. 18). The
frequency observed at T'= 2.4 K corresponds to a field at the
muon of 2, =240 G. As can be seen, for T'< 40K the preces-
sion frequency increases slowly as the temperature is
lowered. This effect can be explained by an ordering that
occurs® at T'= T, in the magnetic moments of the d elec-
trons of copper in the Cu-O chains.® The results are in good
agreement with the results of neutron diffraction investiga-
tions of the magnetic structure of NdBa, Cu; O, (Ref. 76),
where for x = 6.2, Ty, = 40 K. The value of Ty, falls off as
the temperature is increased.

Experiments carried out at 7 < Ty in a weak field per-
pendicular to the initial muon polarization showed that for
some of the muons the precession frequency corresponds to

8,,kG -
TETRA-I
03
a2t
ark
” A 1 1 1 1 1
700 200 L, 300

FIG. 18. Temperature dependence of the field at the muon in the tetra-
gonal phase of YBa,Cu, O, (Ref. 75).
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the external field.”” For T« Ty the disordered phase thus
exists in the sample. The total polarization of the ensemble of
muons can be written as

P(t)=P.(!) +Ps (1), (6.11)

where P, and P, are the fractions corresponding to the
muons that have stopped in the ordered (antiferromagnetic)
and in the disordered phases. Furthermore, part of the polar-
ization is not observed (is lost). For T=~200 K, P, com-
prises about 10%, and for 7<10 K, P, =0, P, comprises
=~ 70%, and therefore =~ 30% of the polarization is lost (Fig.
19). As the temperature is raised, P, decreases and P, cor-
respondingly, increases. At T'= 300 K, 100% of the muons
are found in the paramagnetic state of the sample.

To explain the nature of the lost polarization, an experi-
ment was performed’” to recover the polarization in longitu-
dinal fields. It was found that in a field H,,, =2 kG the polar-
ization was completely restored and 100% of the
polarization of the muons was observed. From this result the
investigators concluded that polarization is lost because of a
spread Ah=200 G in the local fields at the muon. Since
Ah= B, and the temperature dependence of the lost fraction
is the same as for P, , Nishida er a/.”’ suggested that the lost
polarization is related to muons that are located in the mag-
netically ordered phase, but in different states such as on
some kind of defect (impurities, vacancies, and the like).
Quite recently a paper has appeared in which it was reported
that in a YBa, Cu; O, sample two frequencies of oscillation
of the muon polarization were observed.”” Here, 80% of the
muons were located in a field 4,, =300 G and 20% in a field
h, =1300 G. This result probably is an indication of the
presence of two crystallographically nonequivalent states
for the muon. It is possible that the state with A, = 1300 G is
associated with missing oxygen in the Cu-O chain. The fall-
off in the depolarization rate for 7> 200 K indicates diffu-
sion. A study of the polarization in zero field for T'> Ty also
indicates diffusion at high temperatures. For T <200 K we
can assume that the muon does not diffuse. This conclusion
is in agreement with z SR investigations of rare-earth ortho-
ferrites ReFeQ,.”"">

The transition into the antiferromagnetic state of the
orthorhombic ceramic YBa, Cu, O, has been studied”®*® as
a function of the oxygen content, 6.0 < x<6.5. No sharp
transition into a magnetically ordered state was observed in
the samples. The transition occurred over a range of several
tens of degrees, and consequently one can speak only of some

Fractions

FIG. 19. Temperature dependences of the fractions P, (l)and P, (2).
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FIG. 20. Dependence of (T ) on the oxygen content in the orthorhombic
phase of YBa, Cu, 0, (Ref. 78).

average transition temperature (7 ). As shown in Fig. 20,
the value of (T ) was found to have a strong dependence on
the oxygen content. As was the case in Refs. 74 and 75, the
polarization precessed at the frequency v, ~4 MHz, which
corresponds to a field at the muon of 4, =~ 300 G. The local
field at the muon remains unchanged for x < 6.25. For the
case of slowly annealed samples and samples with x = 6.348
and x = 6.400, a sharp superconducting transition was ob-
served, at 7, = 25 K and 33 K, respectively. For these same
samples, while in the superconducting state, a transition into
the antiferromagnetic state was observed, with (7Ty) =10K
and 5 K, respectively. At the same time, a frequency shift
was observed.

