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"Order in chaos" is not an abstraction. It is a characteristic of real disordered processes and can be
formulated quantitatively. In application to turbulence the term "order in chaos" means the
existence of localized metastable states—structures. In this review experiments demonstrating
that the nonlinear dynamics of these structures can be both regular and chaotic are discussed.
Models on the basis of which it is possible to construct a theory of spatial-temporal chaos in an
ensemble of structures and thereby to discuss turbulence with small and moderate values of the
critical parameter (relative Reynolds number) are studied.

1. INTRODUCTION

The question of what state of a nonequilibrium medium
or field is realized when the threshold of stability of the tri-
vial equilibrium is exceeded by a finite amount is interesting
for different fields of physics. Even recently it was believed
that either completely ordered or completely disordered
(turbulent) states of a field are typically established. In the
first case different elementary excitations self-coordinate
with one another in the process of nonlinear interaction and
as a result a regular (in space and time) nontrivial forma-
tion—a structure which is stable in a finite region of param-
eters—arises. In the second case any definite combination of
elementary excitations is unstable and spatial-temporal dis-
order—turbulence—is established.

Although physicists have always been interested in the
problem of the relationship between chaos and order the the-
ory of nonlinear structures (self-organization) and the theo-
ry of turbulence until recently largely coexisted indepen-
dently of one another. The remarkable progress made in
nonlinear dynamics and fundamentally new approaches to
experimental studies of turbulence have made it possible
only in the last few years to come close to understanding the
problem of the interrelationship of structures and turbu-
lence. It has been found that ordered structures exist even
very far above threshold, when everything points to the for-
mation of disorder. These ordered structures are often local-
ized in space and they can be regarded as concentrated ob-
jects—particles. In analyzing the interaction of localized
structures one necessarily encounters an important general-
physical problem, in some sense opposite to the traditional
problem. For example, in the quantum theory of fields parti-
cles and forces are unified, i.e., they are described on the
same footing; here, however, localized states—structures—
and the forces acting on them must be set apart on the basis
of the nonlinear field equations. The transfer from contin-
uous equations to discrete equations (for localized struc-
tures or their ensembles) is possible in those cases when the
fields of individual structures decay rapidly enough from the
center toward the periphery. The existence of a small param-
eter, equal to the ratio of the fields of the rth andy'th struc-
tures in the region of the maximum of the field of the /th
structure, makes it possible to apply the asymptotic method
and to derive equations describing the dynamics of individ-
ual structures which are coupled with one another by a weak
interaction.

This paper is devoted to the problem of structures in
turbulence. It will be shown that real turbulence can often be
regarded as the chaotic dynamics of nonlinearly interacting
structures; moreover, the more developed chaotic dynamics,
i.e., motion on a stochastic set of higher dimension, corre-
sponds to more strongly developed turbulence. Although
many of the results of the qualitative theory of turbulence
which are presented below are common to fields of different
nature the main attention is devoted to hydrodynamic flows,
since it is precisely for these flows that, thanks to the excep-
tional possibilities of the method of visualization, inspiring
experiments illustrating the existence of structures not only
near a transition but also in developed turbulence have been
performed.

2. THE DIVERSITY AND UNIVERSALITY OF STRUCTURES

Structures form in hydrodynamic flows as the result of
the development of a hierarchy of instabilities as the critical
parameter (the relative Reynolds number, Rayleigh's num-
ber, etc.) increases. In the process both the scales of the
structures and their spatial and temporal symmetry change.
In spite of the enormous diversity of structures and paths by
which simple structures can transform into more complicat-
ed structures the existing experimental and theoretical (pre-
dominantly numerical) results make it possible to discern a
general pattern.

2.1. Restructuring of the spatial symmetry of a flow. Rayleigh-
Benard thermal convection

When the uniform state of simple flows, such as, in par-
ticular, thermal convection and Taylor-Couette flow be-
tween rotating cylinders, becomes unstable spontaneously,
i.e., without an external forcing, ordered structures in the
form of different types of lattices appear (a honeycomb or
chain of rolls accompanying thermal convection; Taylor
vortices in the flow between rotating cylinders; square lat-
tices of Faraday ripples in a layer of liquid on a vibrating
substrate, etc.). As the degree of nonequilibrium of the me-
dium increases further the regular lattices become more
complicated (also spontaneously). For thermal convection
under conditions of small Rayleigh numbers this increase in
complexity is often unrelated with the change in the tempo-
ral dynamics and is manifested as a change in only the spatial
symmetry of the flow. Although the scenarios of the destruc-
tion and change in the spatial symmetry of different flows
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are extremely diverse we can try to identify the two most
typical ones. The first scenario is related with the increase in
the complexity of individual structures as the critical param-
eter increases and with the development of a secondary in-
stability; the second scenario is connected with the appear-
ance of dislocations in an ordered lattice of structures. We
shall discuss these scenarios for the example of thermal
convection.

Thermal convection in a thin layer of liquid heated from
below is described by the equations of hydrodynamics and
heat conduction in the Boussinesq approximation (see, for
example, Ref. 1):

= - + 9z + V«u.Pr-i L
I, dt

dt

with the boundary conditions at z = ±1/2

in the case of solid boundaries and

(2.1)

(2.2)

(2.3)

in the case of free boundaries; here z is a unit vector directed
opposite of the force of gravity; u is the velocity vector; p is
the pressure; and, 9 is the deviation of the temperature from
the equilibrium value. The Rayleigh number
Ra = yg( T2 - Tl )d

 3/vx and the Prandtl number Pr = v/x
depend on the kinematic viscosity v and the thermal conduc-
tivity x\ y is the thermal expansion coefficient; and, g is the
acceleration of gravity. The thickness of the layer d, the heat
diffusion time d 2/x, and the temperature difference T2 — Tt,
where T2 and T} are the average temperatures at the bottom
and top boundaries, are chosen as the length, time, and tem-
perature scales, respectively.

One can see from Eqs. (2. 1 )-(2.3) that the conditions
for instability of static equilibrium u = 0, determined from
the linearized system, depend solely on the Rayleigh num-
ber. At a small distance above the threshold of stability Rac

(Rac = 1707.76 in the case of solid boundaries and
Rac =;657 in the case of free boundaries) for an unbounded
layer there exists an infinite number of stationary solutions
which are periodic in space.2"4 Analysis (including also nu-
merical) of the system of equations (2.1)-(2.3) shows that
in the case when the critical parameter e = Ra/Rac — 1 is
small only solutions corresponding to a periodic chain of
parallel two-dimensional rolls with the characteristic spatial
period A = 2ir/k ~ d can be stable.

The problem of determining the stability of one or an-
other nontrivial regime of thermal convection, requiring an
analysis of the behavior of secondary excitations (develop-
ing on the background formed by the starting excitations ) , is
extremely unwieldy. It reduces to finding the spectrum of
the eigenvalues of an inhomogeneous boundary-value prob-
lem with variable coefficients and can be solved analytically
in only rare cases. We shall not dwell on this question in
detail; we shall present only some results that demonstrate
the diversity of structures which arise on the background of
the starting convective rolls as the critical parameter in-
creases.

Ra-ffl

0,025

FIG. I. The surface I determining the values of the parameters Ra, Pr,
and k for which the convective rolls become unstable; the heavy lines show
the intersection of the surface 2. with the planes Pr = const (see Ref. I ) .

Figure I (see Ref. I ) shows the boundary 2 of the re-
gion of stability of two-dimensional rolls which was con-
structed using numerical methods. As the critical parameter
E = Ra/Rac — I is increased in the case of large Prandtl
numbers two basic types of secondary instabilities can be
identified. Near the part I of the surface 2 the two-dimen-
sional structure of the flow becomes unstable with respect to
disturbances of the type oblique rolls. In the experiment of
Ref. 5 these secondary rolls are established at angles of
± 40° with respect to the starting rolls (zigzag instability).

The development of this instability leads to the formation of
new stationary structures, which look like sinusoidally de-
formed primary rolls. An instability of the cross-roll type
appears near the other part 2 of the surface 2.6

For lower Prandtl numbers (near the part 3 of the sur-
face 2) an instability of the type varicose expansions be-
comes important.6'7 On the top part 4 of the surface 2 this
instability, like the cross-roll instability, transforms into a
knot instability, engendering more complicated structures.
For low Prandtl numbers (Pr < 1.1 for rigid and Pr < 3.5 for
free boundaries) a purely two-dimensional mechanism of
instability appears on the bottom part of the surface 2—two
two-dimensional disturbances grow simultaneously; the
wave number for one of them is much larger than and the
wave number for the other is much smaller than for the start-
ing rolls (Eckhaus instability8'10-"; see the list of remarks
appended to the end of the paper). Finally, near the part 5 of
the surface 2 there occurs a transition to structures which
oscillate in time (oscillatory instability) with wavy trans-
verse motions of the walls.12-13 For large Prandtl numbers
the transition to the oscillatory instability is observed only
after purely three-dimensional structures have formed.

