
Modified criterion for the Landau stabilization of the instability of a tangential
velocity discontinuity in a compressible medium

A. M. Fridman

Astronomical Council of the USSR Academy of Sciences
Usp. Fiz. Nauk 160,179-183 (October 1990)

1. OBJECTIVE AND PLAN OF NOTE11

The objective of this note is to show how significant the
Landau stabilization criterion is in real systems with gradi-
ent flows.3 We would also like to indicate the reason why the
result of Ref. 3 was removed from Ref. 5 (1954) (although it
is contained in the 1953 version) and from Ref. 2 after the
critical article of Syrovatskii.4 Reference 3 is also absent in
Ref. 1, and the reason indicated is the critical article of Ref.4.

This note consists of three short parts. In the first part
(section 2) an account is given, on a qualitative level, of the
physics of the instability of a tangential discontinuity in the
velocity of a subsonic flow and its stabilization in a super-
sonic flow. In the second part (section 3), the critical com-
ment of Syrovatskii4 (directed at Ref. 3) is formulated. Syr-
ovatskii's note is correct for an infinitely extended medium.
In the third and last part (section 4) it is shown that in real
spatially limited supersonic flows with a tangential velocity
discontinuity there is a stabilizing effect which is quantita-
tively described by a modified Landau criterion. Stabiliza-
tion of the instability of tangential discontinuity of quasi-
two-dimensional flows (for example, in shallow water6'7 and
the gas disks of galaxies8) occurs in full accordance with the
Landau criterion.3

2. ON THE PHYSICS OF THE INSTABILITY OF A TANGENTIAL
VELOCITY DISCONTINUITY IN A SUBSONIC FLOW AND ITS
STABILIZATION IN A SUPERSONIC FLOW

For the adiabatic perturbations examined in Refs. 3 and
4 S = const, and the connection between the thermal func-
tion W, the pressure P, and density/? is determined from the
expression W = SdP /p. For P = Apr, where A and 7 are con-
stants (^is an adiabat index, y = cp/cy; cp, cv are the specif-
ic heats at constant pressure and volume, respectively) we
have

= — -
7-2 (1)

Thus, for any y> 1 (a > 0) the pressure P increases as
W increases.

Figures la and Ib show the perturbations of a tangen-
tial discontinuity of velocity v directed along the x axis in

two opposite limit cases, where the Mach number
Ma = i>/c<< 1 and Ma> 1, where c is the speed of sound. In
Ref. 3 it is shown that the amplitude of the perturbation on
both sides of the z axis from the plane z = 0 of the tangential
discontinuity falls off exponentially, ~e ~ z/z°. Thus it is suf-
ficient to restrict ourselves to the region z\ < z0.

Region I (above the "hump" of the perturbation) in
Fig. la may be seen as the region of the critical cross section
of the subsonic jet (Ma <1), where, it is known,9 the veloc-
ity of the flow is maximal. Then, from the Bernoulli equation
for isentropic flow,

£_ 4. BP«= const
2 (2)

it follows that the pressure above the hump will be minimal.
This leads to a further increase in the amplitude of the per-
turbation-instability.2'

RegionI (above the hump) in Fig. Ib may be seen as the
region of the narrowing channel of the supersonic diffuser
( M a > l ) , where the velocity v decreases;9 consequently,
pressure above the hump should increase. This leads to
"depression" of the hump back into II.

This is what comprises the stabilization effect on the
instability of the tangential velocity discontinuity in a super-
sonic flow, which was first discovered by Landau.3 How-
ever, on what then is Syrovatskii's comment based concern-
ing the absence of this stabilizing effect?

3. SYROVATSKII'S CRITIQUE* OF LANDAU'S WORK3

Let there be a flow along the x axis with a tangential
velocity discontinuity (Fig. 2): v0 = vx@( — z), where 0 is
a unit function. Selecting the perturbation in density p and
velocity v in the form

(t(x, z, t)~v(x, z, O-^exp (ikx—K\z\+^t), (3)

Landau showed3 the absence of instability for v0 > vcr. If the
unperturbed density p0 and speed of sound c0 are considered
to be unvaried on both sides of the discontinuity,
Po\ =Po2 — Po> coi = Co2 ~ co> then in this simplest case

a
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FIG. 2.

(4)

As can be seen from Eq. (3), the wave vector k was
chosen in Ref. 3 to be along the x axis, k — kx. Ten years
later, Syrovatskii,4 solving an analogous problem relative to
a general class of perturbations k = {kx ,ky } = {k cos 9,
k sin 0}, observed the presence of instability at any v0.