Precession of the polarization has been observed®' in
zero field for a YBa, Cu, O, sample (T, = 90K) for T« 250
K at a frequency v, =4 MHz and a small amplitude (about
10% of the total amplitude ). However, the sample was not a
single phase, and the precessing signal was most likely due to
muons that had stopped in the non-superconducting tetra-
gonal phase.

Schneider ez al.®* have observed a nonmonotonic tem-
perature dependence of the Knight shift at the muon and of
the rate of depolarization at low temperatures for
YBa, Cu, 0, samples (7. = 92 K). When the temperature
was lowered a nonprecessing component appeared ( = 18%
at T=9 K), whereas, at 7= 85 K all the muons precessed. A
similar picture was observed in Ref. 80 for samples with
6.38<x<6.48, where, as the investigators point out, the su-
perconducting and the magnetically ordered states coexist:
at 7= 70K the Knight shift has a minimum, and for T<10K
the component rapidly decays. It is possible that this behav-
ior of the polarization is related to the establishment of a
spin-glass type of magnetic ordering. These results agree
with the results of Ref. 75, where in a superconducting sam-
pleat T<7K (T, = 60 K, x = 6.4), rapid relaxation of the
component was observed (=300 ns). However, Weidinger
et al.,*> have stated that in a superconducting sample of
YBa, Cu,0, (T=90K) no rapid relaxation of the muon
spin was found down to T = 35 mK, and therefore, the spin-
glass type of magnetic ordering was not observed.

Investigations of superconducting samples of
YBa, (Cu, _,Fe,); 0, worthy of notice are those reported
in Refs. 84--86, where a nonmonotonic temperature depend-
ence of the depolarization rate for T« T, was observed. In
samples with y = 0.08 at T= 15 K a minimum was observed
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FIG. 21. Temperature dependence of the precession frequencies in a su-
perconducting sample of GdBa, Cu, O, (Ref. 87).

in the depolarization rate, indicative of the freezing-in of the
magnetic moments of the Cu. Mdssbauer spectra of *’Fe
were also measured by Saitovich ez a/.,%° who showed that
the Fe ions are located in three different sites in the lattice.
The authors®® believe that the results indicate the existence
of antiferromagnetic ordering, but this has not been borne
out by data from g SR experiments performed in the same
work.%

It is well known that when yttrium is replaced by the
rare-earth ions Gd, Dy, Ho, or Er, the superconducting
properties of the ceramic are unchanged, but in these sys-
tems, unlike YBa, Cu, O, , antiferromagnetic ordering is dis-
tinctly seen in the magnetic moments of the rare-earth metal
ions in the orthorhombic (superconducting) phase at the
temperature T, (Table II; Ref. 8). Also of note is the com-
plete absence of any regular relation between Ty; and the
value of the magnetic moments of the Re ions.

Precession at a frequency ~4.6 MHz has been ob-
served®¥7-%0 in the polarization of the muon spin in samples
of GdBa, Cu, O, (the field at the muon is 340 G), while Ref.
87 reports the observation of two frequencies at T<2.3 K
(Fig. 21). The higher frequency ( =7 MHz) corresponds to
a field at the muon of 4, =520 G. The frequencies do not
depend on T, and the ratio of the amplitudes does not
change. For the sample with 7, = 60 K the ratio of the am-
plitudesis 4, , /A4, =~ 2.5, and for the sample with 7, = 90K,
theratiois A, /4, = 5. It is possible that the higher frequen-
cy is due to the presence of the tetragonal phase.”’ However,

for a sample with T, = 90 K, Golnik ez a/.,®' have observed

precession only at a single frequency =4 MHz for T < 300,

with an amplitude corresponding to 50% of the muons stop--
ping within the target (Fig. 22). This result is similar to that

obtained in the same investigation for the behavior of the
muon polarization in a polyphase sample of YBa,Cu, O,