The second path by which the symmetry of flows can
change spontaneously as the critical parameter increases is
connected not with individual structures forming a lattice
becoming more complicated but rather with the appearance
of defects in the lattice. There is a deep analogy between the
studied defects arising in the structures of nonlinear fields
and defects in condensed media (crystals, magnets, etc.)—
the properties and symmetry of the defects are determined
primarily by the properties of the lattice.I4> l5 Although such
defects appear spontaneously as a result of the development
of instability as the critical parameter increases, in order to
create or destroy them in a steady-state flow a finite forcing
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FIG. 2. The regimes of flow between independently rotating cylinders. 1—
Couette flow; 2-Taylor vortex flow; 3-azimuthal waves on Taylor vorti-
ces; 4~modulated azimuthal waves on Taylor vortices; 5-turbulent Taylor
vortices; 6-spiral Taylor vortices; 7-interpenetrating spirals; 8-wavy
spirals; 9-spiral turbulence (the structures 10-12 are described in Ref.
19).
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must be applied, '6 i.e., defects are stable formations and they
can be regarded as independent structures (this will be dis-
cussed below).

2.2. Increase in the complexity of the temporal dynamics-
appearance of oscillations and "temporal chaos." Taylor
vortices

The appearance of nontrivial temporal behavior in dif-
ferent flows happens either as a result of a change in the
intrinsic dynamics of individual structures or owing to the
appearance of collective excitations in the ensemble of struc-
tures. In the process complex behavior and even chaotic dy-
namics can appear in spatially ordered flows without a
change of the flow structure. It is obvious that transitions
from simple to complicated dynamics in which the spatial
structure is preserved are in no way different from the well-
known bifurcations in systems with lumped parameters and
the results of the theory of finite-dimensional dynamical sys-
tems are valid for them unconditionally (see, for example,
Refs. 17 and 18). In particular, this pertains to the dynamics
of the azimuthal modes on Taylor vortices in flow between
rotating cylinders.

The diagram in Fig. 2, 19 constructed based on experi-
mental data for a fixed value of the Reynolds number
Re0 — b(b~a) flt)/v of the outer cylinder and a slow (qua-
sistatic) increase of the Reynolds number of the inner cylin-
der Re = a(b — a ) f l / v , illustrates the diversity of struc-
tures arising in such a flow. Here b = 59.46 mm anda = 52.5
mm are the radii while f l 0 and ft are the angular rotational
velocities of the outer and inner cylinders, respectively (the
length of the cylinders L~30(b — a); the covers at the ends
of the cylinders rotate together with the outer cylinder).

If the cylinders rotate in the same direction, then Taylor
vortices form after the Couette flow becomes unstable (re-
gion 2 in Fig. 2); as Re is further increased these vortices in
their turn become unstable. However even significantly
above their threshold of stability the Taylor vortices are not
completely destroyed—disturbances in the form of azi-
muthal waves arise on them (the regions 3, 10, 11, and 12).
For low rotational velocities of the outer cylinder (Re0 < 40,
region 3) these disturbances look like periodic (as a function
of the azimuthal angle) inflections of the Taylor vortices. As
Re is increased (region 4) periodic modulation appears in

the azimuthal waves, and two independent frequencies and
their combinations can be seen in the spectrum. The repre-
sentation of such a flow in the phase space of the equivalent
dynamical system is an open winding on a two-dimensional
torus. It is well known20'21 that as the critical parameter is
increased the appearance of new frequencies and the decom-
position of the ^-dimensional torus for ./V>3 can result in the
appearance of a strange attractor—a transition to chaos
through quasiperiodicity. This process is in fact observed
under certain conditions (region 5) in a Taylor-Couette
flow—previously excited azimuthal waves on Taylor vorti-
ces become stochastic, though in the process new spatial
modes are not excited.22 Even significantly above the thresh-
old of stochastization the flow retains the distinct structure
of Taylor vortices with azimuthal modes excited on them.22

2.3. Turbulent spots. Plane Poiseuille flow

Together with staged transitions, associated with a
successive increase in the number of excited degrees of free-
dom, flows of other type—sharper transitions, directly
transferring the flow from a stationary (or even static) state
into a chaotic state in time together with a significant in-
crease in the complexity of the spatial structure—are also
encountered (see, for example, Ref. 23). Such transitions
with formation of solitary turbulent structures are charac-
teristic for strictly parallel flows, for example, planar Poi-
seuille flow.

The planar Poiseuille flow (in which the longitudinal
component of the average velocity cross the channel
U=U0[l- ( z 2 / h 2 ) } , h being the half-width of the chan-
nel) becomes unstable at Re = Rec, = 5772 with respect to
an infinitesimal disturbance (see Refs. 24 and 25). With re-
spect to two-dimensional finite-amplitude waves, however,
the flow is also unstable for Re < Rec (subcritical instabil-
ity).25 These waves, in their turn, are unstable with respect
to three-dimensional infinitesimal disturbances.2' More-
over, numerical25 and physical26 experiments show that the
instability with respect to three-dimensional disturbances
also remains for two-dimensional waves for Reynolds
numbers such that the flows are decaying (for
700 5 Re S 2900). Since the characteristic decay times of a
two-dimensional wave are longer than the growth times of
three-dimensional disturbances there is enough time for
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them to build up before the primary wave decays. As the
experiments of Ref. 27 show, this cascade is then repeated,
and because of the nonuniformity of the initial disturbances
and the amplitude dependence of the threshold for small
values of Re solitary turbulent spots, surrounded by laminar
flow, usually appear.

Although the turbulent spots in a planar Poiseuille flow
are not identical and change with time they are character-
ized by universal properties associated with the manifesta-
tion of their characteristic dynamics. Figure 3 shows a sche-
matic diagram of a turbulent spot and a photograph of this
spot, which were obtained with visualization of the flow.27

For Re = 840-1500 turbulent spots have the form of a trian-
gular wing with a flare angle of 15-20°, and as they are car-
ried downstream they grow in size. A turbulent vortex mo-
tion arises inside the spot; this motion can be regarded as
resulting from the strong interaction of oblique waves. At
the boundary of the spot waves are emitted into the laminar
region of the flow. Initially these waves are quite regular, but
then because of the secondary instability they decay, thus
leading to growth of the turbulent nucleus. For smaller
Reynolds numbers (Re < 840) there is not enough time for
fully developed turbulent spots to form—they are trans-
formed into longitudinal vortex structures which decay with
time. An increase in the critical parameter results first in an
increase in the number of randomly distributed turbulent
spots and then (for Re > 1500) in the entire flow becoming
turbulent. The transition to turbulence occurs in a similar
manner (i.e., through turbulent structures—spots) in
planar Couette flow and in axisymmetric Poiseuille flows
(see, for example, Ref. 28).

2.4. Small-scale structures. Boundary layer

The small-scale turbulence,-arising as a result of a se-
quential cascade of a large number of spatial and temporal
bifurcations, ultimately turns out to be structurally so com-
plicated that, strictly speaking, it becomes impractical to
represent it in the form of an ensemble of structures (espe-
cially since the number of different types of structures also
increases at the same time). It turns out, however, that in
strongly nonuniform and anisotropic flows such as, for ex-
ample, two-dimensional boundary and free shear layers, cas-
cade-free generation of small-scale structures is possible (as
a result of a small number of bifurcations). In this case their
symmetry is substantially affected by the dynamical and
kinematic restrictions connected with the geometry of the
flow, and such structures turn out to be comparatively sim-
ple and easily identifiable in an experiment. Examples of
such structures are: a small groove on Taylor vortices, which
arises near the wall of the outer cylinder in Taylor-Couette
flow;'9 longitudinal vortices in shear flows generated near
saddle points of the velocity field of large-scale struc-
tures;29'34 ripples and "horse shoes" on spiral vortices in
flow past rotating bodies;35'39 etc.

To understand the nature of turbulence it is essential
that such structures persist not only near a transition but
also in fully developed turbulent flow. From this viewpoint
the structure of a turbulent boundary layer is instructive-a
significant part of its three-dimensional vorticity is concen-
trated in "spoke-like" vortices, which accumulate down-
stream at an angle of about 45°, are carried off by the flow
with approximately the same velocity, and interact compar-
atively weakly with one another.40 The transverse dimen-

FIG. 3. Schematic diagram (a) and visualization (b) of a turbulent spot
in a planar Poiseuille flow. Re = 103, x/h = 64. a) 1-Spreading half-an-
gle; 2-spanwise tips; 3-streaks consisting of structures oriented in the
longitudinal direction; 4-region of small-scale turbulence; 5-spot leading
edge; 6-spot front; 7-waves receding from the spot; 8-excitations on re-
ceding waves (see Ref. 27).
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FIG. 4. Horseshoe-shaped vortex, forming in the transitional region of the
boundary layer on a flat plate. The angle of inclination of the horseshoe
tf =;45°, the width of the horseshoe h~ (50-60)v/Ur, the length of the
vortex along the flow L ~ 103 v/ UT, the diameter of the vortex at the base
rf, ;= (30-40) v/UT, and the diameter of the vortex at the top of the horse-
shoe rf2=; (10-40) v/V, (see Ref. 41).

sions of such vortices41 ~ (10-100)v/J7T are much smaller
than the thickness of the boundary layer S ~ l03v/UT, where

dU

is the friction velocity, which depends on the tangential
stresses at the wall y = 0 (Fig. 4). The model of a boundary
layer in the form of a statistical ensemble of such structures
gives a correct overall description of the relationship be-
tween the form of the average velocity profile, the distribu-
tion of the turbulence intensity, and the turbulence spec-
tra.42

Although the mechanisms of formation of spoke-like
vortices have not yet been completely studied it nonetheless
follows from analysis of experiments43^5 that the appear-
ance of such vortices is indeed preceded by a small number of
bifurcations. Downstream the following occur in succes-
sion:3' instability of the boundary layer and development of
two-dimensional waves; appearance of three-dimensionality
on the background of these waves and generation of longitu-
dinal vorticity near the critical layer (see Ref. 46); removal
of low-velocity liquid and formation of thin three-dimen-
sional shear layers; and, development of nonviscous instabil-
ity of the three-dimensional shear flow accompanied by for-
mation of a horseshoe-shaped vortex and its subsequent
stretching in the field of the deforming velocity of the large-
scale flow.

