УСПЕХИ ФИЗИЧЕСКИХ НАУК

методические заметки

532.517

МОДИФИЦИРОВАННЫЙ КРИТЕРИЙ ЛАНДАУ СТАБИЛИЗАЦИИ НЕУСТОЙЧИВОСТИ ТАНГЕНЦИАЛЬНОГО РАЗРЫВА СКОРОСТИ В СЖИМАЕМОЙ СРЕДЕ

А. М. Фридман

(Астрономический совет АН СССР)

СОДЕРЖАНИЕ

1.	. Цель и	т пла	н заме	тки																17
2.	. O физи	іке н	еустойчі	ивост	и та	анге:	нциа	льн	ого	раз	рыва	C	KODO	сти	ДОЗ	BVK	ОВО	ro	те-	
	чения и	ee o	стабилиз	зации	B (свер.	хзву	KOBO	M I	тото	ке					·				17
3.	. Критик	а Сы	роватск	им Г	4] p	або	гы Ј	Танд	ay	[3]										18
4.	. Модифі	ициро	ванный	криг	гери	йЛ	анда	ay c	табі	илиз	ации	ī								18
	римечан				•			•												18
\mathbf{C}	писок лі	итера	туры																	18

1. Цель и план заметки (1). Цель настоящей заметки — показать, насколько значительную роль играет в реальных системах с градиентными потоками критерий стабилизации Ландау [3]. Это хотелось отметить еще и потому, что после критической статьи Сыроватского [4] результат работы [3] был изъят как из [5] (1954 г.) (хотя в той же книге [5] (1953 г.) он содержится), так и из [2]. Работа [3] также отсутствует и в [1] с указанием на причину — критическую статью [4].

Заметка состоит из трех коротких частей. В первой части (п. 2) излагается на качественном уровне физика неустойчивости тангенциального разрыва скорости дозвукового течения и ее стабилизация в сверхзвуковом потоке. Во второй части (п. 3) сформулировано критическое замечание Сыроватского [4] (к работе [3]), являющееся корректным для бесконечно протяженной среды. В последней, третьей (п. 4), части показано, что в реальных пространственно ограниченных сверхзвуковых течениях с тангенциальным разрывом скорости существует стабилизирующий эффект, который количественно описывается с помощью модифицированного критерия Ландау. Стабилизация неустойчивости тангенциального разрыва квазидвумерных течений (например, таких, как мелкая вода [6, 7] и газовые диски галактик [8]), происходит в полном соответствии с критерием Ландау [3].

2. О физике неустойчивости тангенциального разрыва скорости дозвукового течения и ее стабилизации в сверхзвуковом потоке. Для рассмотренных в [3, 4] адиабатических возмущений, S = const, связь между тепловой функцией W, давлением P и плотностью ρ определяется из соотношения $W = \int \mathrm{d}P/\rho$, а для $P = A\rho^{\gamma}$ где A, γ — постоянные (γ — показатель адиабаты, $\gamma = c_P/c_V$; c_P , c_V — теплоемкости при постоянных давле-

нии и объеме соответственно), имеем

$$W = \frac{\gamma}{\gamma - 2} A^{1/\gamma} P^{(\gamma - 1)/\gamma} = BP^{\alpha}. \tag{1}$$

Таким образом, при любом $\gamma > 1$ ($\alpha > 0$) давление P растет вместе с ростом W.

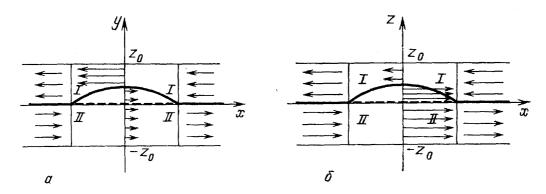
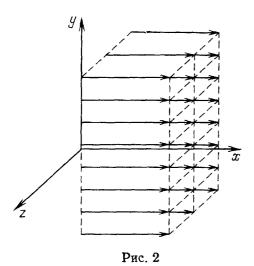


Рис. 1

На рис. 1 a, b изображены возмущения тангенциального разрыва скорости v, направленной вдоль оси x, в двух противоположных предельных случаях, когда число Маха $\mathsf{Ma} = v/c \ll 1$ и $\mathsf{Ma} \gg 1$, где c — скорость звука. В [3] показано, что амплитуда возмущения по обе стороны оси z от плоскости z=0 тангенциального разрыва падает экспоненциально $\sim e^{-z/z_0}$. Поэтому достаточно ограничиться областью $|z| \ll z_0$.

