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Theoretical studies on the effect of generation-recombination aggregation of Frenkel defects
created by irradiating solids with radiation are reviewed. We discuss the way in which a
substantially non-Poisson spectrum of density fluctuations of the number of defects is formed by
the stochastic creation and recombination of immobile and mobile defects. The results obtained
by using different approaches are compared—multiparticle densities, diagram technique, scaling,
computer simulation. We show that the aggregates created in the course of accumulation of same-

type defects (atoms or vacancies) substantially affect the kinetics of defect accumulation and
increase severalfold their concentration at saturation at large radiation doses. We examine in
detail how the spatial distribution of defects depends on their mobility, on the dimensionality of
the space, on correlation in genetic pairs being created, on the mechanism of recombination
(annihilation or tunneling charge-transfer), and on the number of crystal-lattice nodes in the
sphere of recombination. Experimental data confirming the calculations are presented.

1. INTRODUCTION

Irradiation of solids of any type (metals, semiconduc-
tors, and insulators) leads to creation of pairs of Frenkel
defects—vacancies and interstitial atoms [v, i, which are
usually spatially well correlated. > In most ionic crystals the
fundamental Frenkel defects are F- and H-centers (an anion
vacancy that has captured an electron and an interstitial ha-
logen atom that forms the quasimolecule X, with one of the
nearest anions, X ~ ].

At moderate energies the primary event of interaction
of particles with a crystal is simple-an elastic pair collision
that displaces atoms (or ions) from the nodes into inter-
stices.>* According to the laws of conservation of energy
and momentum, the condition for formation of a defect is the
transfer to a regular atom (or ion) of the crystal lattice an
energy exceeding a certain threshold value® (of the order of
10eV). However, the main fraction of the energy of particles
and photons in interaction with a solid is not spent on elastic
displacement of atoms, but on exciting the electronic subsys-
tem of the solids. It has been established in recent decades'™*
that in many broad-gap dielectrics the main mechanism of
radiation defect formation is not a superthreshold mecha-
nism, as in metals, but a subthreshold one arising from the
decay of electronic excitations into defects. (The efficiency
of this mechanism has been less studied for semiconduc-
tors®).

The relative spatial distribution function of Frenkel de-
fects of different types depends substantially, not only on
which of the two mechanisms takes place, but also on which
type of irradiation creates the electronic excitations, e.g., X-
rays or photons.®

In the creation of a v, i pair, the interstitial atom has an
initial kinetic energy, whereby it is displaced from its va-
cancy, e.g., by a chain of focused collisions. For example, in
a-Fe the mean free path of a crowdion of energy 50 eV
amounts to more than 20d (d is the interatomic distance).®
The stability of the pairs of defects formed by this primary

793 Sov. Phys. Usp. 33 (10), October 1990

0038-5670/90/100793-19$01.00

process of thermalization depends on their initial distribu-
tion. In the simple and pictorial black-sphere model the
annihilation of pairs (restoring the perfect lattice) occurs
practically instantaneously if the distance in the pair is
smaller than a certain critical value R, whose magnitude i$
determined by the type of chemical bonding of the given
solid, and also by whether the components of the pairs are
charged as compared with the nodes of the regular lat-
tice.*%8 Several mechanisms exist of stabilization of unsta-
ble pairs of Frenkel defects.® In metals the radius R, of the
instability zone usually amounts to several lattice constants,
while in ionic crystals it is smaller.!’ Semiconductors exist
with a loose structure and a very large instability region’
(e.g., In, Te,).

At temperatures at which the interstitial atoms become
mobile (typically R 20-30 K in metals and dielectrics), they
undergo thermoactivated jumps. In the course of this diffu-
sional wandering they can approach their vacancies within
r < R, and be annihilated with them, or they can move away
(with subsequent capture by an impurity or aggregate),
which leads to accumulation of defects.

In semiconductors and dielectric crystals, in particular
alkali halides, an additional recombination mechanism oc-
curs—tunneling charge transfer, which depends exponential-
ly on the relative distance 7 in the pair.>'> In the tunneling
charge transfer of primary pairs of F- and H-centers, i ~ ard’
formed in a crowdion configuration capable of displace-
ment, even at 4.2 K, by several lattice constants, which
hinders their recombination with v*.*!? Tunneling charge
transfer of a nonthermalized pair in the primary stage of
their creation assists rapid annihilation owing to Coulomb
attraction.'?

Both the experimental data and the theoretical studies
of recent years indicate a statistical effect of radiation-stimu-
lated oggregation of same-type defects (vacancies or intersti-
tial atoms) even at low temperatures ( <30 K) at which the
created defects are immobile and the kinetics of their accu-
mulation is restricted only by annihilation of close-lying un-
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FIG. 1. Spatial distribution of Frenkel defects at low radiation doses (a)
and at large doses”: with a chaotic distribution of defects (b) and with
dynamic aggregation of same-type defects (c) (schematic). In the latter
case several dimeric defects can be seen. O and @ respectively denote
vacancies and interstitial atoms.

stable defects or by tunneling charge-transfer (see Sec. 3.3).

In the course of irradiation the chaotic distribution of
defect pairs throughout the volume is replaced by a more
ordered one, which amounts to loose clusters (aggregates) of
noninteracting defects of the same type (Fig. 1). This is
manifested experimentally in a substantial deviation in the
concentration of pair (dimeric) centers from the value cor-
responding to a Poisson (chaotic) distribution'® while at
large irradiation doses at low temperatures the clusters of
defects are visible in the electron microscope.'* Owing to
aggregate formation, the concentration of defects can exceed
severalfold that for a chaotic spatial distribution. Yet the
concentration of accumulated defects in turn governs the
radiation stability of the material, which is of evident inter-
est for radiation materials science.

Qualitatively the process of radiation-stimulated (or
generation-recombination) aggregation is illustrated by Fig.
2. The random creation by radiation of two (or more) close-
lying defects of the same type yields a distinctive “nucleus”
of accumulations that is more stable than isolated defects
with regard to the appearance at this same site of defects of
the other type. To annihilate a pair of defects of a single type,
one must await a corresponding fluctuation-appearance in
the given region of two defects of the other type. In other
words, in the course of irradiation it is “‘more favorable” for
defects of a single type to form aggregates, since in them the
probability of survival is greater than for a chaotic distribu-
tion of them, while the effective recombination volume (per
defect) in an aggregate of many defects with overlapping
recombination spheres is much smaller than for an isolated
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FIG. 2. Qualitative model of the aggregation process.'' a—Chaotic distri-
bution of defects (7 is the mean recombination radius). b—Creation of a
new pair of defects. c—After recombination. d—Generation of accumula-
tion.
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defect'>'7 (the effect of statistical screening'®*°).

Recently reviews have been published?'™** devoted to a
general analysis of the phenomenon of self-organization in
the most varied physical, chemical, and bioclogical problems.
The possibility of effective spatial separation (segregation)
of i and v defects of different types (up to separate formation
of two regions consisting of defects of different types'” ) in
this context is important in principle, since it is one of the
examples of self-organization of a defect structure, even in
the absence of dynamic interaction between localized (im-
mobile) defects of opposite types. This does not contradict
the principles of thermodynamics, since the system is far
from equilibrium owing to the continual flux of energy
caused by the irradiation source that creates the defects.

Werecall that in this review, when speaking of diffusion
of defects, we are considering only ordinary thermoactivated
diffusion, without discussing the problem of radiation-sti-
mulated diffusion at low temperatures as observed in semi-
conductors under irradiation.?*?*

While bearing in mind the vast wealth of material on the
radiation physics of solids of the most varied nature, we
adopt the aim of discussing the general phenomenological
theory not restricted by assumptions of the concrete chemi-
cal nature of the material. We stress that the radiation-sti-
mulated and preferentially low-temperature aggregation
that we have studied of neutral defects of the same type
differs in principle from the thermodynamically equilibri-
um-type, irreversible coagulation of vacancies (pores) at
high temperatures,?® which sometimes leads to creation of
fractal structures.”’” Within the framework of our model the
magnitude of the static zone of instability R, around each
vacancy does not depend on the presence of other vacancies
nearby, as is correct generally only for neutral defects, and
may not be fulfilled for charged defects. Yet the aggregation
of the latter is improbable owing to Coulomb repulsion. The
model being discussed is valid up to a concentration of de-
fects amounting to S 10% of the regular lattice nodes, as is
known to be fulfilled, e.g., in dielectric crystals.*> (At larger
concentrations we arrive at a problem that has been dis-
cussed in disordered semiconductors®® ).

Thus the aim of this study is the detailed analysis of the
results of the numerous studies of one of the special cases of
self-organization—~radiation-stimulated aggregation of de-
fects in solids obtained by the most varied methods—both by
analytical (Sec. 2) calculations and by computer simulation
(Sec. 3). We study how aggregation depends on the dimen-
sionality of the space, the mobility of defects, the degree of
correlation in genetic pairs, the mechanism of recombina-
tion (annihilation or tunneling charge transfer), etc. In clos-
ing we discuss the description of the experimental kinetics of
accumulation of defects (Sec. 4).

2. ANALYTICAL THEORIES

In studying the processes of accumulation of point de-
fects one must distinguish the continuum and the discrete
models. In the former model the intrinsic volume of the de-
fect is not taken into account and the number of defects of a
single type at a given point of space is not bounded. In the
discrete model one unit cell can contain no more than one
defect (vacancy or interstitial). The results of simulation
using the one or the other model lead to substantially differ-
ent results, as will be seen below. The theoretical results for
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TABLE [. Various estimates of the dimensionless concentration of defects u, = ¢, v, at satura-
tion (without taking account of correlation in genetic pairs) in the case of immobile defects in the

one-, two- and three-dimensional cases.

p Notes References
0.5 S.uperp(.)smon approximation of Kirkwood, 1-D 130, 34, 32,
0.59 simulation 33)
In2%0,69 Neglect of correlation of same-type defects [30]
Simulation taking  account of
=1 tunneling recombination (charge transfer) (11, 12, 29)
- imulati ith
0.46—3,6 }r(]))m ;11:(1)u7z(1)(;0n with number of nodes 17, 34, 35]
1,36, 1,08 . i [36, 37, 38]
Analytic theory (in the continuum approxima-
tion) for the 1-D and 3-D cases without using the
0,33—2,77 Kirk wood approximation & s, 19, 20]
34, 3.2 Probability estimates for 2-100 nodes in the [39. 40]
4,2 2007, 1,04 | recombination sphere [41]
Analogous, for the 1-D and 3-D cases
1,36 Simulation in the continuum approximation [42]
for 1-D, 2-D, and 3-D
b . 2-D simulation for 400 nodes in the recombination [43]
sphere . e
!\]'iodel allowing an infinite local density of defects

the two models differ to the same extent.