2.5. Secondary structures. Shear flows

Here we shall demonstrate using the example of shear
flows that large-scale coherent formations can exist in a sta-
ble fashion in a nonstationary nonuniform medium also, in
particular, in a turbulent shear flow. This situation is typical
for hydrodynamics, if the characteristic scales L of instabil-
ity are much greater than the scales / of the background
turbulence of the flow (1<£L).

The experimentally realizable shear layers usually de-
velop in space—along the flow behind a plate separating two
flows with different velocities. If the shear layer was formed
by merging of laminar flows, then for sufficiently large
Reynolds numbers the characteristic times of the nonviscous

instability are much shorter than the viscous diffusion times,
and for this reason quasistationary structures—a chain of
two-dimensional vortices—form first (under the influence
of the nondissipative mechanism of stabilization of the insta-
bility). Turbulence in the incident flow does not affect the
character of the process—it merely introduces a small cor-
rection to the increment of the nonviscous instability and
turbulent diffusion; this can be observed only at large dis-
tances downstream. However the processes determined by
the dynamics of the large-scale structures become important
much earlier—the chain of turbulent vortices formed at the
starting stage is in its turn unstable with respect to perturba-
tions with longer wavelength, equal primarily to twice the
spatial period (see Ref. 47). The development of this insta-
bility farther downstream leads to merging (predominantly
pairwise) of primary structures and formation of a new
chain, etc. Amplification of three-dimensional distur-
bances—a competing process which could destroy the two-
dimensional structures— is suppressed owing to such merg-
ings.48~50 For this reason, even when the incident flow or the
boundary layer on the plate separating flows are made artifi-
cially turbulent or when a device generating three-dimen-
sional vortices is placed on the plate the degree of two-di-
mensionality of the large-scale structures increases after the
first several mergings, i.e., downstream.50 As a result large-
scale coherent structures (i.e., structures which are dynami-
cally stable with respect to the action of small-scale turbu-
lence) are observed in shear layers at all distances
downstream for which laboratory measurements have now
been performed, right up to x = 50006*=;3 m (see Ref. 15),
where 6 is the momentum thickness of the shear layer near
the edge of the plate.

In the other limiting case, when the increments of insta-
bility of the mean flow are small or the flow, generally speak-
ing, is stable the existence of small-scale structures or small-
scale turbulence can play a qualitatively different role. In
particular, analysis52'61 of the solutions of the Navier-Stokes
equations

L + u Vu = — -
dt p

Vu = 0

f (r). (2.4)

(2.5)

with the external force f ( r ) , giving a stationary small-scale
flow which is periodic in space, shows that large-scale struc-
tures can form spontaneously as a result of the development
of the long-wavelength instability, owing precisely to the mi-
crostructure of the flow.

The transfer of energy from small scales (which, as a
rule, are three-dimensional) to larger scales, as follows from
a linear analysis of the stability of structured flows,57'61 re-
quires that such flows be quite strongly anisotropic. Numeri-
cal calculations59 show that in the process the formation of
large-scale structures once again results in the destruction of
the starting symmetry of the flow, and the energy in the
large-scale secondary flow resides predominantly in the ve-
locity components which have in the primary flow the high-
est energy. Aside from the anisotropy, spirality of the small-
scale turbulence and weak compressibility also can affect the
reverse cascade of energy transfer.5I'56

Of course, in real experiments it is difficult to separate
the mechanisms of formation of secondary structures asso-
ciated directly with small-scale turbulence and with the in-
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stability of the average temperature, velocity, etc. profile.
Nonetheless the fact that small-scale turbulence can have a
nontrivial effect on secondary structures can be confirmed in
some flows. Thus in the case of developed turbulent convec-
tion with Ra~107 the mechanism of formation of almost
stationary structures, reminiscent of hexagonal cells, is ap-
parently substantially different from the mechanism of for-
mation of such cells in the absence of small-scale struc-
tures—now there is no preference for cold or hot liquid at the
center of the cell, and cells of both types can usually be found
in different parts of the layer.62 Other well-known examples
of large-scale secondary structures are turbulent Taylor vor-
tices, which are observed right up to R~ 108 (see Refs. 63
and 64), and large-scale drift flows in thermal convec-
tion.65'66

2.6. Generalized Ginzburg-Landau equation

Experiments show that flow restructuring which re-
sults in the formation and transformation of structures very
often occurs with very low values of the critical parameter e.
Therefore the increments of the spatial disturbances deter-
mining the formation of structures are small. In addition, as
e increases the flow becomes more complicated, usually as a
result of successive transformations-bifurcations with
£ = £, ( /= 1,2,...). This means that Landau's scheme can be
employed to construct the theory of formation of structures
at the first stage.67 For example, if after the first bifurca-
tion the flow field can be represented in the form u ( r , t )
= A ( t ) f ( r ) exp (icot) (the spatial structure of the field /(r),

determined by the geometry of the problem, is fixed), Lan-
dau's equation24'67 is obtained for A (t):

d I A !2 _ o

main wave vector of the packet k0 in the horizontal (x, y)
plane]. The starting problem will be the problem of linear
stability

At
|2 — l\A\l. (2.6)

Here the increment y is determined from the linear approxi-
mation, while / is Landau's constant, which for / > 0 charac-
terizes the nonlinear stabilization in the lowest order of per-
turbation theory.

In unbounded flows the spatial spectrum of the growing
disturbances is obviously continuous, and for this reason for
any small excess above the threshold of stability the spatial
structure of the flow should be determined from the solution
of the nonlinear problem. At a finite excess above the thresh-
old of stability this is also valid for bounded but quite ex-
tended flows. For such flows quite accurate models based on
the asymptotic analysis of the starting equations (2.1)-
(2.3) or (2.4) and (2.5) can be constructed only with some
restrictions on the spatial structure of the velocity field.

In models of flow which have been studied in greatest
detail up to now the change in the velocity (temperature)
along one of the coordinates z is given ( ~£(z)), while in the
(x, y) plane normal to the z axis it is determined by a narrow
packet of modes, for example, describing the slightly curved
rolls in Rayleigh-Benard convection, quasi-two-dimension-
al Tollmien-Schlichting waves in a boundary layer, etc. With
these restrictions a slow envelope field A (x, y, t) will be de-
scribed by a quite general model-the two-dimensional ana-
log of the complex Ginzburg-Landau equation (GL) (see,
for example, Refs. 68 and 69). We shall briefly discuss the
derivation of this equation for the case when the conditions
for rotational symmetry are satisfied in the linear approxi-
mation [at least for small angles of rotation relative to the

whose solution can be written in the form

Ui (x, y, t) = u,-.o exp (;kr + yt — iat).

where

L (v (k, Re) — MO (k, Re); k2; Re} = 0,

The curve y(k,Re) = 0 is the curve of neutral stability, the
minimum value Re = Rec on which determines the mode
k = kc excited by the first mode when the flow becomes un-
stable. The packet of modes centered at k0 = kc [for defi-
niteness kc = (kc,0] with Re = Rec (1 + e) close to
Rec (5-^1) can be approximated by the following expression
(for one component of the velocity field):

u (x, y, t) = nl!2A (X, Y, T) exp [i (kcx — o>c/)l

4- eu2 -1- fa!*u3 + . . .

Here the envelope A is a slowly varying function of space and
time: X = el/2x, Y=e^y, T=el/2t. The substitution of
this solution into the starting nonlinear equations generates
a system for the perturbed field ~el/2A(X,Y,T) and correc-
tions to it ~£n/2. The generalized Ginzburg-Landau equa-
tion (GL) for the function A (X, Y,T) follows from the con-
dition that the derived system be solvable:

dA dA

dx
(2.7)

where co'c is the group velocity of the packet along the .x-axis,
CD" and ci)'c/kc characterize the diffusion spreading of the
packet, y" is a negative constant determining the decrease in
the increments when the wave numbers k deviate from the
wave number kc of the most unstable mode, whose incre-
ment is equal to y; and, / = lr + il, is the complex Landau
constant, characterizing saturation and nonlinear modula-
tion of the wave.

In spite of the fact that the generalized GL equation was
derived for a flow forming near the first bifurcation-instabil-
ity of the stationary flow, it is also useful for studying subse-
quent transitions, if in the process the amplitudes of the dis-
turbances remain small. In a number of cases (for example,
in binary mixtures and liquid crystals) the complex proper-
ties of the flows are already manifested for small values off,
and the "slow" equations obtained can even be used to de-
scribe the transition to turbulence.