(T =90 K). As Fig. 22 shows, for T < 20 K the precession
frequency falls off simultaneously with a rapid increase in

the relaxation rate. The temperature dependence of the re-
laxation rate of the precessing component is similar to that of
A(T) observed in Ref. 87, for nonprecessing polarization for
T> Ty (Fig.23). We note that in this investigation a consid-
erable fraction of the polarization was not observed (the ini-
tial asymmetry coefficient was about 0.15, which corre-
sponds to less than two thirds of the total polarization).

A single precession frequency, corresponding to the
lower frequency reported in Ref. 87 was also observed® at
T=2K inasample of CdBa, Cu; O, (7, =90K). The am-
plitude of the precessing signal was, however, not provided.

The superconducting sample ErBa,Cu,O, has been
studied at T>4.2 K in the work reported in Ref. 91. Magnet-
ic ordering was not seen, and the depolarization rate re-
mained unchanged (A=0.2 us~"') for 46 K < T <270 K.
As is shown in Table II, Ty; = 0.5 K for systems with Er.
The experiment of Ref. 91 showed that for T=4 K the fluc-
tuations of the magnetic moments of the f:shells of the Er
ions are small.

In non-superconducting samples of ErBa,Cu,0, for
x = 6.11, 6.34, and 6.40 the values obtained for T, are 300
K, 250K, and 20K, respectively.’?> For T < 10 K the preces-
sion frequency v, increases and becomes higher than in
YBa, Cu,0, (i, Ty; $10 K). Maletta ez al.*? found the
value Ty; =0.5 K, which agrees with the results of neutron
diffraction experiments (see Table II).

In the orthorhombic phase of HoBa, Cu; 0, magnetic
ordering was not seen for 7> 3 K.”**"%3% [n the first ex-
periments®>"9** an abrupt increase was observed in the
fluctuations for T'< 5 K, and, short-range order was estab-
lished at =2 K. No precession frequency in zero field was
observed.” On the other hand, precession was observed®® in
the polarization of the muon spin in zero external field at a
temperature 7 < 300 mK. Detailed experiments were car-
ried out in the temperature range 39 mK < 7' < 50 K in the
work reported in Ref. 96. It was found that the polarization
could be well described by the formula
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FIG. 23. Temperature dependence of the depolarization rate in supercon-
ducting GdBa, Cu,0, (7. = 60K) for T> Ty (B =0) (Ref. 87).

P(ty= An M A e cos {eud), (6.12)

where 4 + 4, = 1. Thus, 100% of the polarization was
measured. The temperature dependences of the asymmetry
coefficients 4, and 4, are shown in Fig. 24.

The oscillating component is weak at 7=2.4 K and
completely unobservable at 7=5 K. However, even at
T = 39 K the pronounced oscillations are rapidly damped.
This means that the fluctuations in the magnetic field are of
the same order of magnitude as the average value of the field.
Figure 25 shows the temperature dependence of the oscillat-
ing frequency. For T<75 mK, the frequency is v, =2.5
MHz (which corresponds to a field 4, =185 G at the
muon), and the frequency falls off rapidly in the range 75
mK « T« 150 mK to 1.5 MHz (the field at the muon is
h, =111 G). As the temperature is raised further (T20.6
K) the frequency decreases again, and goes to zeroat T = 5-
6 K. Figure 24 shows the value of 4, #0up to T'= 50K, but
a Gaussian form of relaxation after w, goes to zero gives a
poor description of the observed picture. In the temperature
range where w, #0 the second moment o is independent of
the temperature and corresponds to fluctuations of the field
of (Ah3)*?~82 G along the average direction. The vari-
ation of the frequency is accounted for by the reorientation
of the magnetic moments of Ho from along the ¢ axis for
T < 100 mK to parallel to the g axis for 7> 100 mK.*®

