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rule
In order to endow the Bohr-Sommerfeld quantization age value can also be written as follows:

(1)

with physical meaning, the consistent quantum theory pre-
sented in Ref. 1 introduced "physical quantities" defined by

1$ (<j)r1f'ty (<?)> (2)

where q represents one or several variables that determine
the state of the system. If the momentum/? of formula (1) is
understood in the sense of (2), the quantization rule be-
comes equivalent to the condition that the state function
$(q) assume the same value at the endpoints of some inter-
val of the generalized coordinate q.

Let us demonstrate that definition (2) makes it possible
to construct a new representation of quantum mechanics in
which every dynamical variable is identified with a generally
complex function of coordinates /(<?).

Recall that "all elements needed to describe a quantum
system can be assembled by defining the fundamental dy-
namical variables, the commutation relations obeyed by the
corresponding observables, and the explicit representation
of the Hamiltonian H, which determines the time evolution
of the system, in terms of these fundamental variables" (Ref.
2, p. 313). Note that the various quantum mechanical repre-
sentations can be obtained from a given representation via
unitary transformations of the following type:

where S + = S~'. In the general case, when the function
$(q) is complex, definition (2) is not a unitary transforma-
tion of the^ operator/ If, on the other hand, the action of
operator S consists of multiplication by a phase factor
eip ( q ) , the value of the function f ( q ) will not change after a
unitary transformation of the operator/and the state func-
tion i/> (gauge in variance).

Further, let us consider the fundamental properties of
the "physical quantities"/(0) that follow from the standard
quantum mechanics. We will demonstrate that if these prop-
erties of the "physical quantity" f ( q ) and the relations
between the various "quantities"/, are taken as fundamen-
tal, one can retrace the derivation and arrive at the original
representation of the theory.

The expression for the average (expectation) value of a
physical quantity is:2

7-J+ftd?,

where dq = dqldq2...dqs. It follows from (2) that the aver-

Since the operator/is Hermitian we have

In other words

T-l
and

(4)

We find that

J *7«*d? = J fo

i.e., the product of physical quantities/and g corresponds to
a product of "quantities"/* (q)g(q) in some specific order.
If the operators /and § commute, the following condition
holds

Let us introduce the commutator

(5)

We will take the "physical quantities"/and g to com-
mute if \f,g] = 0 and to commute on average if [ f,g] = 0.

Since observables are Hermitian it follows from (2)
that

From the commutation relations for observables

[ft, Al-Ck/j (7)

and definition (2) we obtain

From the equations of motion in the Schrodinger form

&|) = /h|>, (9)

where & = ih d/dt and H is a given function of the funda-
mental observables, we can write

-i£ = 2L 4. JL r ft ?i (10)

in the Heisenberg representation. Using definition (2) we
obtain
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dt

(11)

(12)

^ It follows from the Hermiticity and linearity of opera-
tor/ together with the condition that the possible values of
the dynamical variable/must belong to the set of eigenvalues
of the observable/ that the physical quantity f ( q ) can only
take on a particular set of constant, coordinate-independent,
necessarily real values A;. Moreover, in the general case

J = \ct\*Kt. (13)

Now we can postulate that each dynamical variable can
be associated with a coordinate function/(q) that depends
on the state of the system and satisfies the condition

with Im/ = 0. The function/[if>(q) ] takes on a particular
set of constant (real) values A, which coincides with the set
of possible values of the dynamical variable. In an arbitrary
state of the system

The product of simultaneously measurable dynamical vari-
ables/and g corresponds to either/* (q)g(q) org' (q)f(q).

Let us postulate the commutation relations

(15)

(16)

(17)

Ift, /*] =

and the equations of motion

and

At dt

We can also postulate the existence of a probability den-
sity w of localizing the system in configuration space that
satisfies the normalization condition f w(q)dq = 1 and the
conservation law

where

(18)

(19)

Now we can show that in a particular case the postu-
lates and relations (14)-( 19) are sufficient to arrive at the
usual representation of quantum theory. Suppose that there
exists a function if>(q) that satisfies w = \i/>\2, together with
operators defined by (2) that satisfy the postulates and con-
ditions (14)-(19). Then the condition Im/ =0 for any
function i/t(q) ensures the Hermiticity of operator/ Assum-
ing that this operator is linear and that its eigenfunctions <p,
form a complete, linearly independent set, we obtain

7= MX (20)

where ct are the Fourier coefficients of the decomposition

By substituting (14) into equation (20) we obtain

Furthermore, by performing aveaging on equations
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(15)-(17) we obtain equations (8), (11), and (12). Since
i/i(q,t ) is an arbitrary function of coordinates, we can derive
at a given instant in time equations (7), (9), and (10),
which together with the aforesaid operator properties and
equation w(q) = \i/>(q)\2 describe the standard representa-
tion of quantum mechanics.