2.7. Autostructures. Discrete analog of the Ginzburg-Landau
equations.

For all their diversity hydrodynamic structures—spa-
tial-temporal formations in continuous media—can natu-
rally be divided into three groups by making use of the analo-
gy with oscillations in lumped systems. It is well known that
oscillations can be divided into free, forced, and self-excited
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oscillations. The free structures are, for example, vortices in
shear flows of an ideal liquid (i.e.,asRe-> oo ); an example of
forced structures are rolls in Rayleigh-Benard convection,
whose shape is identical to that of the boundary of the cylin-
drical container with small diameter (see Ref. 70), or more
complicated vortex formations which form under conditions
of flow over shallow depressions on a smooth surface.71 Au-
tostructures are a much less trivial object; these objects are
localized spatial formations which are stable in dissipative
and nonequilibrium media and do not depend (within finite
limits) on the boundary or initial conditions.72 In the same
way that self-excited oscillations can have as generating so-
lutions a family of conservative (free) oscillations, among
which the introduced small dissipation and pumping of ener-
gy only select a definite motion while preserving its form,
autostructures in weakly nonequilibrium media can inherit
the properties of free structures in nonviscous flows. Exam-
ples of such quasiconservative structures are well known: for
example, self-maintained solitons, in particular, Rossby soli-
tons, of which the great red spot on Jupiter could be an ex-
ample.73'74 We stress, however, that in most hydrodynamic
experiments one does not observe individual structures, but
rather an ensemble of structures (chains of Taylor vortices,
lattices of hexagonal or rectangular cells, etc.), and the pres-
ence of neighbors is of fundamental importance for their for-
mation and dynamics. Such flows can in many cases none-
theless be regarded as ensembles of coupled autostructures
(see below). At the same time it is natural to regard defects
in such ensembles-lattices of structures-as secondary autos-
tructures.

To elucidate the mechanism responsible for the cre-
ation of convective autostructures we shall study the follow-
ing two-dimensional model:

— = [(V - a) - (1 + V2)2] « + P«2 - U3,
dt

— = v — to3 + du + D?2u.
at

(2.8)

(2.9)

It can be shown75 that for small values of/?( /?< 1) this
system admits stationary solutions in the form of disks,
whose characteristic sizes and steady-state intensity are de-
termined solely by the parameters in the equations and do
not depend on the boundary and initial conditions. The
number and mutual arrangement of autostructures is deter-
mined by the initial conditions, but the distance between
them cannot be less than Lc, which corresponds to the char-
acteristic size of the region which adjoins the autostructure
and where the field u becomes negative (Fig. 5). In the gen-
eral case ( /3~ 1) other nontrivial structures can also form;
this is determined by the diversity of initial excitations,
which serve as a seed for subsequent nonlinear growth and
formation of autostructures. The simplest nontrivial struc-
tures with a center of symmetry are polyhedra. They are
engendered by two modes of a circular membrane-radial
and azimuthal.

One can see from Fig. 5 that in the autostructures
formed the effect of the field v on the field u reduces to creat-
ing a profile of the degree of nonequilibrium of the medium
[the terms ~u in Eq. (2.8) ]. On the other hand, numerical
modeling75 and experiments on thermal convection with
nonuniform heating76 show that stable autostructures also
form in the case where the field v(x, y) is not self-consistent,

FIG. 5. The distribution of the field in localized structures described by
the model (2.8) and (2.9) with/?= 0.9, y = 4,5 = 0.15, and-D = 0.3 (see
Ref. 75).

but rather is fixed externally. In this case subtle details of the
field v(x, y) have virtually no eifect on the topology of such
structures.

To describe analytically the weakly supercritical local-
ized convective structures in a situation close to that in the
experiment with nonuniform heating76 we shall assume that
the critical parameter is a radially symmetric function

(2.10)
= e'<0, /•>/•„.

For £^1 Eqs. (1. !)-(!. 3) reduce to Eq. (2.8) in which
v — a = e ( r ) , the variable u is the deviation of the tempera-
ture Q from the equilibrium temperature, and the quadratic
term is related, for example, with the temperature depend-
ence of the capillary tension and (or) viscosity (Haken's
equation77). Making the formal assumption that the nonlin-
earity is weak [u | 2 <^ l we shall seek the solution of (2.8)-
(2. 10) in the form of a superposition of the eigenfunctions of
the problem linearized near u = 0; we represent the solution
of this problem in the form

a (r, 0 = 2 F" (r) Sin (n<f) ' eXp ('l»°'
n

where the functions F n ( r ) satisfy the conditions F n ( r ) ->0
asr-> oo and \Fn ( r ) | < oo as /--»0. The eigenfunctions .Fn (/•)
can be found by joining the solutions of Laplace's equation at
the boundary r = r0. However only those functions which
correspond to disturbances which grow in time, i.e., func-
tions with An > 0, are of interest. Outside the region where e
is positive (r > /•„) only Neumann's functions with complex
argument Kn (ikr) ( fc 2 = — 1 + iq) can satisfy this condi-
tion. Within the region r < r0 the Bessel functions with real
argument/,, (kr) satisfy this condition. The quantities q and
k must satisfy, by virtue of the fact that the An are real, the
relation An = £0— (I — k2)2 = q2>0 and are determined
from the dispersion equation

W'n(*'o) Re (ikKn (ikra))

This equation follows from the conditions of continuity of
Fn and d¥n /dr at the boundary r = r0.

We shall now assume that the parameters r0 and £0 are
such that several of the exponents An, corresponding, for
example, to axisymmetric disturbances with n = 0 and azi-
muthal disturbances with n = 3, are positive. Then
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substituting into Eq. (2.8) a solution in the form u(r,q>,t)
= A0(t)F0(r) + A3(t)F3(r)sin 3q> and making the assump-

tion that the amplitudes of the disturbances are slowly-vary-
ing functions of the conjugate system we obtain for A0 and A 3

a second-order system of equations of the following
form:78-79

• = K3A, + dlAaA3 -
at

For clrd, =£0 [i.e., in the presence of quadratic nonlinearity
in Eq. (2.8)] this system has a stable stationary solution
with A0>A3^0, to which the solitary hexagonal cell corre-
sponds. In those cases when the number of such interacting
modes exceeds two the equations for the amplitudes of these
modes can have stable motions with nontrivial (including
also chaotic) dynamics. This situation apparently describes
the regime, observed in the experiment of Ref. 6, of aperiodic
creation and vanishing of cells. Similar solutions in the form
of a solitary cell can also be obtained for a uniform but two-
component medium described by the system (2.8) and
(2.9).

The physical mechanisms lying at the basis of the spon-
taneous formation of localized structures — two- and three-
dimensional structures associated with the character of the
interaction of the components u and v and with spatial dis-
persion of the field — are quite general and can be realized in
the most diverse nonequilibrium media. Three-dimensional
stable structures are already observed on the basis of the
model (2.8) and (2.9) with V2 = d2/
dx2 + d 2/dy2 + d 2/dz2. Localized structures — particles
with different topology — have been studied with the help of
computer experiments.60 Three "elementary" structures
have been observed: sphere, torus, and "baseball" (Fig. 6a).
The orientation of elementary structures in space is arbi-
trary — it is determined solely by the initial conditions, while
the topology and dimensions are universal and do not
change when the boundary conditions and dimensions of the
region change. Stable formations in the form of coupled ele-
mentary structures — identical or different (Fig. 6b) — were
realized with appropriately chosen initial conditions. In a
definite region of starting conditions the nonlinear field
(2.8) and (2.9) admits formations which are not directly
connected with the states of the elementary structures (for
example, Fig. 6c) . Such formations are not, however, attrac-
tors (in this case — equilibrium states) of the system under
study and in the limit f-» oo they transform into coupled
states of elementary structures.

The topology and character of the interaction of local-
ized structures turned out to be virtually independent of the
concrete form of the coupling between the fields u and v. In
particular, the elementary structures shown in Figs. 6a —
sphere, torus, and "baseball" — have also been observed in a
model medium in which these fields are coupled linearly:4'

dt (2.11)
dt • • - • - ' ' - • ->" 6t)

The structures shown in Fig. 6a are observed in this medium,
for example, with e = -0.007, 0= 1, q = OA5, p = 0.1,
Z) = 0.06, and 7=4.

FIG. 6. Three-dimensional localized structures with a = 0.5, /8= 1.5,
0.05 Sfi 50.1, Y — 0-15, and D = Q.l, forming under different initial con-
ditions.80

The universality of the observed localized formations
indicates that the model equations, on the basis of which the
localized solutions that are found exist and are stable, must
follow from the most general assumptions about the charac-
ter of the fields (symmetry, uniformity, isotropy, etc.). In-
deed we shall seek the solutions in a class of gradient systems
du/dt = — SF/Su, whose energy density

admits a series expansion in powers of the field and powers of
the gradient of the field near the point of instability of the
uniform state. Assuming that the real scalar field u can be-
come unstable not only in a "soft" but also in a "hard" man-
ner and, in addition, keeping in mind that the instability can
be manifested not at the maximal but rather at finite scales,
we must retain, aside from the traditional leading order
terms in the expansion, the terms of next highest order also.
As a result we obtain

2 3 4 2

The sought equation, corresponding to (2.12), has the form
du

dt
• = — au+ pV — kl + V")2u. (2.13)

This is a generalization of the well-known Swift-Hohenberg
equation,81 which has localized solutions for a<0, /?>0,
and 7>0 (the case of soft self-excitation). However, they
are unstable and transform into periodic structures. If hard
loss of stability is characteristic for the medium (a>0,
/7>0, and 7>0), then the situation changes—in this case
isolated structures can exist.