To evaluate the results of analytical calculations using
highly different (often implicit) assumptions and to com-
pare them with the results of computer simulation, one must
introduce a certain characteristic parameter of the kinetics
of accumulation of defects. It is the dimensionless quantity
Uy = Cylo, Where ¢, = ¢(f— ) is the steady-state concen-
tration of accumulated defects of the same type (at satura-
tion); v, is the volume of the sphere of spontaneous recombi-
nation [v, = (4/3)7R}, where R, is the radius of
annihilation of defects of opposite types). The probability of
recombination of an interstitial atom i in the sphere of spon-
taneous recombination around a vacancy will be henceforth
considered to be uniform within the limits of the sphere and
zero outside it]. For the continuum model it is clear from
dimensional considerations that its magnitude u,, if it exists,
is a universal constant of the problem that does not depend
on the magnitude of v,. Most of the theoretical constructions
have reduced to finding u,. Table I collects the various esti-
mates of this quantity, which will be discussed in greater
detail below in Secs. 2.2 and 2.3.

The problem of the kinetics of accumulation is very
complex owing to its multiparticle character; clusters of de-
fects of the same type that arise initially owing to statistical
fluctuations behave differently with regard to recombina-
tion from the way individual defects do. Thus, for example,
while the recombination of an isolated vacancy with an indi-
vidual interstitial diminishes the effective recombination
volume by the amount of the volume of spontaneous recom-
bination of the vacancy, the recombination of an interstitial
with a cluster consisting of vacancies with overlapping re-
combination volumes (below, in discussing accumulation,
an important role is played precisely by these clusters, rather
than simply by the accumulation of vacancies with nonover-
lapping recombination spheres), can lead to a quite insignifi-
cant change in the effective recombination volume.

2.1. Probabilistic models

In studying processes of accumulation of Frenkel de-
fects, one uses three types of simple models: the urn, contin-
uum, and discrete models. In the simplest urn model, which
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was proposed in Ref. 118, one studies the accumulation of
complementary particles in boxes (urns) having a certain
capacity, with walls impenetrable for diffusion of particles
among the boxes. The continuum model treats a continuous
medium; the intrinsic volume of a defect is not taken into
account here, and the number of defects of a single type at
any point of space is not bounded. In the model of a discrete
medium a single cell can contain no more than one defect (v
ori).

The urr model amounts to a system of N urns, into
which one randomly and successively throws white (A) and
black (B) balls, with the total numbers of thrown balls #,
and ny equal to one another at any instant (apart from a
single ball). In the absence of annihilation the color of a ball
has no meaning and the distribution of balls between the
urns is described by the binomial law usual for random
events

Wi (v) = CYP* (1 — Py, (2.1)

Here W, (v) is the probability of filling of an arbitrarily cho-
sen urn with k spheres after v throws, v = n, + ny denotes
also the total number of thrown balls, and the C* are the
binomial coefficients, P = 1//N is the probability that a ball is
thrown into an arbitrary urn. As P—0 and for a finite s=vP,
the distribution of (2.1) goes over into the Poisson formula:

W, (v) =s*exp(—s) (k!), (2.2)
while when k is sufficiently close to s, into the Gaussian dis-
tribution:

W.(v) = (2ns) ' exp[—(k—s)?(2s) '] (2.3)
Now let us introduce the process of recombination: the entry
of a white and a black ball into a single urn leads to their
annihilation. When N = 1, the number of balls in the urn is
determinate, and is equal for alternate throwing to O or 1.
When N> 1 the situation is altered in principle owing to the
random character of the entry of A and B into the urns.
When recombination is included the distributions (2.1)—
(2.3) no longer hold; the probability of finding m balls of a
chosen color in an arbitrary urn after 2v throws (v A balls
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and v B balls) is

Nv=-m

Wi (2v) = 3 CiPF (1 — PYV R PR ™ (1 — )™ (2.4)
k=0

We can also study the case in which the capacity of each urn
is restricted to a certain number M. Here the pairs of throws
in which even one of two balls enters an urn filled to the limit
with balls of the same color are not realizable and are not
taken into account in calculating the number v. For small
values of P, large M, and v— oo, Eq. (2.4) is approximately
reduced to :

V-

W, =exp(—2s)lim 3 sttom [kl (k 4 m)!}™?

= exp (— 25) I'» (2s).

Here I,, is the Bessel function of imaginary argument. The
asymptotic representation of I,, leads, when v> N, M, to a
probability W, that does not depend on m:
W._ ~1/2(wS)."? Here the means are m~(M + 1)/2,
m?2=M(M + 1)/3, while we have

(,;z)l/z

m

O = = 1,16. (2.5)
Thus the random distribution of the particles among the
urns in the generation-recombination process leads to an
equiprobable distribution, cardinally different from the Pois-
son distribution, of “boxons” (sets of a given number of par-
ticles of the same color) over the urns and to the macroscop-
ic magnitude of the fluctuations of the number of particles in
the urn of (2.5).

These characteristic features are manifested also in the
generation-recombination processes of Frenkel defects in
real crystals. However, in contrast to the urn model, in a
crystal a statistical screening of the recombining particles
occurs in coordinate space that leads to a complex spatial
distribution of vacancies v and interstitial atoms i. This dis-
tribution depends on the law whereby the probability of re-
combination varies with the distance r between complemen-
tary particles. Usually one approximates this law by the step
distribution W(r) =1 (r<R,), W(r) =0 (r>R,). The
quantity R, is called the recombination radius.

The first attempts to seek a closed expression for c¢(¢)
did not include an analysis of pair correlations of defects,
even at the level of pair densities, and seem at least to be
ambiguous. Such an approach based on simple probabilistic
considerations was first used in Ref. 43 (see also Ref. 33).
Since here we are not treating explicitly the relationships for
two-particle (and higher) particle densities, it is difficult to
make a correct estimate of the effect of overlap of the forbid-
den volumes of several close-lying defects. This leads to the
need to introduce some a priori assumptions. A characteris-
tic example is Ref. 43, where the implicit assumption of a
chaotic distribution of defects through the volume (along
with partially taking it into account) led to a physically false
result—the absence of an effect of saturation of concentration
at high doses (see Table I).

In Ref. 39, which assumes the existence of a steady-state
concentration of accumulated defects in a one-dimensional
model, and which takes the distribution of A and B defects
separately in the form of periodically distributed clusters
(groups) of identical dimension, it was found from simple
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probabilistic considerations that the mean number of defects
per cluster is

K = geRoir —1, (2.6)

Here 7 is the mean distance between particles in the cluster
(an A-B pair instantaneously recombines if the distance
between A and B is <R, ). The values were obtained in the
model being discussed of R, /7 = 3.43, K ~143. We can re-
cord the results of this study by using the parameter q,.
Thus, we easily note that

RoLIr

= 2.7
L 4+ (ac+ ¢b)

Here we have L=Kr, ac=[2F(F+R,)]",
¢b =R, — (¥/2). From (2.7) we have (K> 1)

up = R0 3,43,

r

(2.8)
Reference 40 studied a discrete case. Then, in contrast to

(2.6), one has

T<L=4( ——ﬂ’—>—m°——l.

v

(2.9)

Here v is the concentration of traps (localization nodes).
The calculation of the dependence of ¢, on log(2R,v) that
was performed agrees with the data of computer simulation,
with deviation appreciable only in the region of small values
of log(2R,v), where only two lattice nodes exist in the re-
combination sphere. In the discrete model with the recombi-
nation radius R, any node of the crystal is surrounded by a
sphere of radius R, /2 within which only defects of the same
type exist or there are none at all. One can call such a region
of the crystal a homogeneity interval and characterize each
node of the crystal with the number k of same-type defects
contained within its homogeneity interval; z, is the number
of such nodes, M is the number of nodes in the homogeneity
interval. In a steady state the average over the volume of the
crystal of the concentration of defects is

kn,, (6Pk )
— =] T
M ot /n
Here (3P, /3t) , is the rate of generation of defects, and 7, is
the lifetime of a defect with respect to recombination. It was
assumed in Ref. 35 as an approximation that r, is deter-
mined by the concentration of defects solely within the ho-

mogeneity interval (the recombination zone). Here one can
derive recursion relationships between the n,, which lead to

e (st

(2.10)

(2.11)

and, together with the condition of constancy of the number
of nodes

M
N=ng+23 m

k=1
also to the steady-state concentration values and

Co=Ny =N, =N (1 + 2gm)>,

M &
=3 S {1+ (1—s5M. (2.12)

k=1 s=1
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At low enough values of M the calculated values of the pa-
rameter u, agree well with the results of computer experi-
ments. For large M the relationships of (2.11) lead to a rapid
growth in u, (M), which qualitatively agrees with experi-
ment. However, the ¢, calculated by (2.12) increases with
increasing M more rapidly than in the computer calcula-
tions, as is explained by the mentioned approximation for
determining 7.

We stress an important feature of the generation-re-
combination process being discussed. The lifetime of a va-
cancy, owing to the competition for capture of an i that has
fallen at some node @ with other vacancies that also lie with-
in the sphere of recombination of i, depends on the concen-
tration of vacancies ¥, (a) in the sphere with its center at the
node . Yet the quantity N, () depends analogously on
N, (a’') for the nodes @’ of this sphere; N, (a’) depends on
the N, (a”) for the nodes a” of the recombination sphere
with its center at a’, etc. Thus an effective interaction arises
between immobile point defects caused by the generation-
recombination process, which leads to “cleaning out” of the
volume of the crystal of single defects and small clusters and
their collection into large clusters.

If both components of a Frenkel defect are mobile and
no other reactions but annihilation occur, the tendency to
generation-recombination clustering is preserved, but the ef-
fect of clustering is less sharply marked. However, in real
systems usually only capture reactions of mobile v and i by
various sinks and by one another are effective; while the
complexes that are formed here (e. g., divacancies, tetrava-
cancies, vacancy + impurity atom) lose mobility. The possi-
bility of effective accumulation of clusters of particles of the
same type in such systems is determined by the relationships
among the capture cross sections of particles of the same
type and the recombination of particles of opposite type.
There are a number of causes that lead to a systematic differ-
ence between the capture cross sections of v and i by various
defects (preference) that gives rise to an effective separation
of them with respect to weak recombination. A consequence
of this is a low radiation stability of the materials being irra-
diated. The effect of statistical screening is manifested also in
this case. However, even in the absence of preference a clus-
tering of single-type defects occurs, completely due to statis-
tical screening. The latter statement is well confirmed by the
results of computer simulation (see Sec. 3).