Область I (над «горбом» возмущения) на рис. 1, a можно рассматривать как область критического сечения дозвукового сопла ($Ma \ll 1$),



где, как известно [9], скорость течения максимальна. Тогда из уравнения Бернулли для изэнтропического течения

$$\frac{v^2}{2} + BP^{\alpha} = \text{const} \tag{2}$$

следует, что давление над горбом должно быть минимальным. Это приведет к дальнейшему росту амплитуды возмущения—неустойчивости. (2)

Область I (над горбом) на рис. 1, δ можно рассматривать, как область сужающегося канала сверхзвукового диффузора ($Ma \gg 1$), где скорость v уменьшается [9] и, следовательно, давление над горбом должно возрастать. Это приведет к «вдавливанию» горба назад в II.

В этом и состоит эффект стабилизации неустойчивости тангенциального разрыва скорости в сверхзвуковом потоке, впервые обнаруженный Ландау [3]. Однако на чем же тогда основано замечание Сыроватского [4] от отсутствии такого стабилизирующего эффекта?

3. Критика Сыроватским [4] работы Ландау [3]. Пусть задано течение вдоль оси x с тангенциальным разрывом скорости (рис. 2): $v_0 = v_x \Theta(-z)$, где Θ — единичная функция. Выбрав возмущения плотности ρ и скорости v в виде

$$\rho(x, z, t) \sim v(x, z, t) \sim \exp(ikx - \lambda |z| + \gamma t), \tag{3}$$

Ландау показал [3] отсутствие неустойчивости при условии $v_0 > v_{cr}$. Если невозмущенные плотности ϱ_0 и скорости звука c_0 считать неизменными по обе стороны от разрыва: $\rho_{01} = \rho_{02} = \rho_0$, $c_{01} = c_{02} = c_0$, то в этом простейшем случае

$$v_{\rm cr} = 2\sqrt{2}c_0. \tag{4}$$

Как видно из (3), волновой вектор \mathbf{k} выбран в [3] вдоль оси x, $k = k_x$. Десятью годами позже Сыроватский [4], решая аналогичную задачу относительно общего класса возмущений $\mathbf{k} = \{k_x, k_y\} = \{k \cos \theta, k \sin \theta\}$, обнаружил наличие неустойчивости при любом v_0 . Полагая $\rho_{01} = \rho_{02} = \rho_0$, $c_{01} = c_{02} = c_0$, задача об устойчивости тангенциального разрыва скорости сжимаемой жидкости относительно произвольных розмущений может быть орегания у стотичиствания произвольных розмущений может быть орегания у стотической произвольных розмущений может быть орегания у стотической произвольного произвольных розмущений может быть орегания у стотичения произвольных розмущений может быть орегания и стотичения произвольных разрачения предостания произвольных разрачения произвольных разрачения произвольных разрачения произвольных разрачения произвольных разрачения предостания предостания

вольных возмущений может быть сведена к следующему дисперсионному уравнению (временная зависимость выбрана в виде $\sim \exp(-i\omega t)$):

$$k^{2}c_{0}^{2}\left[\frac{1}{(\omega-kv_{0})^{4}}-\frac{1}{\omega^{4}}\right]=\frac{1}{(\omega-kv_{0})^{2}}-\frac{1}{\omega^{2}}.$$
 (5)