The stability of individual autostructures, and in some
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cases also the relative autonomy of their dynamics (see, for
example, Ref. 82), permit transferring in the description of
their interaction and dynamics of ensembles from partial dif-
ferential equations for fields to ordinary or differential-dif-
ference equations for the parameters of the structures. We
call attention to the fact that for different parameters of a
nonequilibrium system the regular spatial lattice of identical
elements can be either an ensemble of weakly coupled autos-
tructures or it is simply the result of a resonance interaction
of a small number of excited media (usually harmonic). The
clearest and simplest example is the hexahedral Benard cells.
For small excess above threshold, as is well known,70 they
form owing to synchronization of the phases of three plane
waves, turned relative to one another at an angle of 60°. As
the critical parameter (and, therefore, the nonlinearity also)
increases a large number of harmonics of these waves is
created, and the lattice of hexahedra, which remains similar
to the starting lattice, now transforms into a collection of
individual hexahedra which are weakly coupled with one
another. Long-range action effects are no longer important
now. The situation here is reminiscent of the formation of a
periodic chain of solitons from a stationary sinusoidal wave
as the excitation energy increases, for example, in the
Korteweig-de Vries equation. It is natural to regard such a
chain of solitons as a discrete ensemble of weakly coupled
elements.

We shall give an example of the description of the inter-
action of coupled "elementary particles" of the type of
spheres in the model (2.8) and (2.9), where
V2 = d 2/dx2 + d 2/dy2 + d 2/dz2. Using the asymptotic
method an ordinary differential equation of the following
form can be derived for the coordinates of the centers of the
spheres TOJ (x0j,y0j, z0j):

83

dr0/ ,-, exp (ik \ r0/ — r0< |)

& "' fr'i \ ro/ — ro( I

If there are only two spheres, then according to these equa-
tions they will move along a straight line connecting their
centers until a stable equilibrium state—a bound state—is
established. For two "particles" and especially for several
particles there is an infinite number of stable bound states.
These could be regular polyhedra consisting of spheres (see

Fig. 6b), different types of lattices — periodic and "quasi-
crystalline," etc.

In the conservative system

• j | - = l(ii - a) - (1 + V»)«l u + P«2 - u3,

6«

the stable static solutions of which are identical to those
studied above, the dynamics and character of the interaction
of the "elementary particles" is much richer. In particular,
they can rotate relative to one another, forming planet-like
systems, chaotically approaching one another and moving
apart, etc.83

Although a rigorous proof of such a transition "from
fields to structures" is a quite difficult problem, which has
only been solved in a few cases (see Refs. 72 and 84), the
qualitative considerations lying at the basis of the phenome-
nological approach are quite transparent. The above-de-
scribed experiments as well as the numerical solutions of the
starting hydrodynamic equations (2.1)-(2.3) or (2.4) and
(2.5) show that as a result of the development of primary
instabilities there quite often forms, for example, a chain of
structures in the form of two-dimensional vortices, Benard
convective rolls, Taylor vortices, spirals on rotating bodies
in a flow (Fig. 7),35"39 transverse vortices in a boundary
layer,85 vortex streets in a wake behind a cylinder86 (Fig. 8),
etc. Secondary excitations for small (£<1) and moderate
(e~ 1) values of the critical parameter result in modulation
of these structures—vortices, i.e., their internal dynamics is
manifested. It is natural to suppose that the procedure for
deriving the equations for the slow amplitude of the second-
ary excitations on they'th solitary vortex once again will lead
to the GL equation (2.7), but now in a one-dimensional var-
iant (they coordinate varies along the vortex):

dA, (u, t) d"-A- (u, t)
/ «" ' rtW/l./,. rt »\ I t '

dt
(2.13')

where £ is a complex parameter.
If the description of the interaction of excitations on

neighboring vortices is restricted to only the linear approxi-
mation ~x(AJ+i — Aj) and ~y(Aj_i —Aj) (see, for ex-

FIG. 7. The development of disturbances on spiral
vortices formed in flow around a rotating cone, a—
U= 2.05m/s,n = 300rpm;b— U= 1.7m/s,/i = 670
rpm; c— U = 1 m/s, n = 1200 rpm (see Ref. 36).
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too

FIG. 8. The development of three-dimensional disturbances in the
wake behind a circular cylinder with Re = 150 (see Ref. 86).

150 2Gf> 250

ample, Ref. 84), then we arrive at the model8

= 0 (4, e)-7 (4-4-0
dt

+ x ( A,) + I
PA,

dy*
(2.14)

The equations (2.14) can be greatly simplified, if the
structure of the excitations on the vortices is assumed to be
given. Thus, for example, for ring vortices, assuming that

only one azimuthal mode is excited, it is possible to trans-
form to a model described by Eqs. (2.14) with £ = 0.

2.8. Structures with singularities. Defects

In the case when the secondary excitations on struc-
tures which have already been formed are periodic, lattices
which are similar to those shown in Fig. 9 can form (see
Refs. 88 and 89). Such regular lattices are, however, the

FIG. 9. Visualization of a vortex lattice in a wake behind a flat
plate with sinusoidal back edge in numerical (a) and physical
(b) experiments. The solid and dashed lines show the sections of
the lattice by planes parallel to the (x, y) plane (see Ref. 88).
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FIG. 10. Dislocations: a-arising with the electrohydrodyna-
mic instability in liquid crystals;92 b-in waves of modulation
of Faraday ripples;93 c-in the wake behind a cylinder;94 d-in
a shear layer.95

exception and not the rule. Thus, for example, under the
conditions of thermal convection in extended thin layers or-
dered islands of rolls, coupled with one another by disloca-
tions of different types, are most often observed. In spite of
the fact that the concrete properties of such defects are deter-
mined by the type of flow, in an ensemble of structures which
has a wavy nature the mechanism responsible for their for-
mation can be quite general. Imagine that for the same val-
ues of the parameters periodic excitations—modes or
waves—with different wave numbers can exist in a stable
fashion in the flow (multistability). If these modes compete
strongly with one another, then some definite regime de-
pending on the starting conditions, is established.90'91 If,
however, the competition is not strong enough (or one of the
"weak" modes is maintained by the nonuniformity of the
medium or external excitation), then the modes can coexist
in space. On the line of contact of the modes with different
wave numbers the "extra" phase fronts must obviously be
cut off. As a result dislocations similar to those presented in
Fig. lOa will be observed; these dislocations appear as a re-
sult of the development of the electrohydrodynamic instabil-
ity in liquid crystals when a spatially periodic voltage is ap-
plied.92 Dislocations of modulation waves (Fig. lOb)
against the background of capillary ripples—Faraday rip-
ples (see Ref. 93 and the discussion in Sec. 3.7)—have an
analogous appearance. As a result of the coexistence of exci-
tations with different spatial periods in neighboring regions
the formation of dislocations can also be clearly observed in
the wake behind a cylinder with variable diameter.94 If the
diameter of the cylinder varies slowly enough along the axis
of the cylinder, then a cellular structure of the flow appears
in the wake—Karman vortices, whose repetition period is
related with the local Strouhal frequency/s ~ U0/d and var-
ies from cell to cell, form in each cell. Because the repetition
period of the vortices is different in neighboring cells defects
appear at the locations where the cells join (Fig. lOc) ,94

The discussed mechanism of formation of dislocations
is also manifested in the same manner in a different shear
flow—a solitary shear layer which is nonunifonn along the
width.95 It is interesting that dislocations can also appear in
the case when the repetition periods of the vortices in sepa-
rate cells are identical but the vortices form at different mo-
ments. Figure lOd shows an example of such dislocations in
a shear layer. The layer is excited by an external acoustic
field near the edge of the plate forming the layer; the frequen-
cy of the field is the same everywhere along the edge but at
some point of the layer its phase changes sharply by 180°.

It is obvious that dislocations in lattices consisting of
stable structures are also often stable—a quite strong action
is required in order for them to form or decompose in an
established flow.16 For this reason they can be regarded as
secondary autostructures arising on the background of regu-
lar cellular lattices.

Although the description of dislocations is in itself a
complicated problem the flow at large distances from them
can be calculated quite accurately. The situation here is simi-
lar to that arising in the hydrodynamics of an incompressible
ideal liquid—in the presence of localized regions of concen-
trated vorticity the flow outside these regions can be regard-
ed as a potential flow, and the vortex regions themselves can
be regarded as defects of the medium in which the "potential
nature" of the medium breaks down. Thus there arises the
problem—common to both the usual and structured flows—
of representing the hydrodynamic fields in terms of their
singularities and finding the law of motion of these singulari-
ties. This description is based on the formalism associated
with the representation of the solutions of partial differential
equations for a complex field in terms of its singularities, in
particular, the poles.

The simplest example are the solutions96'97

u (X, t) = - 2r 2 (x - z« (or1, *<* = -2r 2 (z<* - V1'
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for the integrable Burgers equation
du du_ d*u

The representation of analogous solutions98 for the noninte-
grable dissipative Benjamin-Ono equation

n

u (x, 0 = - (<P + v) 2 (* - *;)"' +c • c-
/=!

2 2 (*l ~ W - v) 2 2 (* ~ x;*)-1

'=1

which models the turbulence of internal waves in a stratified
liquid, is not much more complicated. In the case of a collec-
tion of periodic chains of poles *<,> = x,±Zjn, /— 'i, 2 .....

JLf IfiXd,.
n J x — x'

and

«(*. t) = •
iP_+V

I c t g - c . c.,

1=1

/=!