2.2. Multipoint densities

K. Dettman® has created the basis of a rigorous theory
of the kinetics of accumulation of Frenkel defects in crystals.
He showed that in the absence of diffusion the curve of accu-
mulation c¢(¢) is determined by the infinite sum of the corre-
lation functions p,,, n = 2, ...c0 that describe the spatial
correlations of all orders of defects of the same type.

The accumulation equation can be written in the form

p(1—2p),

— 1yt

- (=
2 n!

x [0

(2.13)

Iy £)dry ... dry,
(2.14)

O Pay (T, Ty, ..o,

Here p is the rate of creation of stable pairs of defects, while
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the quantity S is the fraction of the volume overlapped by
recombination spheres, i.e., the ratio of the effective recom-
bination volume to the entire volume of the crystal. The
problem of constructing the kinetic equation of accumula-
tion for ¢ (¢) could be solved if one could obtain 8 in explicit
form, including actually all the information on aggregation.
This would mean the solution of the multiparticle problem
in accumulation. But in practice one must restrict the treat-
ment to certain approximations. Thus, in the simplest case,
upon neglecting the correlation between single-type defects
(i. e., assuming that p,,=p{,), the following was ob-
tained:*

B == | — e, (2.15)

The corresponding saturation concentration of defects is
#, =In2=0.69. When u,<1, Eq. (2.15) implies that
B’ =uy =05, i e, the recombination spheres practically
do not overlap, even at saturation.

Recently*? a more consistent theory was proposed of
the accumulation of Frenkel defects that took account of the
spatial correlations of defects of the opposite or same types.
The cutoff of the infinite chain of linked equations for mu/ti-
poin: densities of the number of particles in the superposition
approximation (SA) of Kirkwood

P21 (1, T2} r;) 22 P, (Fys 1'1) P11 (Ty; r;) Pz,0 (T, l'z) ¢3, (2.16)

which is widely used in studying the kinetics of reactions,
leads to a simple equation for the macroscopic concentra-
tion:*!*?
Cc=0Co[l —exp(—2pvyl)], ¢, = —(l — i) (2.17)
Uy vy
and to two linked equations for the pair correlation func-
tions—of same-type (X) and opposite-type defects ( ¥):*?

oX _ _2X o +L_(20+ L)i(g,.}/), (2.18a)

at’ c ol U v,/ ¢

ov _ 2 dc , 1 — Ly

67 ¢ o 2u,c? (2c+f(r)) (\2C+ U,,) ¢ (gs-X).
(2.18b)

Here ¢t' = 2pu,t is the dimensionless time, and we use the
spatial-convolution notation

(A*B)rz S‘ A(r')B(r_r’)dr:

oo r+r’

2’: j dr'r'Ary [ doeB (p) (2.19)

Ir=r’|

Also we assume that defects are created uniformly in the
interval of distances R, <r<R,, vy = (4.3)7R } and recom-
bine instantaneously when created with r < R,. The pair
functions in (2.18) are normalized according to the princi-
ple of attenuation of correlation with distance:
X(r—boo) = 1, Y(r—voo) =1.

Equation (2.17) implies that the dimensionless concen-
tration at saturation (for uncorrelated creation of defects,
R, — « ) does not exceed u, = 1/2. This means that the SA
yields a crude result, poorer than the simple neglect of the
correlation of single-type defects (u, = In 2). Yet taking ac-
count of correlation in genetic pairs has the result that, the
greater is the correlation (R, — R, ), the smaller is the con-
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FIG. 3. Dose dependence of the pair correlation functions in the accumu-
lation of immobile defects in three-dimensional space.’? The solid and
dotted lines denote the functions for same-type and opposite-type defects.
aand b—Uncorrelated and strongly correlated (R, XR ;' = 1.5) gener-
ation of defects. ¢/¢,: 1—0.05, 2—0.5, 3—0.9.

centration ¢, at saturation.’®*? An essential point is that the
kinetics of accumulation in (2.17) for instantaneous recom-
bination depends on the irradiation dose d = pt (the number
of created defects) but not on its intensity (power of the
dose).

Figure 3 shows the result of calculation for two limiting
cases—-absence of correlation (a) and strong correlation in
genetic pairs (b). We see that, as saturation is approached,
the fraction of close same-type defects (A-A, B-B) consid-
erably exceeds the Poisson value (X = 1), which confirms
their aggregation. The characteristic dimension of the aggre-
gates (X R)2 1) and the distance between them ~2R,
agree with computer simulation in the three-dimensional
case (Sec. 3). This means that we are dealing with micro-
scopic segregation of defects, since the dimension of the ac-
cumulations is small in comparison with the dimensions of
the system.

Yet in the case of strong initial correlation at low con-
centrations, the pair correlation function of opposite-type
defects has a sharp peak at R, <7< R, that is “accompanied”
by a trough at the same r in the correlation function of same-
type defects. Again this emphasizes the interrelation of the
spatial distribution of same- and opposite-type reagents in
bimolecular processes, as noted in Refs. 32 and 44. The for-
mation of aggregates with a strong initial concentration is
slow and occurs mainly near saturation of the concentration
(see Fig. 3b).

Analysis of the SA (2.16) showed®**’ that it is inappli-
cable to the region of small relative distances at which
|r, —ri|and |r, —r{|<R,, This leads to a cutoff in the infi-
nite series of correlation functions p,, 5, n =2, ... ,00, and to
restriction to the first term, which does not depend on the
spatial correlation of defects.
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Upon neglecting the initial correlation in genetic pairs
in the case of instantaneous annihilation of opposite-type
defects created at a distance <R, and in the continuum
approximation, it has been possible to overcome the noted
defects of the SA and to sum the infinite series of (2.13). The
fundamental approximation used was the representation of
the multipoint density in the form

P = c”(l -+ 2 v(r; — rk|)> .

i<k

(2.20)

Here v(|r; — r,|) is associated with the pair density of sin-
gle-type defects p,o(r) and with the relationship
P20 =1 + v(Jr, —r,|)), where v(r— « ) = 0. Applica-
tion of the approximation (2.20) has the consequence that
the obtained result is an estimate from below, but better than
the SA, since here one takes explicit account of the spatial
correlation of defects of the same type. The use of (2.18)
leads to a system of three linked equations for the dimension-
less macroscopic concentration 4 (¢) and the pair correlation
functions of same-type X and opposite-type Y defects. We
present only the former of them:

ou . w-) |
g1+ )5 -

=7 5 u(0) =0, t' = 2pu,t. (2.21)

Here the parameter
v =Lj S()v(r)dr
Y%

is the fraction of the total volume of two spheres of radius
R,, whose centers are separated by the distance 7. In contrast
to the previous approaches, here the equation for the concen-
tration is not closed, and requires one to calculate the corre-
lation function for same-type defects v(r, t). It is determined
by solving a rather unwieldy system of equations.’®’

The solution of these equations on a computer yields the
saturation concentration u, = 1.36 and 1.08 ford = 1and 3,
respectively (Fig. 4a). In the former case this exceeds by
approximately twofold the cited value in the absence of ag-
gregation (1, ~0.69). We also see the substantially greater
effect in the one-dimensional case; however, perhaps also the
analytical estimate is substantially low (see Table I and Sec.
3).

gt

<

&
[
9

y

Concentration

2y
x|

Fluctuation
parameter

-0,25¢ 05
1
050
g 4,5 10 log(2pu, t)

FIG. 4. a—Calculation of the kinetics of accumulation in the three-di-
mensional case (without using the superposition approximation);¢’
dotted curve—result of the SA. b—Magnitude of the fluctuation param-
eter characterizing the deviation of the spectrum of the fluctuations of
defect density from the Poisson distribution.
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We see from Fig. 4b that a substantially non-Poisson
spectrum of fluctuation of density of the reagents is formed
in the course of accumulation, characterized by the param-
eter ¥ and implying aggregation. It was shown>® that

NT_N% = u + uv. (2.22)

Here N is the number of defects A (B) in the sphere v,, and
N =u. (For a Poisson spectrum of fluctuation we have
v=0.)

The dynamics of aggregation is shown in Fig. 5. In the
course of irradiation the initial chaotic distribution under-
goes a substantial change: the fraction of close same-type
defects upon prolonged irradiation exceeds approximately
threefold the Poisson value. This agrees well with the experi-
mental data’® for dimeric F, centers in KCl created upon
prolonged X-irradiation at 4 K.

An essential result is also the fact that the curve of accu-
mulation ¢(¢) in the large-dose region is not described by the
simple formula (2.17), which is often employed in interpret-
ing experimental data (e. g., in Ref. 16), despite the fact that
the accumulation process is imitated by a single recombina-
tion mechanism. Hence we must treat with caution the wide-
spread view (e. g., Refs. 46 and 47) that the successful ap-
proximation of ¢(z) by several exponentials (stages) is
unambiguously correlated with several different mecha-
nisms of accumulation.

Upon including diffusion of defects the pattern of accu-
mulation becomes substantially complicated. Here it is clear
that the effect of aggregation must be weakened. This pro-
cess has been studied by several methods. Simple approxi-
mate answers were obtained by using the SA.**** In this
theory the rate coefficient of recombination and the steady-
state concentration ¢, are determined in a self-consistent
fashion. A test of the fundamental equations of accumula-
tion by simulating a two-dimensional model on a computer
has been performed in Refs. 49 and 54. The results showed
that, for small values of the dimensionless parameter
2pv,/De, (i. e., large diffusion coefficients) (v, = 7R 2),
the following relationship determining ¢, is well satisfied:

_ 2K ()

2.23
Ky (x) ( )

Here we have x = (2pv,/7Dc,)'?, and K, and K, are the
modified Bessel functions of zero and first order. For d = 3
we have

p = 4nDR, {1 + (3s)"*) &, (2.24)

Correlation functions

23
FIG. 5. Pair correlation functions of same-type (v =X — 1) and oppo-

site-type (Y) defects.’® Curves I, 2—t=0; I', 2—t— o (r/R, is ex-
pressed in terms of r/r, ).
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~ theory,

where we have

4
s=- nRic,.