The question arises whether the new representation of
quantum theory holds any advantages over the usual repre-
sentations beyond the aforesaid possibility of interpreting
the quantization rule ( 1 ) within the framework of quantum
theory. Some physicists, such as R. Feynman3, consider the
search of new representations of quantum mechanics and
quantum electrodynamics justified because they can lead to
new theoretical interpretations and generalizations. We be-
lieve the above representation to be advantageous at least
from the methodological viewpoint.

Let us write the commutation relation

for the coordinate x and the corresponding momentum p.
This can also be written as

J (xp — p'x) w (x) Ax. (21)

The uncertainty relation Ax2 Ap2>^2/4 can be de-
duced from(21) by the usual means.

If we assume that (21) is true locally, as well as on
average, we can solve for the imaginary part of the momen-
tum

Imp =-!*..
^ 2*

Let us postulate the commutation relation

[\x, Ap] = m (22)

for the uncertainties

Ax = x — x, A p = p — p.

Then, from equation (21), we obtain
jftImp =

2A*
(23)

It follows from (23) that if Ax increases, the imaginary
part (and consequently the modulus) of momentum uncer-
tainty decreases. Conversely, as Ax -»0, the imaginary part
and the modulus of the momentum uncertainty grow with-
out bound.

Note also, that equation (23) together with the condi-
tion that the average value of the imaginary part of any phys-
ical variable go to zero, imposes an additional constraint on
the state function

A characteristic feature of quantum mechanics is the
existence of two classes of physical quantities and states of
the system: measurable and "computable" physical quanti-
ties, real and virtual states of the system. An experimentally
measured value of a physical quantity is unique-a single
measurement cannot yield any "superposition" of several
values. The measured physical quantity is always given by a
mathematical quantity that is a constant or uniquely defined
function of time. This mathematical quantity belongs to the
set of real numbers.
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Any state of an object can be defined by fixing the values
of a maximally large (complete) set of physical variables.
The real state of an object can only be defined, whether in a
real oragedanken experiment, by unique and precise values
of the complete set of "measurable" physical quantities. In
other words, the real state is necessarily an eigenstate of
some complete set of observables that belong to the corre-
sponding complete set of eigenvalues.

Sometimes it is erroneously asserted that the state of an
object may be defined experimentally by establishing
through repeated measurement all possible values and their
relative frequencies of all the dynamical variables that make
up an arbitrary complete set of physical quantities. In fact, in
order to perform this operation one must find a means of
repeatedly preparing the "same" state of an object. The
question arises, how can we ascertain that a given state is
actually the state we want to measure? Statistical methods
are of no use here, because any ensemble statistics might
include different states of the object. Evidently, before ap-
plying statistical methods we require some experimentally
valid criterion for identifying a given state and establishing
whether two such states are actually identical.

Bohr's complementarity principle of quantum mechan-
ics implies that the state of an object also includes either a
description of the experimental situation, i.e., measurement
apparatus, or the enumeration of the particular complete set
of dynamical variables the experiment intends to measure. If
we measure one complete set of variables and then switch to
another measurement instrument or another complete set of
variables, we will find that in the meantime the object
changed from a real into an intermediate or virtual (i.e.,
computable) state characterized by computable variables.
These variables may be multiple-valued, the corresponding
mathematical objects may be operators, matrices, etc. Vir-
tual states may follow the system's motion along a classical
trajectory, but the amplitude summation rules will be differ-
ent. By changing simultaneously the type of intermediate
states and the alternative summation rules, one obtains dif-
ferent variants of virtual states and different rules for com-
puting the possible final states selected by a measurement.

Intermediate states and the corresponding physical
quantities invariably have some "peculiar" or exotic proper-
ties, no matter how close they are to classical counterparts.
For example, the appearance of virtual particles in the inter-
mediate states of quantum field theory violates either energy
conservation (within the limits of the energy-time uncer-
tainty product) or the relativistic relation between energy
and momentum. Yet the measurement of a complete set of
physical variables and description of the new state in terms
of the quantities that had just been measured will transform
the intermediate, virtual state into a real state and will re-
move all "peculiarities" from both the state description and
the values of physical quantities.

Any assertion about computable quantities or virtual
states can always turn out to be conditional, in other words
dependent on the particular representation of quantum the-
ory. For example, a number of authors have discussed the
introduction of the concept of phase space into quantum
mechanics, i.e., the possibility of simultaneously describing
the state of an object in momentum and coordinate spaces.
In our representation this is indeed possible: equation (1)
already presupposes that momentum can be considered a
function of coordinates. The "peculiarity" of definition (2)
consists of the fact that this function is generally complex.

At this time, the author cannot point to any particular
advantages of the above-described representation in solving
concrete problems that cannot be approached by other
means. Perhaps such advantages will surface later. Recall
that Feynman's method, which eventually proved successful
precisely in solving concrete problems, "provided no practi-
cal advantages in the early years".4
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