Assuming that /?01 =pm =p0, cw =c02 =cg, the
problem of the instability of a tangential velocity discontin-
uity in a compressible fluid relative to arbitrary perturba-
tions can be reduced to the following dispersion equation
(the temporal dependence is chosen to be ~exp ( —itat)):

(o> — to0)
a co2

Canceling out the common factor, which has only the
real root co — — kv/2, we come to the equation

= 1, (6)

where

/(*) = > „„• M. = i.t
c

which differs4 from Landau's equation3 by cos 9. Equation
(6) has four roots. They are all real if the function f ( x ) is
analogous to the solid line shown in Fig. 3. lff(x) is analo-
gous to the dashed line in Fig. 3, then Eq. (6) has only two
real roots. Consequently, the two others are complex conju-
gates one of which describes the instability. The majorant
curve is shown in Fig. 3 by the dot-dash line. This case also
has all real roots: x { , x'4> x'2 = x'3 = (1/2) Ma cos 9, two of
which are multiples. The critical Mach number Macr is
found from the equation/((1/2) Ma cos 9) = 1, which de-
fines the point where the majorant curve is tangential to the
line/(x) = 1. It is found to be equal to

Macr =

Using
cos6 •

the expression for cos c9= kx/\kL

= ( k 2
x + k 2

y ) 1/2, we obtain

(7)

where

(8)

In quasi-two-dimensional systems, for example, the gas
disks of galaxies and shallow water, only "longitudinal"
waves are possible, ky/kx 4,1, which were examined by Lan-

FIG. 3.

dau. In this case Macr (Eq. (8) ) is converted into the Lan-
dau3 Macr . The basic comment of Syrovatskii reduced to the
fact that arbitrary perturbations allow the examination of
the opposite limit case, "transverse" waves, ky/kx > 1. It is
obvious that, for example, for

stabilization is, in principle, impossible3' since, as follows
fromEq. (8), Macr^oo.

4. MODIFIED LANDAU STABILIZATION CRITERION

In an idealized statement of the problem, i.e. a tangen-
tial velocity discontinuity in a three-dimensional infinite
space, the condition in Eq. ( 9 ) can be satisfied. However, the
real situation introduces two significant corrections: 1 ) the
system has finite spatial extent in all three dimensions; 2) the
tangential velocity discontinuity is blurred by some amount
a.

A consequence of these conditions is the existence of
(^AJmax^CMmaxAMmin- Actually, (kx)mm~l/L,

where L is the size of the system in x; (ky )max ~ I/a which
follows from the necessary condition of the existence of in-
stability in a flow with an inhomogeneous velocity profile11

kya<\.
Thus, the instability of the "tangential discontinuity"

of velocity under real conditions is found to be suppressed
when

(10)

Usually in practice4' L Va2> 1, and in this case Macr

from Eq. (10) exceeds MacrL (Landau) by a factor of L /a:

Macr « — (11)

Let us now write the condition of "deflection" of the
perturbations

— >— , (12)
Tmax *

where y=Im a> is the increment of instability of the tangen-
tial velocity discontinuity. The sense of the criterion in Eq.
(12) is that in the time that a gas passes through any region
along a system of length L with a velocity v, the perturba-
tions in this region will not have time to increase; when the
condition in Eq. (12) is met, instability may be considered to
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be absent. According to Ref. 10, 7max ;=0.5(&x)max -c
, which when substituted into Eq. ( 12) yields

Ma>0,18Macr. (13)

Thus, satisfaction of the condition in Eq. (10) virtually
indicates the satisfaction of the condition in Eq. (13).

A flow with a velocity discontinuity characterized by a
Mach number Ma > Macr is stable if the size of the flow satis-
fies the condition

L<a [-!=--: for Ma2>8. (14)

Thus, the inequality in Eq. (10) defines the modified
Landau stabilization criterion of a tangential velocity dis-
continuity in a real three-dimensional system. The longitudi-
nal (along the flow velocity) size of the stable three-dimen-
sional system is determined from Eq. (14).

1' The content of this note was presented by its author at the end of 1983 at
a seminar of the USSR Academy of Sciences Astronomical Council
dedicated to the 75th birthday of L. D. Landau. E. M. Lifshits, who was
present at the seminar, offered to write an article on this theme to intro-
duce some small corrections in future editions of Refs. 1 and 2. The

subsequent illness and death of E. M. Lifshits made the timeliness of this
note problematic, and only a positive reaction of a recent seminar of V.
L. Ginzburg to the comments presented here showed that they might be
of interest to the readers of this journal.

1 It is clear that there is no need to explain why, in a weakly compressible
gas, Ma ̂  1, one should consider 7 > 1 (a > 0).

' We note, however, that for ky/kx -» oo the instability increment10 y->0.
Below it will be shown that taking into account the increase in perturba-
tions in the deflected flows virtually does not change the stabilization
criterion based on Eq. (8).

' For three-dimensional flows, as in the case of two-dimensional flows, as
noted above, we get the Landau criterion.
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