The problem of taking simultaneous account of aggre-
gation and diffusion (see Sec. 2.4) is most complicated. In
this case one can write only an approximate equation:***®

(;—Ct = pexp (— 2cv,) — K (o0) c?, (2.25)

Here the diffusion-controlled recombination constant is

K (00) =4nDR,[1+(3s)*?]. (2.26)

2.3.Long-wavelength approximation

One can carry out a systematic treatment of the prob-
lem of aggregation of diffusing opposite-type defects (while
taking account of their interaction) by the methods of field
37-5% with account taken of the fact that the problem
contains a small gas parameter, cv, € 1. We shall base the
presentation of the results of this method on a treatment of
the system in the Jong-wavelength approximation, which is
most graphic amd which allows one to obtain graphically
practically exact answers for the degree of aggregation of
defects. Moreover, it has turned out that the field-theory
methods and the long-wavelength approximation at low
densities of defects yield results that agree. In the stated ap-
proximation the density of particles (of types A or B) can be
described by the fluctuating function ¢(r,t). This quantity is
determined exactly if one divides the entire volume into mi-
croscopic subvolumes containing a large enough number of
particles. At equilibrium in the absence of reactions, the
probability density of finding the system in a given ¢(r)
(which differs little from its mean value ¢) is given by the
Gaussian functional

[ o —Eﬂdr]

Plc(r)] « exp [— - = (2.27)
%C

In the presence of diffusion ¢(r,t) obeys the diffusion
equation

E‘;;i — DAc(r, )+ iy(r, ). (2.28)
Here, (r,t) isarandom Gaussian function with the correla-
tor

(g, D) i (0", 1)) = c() DS (t — )V Ve (r —17).  (2.29)

Equation (2.28) for — « implies (2.27).

After this remark, let us examine the system of equa-
tions controlling the creation and annihilation of A and B
particles (to start with, neutral particles), which have equal
diffusion coefficients D, = Dy = D.%¢ It has the form

dey ;ri O DAca (r, ty— Kea (r, Y ca (r, t) + ia (7, O),
d ¢ (2.30)
cB;;. ) = DAcp (r, {y— Kea(r, t)ca(r, 1) 4 in(r, {).

Here K is the bimolecular recombination constant (in
particular, it can be a diffusion constant, i.e., equal to 87DR,,
(R, is the recombination radius of the particles). Also,
i, (n,t) and iy (r,t) are the densities of creation of A and B

Vinetskil et al. 799



particles by the external source. They have the Poisson sta-
tistical properties

<’:A(r, t)>=<i3(f, t)>=i0»

C(ia(r, t)—is) (ia(r’, t')—io) >=0,

LEa (r, O — i) (Ga (', £) — £9))

={(iB(r, N — i) (i (r', ') — i)} = b (r —r") S (¢t —1").
(2.33)

(2.31)
(2.32)

Also i, (r,t) and iy (r,t) contain the term with “inner” sto-
chasticity i, (r,t) of (2.28) and the correlator of (2.29).
However, in the long-wavelength approximation and for a
small gas parameter, it always proves to be inessential.

The difference c, (rt) — cg(r,t)=z(r,t) obeys the
equation

az(r, t)

5 = DAz(r, t) + 6i(r, 1),

6 =in —ig. (2.34)
The Fourier components z(r,t) — z, (r,t) are random func-
tions having the correlator

gk B, )= (a2 (1)) =2 EE D exp | D2 1),

(2.35)

For small %, g becomes large, which implies a separation of
the A and B particles over large scales. In the three-dimen-
sional case (d = 3) this can be illustrated as follows.

For completely mixed particles in a large enough vol-
ume, the square of the fluctuation of the number of particles
8N = N — N obeys the ordinary relationship

ON? 1

— o —

M N

Yet if the correlator of the number of particles looks like
(2.35), we have the stronger level of fluctuations:
(I

S (2.36)

In the two-dimensional case the analogous relationship has
the form

g 1

— o — . (2.37)
N2 InN

In the one-dimensional case we have
M o<1 (2.38)

Equations (2.37) and (2.38) actually imply that the one-
and two-dimensional cases actually exhibit already a macro-
scopic separation of the system into regions consisting only
of A particles and only of B particles. This is also confirmed
by the fact that the integral over the spectrum of spatial fluc-
tuations diverges in these cases at small k. To find the aggre-
gation of particles in numerical experiments in the three-
dimensional case we must treat the deviations from a Poisson
distribution in large volumes.

Itis interesting to study now in the same approximation
the problem of the kinetics of recombination of A and B
particles after the source has been turned off (i, =iz =0).
As is known the initial fluctuations in the distribution of the
reacting particles in space, and in particular, the thermody-
namic fluctuations lead to features in the long-period kinet-
ics of the approach of their mean concentrations to the equi-
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librium values. Thus, in the case of the irreversible reaction
A +B-0,wehavec, () ct — %45 where the concentra-
tions of A and B particles are equal on the average. This
asymptotic behavior is determined by the initial fluctuations
of the initial Poisson distribution of particles. If the reaction
is reversible, then the approach to the equilibrium values
follows the power-function asymptotic behavior ¢ ~/2 (Ref.
60), which differs sharply from the exponential-in-time law
that formal kinetics predicts. A general result of Refs. 59 and
60 was the statement that the long-term dependences are
governed by the process of diffusional equalization of the
fluctuations of the initial distribution of the reacting parti-
cles. _ »

When the source is turned off the anticorrelation of the
A and B particles of (2.35) is very high, which leads to a
slower recombination of them for large ¢,

Actually the concentration at a late stage equals the
mean value of the modulus z(r,2):

cA=cE=—;—(]z(r, . (2.39)

Calculation of {lz(r,¢)[) with the spectrum of initial
fluctuations of (2.23) (with t = ¢’ = 0) is performed analo-
gously®® and yields the result:

CA=-;—<IZ(f, HP =—1—[ bo

dsz /
Py (2—")3—D' -k—’l exp (— 2Dk2t)j|1 z.

(2.40)
For the three-dimensional case we have

ca o« iVADT¥

(2.41)

For particles that are destroyed according to (2.41), we
have 5¢/¢~R,c'’? where R, is the recombination radius of
the particles. It can be easily observed experimentally. For
the two-dimensional case the integral of (2.40) is cut off at
k~S ~'72, where Sis the area of the surface, and total disap-
pearance of the particles actually occursina time ~.S/D. We
should note that, in the case of instantaneous generation of
particles, faster asymptotic relations hold.*+5%¢°

The case is more interesting of oppositely charged parti-
cles. The long-wavelength fluctuations of z(r,¢) are sup-
pressed by the Coulomb field of the particles. Here, in the
initial system of (2.30) a force term appears having the po-
tential g, which satisfies the Poisson equation:®!

80 =2 (e () —ca (1). (2.42)

The behavior of charged particles is substantially
changed in going from the three- to the two-dimensional
case. Let us present the results in three-dimensional space.
The spectrum of steady-state fluctuations has the form

216 (£ + &)

— D+ o
D@ T ) exp [— D(&? + ap)].

(e 2 () = (2.43)

Here a, = (8wc,e’/T) ~'/? is the Debye radius of the
system in a steady-state regime. We can easily obtain the
spectrum of fluctuations of the potentials and fields. Thus
the mean of the modulus of the field in the specimen is

= T \1/8 [ { \3/8
El~e(5)"(5)
At large fluxes or small diffusion coefficients it can reach a

Vinetskil et al. 800



considerable magnitude. This phenomenon has been experi-
mentally observed in irradiated dielectrics.®

Since the Aluctuations of z(7,¢) for small K donot havea
singularity, the long-term asymptotic behavior of annihila-
tion of particles upon turning off the source does not differ
substantially from the laws of formal kinetics.

The singularities are interesting in the two-dimensional
case, which arises, e.g., when a flux of particles impinges on a
surface. Here the electric fields are not too long-range and
the long-wavelength fluctuations are only partly screened.

The spectrum of fluctuations of z has the form

(e (D2 (0)) = HZLETED oun i Dk2 4| k1911,

2.44
D B+ %] 9) (244)

Here we have ¢ = 270,¢°/T (an analog of the reciprocal
Debye radius in two dimensions), and o, is the two-dimen-
sional particle density. In connection with (2.44) we note
the interesting property of the time spectrum of charge fluc-
tuations at a point in the plane

2
o = y (Q(1)Q(0)) exp (iwf) df = 2;'0& = (k2+:fk O

(2.45)

For small w and ¢ = 0 we have 5, ~ 1/w, i.e., there is a sin-
gularity of the flicker-noise type.

Finally we present without proof the law of decay of the
density of particles upon turning off the source:*®
R /3

2.4. Field-theoretical methods

The field-theoretical methods are based on exact formu-
lation of the multiparticle problem of reacting particles.
Here we shall give a presentation of these methods as applied
to a system of defects of two types A and B in a solid. We
shall consider the concentration (on the average) of the two
forms of particles, as before, to be the same, ¢, (7) = c5 (1).
Let us denote by w, (y — x) the probability per unit time
that an electron (a type A defect) lying at the point x and a
hole (a type B defect) at y recombine. The inverse process
caused by thermal activation and photo-and radiation pair
generation is described by the probability w, (x — y) that A
and B defects are formed per unit time in the vicinity of the
points x and y, respectively. They can be neutral or charged
defects or electrons and holes. Thus, in contrast to the pre-
ceding section, we can assume that the pairs are created in
correlated  fashion with the distribution function
Sfry = w, (x — y). For simplicity, we shall not take account
of the potential interaction, while considering all the concen-
trations to be small. That is, the small gas parameter exists

capyrd , < 1, (2.46)

where the 7, , are the characteristic lengths of the functions
W, (X).