This representation of the solution u(x,t) is superficial-
ly reminiscent of the expansion in linear modes, but with the
fundamental difference that the nonlinear modes are not in-
dependent and truncating the sum for some n gives an exact
solution. These solutions describe wave structures of the so-
liton type, which remain in the asymptotic limit and whose
form is almost restored after collisions. However the motion
of these structures and the changes in their parameters can
be very complicated, including also chaotic. Unlike conser-
vative solitons they can grow or decay, and their collisions
are not elastic (these and other properties of the solutions as
well as the questions of stability and completeness are stud-
ied in detail in Ref. 98).

For a classical ideal liquid, described by the Euler equa-
tions

du Vp_+ u V u = =__
Vu = 0,

the representation of the two-dimensional velocity field by
means of a discrete collection of singularities — point-like
vortices

X (u = u

is an idealization, since now the singularities are located in
the real space occupied by the flow. For some formulations
of the problems this leads to fundamental difficulties (see,
for example, Refs. 97 and 100); nonetheless there are numer-

ous examples of flows in which the vorticity is indeed con-
centrated in thin filaments. In particular, such vortex fila-
ments have been observed under conditions of thermal-
convective101'102 and turbulent103 mixing of a liquid in a ro-
tating vessel.

The simplest defects of structured flows are planar
fronts, separating stable and unstable states of flows with
small excess above threshold, which can be described on the
basis of the GL model. Such fronts are formed, for example,
from localized disturbances when the nonequilibrium state
is switched on rapidly—a spatially periodic flow is first es-
tablished in the region occupied by the disturbance and then
gradually encompasses the remaining part of the space that
is still occupied by flow in the unstable state.104-105 The ve-
locity of the stationary front is determined uniquely by the
linear part of the GL equation, and its form is determined by
the solution of the corresponding ordinary differential equa-
tion. 106 Analogous results also hold for a wider class of solu-
tions.107"109 For sufficiently weak starting excitations the
time-dependent asymptotic structure of the solutions can be
related with the data for the Cauchy problem. Experiments
confirm that when the nonequilibrium state "is switched
on" rapidly and the initial conditions are nonuniform the
formation of stationary and nonstationary structured flows
proceeds precisely through the motion of fronts: Rayleigh-
Benard thermal convection,105 Taylor-Couette flow,104 and
capillary ripples accompanying parametric excitation.109

In a more general case curved fronts or fronts propagat-
ing at an angle with respect to one another can form in the
flow. Their collision and interaction leads to the formation
of defects, whose motion determines the further dynamics of
the structured flows. The description of fields engendered by
such defects and their dynamics depends on the type of flow
to a greater extent than in the case of regular cell structures.
Such a description requires taking into account not only the
dispersion and nonlinear properties of elementary excita-
tions, forming the structures, but also the so-called "drift
flows," associated with the component of vorticity which is
oriented transverse to the plane of the lattice and which al-
ways arises in the presence of dislocations or curving of con-
vective rolls.110'111 The difficulties in deriving simplified
equations for this problem are largely due to the existence of
several spatial-temporal scales with different orders of mag-
nitude. An approximate description of the component of the
vorticity fl normal to the plane of the lattice in different
flows requires, as a rule, the use of terms with different or-
ders in perturbation theory. When the excess above thresh-
old is small taking into account the average drift velocity
determined by the vertical vorticity (or pressure gradient,
as, for example, in the case of plane Poiseuille flow) nonethe-
less leads to equations for the amplitudes which are similar
even for apparently completely different flows: a plane shear
layer, Rayleigh-Benard thermal convection, Taylor-
Couette flow, and plane Poiseuille flow near a Hopf bifurca-
tion point (see, for example, Ref. 112). For a uniform shear
layer the corresponding equations have the following
form:112

(2.14')

dy
--- W Q = a

\dt
(2.15)
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The equations describing thermal convection in a layer with
free boundaries are similar (the notation of Ref. 113 is em-
ployed):

Pr dt 8

/ d

dt

1 + Pr

C . C .

(2.16)

(2.17)

The differences in the structure of the differential operators
inEqs. (2.14') and (2.15) andEqs. (2.16) and (2.17) in the
coordinates x and y are due to the different properties of the
spatial symmetry of the corresponding flows.112

It is obvious from Eqs. (2.16) and (2.17) that in the
presence of defects in the lattice of convective rolls (B ^0)
for finite Prandtl numbers the equations for the order pa-
rameter^ and the vertical component of the vorticity ft are
coupled with one another. The role of this coupling for large
values of the critical parameter remains unclear, but in the
case of moderate values of critical parameter (E ^ 1), as was
found in Refs. 110 and 111, the amplitude equations with
B = 0 describe correctly the motion of dislocations—no
qualitative differences which could be ascribed to the effect
of ft and finite Pr were found, though the quantitative de-
pendences start to differ when Pr S 60. The reason for this
qualitative similarity of the results of the more and less accu-
rate descriptions is connected with the fact that drift flows
do not change the topology of the structures and therefore
they do not affect the mechanism of formation of defects.
This, in particular, makes it possible to explain them using
the topological approach, which is largely based on the sym-
metry properties and is analogous to that employed for de-
scribing defects in liquid crystals (see, for example, Ref. 14).

To analyze the dynamics of structured flows with de-
fects it is convenient to generalize the amplitude equation so
that it would describe both cellular structures and defect
structures. In the case of convective rolls, which are
described by Eq. (2.7) with real coefficients, this can be
done by introducing the real function i/r = A(x,y,t)
X exp(/'£c;e) + c.c. (by analogy to the theory of phase tran-
sitions it is called the order parameter). Then the simplest
equation for it, transforming for slowly varying A(x,y,t)
into Eq. (2.7), will have the form of the Swift-Hohenberg
equation:81

T«* ' 4ft?
(2.18)

One of the remarkable properties of this equation (as also of
the Ginzburg-Landau equation (2.7) with real coefficients
with ii)'Q = 0) is that it can be written in the gradient form

TO*L = _JI, (2.i9)
dt o'vj)

where SF/St/i is a variational derivative, while the free energy
is a Lyapunov functional

(2.21)

The problem of finding the stable stationary states thus re-
duces to finding the minima of F.

The dynamics of defects has been studied in greatest
detail for potential systems of the form (2.19) and
(2.20). 14'110'"1'"4-117 The motion of the defects in such sys-
tems always terminates with the establishment of one of the
stationary states corresponding to a local minimum of the
functional F ( the defects either stop or vanish ) . The change
in the free energy in this case can be regarded as the work
performed by some force which, by analogy to the force act-
ing on a dislocation in a crystal when a pressure is applied, is
called the Peach-Koehler force (see Ref. 14). For simple
dislocations, in particular, dislocations representing a tran-
sition from a roll structure with the wave number
2w(n + !)/£ to a lattice with the wave number 2irn/L (as in
Fig. 10), this force can be easily calculated. ' 15 The change in
the free energy Fin the case under study is

, r dF 2n ,
dF~ — — Ay,

ak L

and the force acting on the dislocation is
df df

The defect will obviously continue to move until the force
fPK is equal to the friction force /„, which depends on the
magnitude of the diffusion in the nonequilibrium medium,
acting on the defect.1 15 Thus the motion of a defect is similar
to the motion of a small sphere along the uneven bottom of a
tank filled with viscous liquid.

2.9. Formation of lattices

For hydrodynamic flows described by equations in the
gradient form of the type (2.19) and (2.20) strong degener-
acy and the presence of numerous local minima F, corre-
sponding to different locally stable states, is characteristic
(Fig. II) ."4 In the presence of quite strong background
noise such structured states will relax to a single globally
stable state, corresponding to the absolute minimum ofF. In
systems with low noise levels, however, states corresponding
to local minima can also be stably observed. In this case the
final state is determined by the character of the starting exci-

(2.20)
FIG. 11. Schematic representation of the Lyapunov functional (2.20) in
the configuration space of the solutions of Eq. (2.18).
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tation. For example, if the Rayleigh number increases rapid-
ly, because the thermal diffusion time is short convection is
established independently in separate regions. In addition,
the rolls in each region can be oriented differently. As con-
vection develops different regions come into contact and
form patterns with dislocations which can exist indefinitely.

Near the threshold of instability (e<£ 1) for sufficiently
far-removed boundaries (£1/2L A/> 1) Fcan be represented
as a sum of three components F = FB + Fs + F0 (see Refs.
116 and 117). The volume contribution

is primarily determined by the square of the deviation of the
local wave number (k(r) — kc )2 and the square of the diver-
gence of the wave vector (Vk)2, characterizing the curva-
ture of the convective rolls. The suppression of convection
near the side walls is determined by the term

(ks)
d/,

which is minimum in the case when the convective rolls are
oriented perpendicular to the side wall (s is a unit vector
normal to the side wall). Finally the contribution of FD,
determined by the defects, can be approximately represented
in the form

©
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where JVD is the number of point defects and rc is the charac-
teristic distance over which i/> is strongly distorted by these
defects. The competition between these three terms is what
determines the (local) minimum of the functional. The
model based on the variational principle, as a comparison
with experiment showed,78'"8 adequately describes the
above-noted properties of thermal convection, including
also quantitatively for moderate excesses above the instabil-
ity threshold of the static equilibrium 0.3 <£ < 2.0.