The exponential relaxation varies nonmonotonically:
for T=4.5 K there is a sharp peak in the relaxation rate of 4,
which is in agreement with the results of Refs. 90 and 94. For
T> 5 K the temperature dependence A(t) is well described
by an Arrhenius plot, with an activation energy U~ 15 K.*°
A series of experiments have been recently reported for
Pr,Y,_,Ba,Cu,0,.””*® For samples with x =7.0 and
y = 1.0, 0.8, 0.6, and 0.54, the Neél temperatures obtained
were Ty = 275, 220, 35, and 20 K, respectively.®® The local
field at the muon depends on the temperature: fory = 1.0t
decreases for T < 17 K. It was concluded by Cooke et al.”®
that this result is due to the ordering of the magnetic mo-
ments of Cu in the chain ( 7Ty, =~ 17 K). Ordering of the mag-
netic moments of the Pr has been observed®” at T <5 K (see
Table 1I). For y~0.5 magnetic ordering and superconduc-
tivity coexist.”® Two frequencies have been observed’” in
PrBa,Cu;0: v, =~3.1 MHz (h,=230 G, 10% of the
muons) and v, =~ 1.0 MHz (h# =75 G, 90% of the muons).
For T < 150 K the relaxation rate increased, and for T < 100
K it was not possible to obtain any information.
Experiments that have been carried out with
YBa,Cu,; 0, H, are interesting.”” For x = 7.0 oscillations
were observed for y> 0.5. It should be noted that in super-
conducting samples the depolarization rate goesas A~y ~ .
Thus, all ceramic superconductors exhibit magnetic or-
dering corresponding to Ty € T,. In the transition into the
antiferromagnetic state the relaxation rate for T'> T, does
not have the critical character that is characteristic of second
order phase transitions in ordinary materials. The low oscil-
lation frequencies in the antiferromagnetic phase imply that
the muons in the lattice are relatively distant from the rare
earth ions. As has been noted previously, the muons do not
diffuse in orthoferrites (having the orthorhombic structure)
at T < 100 K, and do form muon-oxygen bonds with the oxy-
gen. One might anticipate a similar behavior of the muon in
superconducting ceramics of the type ReBa,Cu,0,. A de-
tailed analysis of the dipole fields at the muon has been
made®® for various states of the undistorted lattice. Birrer et
al.®® have concluded that the measured values of the local
field at the muon are also in good agreement with the calcu-
lated values for a2 muon that is located at a distance ~1 A
from the oxygen in the Cu-O chain (coordinates 0.171a,
0.5b, 0.065¢), i.e., a muon—oxygen bond is formed. In non-
superconducting samples some of the oxygen is missing from
the Cu-O chains; therefore it is favorable for the muon to

TABLE II. Magnetic ordering temperature T ; and atomic magnetic moments of the rare-earth

sublattice of ReBa,Cu,0, (Ref. 8).

Re Y Nd Er Dy Gd ‘ Pr
Tyg K 0.35 0.5 0.5 1.0 2.2 17
W, Units of 4.9 7.2 7.4 0.24
by
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FIG. 24. Temperature dependences of the parameters A, and 4, in super-
conducting HoBa, Cu, O, (Ref. 95).

occupy another site in the lattice.®’ In particular, for the
tetragonal phase of ReBa, Cu, O, there are no oxygen ions in
the plane z = 0, and the muon can occupy the site between
two oxygen ions (0.0a, 0.5b, 0.159¢). A calculation of the
dipole field at the muon in this site for the case of a non-
distorted lattice®® is in good agreement with the experimen-
tal measurements of the field in the tetragonal phase of
YBa, Cu,O,.