We shall characterize the state of the multiparticle sys-
tem being studied, which includes m electrons (which form
the configuration X™={x;;..;x,,} and m holes
Y™{y; ... ;.. } by the distribution function U™ (X", ¥ ™).
The evolution of U, (X™,Y™) is described by the corre-
sponding diffusion-balance equations. According to Refs.
60, 63, and 64, the latter can be rewritten in a form analogous
to the Schrodinger equation:
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2| F)y =H|F (t)); (2.47)

Here the “wave” function |F(7)) is defined in terms of wave
operators by the relationship

| F ()

s dxy ... d dy; ... d
= 3 [ [T v YT XY,
) m! . m!

m=

(2.48)
|Xm, Y™y = Ve (x)... '4’: (Xm) Vi (yp .- w;()’m)l())

Our prbblem is to calculate the correlation function
characterizing the spatial distribution of uncompensated
charges (particle-number densities)

(Ac(0) Ac (x)) = {(ce(0) — cn(0)) (ce (x) — cn (X)), (2.49)

which is expressed in terms of the particle-number density
operator

Ce (%) = P (X) e (x) (2.50)
and the pair densities
{Ac(0) Ac (x)) =2(X—Y) (2.51)

of same-type and opposite-type defects. The “Hamiltonian”
(2.47) in k-space has the form

H=H+H,, (2.52)
where H,, corresponds to free diffusion:
H, = — D, 3} F*aliax — Dy, 3} kP, (2.53)

while H,,, includes the terms involving reaction:
Hypy = 2 Wp (k) a{ﬂik + 2 Wy (k) akﬂ_k — Vuw, (0)

— VS, (k— ko) Bl (k + ky'— by — ko)
(2.54)

Here A (k) is the Kronecker symbol; A(k) = 5,(“0, ,5”0.
Upon averaging the operator for the total number of parti-
cles, we obtain an expression of the concentration in terms of
the condensation operators® a, and 8, (a, =f,):

c=V* (a). (2.55)

Further, upon writing the equations of motion for the
condensation operators in the Heisenberg representation
and replacing them with numbers according to Refs. 57 and
61,

a:, ﬂ:_" Vl/z’ am ﬂo__)'cvl/av (256)

we obtain the equation for the concentration

L0 — 0,0 — w0 ()= VY walk) (). (257)

Here the prime on the summation sign indicates that the
summation index does not take on a zero value. The separa-
tion of the condensation operators is performed also in the
Hamiltonian and in the correlator being calculated.

Finally, let us go over to the interaction representation
and introduce the S-matrix in the standard way,®'"%* so that
the wave function is given by the equation
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|F(t))=8(t; —o0)|F(t=—00)). (2.58)

Here |F(t = — «)) corresponds to randomly distributed
particles with the concentration ¢, while we assume the in-
teraction to be introduced adiabatically.

The expression for the correlation function of interest
to us acquires the form

(Ac(0) Ac (x)y = 2¢6 (x) — 2V SV cos (kx) (oub-v)

+ V71 S exp (ikx) (Coacr) + Brb)).
(2.59)

To calculate the correlator T, = (aff _, ) in the lowest
(second) order in the concentration, we must sum the lad-
der diagrams containing the minimal number of entering
condensate lines giving the coefficient ¢ and the vertices with
the small interaction w, . They are constructed of the follow-
ing terms in the Hamiltonian:

Hint = 3V w5 (k) aiflc — ¢ ) wa (k) oilfli

— V7S g (k — ky) ko B (K 4 ky — Ky — k) — .. .
(2.60)

As we can easily convince ourselves, the correlators
(aya_ ), (BB _,), are proportional to ¢* and must be
omitted.

The free Green’s function (GF), as we can easily see
from the Heisenberg equations of motion, is determined by
the formula

G¥ (1) = exp (— Di*t) 8 (1). (2.61)

The essential point is that G, () =0 when ¢ <O0.

To avoid the divergences that arise in low-dimensional
systems owing to the singularity of the free GF G, (w) as
k-0, » -0, we shall construct the ladder diagrams from the
“clothed” GF:

G¥ (@) = (Dek"’— i — 3 (m))-‘. (2.62)
Here the mass operator 2, (@) is also calculated in the lad-
der approximation. Since it is small in the concentration [see
Eq. (2.65)], 2, (w) in (2.62) can be replaced by its value X,
for k =0, @ =0 when the free GF (2.61) has a singular-
ity.®!

Let us denote by I'{" the sum of the ladder diagrams
beginning with the first term in the interaction Hamiltonian
of (2.60), and by ['{¥) = T, — I'" the sum of the diagrams
beginning, correspondingly, with the second term. For I'("
and I'{¥ we have the integral equations

I = Dk + 2| 2, ) Gy (k) — V1 2wy, (k — ky) T,
(2.63)

I = — (Dk* + 2| 2, | (Pwa (k) + V7 D'wa (k — ky) Ty,
(2.64)

Here we denote by D the overall diffusion coefficient
D=D, + D,.

As we can see simply, the mass operator 2, calculated in
the ladder approximation is expressed in terms of I'(¥ as

follows:
| Zo| = cwa (0) + (V) Z'ws (W) T, (2.65)
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Owing to the presence of the incoming condensate line
a, (B,), the mass operator X, is a quantity small with re-
spect to the concentration.

The relationships (2.57) and (2.63)-(2.65) for a
steady-state regime form a closed system whose solution de-
termines the concentration of the particles and the correla-
tion function of the excess-charge densities of (2.59). This
problem can be easily solved by taking the probabilities
w, (x) and w, (x) in the form of §-functions corresponding
to the creation and annihilation of pairs at fixed distances.
Let us study the case for d = 3, for which

@y (xX) = p (4ar) 218 (| x| — rp), (2.66)
and the one-dimensional case, d = 1, with
05 (¥) = 2 (8 (x — 1) + 8.x + 1), (2.67)

while the recombination probabilities w, (x) are obtained
from (2.66) and (2.67) by replacing all indices 5—a. (The
two-dimensional case entails additional mathematical com-
plications, and we shall not discuss it here. ) Here pisthe rate
of pair creation, k, is the rate constant for annihilation. The
classical law of mass action, which is valid for thermody-
namic systems, i.e., when the conditions are satisfied of mi-
croscopic equilibrium in local form (r, = r, in our case),
relates the concentration of particles with the constants p
and k, by the simple relationship

(2.68)

=L

ka
(dimensionalities k,—[s ~'m 3], p~[s ~'m~3]). We note
that in the case in which the local condition of microscopic
equilibrium is not fulfilled, e.g., in photogeneration of carri-
ers, the mass-action law (2.68) generally contains substan-
tial corrections (see (2.76)).

Thus, let us examine first the three-dimensional case.
Here the mass operator X/ can be assumed to be zero. That
is, the ladder diagrams can be constructed from the free GF;
divergences do not arise.

Upon adding the relationships (2.63) and (2.64) and
taking account of (2.57), we obtain the system

Ty = (DR [0 ) — e () — (@)™ § wa(k — ko) Tl ]
(2.69)

2w, (0) = s (0) —(2m)™ j w, (k) Txdk, (2.70)

The correlator of the densities of excess charges is expressed
in terms of the latter as follows:

Z (x) = (Ac(0) Ac (x)) = 28 (x) —n2x71 f Tkksin (kx)dk.
(2.71)

In calculating the three-dimensional integrals in the
equations of the system and in substituting (2.70) and
(2.69) the integral term in the equation for I', drops out,
and we obtain

I p ;(sin kry, _sin kra)

= 2.72
D&\ kr, kr, (2.72)

Finally the expression for the correlation function of
(2.71) acquires the form
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{Ac (0) Ac (x)) = 2¢B (x)
S pkatatix bra—lx—ro| —rar (ke —x — D1,
(2.73)

Here the diffusion rate constant &k, in the three-dimensional
case is determined by the ordinary relationship:

kd=4ﬂDr¢. (2'74)

Figure 6 shows the graph of the corresponding relation-
ship for the case in which the radius of creation of a pair
exceeds the annihilation radius. If 7, > r,, then when x < 7,
the correlation function consists of a §-function at zero and a
positive constant component 2pk ;'[1 — (r,/r,)]; when
r,<x<r,, it decreases hyperbolically to zero:
2pk 7 'rg(x ' —r, '), while when x> r, it is identically
equal to zero. The positive spatial correlation of the density
of uncompensated charges describes the phenomenon of sto-
chastic aggregation of particles of the same type in the react-
ing system. It is simple to estimate the mean number of un-
compensated charges in such a cluster:

-1/
R rﬁ)[kzl T (1 ——)]
b

(2.75)

The magnitude of the excess charge is proportional to
the square root of the small probability of pair creation.
However, with a small total diffusion coefficient entering as
the coefficient D ~'/? and with a large radius of creation
ro (N o r?), it can be not at all small.

According to this pattern, upon radioactive irradiation
of a dielectric, regions must spontaneously be formed in the
latter that contain preferentially electrons (or holes). Natu-
rally this will be accompanied by the appearance of internal
electric fields, and all the more so, the smaller the mobility of
the carriers and the greater the intensity of irradiation. This
effect has been experimentally observed in Ref. 62, and here
the internal fields attained breakdown values. We note that,
for a quantitative description of this phenomenon, we must
take account of the Coulomb interaction of the electrons and
holes.

With the opposite relationship between the radii of cre-
ation and annihilation, r, and r, change places, and the con-
tinuous component in the correlator becomes negative. This
corresponds to “screening’ of a particle of one type by the
particles of the other type.

Itis also interesting to study the expression for the mean
concentration obtained from (2.70) and (2.72):

et = plt + pig (1= 7] 0.5y —ro) (2.76)
b

The first term on the right-hand side of (2.76) corre-

<4c@) dc@)>

RN

Ry ry z

FIG. 6. Graph of the correlation function of the density of uncompensated
charges®® for r, > r,, d = 3, steady-state regime.
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sponds to the classical mass-action law (2.68), and the sec-
ond to a correction to it. Such a correction was first found in
Ref. 60 in the extreme case of low carrier concentration and
low efficiency of annihilation as compared with diffusion;
here it was small in the parameter k,/k,; < 1.

We see from (2.76) that, in a system in thermodynamic
equilibrium, owing to the condition of microscopic equilibri-
umr, = r,, the classical mass-action law is satisfied exactly.
If the process of carrier creation is non-equilibrium (al-
though the regime can be steady state), then generally we
have r, #£r,. If, moreover, an electron-hole pair upon cre-
ation separates to distances exceeding its annihilation radius
(e.g., upon y-irradiation), then the correction to the mass-
action law differs from zero, while in the case of slow diffu-
sion and effective annihilation, k, €k, (the limit of a diffu-
sion-controlled process), precisely it becomes decisive.

As we have shown above, in this regime accumulations
of single-type particles are formed in space, and they dissi-
pate slowly by diffusion. Evidently the clustering of single-
type particles increases the steady-state value of the concen-
tration (the sign of the correction term is strictly positive): if
the clumps of particles are uniformly distributed, the anni-
hilation processes become more effective and the equilibri-
um concentration is lowered. Thus the nature of the correc-
tion to the mass-action law lies in steady-state fluctuation
effects, which are manifested when r, > r,. The one-dimen-
sional case has been discussed in detail in Ref. 55.