It is obvious that the same flow structures can be
formed along different paths and the paths depend on the
initial conditions. A good example is the process whereby a
regular hexahedral lattice is established in the model (2.8)
with v — a = const = e, which describes Benard-Maran-
goni convection in a flat layer of liquid heated from below:

In the case of the periodic boundary condition studied
here

y, t)= , y + L, t) (2.23)

the limiting regimes are static and are determined by the
minimum of the Lyapunov functional for Eq. (2.22):

(2.24)

Analysis of this functional shows78'"8 that tor not too small
values off it has many local minima corresponding to differ-
ent stable spatial forms—rolls ( /?</?*) or hexahedra
( /?>/?*). Local minima correspond to lattices with differ-
ent defects, realized with different initial conditions. In all
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FIG. 12. Different paths by which a regular lattice is established in the
model (2.22) and (2.23) (see Ref. 78). Transfer from row to row corre-
sponds to increasing time t.

cases, however, when the initial conditions contain a local-
ized disturbance (including also on the background formed
by a periodic disturbance) a transition of the system into the
same state with the lowest free energy F— — 38 occurs.

Figure 12 shows the results of a numerical experi-
ment,"8 illustrating the multiplicity of the paths by which a
hexahedral lattice forms. In some cases, such as, for exam-
ple, accompanying the formation of a lattice from a standing
wave and close to a point-like disturbance (see Fig. 12), a
lattice of hexahedra forms owing to the successive develop-
ment of instabilities of the main wave and then the modula-
tion wave. We shall illustrate this for the example of the
development of a hexahedral lattice from a localized distur-
bance with a cylindrical form. Linearization of Eq. (2.22)
gives an equation for the disturbance a(x, y,t) in the form

~ = Is - ( l+V 2 ) 2 ]a . (2.25)

Its solution in a cylindrical coordinate system with the
boundary conditions a\r = R =0 has the form of cylindrical
waves

\ 1/2,1/2
r), (2.26)

where J0 is a zeroth-order Bessel function, and the constant c
is determined from the relation

c = — (2.27)

and, a.j is they'th root of the Bessel function. We are interest-
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ed only in solutions of the form (2.26) which grow in time,
i.e., the solutions which correspond to positive values of c.
Thus for R = 32 c>0 only for a = a, (c;=0.04). We shall
prove that for sufficiently large /? the cylindrical waves
which arise are unstable with respect to azimuthal distur-
bances b(<p,t) ~exp[i(a>t — nqp)]. It is this secondary insta-
bility that leads in the limit ?— oo to the formation of a hexa-
hedral lattice under the initial conditions studied. We shall
explain the problem directly in the nonlinear formulation.
To this end we shall represent the solution of Eq. (2.22) in
the form of a cylindrical wave on which azimuthal distur-
bances are given:

a(r, <p, /)=/!„ (/)/„(&„/•) +A3(t)J3(k3r) sin 3q). (2.28)

To satisfy the boundary conditions it is necessary that
J0(k0r0) = 0 and J3(k3r0) = 0. Near the boundary of insta-
bility of the cylindrical wave A (t) andA3(t) can be regarded
as slowly varying functions of time. Then, substituting the
expression (2.28) into the starting equation (2.22) and us-
ing the asymptotic method we obtain for A0 and A3 equations
of the form

(2.29)

At
d,A0A3 - d3A3Al

where the quadratic terms with A j; &ndA,yA3 are proportion-
al to the parameter/?. Even in the presence of a decrement in
the mode A3 the azimuthal waves will grow for sufficiently
large P, and as t increases a hexahedron appears — see the
second and third rows in the second series on the left side of
Fig. 12.

The static, in particular, the topological characteristics
of the defects arising on the background of regular lattices in
different fluid flows (see Fig. 10), as already mentioned, are
very similar to the corresponding defects in crystals, where
they have been studied in detail.119 The specific nature of
nonequilibrium media consists here of the fact that topologi-
cal defects of the field continuously move, are created, and
decay, i.e., for fields in nonequilibrium media the nonlinear
dynamics of defects is of the main interest. In particular,
turbulence in such media can, in a certain range of values of
the critical parameter, be regarded as the chaotic dynamics
of defects (see. Sec. 3.7).

3. CHAOTIC DYNAMICS OF STRUCTURES AND
TURBULENCE

3.1. The fractal nature of turbulent flow and of a "phase"
liquid

The concept of a "phase liquid," which is widely em-
ployed in the theory of dynamical systems and which is in-
tended to make more tangible the vector field in the phase
space of the system, is in reality more than simply an analo-
gy. The point is that under conditions which are easily estab-
lished in each specific case the motion of particles of impuri-
ty in real stationary flows is described by the dynamical
equations

-^ = «(••). (3-D

whose trajectories in phase space in the literal sense coincide

with the trajectories of impurity particles in the flow. For
this reason many results, in particular, about the possibility
of the appearance of chaos, pertaining to dynamical systems
are also valid for the transfer of particles. For example, the
formation of regions of chaotic mixing of an impurity is pos-
sible already in the comparatively simple velocity field120

u= (A s inz+Ccos y, B sin x + A cosz, Csin y + B cos x),

(3.2)
satisfying Euler's equations

dt
\ u =--- 0, (3-3)

or the Navier-Stokes equations (2.4) and (2.5) with an ex-
ternal force. Mixing of an impurity can also become chaotic
in a two-dimensional regular velocity field, if it is
nonstationary, for example, periodic in time u(x, y,t)
= u(x,y,t+T) (see Refs. 97 and 121-127). Figure 13

shows the distribution of dye in a liquid which is put into
motion by an alternate periodic rotation of the inner and
outer cylinders.125 The figure also shows the two-dimension-
al map of the corresponding dynamical model. The flow pat-
tern observed in this case with mixed (tangled) particle tra-
jectories is, of course, not turbulence. Turbulence is usually
regarded as the spatially and temporally irregular behavior
of the velocity field itself. Here, however, the velocity field is
strictly periodic. Such pseudoturbulence is sometimes called
"Lagrangian turbulence." Nonetheless analysis of the chao-
tic motion of an impurity makes it possible to get an idea of

FIG. 13. Comparison of the distribution of dye in a physical experiment
(a) and points of the Poincare map (b) in the corresponding model of
flow between cylinders rotated alternately in time (see Ref. 125).
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the mechanisms responsible for the appearance of "real tur-
bulence." Thus, in particular, under certain assumptions
singularities or localized structures of the velocity field itself
(for example, vortices) can play the role of impurities, and
in this case the velocity field becomes chaotic in space and
time by the same mechanisms by which the transport of par-
ticles becomes chaotic.12>-123.128-131 These analogies qualita-
tively explain why the structure of turbulent flows is as com-
plicated as the structure of the phase space of dynamical
systems with chaotic behavior. In particular, as experiments
indicate,132 turbulent flows have a fractal structure.

Fractal sets, whether they are complicatedly organized
sets of trajectories of particles of liquid of the turbulent flow
in real space or strange attractors in phase space, are de-
scribed by special characteristics. The most important of
these characteristics is the dimension of the realization and
the associated dimension of the dynamical system which
completely reproduces the properties of the flow. A turbu-
lent flow, like also "strictly noise pulsations," is character-
ized by a continuous Fourier spectrum and a decaying auto-
correlation function. However dynamical turbulence is
distinguished from random fluctuations precisely by the fact
that it can be engendered by a dynamical system with a fi-
nite, though large, number of degrees of freedom (while the
generation of "true" noise requires that the system excite an
infinite number of degrees of freedom). It is precisely the
determination of the dimension of the number of degrees of
freedom required to reproduce a turbulent flow that permits
distinguishing dynamical turbulence from, say, random hy-
drodynamic fluctuations.

It is well known21 that the physical nature of irregular
entangled behavior of a finite-dimensional system is asso-
ciated with the instability of all (or most) individual mo-
tions with finite energy. In phase-space language this can be
explained as follows: unstable trajectories are distributed in
a bounded region, owing to instability they separate from
one another, and owing to the finiteness of the region in
which they are distributed they become entangled in a very
complicated fashion. This complexity of a stochastic set can
be described quantitatively.

For definiteness we shall talk about a three-dimensional
phase space. Imagine an attractor in a volume bounded by
the surface of a two-dimensional torus. Consider a bundle of
trajectories on the way to the attractor (they describe tran-
sient regimes of the motion of the system leading to estab-
lishment of "stationary" chaos). The trajectories (more
precisely, their tracks on the intersecting plane) lie in a defi-
nite region in the transverse cross section of the bundle; we
shall follow the change in the size and shape of this region
along the bundle. We take into account the fact that an ele-
ment of the volume in a neighborhood of the saddle-point
trajectory is stretched in one (transverse) direction and
compressed in the other direction; because of the dissipative
nature of the system the compression is stronger than the
stretching—the volumes should decrease. These directions
must change along the trajectories, otherwise the trajector-
ies would recede to infinity. All this will result in the fact that
the cross-sectional area of the bundle will decrease and the
cross section will acquire a flattened and at the same time
bent shape. But this process must occur not only with the
cross section of the bundle as a whole but also with each

element of its area. As a result the cross section of the beam is
divided into a system of strips embedded into one another
and separated by voids. With time (i.e., along the bundle of
trajectories) the number of strips grows rapidly, and their
widths decrease. The attractor arising in the limit f-» oo is a
nondenumerable set of layers—surfaces, which do not touch
one another and on which saddle trajectories pass. These
layers connect with one another in a complicated manner on
their sides and ends; each trajectory belonging to the attrac-
tor wanders over all layers and after the passage of a suffi-
ciently long time will pass quite close to any point of the
attractor (the property of ergodicity). The total volume of
the layers and the total area of their sections is equal to zero.
Such sets are Cantor sets in one of the directions.21 It is pre-
cisely the Cantor nature of the structure that must be regard-
ed as the most characteristic property of an attractor in the
more general case of an n-dimensional (n > 3) phase space
also.