Alsointeresting is the investigation of antiferromagnet-
ic ordering in the components used in preparing supercon-
ducting ceramics: BaCuQ,, BaY, CuQ., and CuQ.'°"1%2 Ip
BaCuO, crystals a single precession frequency is observed
for T< Ty = 11 K., which follows from the Brillouin func-
tion for angular momentum J = 0.5, while in the low tem-
perature limit somewhat below 14 MHz (B=1kG).

For a sample of BaY, CuQ, five precession frequencies
have been observed for temperatures T< Ty = 15.3 K. The
lowest frequency was about 3 MHz, and the highest was
about 9 MHz. These frequencies correspond to five different
positions of the muon in the lattice, which do not change in
this temperature range.

The highest ordering temperature, T, = 226 K, was
found for CuO. At temperatures T < 60 K four frequencies
were readily identified (Fig. 26), and of them, two frequen-
cies, 10 and 12 MHz have equal amplitudes (=~3%), and
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FIG. 25. Temperature dependence of the oscillation frequency of the po-
larization in HoBa, Cu, O, (Ref. 95).
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their temperature dependences are governed by the Bril-
louin curve, while the other two frequencies (11 MHz and 18
MHz) also have equal amplitudes (=6%), but the lower
frequency is observed for T < 60 K, and the higher is ob-
served at T < 90 K. For T> 100 K a third frequency appears
in place of these two, at 35 MHz with an intensity that in-
creases with temperature, and for 7= 220 K it corresponds
to 30% of the muons that have come to rest in the target. The
authors of Ref. 101 suggest that the appearance of the new
frequency at 35 MHz is due to the localization of the muons
near the Cu®™ ion, which is in a triplet state.

Experiments with lanthanum ceramics have been fo-
cused mainly on comparing the nature of the antiferromag-
netism in La, CuO,_, with that of La, _,Sr,CuO,. A defi-
ciency of divalent oxygen (O*~) and the replacement of
trivalent lanthanum (La** ) by divalent strontium (Sr**)
creates holes that suppress the antiferromagnetic ordering.
The magnetic properties of La, CuO, _, are very sensitive to
a change in the oxygen content in a narrow range
0<y<0.03: T\ =290 K for p = 0.03 and T =0 for y =0.
Results of experiments in zero field with polycrystalline sin-
gle-phase samples with various concentrations of oxy gen'®
are shown in Fig. 27. It can be seen that T varies from 15 K
to 300 K, and the precession frequency as T—0 depends only
weakly on p. For example, for Ty =295 K, v, =5.8 MHz
(h“ =429 G) and for Ty =10 K, v, =5.1 MHz (h“ ~377
G).'"™ As Ty is approached the relaxation rate of the pre-
cessing component increases sharply.'®® Unfortunately, we
know of no z SR experiments with samples having a large
oxygen deficit, in particular values of y where the transition
to the superconducting state is observed.”

vp,MHz
5-8 LRI

- o . .

? $e ? M *

| o ) o .
4 7 207 ) °o°"”..

0.62 s,
2+ g ~a03
0 1 1 L
104 200 300 Tk

FIG. 27. Temperature dependence of the precession frequency of the
polarization in non-superconducting La,CuO, ., ceramics for various
values of y (Ref. 103).
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FIG. 28. Temperature dependence of the amplitude of the precessing
component in a weak external field B=100 G in a single crystal of
La,CuO, , (Ref. 103).

In all the investigations, precession has been observed
for 50-60% of the muons that have stopped in the target. It
has been shown'® in experiments in a transverse field
B =500 G that 30 to 40% of the muons are found in posi-
tions where the local field is 4, <10 G. Uemura et al., %4
were not able to determine whether this fraction is associat-
ed with muons located in macroscopic disordered regions or
with muons located in interstitial sites, where the local field
is zero. Experiments'® with a single crystal of La, CuO, ,
in a transverse field B = 100 G show that magnetic ordering
occurs gradually, and at low temperatures the paramagnetic
fraction is completely absent (Fig. 28). The possible pres-
ence of a paramagnetic fraction has been related to the poly-
crystalline nature of the samples.'®*!%