Analogous problems are studied also in Ref. 65 with use
of the scaling method. The authors confirmed the existence
of segregation of defects when d = 1 or 2, while denying it
for d = 3. As we see it, segregation occurs also in the latter
case, as is evidently visible from the appearance in the course
of defect accumulation of a non-Poisson spectrum of their
density fluctuations that does not break down the macro-
scopic homogeneity of the system (see also Ref. 44). Appar-
ently the scaling method is not sensitive to such a type of
phenomena of microscopic self-organization®® having a char-
acteristic radius on the atomic scale.?

3.COMPUTER SIMULATION OF DEFECT ACCUMULATION
3.1. Quasicontinuum model

To establish the fundamental laws of the process of the
kinetics of accumulation, initially the quasicontinuum mod-
el of a crystal was studied.!” A one-dimensional “crystal”
was represented in the form of a segment of length L of cells
with periodic boundary conditions (the ends of the segment
are closed). The simulation was conducted for different di-
mensions L of the crystals and magnitudes / of the recombi-
nation region. The fundamental results of the simulation are
given in Table I

The simulation shows that: 1) the curve of the depen-
dence of the number of accumulated defects on the total
number of defects created reaches saturation; 2) when
L = 100-400and / = 5-20, complete separation was attained
of the “crystal” into a region of interstitials and a region of
accumulation of vacancies; the location of the regions
changes upon further generation of defects; 3) the sum of the
lengths of the wells filled with vacancies for L //> 2 consid-
erably exceeds the length L (when L =2000, /=35,
uy, = cyl=5, where ¢, is the concentration of accumulated
defects, in total about 10° pairs of defects was generated).

Vinetskil et a/, 803



TABLE II. Results of calculations for a
quasi-continuum one-dimensional mod-

el.V’
L 1 Uy
40 20 1,16
200 100 1,16
100 20 1,32
200 20 2,5
400 20 3,5
2000 5 5,0
2000 10 5,0

Let us examine Secs. 1-3 in greater detail. For small
values of L // the magnitude of u, depends on the ratio L /1.
However, in all cases one observes the establishment of a
steady state (saturation). We note that the existence of a
steady-state value was subjected to doubt in a number of
studies (e.g., Ref. 43). Therefore one of the purposes of sim-
ulation in the quasicontinuum pattern was specifically a rig-
orous test of this result.

Figure 7 shows a series of successive patterns for
L =200 and / = 20. We see that in three of the presented
patterns for a one-dimensional model, a complete separation
was established of the ““crystal” into regions containing only
vacancies or interstitials (cf. Ref. 65). (A number in a
square denotes the number of interstitials lying in the corre-
sponding cell, while a number without a square denotes a cell
in which vacancies occur, and shows the number of them in
the given cell). With time such regions of single-type defects
move through the “crystal” and sometimes break up into
smaller ones. As a rule, for small values of L //, the regions of
single-type defects “‘crawl” through the “crystal” owing to
the fitting at the ends of the regions of defects of the same
type. For larger values of L /I regions of single-type defects
also exist—clusters. However, in this case the separation into
two regions was not observed. Evidently, as long as L /! is
small, there is not enough room for arrangement of the accu-
mulated defects in the “‘crystal”, and hence they are collect-
ed in such a way that the greatest number of them is accom-
modated. This will happen precisely upon division of the

¢ (o) =17, N=10000

entire “crystal” into only two regions occupied by single-
type defects. When L /2200 we no longer find a depen-
denceofc,/ on L /1. We recall that Ref. 39 made estimates on
the basis of a simple model of the mean number of defectsina
cluster. It was found that u, = R, /7 = 3.43, where 7 is the
mean distance between defects. The mean number of parti-
cles in a group is K = 120. These values correlate with the
values of u, from the computer experiment, which obtained
uy =5 and a mean number of defects in a cluster, respective-
ly, of about 100. (These data were taken from the pattern of
accumulation for L = 2000 and / = 5 with a total number of
creation events of 5 10°.)

3.2. The discrete model

To simulate a real experiment, a simulation was per-
formed for a discrete (but one-dimensional) model (de-
scribed in detail in Refs. 17 and 67). In contrast to the quasi-
continuum model, the “crystal” is divided into 2N cells of
two types: at the initial instant of time the cells with odd
numbers are occupied by atoms, and the rest are empty. A
vacancy can appear only in a cell with an odd number, and
an interstitial atom can lie only in a cell with an even num-
ber. Each cell contains no more than one defect.

References 17 and 67 established the existence of satu-
ration of the concentration ¢, and a dependence of the num-
ber of lattice nodes v, in the recombination sphere v, (Table
IIT) (¥ = 2M in the theory).'®2°

Reference 35 determined the value of ¥, upon approach
to the steady state from above. One-dimensional crystals
were studied of length from 8X 10° to 2 10* lattice con-
stants. (Spatial correlation in genetic pairs was absent.) The
limiting values #, = 3.5-3.6 for 500 and 700 nodes in the
recombination sphere ( Table III, third column) are close to
the value 3.43 obtained in the continuum approximation by
an approximate method'® and considerably exceed the esti-
mate 1.36 implied by the approach based on multipoint den-
sities.’®*” Apparently the latter approach takes insufficient
account of the specifics of one-dimensional systems.

To determine the existence of a stable steady state, a
model was studied®® of destruction of clusters in the case
v, = 700. At the initial instant of time 10 uniformly distrib-

FIG. 7. Sequence of the patterns of accumulation in a quasicontinuum

one-dimensional model. ¢( o ) is the number of particles in the “crys-
tal” in the saturation region. N is the number of defects that have been

created (the dose).!’
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TABLE I11. Dependence of the steady-
state value of the concentration of defects
u, on the number v, of nodes in the re-
combination sphere (one-dimensional

case).
'-’p [35, 671 [18—20]
2 0,464 0,333
4 0,636 0,50
10 0,922 0,830
24 1,248 1,323
50 1,625 1,937
100 2,25 2,77
150 2,340,2
200 2,5
300 3,0
400 3,2
500 3,5
700 3.6
oo 4,12

uted clusters of 300 vacancies each were put into the “crys-
tal”, and interstitial atoms in the intervals between them
(uy = 10). Then pairs of randomly distributed defects of dif-
fering types were created in the “‘crystal”. The newly genera-
ted defects break up the originally existing clusters and the
concentration of defects declines to a steady-state value. The
values of u, were obtained by averaging a region of the curve
of length 2.5 X 10* events of defect creation. The result un-
ambiguously implies the existence of a stable steady state in
the problem of accumulation of point defects and in the
problem of breakup of clusters.

A connection was established by simulation of accumu-
lation®” between ¢, and the ratio of the number of active
interstitials to the total number of them in the crystal

to=1—28. 3.1

Here fis a function of v, ,the number of nodes active toward
recombination in the recombination sphere. (In Ref. 67 the
concentration and recombination volume were expressed in
units of the volume v, of the unit cell, and ¢, coincides with
the fraction of nodes or interstitial sites occupied respective-
ly by vacancies or interstitial atoms.) We note that, in the
model being discussed, the cell itself in which a vacancy oc-
curs is considered inactive with respect to recombination of
an interstitial on it.

For a qualitative study of the clustering effect in accu-
mulation, also pair correlation functions have been defined
for the same- and opposite-type defects.

‘We see in Fig. 8 that the distribution function of single-
type defects at small values of » has a region of enrichment
(X(r) > 1) for rS2R,, which indicates the clustering of de-
fects. The distribution function Y of opposite-type defects in
this same region has a value smaller than unity. (These re-
sults agree well with the analytic theory in the continuum
approximation.)*®*” It was established by the simulation
that clustering increases with increasing number of lattice
nodes v, in the recombination sphere. Thus, when v, =4,
the clustering effect is practically absent: X~ 1 for all r. The
absence of the clustering effect at low v, indicates the possi-
bility of applying the ordinary superposition approximation
in such cases.

Reference 34 proposed the following accumulation
equation on the basis of results of simulating the accumula-
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150 r

4 50 100

FIG. 8. Pair distribution functions obtained in a computer experiment of
opposite-type (1) and same-type (2) defects'” in a discrete model with 50
nodes in the recombination sphere. Correlations in genetic pairs are ab-
sent.

tion of point defects in a one-dimensional crystal in the satu-
ration stage:

de 2a () ¢ (1) v
@ (1~ l——c(l)v"‘) (3.2)
(in the notation of Ref. 67 we have v, = v, v*, where v, is the
number of nodes in the recombination sphere), a(¢) is the
efficiency coefficient of recombination; a(¢ =0) = 1 char-
acterizes the efficiency of recombination of a single defect.
With increasing degree of overlap of the recombination
sphere, a(¢) declines. It was assumed for @ (#) in Ref. 34 that

a(t)=1_(1_a(oo))f‘ci.

0

(3.3)

Here a( w0 ) = a(t— « ) is the value in the saturation stage.

To test the hypotheses (3.2) and (3.3), the kinetics of
accumulation was simulated on a computer by the method
described in Ref. 67. For each of the values v, = 10, 16, 24,
and 50, the process of accumulation was performed indepen-
dently 200 times until the stage of steady-state values of ¢,
was reached. The relationships ¢(N), N = pt, and a(c) were
constructed from the mean values obtained in this series.
Figure 9 shows these dependences for the case v, = 24 and
¢o = 0.052 as obtained from (3.2) and (3.3). We see that,
within the limits of error of experiment ( =~5%), the slowly
varying function a(c¢) can be well approximated by the lin-
ear dependence of (3.3), which confirms the suitability of
(3.2) and (3.3) for describing the accumulation of point
defects in the discrete model. Analogous results are obtained

&y
=3
R
ES
Q
4,2 Cp=0,052
L L 1 i L
977w 20 30 40 50

N-0,02,0,0-10%
FIG. 9. Theoretical dependences:'’ I—a(c), 4—c(N)v, calculated by

(3.2) and (3.3); the corresponding results of simulation are: 2—a(c),
3—(Myv,.
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TABLE IV. Dependence of
the concentration of defects
at saturation on the degree
of correlation in genetic’

pairs. !’
d/a U
1 0,75
2 081
3 0.85
5 089
30 0,92

for v, =16 and 50. For v, = 16 and 50, the values were
found by simulation, respectively, of 1.092 and 1.625 for ¢,
and 0.463 and 0.478 for B( ) = a( w0 ) Vyc,.