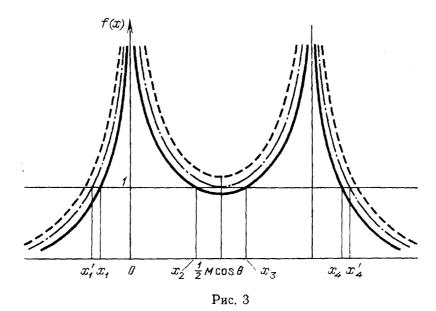
Сокращая на общий множитель, имеющий только вещественный корень $\omega = -kv/2$, приходим к уравнению

$$f(x) = 1, (6)$$

где

$$f(x) \equiv \frac{1}{(x - \operatorname{Ma}\cos\theta)^2} + \frac{1}{x^2}, \quad x \equiv \frac{\omega}{kc_0}, \operatorname{Ma} \equiv \frac{v_0}{c_0},$$

которое отличается от уравнения Ландау [3] наличием $\cos \theta$ [4]. Уравнение (6) имеет 4 корня. Все они действительны, если функция f(x) аналогична изображенной на рис. 3 сплошной линией. Если же f(x) аналогична изображенной на рис. 3 пунктиром, то уравнение (6) имеет



только два действительных корня. Следовательно, два других — комплексно сопряженные, один из которых описывает неустойчивость. Мажорантная кривая изображена на рис. 3 штрих-пунктирной линией. В этом случае также имеем все действительные корни: x_1 , x_4 , $x_2 = x_3 = (1/2)$ Ма $\cos \theta$, два из которых кратные. Критическое число Маха, Ма_{сг}, находится из уравнения f((1/2)) Ма $\cos \theta = 1$, определяющего точку касания мажорантной кривой с прямой f(x) = 1. Оно оказывается равным

$$\mathsf{Ma}_{\mathsf{cr}} = \frac{2\sqrt{2}}{\cos\theta} \ . \tag{7}$$

Используя выражение для $\cos\theta = k_x/|k_\perp|$, где $k_\perp \equiv (k_x^2 + k_y^2)^{1/2}$, получаем

$$Ma_{cr}^{2} = 8\left(1 + \frac{k_{y}^{2}}{k_{x}^{2}}\right). \tag{8}$$

В квазидвумерных системах таких, например, как газовые диски галактик и мелкая вода, возможны лишь «продольные» волны, $k_y/k_x \ll 1$, рассмотренные Ландау. В этом случае $\mathsf{Ma}_{\mathsf{cr}}$ (8) превращается в $\mathsf{Ma}_{\mathsf{cr}}$ Ландау [3]. Основное замечание Сыроватского сводилось к тому, что произвольные возмущения допускают рассмотрение противоположного предельного случая — «поперечных» волн, $k_y/k_x \gg 1$. Очевидно, что, например, при

$$\frac{k_y}{k_x} \to \infty$$
 (9)

стабилизация в принципе невозможна, поскольку, как следует из (8), ${\sf Ma}_{\sf cr} \to \infty^{(3)}$.

4. Модифицированный критерий стабилизации Ландау. В идеализированной постановке задачи — *тангенциальный* разрыв скорости в *трехмерном бесконечном* пространстве — условие (9) можно выполнить. Однако реальная ситуация вносит две существенные коррективы: 1) система имеет конечные пространственные размеры по всем трем измерениям; 2) тангенциальный разрыв скорости оказывается размытым на некоторую величину α .

Следствием этих условий является существование $(k_y/k_x)_{\text{max}} \equiv (k_y)_{\text{max}} / (k_x)_{\text{min}}$. Действительно, $(k_x)_{\text{min}} \sim 1/L$, где L— размер системы по x; $(k_y)_{\text{max}} \sim 1/a$, что следует из необходимого условия существования неустойчивости потока с неоднородным профилем скорости, $k_y a < 1$ [11].

Итак, неустойчивость «тангенциального разрыва» скорости в реальных условиях оказывается подавленной при условии

$$Ma > Ma_{cr} \equiv 2 \left[2 \left(1 + \frac{L^2}{a^2} \right) \right]^{1/2}$$
 (10)

Обычно на практике $L^2/a^2\gg 1^{(4)}$, в этом случае $\mathsf{Ma}_{\mathsf{rc}}$ из (10) превосходит $\mathsf{Ma}_{\mathsf{crL}}$ (Ландау) в L/a раз:

$$Ma_{cr} \approx \frac{L}{a} Ma_{crL}.$$
 (11)

Запишем теперь условие «сносовости» возмущений

$$\frac{1}{\gamma_{\text{max}}} \gg \frac{L}{v}$$
, (12)