In samples of La, ,Sr, CuO, the temperature of mag-
netic ordering depends strongly on the Sr content®*07-1%8
(as is well known, the superconducting transition occurs for
x30.07)'” For T« Ty a rapidly attenuating fraction was
observed in addition to the oscillating component.'*®* For
x < 0.05 the oscillation frequency at low temperatures corre-
sponds to that observed in La,CuO,_, samples (y =0-
0.03), but even for x =0.05, v, =41 MHz (4, =303
MHz) (Fig. 29).'®® The rate of depolarization of the oscil-
lating component increases sharply as Ty is approached. In
the paramagnetic region as the temperature approaches Ty
there is an increase in the depolarization rate, associated
with dynamic fluctuations in the magnetization (Fig.
30)‘108

In the first experiments with x>>0.1, magnetic ordering
was not observed. However, measurements of the specific
heat in a superconducting sample of La, 4 Sry,5CuQ, _,

Lay_,Sr, Cul,

01 ! i\ : 1. 1
20 72 K

FIG. 29. Temperature dependence of the oscillation frequency of the po-
larization in non-superconducting samples of La, _, Sr, CuQ, for various
values of x (Ref. 106).
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T=Ty (Ref. 106).

have shown that for ¢ < 0.3 K magnetic ordering occurs.'”
Magnetic ordering of the '**La nuclei has been detected by
nuclear quadrupole resonance in superconducting samples
of La, ,Ba, CuO,."'° It was shown that superconductivity
and magnetic ordering are competing mechanisms. For
x = 0.05 the superconducting transition temperature is
T, =6Kand Ty, =2K,butalready atx =0.08, T, = 28K
and Ty < 1.3 K. We are not aware of any i SR experiments
with samples of La, ,Ba,CuQO,, but a recent paper® has
reported magnetic ordering of La, ,Sr,CuO, for
x<0.07."" For samples with x = 0.07 (T, = 14 K) a rapid
relaxation has been observed at T = 35 mK for oscillations
with a frequency v=1.5MHz (4, =111kG),butat T'=2.2
K, only a rapid depolarization was observed. Bezhitadze e?
al.,’! have inferred the establishment of a spin-glass type of
magnetic structure with field cooling for a superconducting
sample with x = 0.07 at T, = 10 K from the increase in the
depolarization rate and the decrease in the asymmetry coef-
ficient for the precessing component. In samples with
x=0.10 (T, =26 K) and x = 0.15 (T, = 32 K) the oscil-
lations were not observed even at 7= 35 mK, but depolar-
ization was observed: the asymmetry first decreased by a
factor of e in 2.3 and 1 us, respectively. The depolarization
rate for T <« 1 K was essentially independent of the tempera-
ture and fell abruptly for 7> 2 K.**

These results are supported by more recent experiments
with single crystals of La, 45 Sry,, CuO, (Ref. 111), which
go over into the superconducting state at T, = 35 K. The
SR signal varies rapidly for T'< 20 K, and for 7% 8 K corre-
sponds to the onset of magnetic ordering. Torikai ef a/.,'!!
suggest that the magnetic structure corresponds to a spin
glass.

To conclude we shall discuss briefly investigations of
samples related to the high-7. superconductors
Bi, Sr, CaCu, O, and Bi,Sr,CaCu,O, . Partial replacement
of Sr or Ca by yttrium while the stoichiometry is maintained
removes the superconductivity, but brings about magnetic
ordering.!'113

The transition into the magnetically ordered state was
observed!''? for a polycrystalline sample of Bi, Sr, YCu, O, 5
at T'==295 K. In addition to the signal oscillating at the fre-
quency v=~0.4 MHz (A= 30 G), a component was observed
that did not oscillate. The depolarization of the oscillating
component was governed by inhomogeneous broadening. In