Finally, to estimate the role of spatial correlations in
genetic pairs of created defects, the case was simulated in
which a created interstitial lies at various distances d from
the edge of the recombination sphere of its vacancy (see Fig.
2inRef. 35). Table IV shows also the values for differentd in
the case v, = 10. As we see from these results, only when
d /a < 5do the correlations substantially alter u,; for small 4
the magnitude of u, declines owing to the suppression of the
effect of clustering by correlations within the pairs being
created. The distribution functions of same- and opposite-
type defects also have a distinctive form. Thus, in the steady-
state distribution function of opposite-type defects one ob-
serves a maximum at small distances (in the region of
interpair correlation). The distribution function of same-
type defects in the region of small values takes on smaller
values than in the case of absence of interpair correlations.
[ This agrees well also with the analytic calculations for the
continuum model**3¢ (see Fig. 3)].

In Ref. 42 the accumulation was also simulated in a
computer of point defects in a two-dimensional ‘“‘crystal”
represented by a square lattice with the lattice constant d and
dimensions L X L (in units of 4). In the initial state L X L
atoms are placed at the lattice nodes, while L X L interstitial
states are free. The recombination region amounts to a
square containing / X/ nodes. Otherwise the simulation is
analogous to the one-dimensional case. Periodic conditions
are imposed on the boundaries of the crystal. The number N
of accumulated defects of a single type was determined, to-
gether with the dimensionless parameter #, (the multiplic-
ity of the covering of the crystal by the sum of the areas of the
instability zones of the accumulated defects). A steady state
is established in the cases studied, as a rule, after 4x 10*
events of pair creation. To obtain the steady-state values of

u, and N, an averaging was performed over the last 5% 10*
creation events with a total number of them of 10°, The re-
sults are given in Table V, which shows the results of simula-
tion for a set of parameters L, /, and L /I. In all cases we
observe a strongly marked effect of aggregation of same-type
defects. Figure 10 shows the spatial distribution of vacancies
and interstitial atoms for the case corresponding to the sec-
ond row of Table V (10° generation events). The steady-
state value of %, does not depend on L when L /I>10 (see
Table V).

In the two-dimensional case the value of u, is smaller
than for the one-dimensional case at the same magnitudes of
the region of recombination (thus, when v, = 400, u, = 3.2
in the one-dimensional case). However, the aggregation ef-
fect is expressed rather strongly.

The quantity #, characterizes the degree of aggregation
only on the average. Therefore it is important in each con-
crete case to analyze also the spatial distribution of the de-
fects. Thus, the low-temperature accumulation of Frenkel
defects in the two- and three-dimensional cases was simulat-
ed in Ref. 68. The obtained values of u, for d = 2 consider-
ably exceed the same in Ref. 42. In contrast to Ref. 42, the
authors of Ref. 68 used a circle as the recombination region.
The values of u, ( =A4,/2 in the notation of Ref. 69) ob-
tained in Ref. 69 are considerably larger than the results of
Ref. 68. We note that it was assumed in Ref. 69 that, when an
interstitial atom occurs at a node where the recombination
spheres of several vacancies overlap, it recombines with the
closest vacancy.

In the three-dimensional case®® the saturation concen-
tration is smaller than for d = 1 and 2; the maximum value
is u, =1.02 (for v, =266 nodes in the recombination
sphere), and its dependence on v, is weaker.

A two-dimensional simulation has also been performed
of the accumulation of defects with an asymmetric recombi-
nation region*’ chosen in the form of a rectangle with
v, = aXb. The anisotropic case was studied in which the
larger sides of all the rectangles are oriented in parallel. For
v, =6X16 and L XL = 150X 150, the steady-state value
was obtained of #, = 1.35. The greater lengths of the sides of
the rectangle enhance the aggregation effect in this direc-
tion. Thus, in a simulation with v, = 6X16, extended clus-
ters were observed, which divided the crystals into strips
(Fig. 11).

A simulation of accumulation with account taken of
diffusion was first performed for d = 2 in Refs. 49 and 70.
Evidently the inclusion of diffusion smears out the clus-
ters—the more efficiently the greater is the mobility of the
defects.

TABLE V. Results of computer simulation of accumulation in a two-dimensional crystal of
length L. The area of the recombination zone is I X I, the number of accumulated defects is N.*

LXL Lyl Ixt uy N
50 x50 5 10X 10 0,894-0,02 22,34
100100 10 > > R 120,7
150% 150 15 > > 1,2 270,0
250 250 25 > > 1,2 752,4
100X 100 10 2020 1,0 25,3
500 x 500 25 20% 20 1,36 322,3
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Recently a simulation was performed on a supercom-
puter of accumulation with account taken of diffusion—the
A and B defects migrate and recombine when they fall into
adjacent lattice nodes.”’ They confirm aggregate formation
ford = 1 and 2. For d = 3 the authors interpreted the distri-
bution of defects in the cubic lattice as random—in contrast
to the aggregation in the fractal lattice of Serpinskil. (An
absence of aggregation in a three-dimensional cubic lattice
was also obtained by the scaling method in Ref. 65. How-
ever, the authors of Ref. 65 did not calculate the pair correla-
tion functions, while in the case d = 3 the aggregation effect,
as is known, is relatively weak,***® and hence might remain
unnoticed.

Finally, in Ref. 41 the accumulation was simulated of
immobile defects ford = 1, 2, and 3 in a continuum model. It
was easy to show that in these cases ¥, = 4.2, 2.07, and 1.04,
respectively. This does not contradict the results of simula-
tion in the discrete model****¢” —see Table I, as well as the
one-dimensional pattern for the continuum model (see Ta-
ble IIT).

The role of correlations in the two- and three-dimen-
sional cases is less important because a genetic pair that has
been newly created can overlap in a large number of ways
with another pair already existing in the crystal without re-
combination of the components of different pairs.

3.3. Taking account of tunneling charge-transfer of defects

A simulation has been carried out'"'? of the process of

accumulation of immobile Frenkel defects restricted by tun-
neling recombination of defects, as is observed in many solid
insulators. The latter consists in the spontaneous transport
of an electron between defects of opposite types. In contrast

FIG. 11. Spatial distribution of defects in a two-dimensional simulation
with rectangular recombination regions.*

807 Sov. Phys. Usp. 33 (10), October 1990

FIG. 10. Distribution of vacancies (a) and interstitial atoms (b) in a two-
dimensional computer experiment.”® The recombination region around a
solitary vacancy and an accumulation of three vacancies are cross-hatched.

to the ionic process of annihilation of close pairs of the va-
cancy-atom type, it is characterized by a broad spectrum of
recombination times. Thus, the probability for a pair of cho-
sen defects that lie at the relative distance r to survive for 7
seconds is

P (1) =exp {—-— Wt exp (—— %)] . (3.4)
Here W, and a are constants that depend on the electronic
structure of the defects. For small  the lifetime of the pair is
minimal: 7> W, ! (usually 72 107°-10~% ), and in-
creases exponentially with the distance r between the de-
fects.

The simulation was performed for the three-dimension-
al case with imposition of periodic boundary conditions on
the cube in which the defects are being created. The initial
distribution function of genetic defects was chosen in the
form

f(r) =

e"/’o

, j‘f(r)dr=1. (3.5)

4rir’r,
The results of the simulation confirmed the hypothesis ex-
pressed in Refs. 11, 72, and 73 that tunneling recombination
is the basis of the secondary reaction that leads to saturation
of the concentration of defects upon prolonged irradiation of
many insulators.

Figure 12 shows the pair correlation function of same-
type defects in the region of concentration saturation as cal-
culated from the results of the simulation. We see that the
fraction of close-lying Frenkel defects (of the type of paired
F,-centers) exceeds by approximately threefold the value

o ] a : b
Kol
|
1F"H_L'—L- LkL'_\‘\_r—.‘
L e
c : d
|
3_
7 1 1 L
g S 10 0 5 10
units of a,

FIG. 12. Pair correlation functions of the distribution of same-type de-
fects obtained in a simulation of accumulation limited by tunneling charge
transfer.'? Intensity of radiation p (cm~*s~!) = 5X 10* (a), 6.7 10"
(b), 1.2 X 10" (¢), and 2.2 X 10'° (d). The dotted line around the axis of
abscissas in Fig. 12a corresponds to absence of recombination.
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FIG. 13. Probability density of finding a closest defect of the same type
(1) and of the opposite type (2) at the distance r from a given defect in the
region of concentration saturation.'? Curve 3—absence of recombina-
tion, Intensity of irradiation p (cm~*s~') = 5% 10% (a) and 2.2 10
(b).

expected in a Poisson distribution, which agrees well with
the analytic theory*®*’ and with experiment.!?

In contrast to the case of annihilation, here the intensity
p of irradiation plays a substantial role since, in view of the
relatively large lifetimes of close-lying defects, the appear-
ance of a third defect influences their recombination. We see
from Fig. 12 that, the smaller is the intensity p of irradiation,
the closer the defects of the same type lie, and the better
marked is the clustering. (Wecaninterpret the curves of Fig.
13c, d as the creation of periodically arranged accumula-
tions of same-type defects).

Figure 13 demonstrates the form of the obtained proba-
bility density of finding nearest neighbors of the same or
opposite types as a function of the relative distance. We see
that a smaller irradiation intensity leads to increasing the
minimal relative distance between opposite-type defects; at
smaller distances the created pairs efficiently recombine.
Owing to the tunneling recombination, the defects of the
same type prove to lie closer, and those of opposite types
farther than in the case of their equal-probability (Poisson)
distribution throughout the volume (curves 3 in Fig. 13).

Since greater irradiation intensities lead to creation of
closer opposite-type defects (see Fig. 13), we can expect that
this should facilitate attainment also of larger defect concen-
trations at saturation. The curves and the inset in Fig. 14
illustrate well what we have said.

We can also easily conclude from Fig. 14 that, the
stronger is the degree of correlation in genetic pairs
(R, —0), the smaller is the concentration c, at saturation.
This agrees well also with the analytic theories.*"** Figure
14 (curves I and 3) implies that, in the saturation region, the
mean distance between defects of the same type
7 = 0.554/c}’> amounts to about 50A, whereas the distance,
even in weakly correlated pairs (R,/R, = 10) [see (3.5) ] s
of the order of 25A. That is, genetic pairs do not mix, even in
the saturation region, which leads curves / and 3 to reach
saturation at different concentrations.