где $\gamma \equiv \text{Im } \omega$ — инкремент неустойчивости тангенциального разрыва скорости. Смысл критерия (12) состоит в том, что за время прохождения любой области газа вдоль системы длиной L со скоростью v возмущения в этой области не успеют вырасти — неустойчивость при выполнении условия (12) можно считать отсутствующей. Согласно [10] $\gamma_{\text{max}} \approx 0.5 \ (k_x)_{\text{max}} \cdot c \approx 0.5 \ c/a$, что при подстановке в (12) дает

$$Ma \gg 0.18 Ma_{cr}. \tag{13}$$

Таким образом, выполнение условия (10) практически означает и выполнение условия (13).

Течение с разрывом скорости, характеризующееся числом Маха $Ma > Ma_{cr}$ является устойчивым, если размер течения удовлетворяет **УСЛОВИЮ**

$$L < a \left(\frac{\mathsf{Ma}^2}{8} - 1 \right)^{1/2} \approx \frac{a \, \mathsf{Ma}}{2 \, \sqrt{2}} \quad \text{при } \mathsf{Ma}^2 \gg 8.$$
 (14)

Итак, неравенство (10) определяет *мсдифицированный* критерий стабилизации Ландау неустойчивости тангенциального разрыва скорости в реальной трехмерной системе. Продольный (вдоль скорости течения) размер устойчивой трехмерной системы определяется при этом из формулы (14).

ПРИМЕЧАНИЯ К ТЕКСТУ

1 Содержание данной заметки было изложено ее автором в конце 1983 г. на семинаре Астрономического совета АН СССР, посвященном 75-летию со дня рождения Л. Д. Ландау. Присутствующий там Е. М. Лифшиц предложил написать на эту тему статью с тем, чтобы можно было внести небольшие коррективы в будущие издания [1] и [2]. Последовавшие затем болезнь и смерть Е. М. Лифшица сделали проблематичной актуальность такой заметки, и лишь положительная реакция недавнего семинара В. Л. Гинзбурга на изложенные здесь замечания показала, что, возможно, они будут небезынтересны для читателей «УФН».

² Пояснение, почему в слабо сжимаемом газе, **Ма** ≪ 1, следует считать $\gamma > 1$

 $(\alpha > 0)$, видимо, не требуется.

³ Заметим, однако, что при $k_y/k_x \rightarrow \infty$ инкремент неустойчивости $\gamma \rightarrow 0$ [10]. Ниже будет показано, что учет нарастания возмущений в сносовых потоках практически не меняет критерия стабилизации, основанного на формуле (8).

4 Для трехмерных течений, ибо в случае двумерных течений, как отмечалось

выше, мы получаем критерий Ландау.

СПИСОК ЛИТЕРАТУРЫ

1. Ландау Л. Д. Собрание трудов. Т. 1, 2.— М.: Наука, 1969. 2. Ландау Л. Д., Лифшиц Е. М. Гидродинамика,— М.: Наука, 1986. 3. Ландау Л. Д.//ДАН СССР, **1944. Т. 44. С. 151.** 4. Сыроватский С. И.//ЖЭТФ. **1954. Т. 27. С. 121.** 5. Ландау Л. Д., Лифшиц Е. М. Механика сплошных сред.— М.: Гостехиздат, 1953,

6. Базденков С. В., Погуце О. П.//Письма. ЖЭТФ. 1983. Т. 37. С. 317. 7. Антипов С. В., Незлин М. В., Родионов В. К., Снежкин Е. Н., Трубников А. С.// Письма ЖЭТФ. 1983. Т. 37. С. 319. 8. Фридман А. М.//ЖЭТФ. 1990. Т. 98. С. 1121.

9. Лойцянский Л. Г. Механика жидкости и газа.— М.: Наука, 1973.

- 10. Морозов А. Г., Файнштейн В. Г., Фридман А. М.//ДАН СССР. 1976. Т. 228. С. 1072. 11. Михайловский А. Б.//Теория плазменных неустойчивостей. Т 2 М.: Атомиздат, 1977.— С. 31.