Belousov et al. 935



a transverse field B = 220 G two nearly equal frequencies of
about the same intensity but with different widths were ob-
served for 7> 200 K. For 7'<200 K the amplitude of the
narrower line was reduced by a factor of 1/3, presumably
because of the diffusion of the muon. Yang et al.,'"? also
studied polycrystalline samples of Bi, Sr, YCu, O,, but, un-
like the work reported in Ref. 112, four frequencies were
observed at T = 3.7 K, of which three frequencies, 0.49,
3.67, and 4.47 MHz were dominant, and the frequency of 12
MHz rapidly relaxed (4 ~ 107 s '), In addition to the oscil-
lating components, a paramagnetic fraction was also ob-
served. As in the previous investigations, the transition into
the magnetically ordered state is not sharp, so that one can
speak only of an average temperature (7T ) =210 K. As we
see, for the sample of Ref. 113, this is Jower than for the
sample of Ref. 112. The frequency 0.49 MHz (Ref. 113) can
be identified with the 0.4 MHz of Ref. 112, since the lattice
constant for the sample of Ref. 112 was larger.

In the polycrystalline sample of Bi, Sr, YCaCu, O, os-
cillations in the polarization were not observed, but at 7~ 15
K a spin-glass state was established.'"’

Muon spin rotation experiments thus show that all
high-T. superconductors are characterized by a magnetical-
ly ordered state, as a rule, for 7€ T.. However, the experi-
ments with ceramics do not always have an unambiguous
interpretation. For a good interpretation the & SR experi-
ments require work with single crystals. In this connection
we note that in a so-far unique experiment with a single crys-
tal of La, CuO, _,, 100% polarization was observed'®’ and
there was no ““lost” fraction. We also note that by the tech-
nology of the preparation of high- 7, superconductors based
on Bi and Ta one can prepare large single crystals that are
suitable for studies by the muon spin rotation method. Inves-
tigations of magnetic ordering in these structures would be
highly desirable.

D Crystallographically equivalent voids may be nonequivalent in a mag-
netic sense. For example, in a single crystal of Fe magnetized along the
[111] direction the internal magnetic field in the octahedra (the centers
of the faces of the unit cells) takes on two different values (see, e.g., Ref.
3).

The sample is assumed to be untextured.

YFor non-superconducting samples we neglect the paramagnetic and
diamagnetic susceptibilities y~ 10~ °-10 ~°. Consequently B= H._,, .

“'We have discarded the terms of higher order in 4,/B.

*InReBa, Cu, O, compounds the three antiferromagnetic ordering tem-
peratures are different:® T, refers to the ordering of the magnetic mo-
ments in the Cu-O plane, Ty, to the Cu-O chains, and Ty, is defined by
the ordering of the magnetic moments of the rare-earth elements.

©1n Ref. 89 two frequencies were also observed for the tetragonal phase of
Y-Ba-Cu-O for T« 240 K: one known previously and one somewhat
higher (=4.3 MHz). The sum of the amplitudes of the polarizations
precessing at the two frequencies corresponded to 40% of the muons
that have stopped in the target.

7In the tetragonal phase in HoBa,Cu,O, at T< 260 K precession at a
frequency of =4 MHz was observed. With a decrease in the tempera-
ture, for T < 5 K a rapid increase in the rate of depolarization was ob-
served, indicating the freezing-in of the magnetic moments of Ho.%**

®)The observation of several closely spaced precession frequencies, corre-
sponding to different values of the Knight shift at the muon, in the
superconducting ceramics HoBa, Cu, O, and ErBa, Cu, O, in the tem-
perature range 50 < T < 300 K shows that the muon can be localized in
different sites.'™
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?) As is known, the superconducting transition in LaO (LaCuO, ) systems
occurs at T=30-40 K (see e.g., Ref. 106).

*"Ordinarily, the oxygen content is not monitored, and therefore we must
refer to the samples as La, ,SrCu0O, _,.

''Single-phase samples were studied.
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