The dependence of the low-temperature accumulation
curve on the intensity p of irradiation is a characteristic sign
of tunneling recombination. It has been observed in the most
varied solid matrices: alkali-halide crystals,'* glasses,”"*
etc.
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FIG. 14. Curve of the accumulation of defects as a function of the irradia-
tion dose with a tunneling mechanism of recombination.'> /—correlated
pairs (R, =10a), p=7X 10" cm~*s~', W, = 10’ s~ '; 2—analogous
to / with p, = 10p, ; 3—for an uncorrelated distribution with the same p,,
W, as for 1; 4—uncorrelated distribution with p=5%10cm *s ' 5—
analogous to 4 with p=2.2X 10'* cm ~* s~ !; 6—dependence of thc con-
centration at saturation on the irradlatlon mten51ty P

4. ANALYSIS OF THE KINETICS OF ACCUMULATION

Some analytic expressions are collected in Table VI that
have been used in the literature to describe the experimental
curve c(t) of accumulation or dc/dt, the rate of accumula-
tion. Experimentally the kinetics of accumulation of Frenkel
defects in the course of irradiation at liquid-helium tempera-
tures has been studied, both in the alkali-halide crystals'>!*
and in many metals.”>”"7 Since often a successful approxima-
tion of the accumulation curve is associated with a microme-
chanism of defect formation (see, e.g., Ref. 47) and with
other physical conclusions, it is reasonable to discuss briefly
the region of applicability and the substantiation of the ex-
pressions that have been used.

Equation (1) of Table VI is the most general and rigor-
ous analytic result. However, it does not take account of the
aggregation of same-type defects and hence is applicable
only at not very large irradiation doses (up to a concentra-
tion of defects S 1/2¢,, where ¢, is the concentration at satu-
ration).

In (1) (see Table VI) the existence is allowed of clus-
ters of single-type defects, but here it is actually assumed
that these clusters are statistical fluctuations of the Poisson
distribution of same-type defects, and do not reflect a real
pattern of cluster formation with a substantially non-Pois-
son spectrum of fluctuations. It is assumed implicitly in (1)
that, after each event of creating a new pair of defects, the
entire system of defects is shaken up to attain a Poisson dis-
tribution. In the case of absence of correlation in genetic
pairs we arrive at Eq. (2). 4

Equation (3) is most widely used in analyzing experi-
mental curves, since its form is intuitively clear: the rate of
accumulation is determined by the fraction of the free vol-
ume of the crystal not occupied by previously created de-
fects, without taking account of the overlap of the annihila-
tion volumes of same-type defects. Evidently it is applicable
only in the initial stage of kinetics at relatively low concen-
trations of defects, cv, € 1. As was stated (Sec. 2.2), the SA
corresponds to the first two terms of the expansion (2) in
powers of cv,. The equations (4) and (5) correspond to
taking account of two more terms of the expansion. It was
erroneously stated in Ref. 31 that the coefficient of the cubic
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TABLE VI. Different forms of approximation of the accumulation curve ¢(z) and the rate of

accumulation de(?)/dt.

Equation Notes References
1. g—: =p(1—7) (2™ Neglecting cI?rrelation of same-type de- | [31]
1y _ oY (200, —1 fects, 7=L flrdr
2cv, 0
47 (1 —cuy) —3¢72°%
2. de = p(267™—1), The same, neglecting correlation of [31, 32]
dt genetic defects during creation
e pt——i— In (2e—rvnf_1) (y=0), ¢q =1n2/v,=0.69/v,
Y
de aput Two terms of the expansion (2) for
3. m =p(L —2cvp) = pe PP, cvy = 1/ 2v5; [16, 30, 32, 77]
- 200,f) Icoincides with the result of the super-
¢ =6 [1—exp (—2puf)] position approximation
de -
4, E = p [1—2v5c+ (cvp)?] Thlree terms of the expansion (2) for ¢y, [75—77]
<
=p(1—cv)?
de . | Fourterms of the expansion (2 )for cv, <1. -
= _ _ -0 M, 75
22 d¢ P [1 2cvy +(60,) In Ref. 31, the coefficient for the cubical ! !
2 member is pointed out by mistake as 3
-3 (cvo)s] — 0.01, instead of 2/3.
6. a) c= L In (pogt +1), At temperatures at which the interstitial| [43, 47]
123 atoms are mobile
1 .
6) ¢ = —— [In (4pvyt —1 For temperatures at which the defects 43. 47
) 4v, [in (4p0t ] are immobile, and for moderate radiation [43, 47]
+1] doses. Owing to incompletely taking ac-
’ count of the correlation of same-type
de defects, ¢, —
B) T plépugt +1)1 (At room temperature the coefficient 1/4v,
is replaced by 1/v,)
7. c= 2. A, (1_e‘Bk') + D¢ |Has been applied prefe:rentially in the [46]
£ room-temperature region
8. ¢ = ¢y [1—exp (2K1)]'/2 Empirical equation in which X is not [78]
necessarily equal to py,,
1
9. c=¢p [1— W] Empirical relationship with the parameters [79]
3 band ¢,
de acy
10. =P (1— T—Wp_-) It is assumed that the efficiency of recom-| [33)
0 bination a(v) = const = 0.85
de
11. w=°r {1_2 [1— (1 Obtained in an approximation of the results [17, 34]
of computer simulation, a(0) = 1, =
_1—Cov*) c() J ct)v | |a(n) <!
2C% co | 1—c(t)v*

term of Eq. (5) equals — 0.01, which was then copied in all
the experimental studies that used this approximation. It is
not always acknowledged that these equations also assume
the absence of aggregation of defects; the authors themselves
of Ref. 31 propose using Eq. (5) up to the saturation concen-
tration. Therefore it is not justified to extrapolate the rate of
accumulation of defects to a zero value to obtain ¢, from
(3)-(5) (cf. Refs. 75 and 76). Actually the saturation con-
centration can exceed by severalfold the value predicted by
these equations.

Equation (6) predicts a logarithmic growth of the con-
centration of defects without saturation. To obtain the satu-
ration effect experimentally observed by the authors them-
selves of Ref. 14, a hypothetical secondary reaction was
introduced. The defects of this model were discussed in Sec.
3, while we note only that, in the initial stage, the relation-
ships (6) qualitatively resemble the previous ones. They also
have been used in interpreting the experimental data ob-
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tained for alkali-halide crystals,” and they yielded
v, = 3000 anion nodes around a vacancy, which explicitly
indicates a tunneling mechanism of recombination.

Finally, Egs. (7)-(9) are approximations of the kinet-
ics of accumulation that are not substantiated theoretically
in any way with curves showing saturation, which qualita-
tively resemble the form of (1)-(5).

The analytic description of the kinetics of accumulation
with account taken of the effect of aggregation leads to Eq.
(2.9), which contains the fluctuation parameter v, which
unfortunately cannot be represented by a simple analytic
expression.

Equation (10) was proposed in Ref. 33 (see Table VI),
and yields #, = 0.59. This evidently too low value is ob-
tained owing to the unsubstantiated assumption of indepen-
dence of the efficiency of recombination & of v, and of the
irradiation dose, as well as the ill-substantiated choice of the
value a = 0.85.
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Finally, Refs. 17 and 34 obtained the simple empirical
formula (11) (see Table VI), which describes well the com-
puter results (see Sec. 2.2). It was shown that the efficiency
of recombination depends on the time and on the number of
lattice nodes in the recombination sphere v, .

It is evident from what we have said that the basis for
analyzing the experimental data can be Eq. (11). However,
in this case we must convince ourselves by comparing the
experimental and theoretical accumulation curves of their
qualitative resemblance. Thus we easily note that convex re-
lationships of the type of Fig. 1 in Ref. 75 require the use of
more complex models than those discussed above, where the
rate of accumulation declines monotonically.

An approximate analysis of (11) for the accumulation
curve for Cu (Fig. 7 in Ref. 77) yields the value ¢y, =~ 1.2,
which clearly indicates an aggregation effect. This result was
obtained on the basis of estimates of p and v, obtained in this
same study, and with the assumption of absence of correla-
tion in genetic pairs. (Evidently taking account of correla-
tion would have led to an even larger value of this param-
eter.) The experimental kinetics of accumulation of Frenkel
defects—F-centers in alkali-halide crystals at liquid-helium
temperatures—was studied in Refs. 14 and 47 within the
framework of a model that yields a logarithmic dependence
of the concentration of defects on the irradiation dose (Eq. 6
of Table VI). Although we have criticized this relationship
above, at low radiation doses it can be represented as a poly-
nomial in powers of ¢, v, resembling Egs. (3)—(5) (see Ta-
ble VI). At the same time cogent arguments exist favoring
the idea that in alkali-halide crystals the accumulation of F-
centers is restricted by their tunneling recombination with
the complementary H-centers (see Sec. 3.3). This recombi-
nation gives rise to its products—pairs of charged F * -and I-
centers, which influence the kinetics of accumulation and
complicate the very simple model of accumulation being dis-
cussed.

We note in conclusion that taking account of correla-
tion of defects in genetic pairs, formation of pairs of new
defects (e.g., owing to the tunneling mechanism of recombi-
nation), and of dislocation loops, etc., substantially compli-
cate the theory of the kinetics of accumulation. The tempera-
ture dependences of the efficiency of accumulation contain
substantial information on the correlation of defects in gene-
tic pairs and on the nature of their interaction.>®%°

5.CONCLUSION

The analysis conducted in this study of the results of
different theoretical approaches to the kinetics of accumula-
tion of Frenkel defects in irradiated solids with account tak-
en of multiparticle effects has shown that all the theories
confirm the effect of low-temperature radiation-stimulated
aggregation of same-type neutral defects and its substantial
influence on the spatial distribution of defects and their con-
centration at saturation in the region of large radiation
doses. The aggregation effect must be taken into account in a
quantitative analysis of the experimental curves of the low-
temperature Kinetics of accumulation of Frenkel defects in
crystals of the most varied nature—from metals to wide-gap
insulators, it is universal, and does not depend on the micro-
mechanism of recombination of opposite-type defects—
whether by annihilation of atom-vacancy pairs (in metals)
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or tunneling recombination (charge transfer) (in insula-
tors).

The kinetics of defect accumulation requires further
theoretical studies at temperatures at which they become
mobile. The creation under the action of radiation of an or-
dered structure from the accumulation of radiation defects is
an effect akin to those discussed in the theory of self-organi-
zation of structures—synergetics.
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