The volume of a strange attractor in the starting phase
space is always equal to zero. But it will be nonzero in a
different space—a space of lower dimension. The latter is
defined as follows. We divide the entire H-dimensional space
into small cubes with edge e and volume e". Let N(E) be the
minimum number of cubes which together completely cover
the attractor. We define the dimension D of the attractor as
the limit

D = lim In /V (E)

In (1/e)
(3.4)

The existence of the limit (3.4) means that the volume of the
attractor in the />-dimensional space is finite: for small £ we
have N(£)^Ve~D (where Fis a constant), whence it is
obvious that N(e) can be regarded as the number of ̂ -di-
mensional cubes which cover the volume V'm the .D-dimen-
sional space. The dimension defined according to (3.4) obvi-
ously cannot exceed the total dimension n of the phase space,
but it can be less than the latter and, unlike the customary
dimension, it can be fractional; for Cantor sets it is frac-
tional.5'

We call attention to the following important fact. For
established motion on an attractor the dissipation of energy
is on the average compensated by the energy applied by the
source of nonequilibrium of the system. Therefore if the evo-
lution of an element of "volume" belonging to the attractor
is followed in time (in some space whose dimension is deter-
mined by the dimension of the attractor), then this volume
will on the average be conserved—its compression in one
direction will be compensated by stretching owing to the
divergence of the close trajectories in other directions. This
property can be exploited to determine in a different manner
the dimension of the attractor.

For attractors having the property of ergodicity of the
motion the average characteristics can be established by ana-
lyzing the motion along one unstable trajectory belonging to
the attractor. The individual trajectory will reproduce all
properties of the attractor, if one moves along it for an infi-
nitely long time.

Let X = X0(tg) be the equation of such a trajectory, one
solution of the starting nonlinear equations

X=F(X). (3.5)
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Consider the deformation of a "spherical" element of vol-
ume as it moves along this trajectory. Such a deformation is
determined by Eqs. (3.5), linearized with respect to the dif-
ference | = X ( f ) — X 0 ( f ) — t h e deviation of trajectories
neighboring the given trajectory. These equations, written
out in terms of components, have the form

(3.6)

Along the trajectory the element of volume is compressed in
some directions and stretched in other directions, and a
sphere transforms into an ellipsoid. Along the trajectory
both the direction and length of the semiaxis of the ellipsoid
change; we denote the lengths by /,• ( f ) , where j enumerates
the directions. The Lyapunov characteristic exponents are
the limiting values

A 1- /A; = lim '-—
/-»oc \ t In / (0)

(3.7)

where 1(0) is the radius of the starting sphere (at a moment
arbitrarily chosen as t = 0). The quantities so determined
are real numbers and their number is equal to the dimension
of the n-space. One of these numbers (corresponding to the
direction along the trajectory itself) is equal to zero.6'

The sum of the Lyapunov exponents determines the
average change, along the trajectory, of an elementary vol-
ume in phase space. The local change in volume at each point
of the trajectory is given by the divergence div X = di-
v | = j4,7 ( f ) . It can be shown that the average value of the
divergence along the trajectory is

lim U- (3.8)

For a dissipative system this sum is always negative—arbi-
trary volumes in the n-dimensional phase space are com-
pressed. We arrange the Lyapunov exponents in the order
A,>A2>...>AA.>0>A/t+ , >...>An and take into account as
many stable directions as required in order to compensate
the stretching by compression. If the sum 2?1, Ay obtained
in the process were to vanish identically, then the integer m
would be the dimension of the attractor determined through
the Lyapunov exponents. However the sum of an integer
number of exponents usually does not vanish, and to satisfy
the requirement that "the phase volume on an attractor be
conserved" we must take into account some fraction of the
next (m + l)th "compressing" exponent. Thus the dimen-
sion of the attractor will lie between m + 1 and m, where m is
the number of exponents in the indicated sequence, whose
sum is still positive but which after adding Am + , becomes
negative.7' The fractional part d < 1 of the dimension
/)A = m + d is found from the equality133

A, + dAm+i = 0. (3.9)

Since only the least stable directions are taken into account
in calculating d (the negative exponents A^, which are lar-
gest in absolute magnitude and correspond to rapid motions,
at the end of their sequence are dropped) the estimate of the
dimension given by DA is, generally speaking, an upper
limit.

3.2. Dimension of realization

The dimensional characteristics of stochastic motion
are extremely important from different viewpoints. On the
one hand they make it possible to begin to understand the
essence of randomness, and on the other hand they are very
useful for applied problems, associated with signal process-
ing (encoding, recognition, etc.). Indeed, with the help of
the traditional analysis of a random signal (spectral, correla-
tion) it is usually difficult to say anything about the source of
the signal. In particular, is the signal of the nature of noise in
the usual sense (i.e., not reproducible with the help of an
algorithm) or is the signal generated by a determinate,
though very complicated, system? If, however, the dimen-
sion of this signal can be determined in some manner (see
below), then this problem can be solved. A finite dimension
DA means that the signal can in principle be constructed
with the help of a dynamical system of order no higher than
2Z)A + 1 (seeRef. 134). Thus the value of the dimension DA

gives an estimate of the number of degrees of freedom of the
system (medium) involved in the formation of the stochas-
tic signal under study. As the dimension of the realization
increases (approaches infinity) a chaotic signal approaches
increasingly more closely to an absolutely random signal.
From this viewpoint a source which we have become accus-
tomed to regard as random can be regarded as the motion of
a dynamical system toward an infinite-dimensional strange
attractor.

The ideas of processing random signals in order to re-
construct the properties of the sources engendering them
were put forth comparatively recently by Takens.135 They
are based on the viewpoint that if a chaotic signal is genera-
ted by a finite-dimensional dynamical system, then it is first
possible to reconstruct the corresponding limiting set (in
particular, of the strange attractor) in some effective phase
space and then to determine on this set the characteristics of
the motion, such as the entropy and dimension. The funda-
mental step in the development of these ideas and their prac-
tical fruition was taken in 1983 by Grassberger and Procac-
cia.136 They proposed that limiting sets not be studied at all
in phase space, but rather the entire diagnostics procedure
should be constructed solely on the processing of a concrete
(sufficiently long) temporal realization of the physical
quantity under study.

Usually there is only one observable, for example, one
component of the velocity field of a hydrodynamic flow,
measured as a function of time at one point. Since the effec-
tive phase space, in which the stochastic set corresponding to
this realization is embedded, has a dimension M' it is neces-
sary to have M' independent functions of time u ( k ) ( t ) . Ta-
kens suggests that they be obtained as follows: the observ-
able is studied at discrete times t,t + r,...,t + kr,...,t
+ (M1 — \)T; these values of «c*'(0 describe the coordi-

nate of a point in an M '-dimensional space corresponding to
the time t. As t varies a trajectory, reproducing some set, is
obtained in this space. The dimension D of this set can be
calculated from the formulas (3.4) or (3.9). The next step
consists of analyzing the dependence of D on M'. It is ob-
vious that for smallM'a&M' increases the dimensionD(M')
should also increase. If the signal is a noise signal, then this
growth will occur without saturation. If, however, the signal
is produced by the dynamical system, then for some M' = M
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growth stops—the quantity D(M) is the dimension of the
limiting set, in particular, of the strange attractor recon-
structed in this manner. We note that the formulas (3.4) or
(3.9) are inconvenient for calculating the dimension of the
reconstructed attractor (in particular, it is not clear how
much £ should be decreased). Investigations performed over
the last few years have shown that it is much more effective
to use the correlation integral.136"145 This integral is given by
the approximate expression:8'

N N

= 1^2N<W = ̂ r< (3-10)
i--i

here uy = (w ( 1>(/r);K<2)(/r);...) is a point on the trajectory
in an M '-dimensional space, N is the total number of points
in the processed time segment of the observable, H is the
Heaviside function, and ||u, — uy || is the distance between a
neighboring pair of points. Thus the correlation integral is
the average number of pairs of points in the realization, the
distance between which in the space u,- is less than e. For
small values of E the correlation integral depends on e in a
power-law fashion:142

C (e) = (3.11)

(A"is Kolmogorov's entropy). The correlation dimension v
can be introduced according to (3.10) and (3.11):

r, ,. I n A T ( e ) ,. / , In ATD = hm -t- = hm v +
e-»o In (1/e) e-^o \

•KM't
In (1/e)

= v. (3.12)

In the actual processing of experimental data the di-
mension is usually calculated approximately—directly from
the slope of the function In C versus In e. These functions
behave differently for signals of different origin; this is what
makes it possible to perform diagnostics of signals of un-
known nature and, in some cases, to distinguish the dynami-
cal (i.e., having a finite dimension) component of the signal
from the noise component.

In attempting to determine the slope of the curve
In C =/(ln E) for practically any concrete situation we im-
mediately encounter a surprise: the graphs have different
slopes for different intervals of e (Fig. 14). Which slope
should be regarded as the "true" dimension? Before answer-
ing this question we shall think about why changes in slope
occur on our graph. We can say immediately that they can be
"instrumental," i.e., caused by the technical characteristics
of the procedure employed to process the realization (for

example, inadequate time duration), or fundamental, i.e.,
owing to the dynamical characteristics of the system gener-
ating the given realization.

If, for example, an attractor in the effective phase is
nonuniform (the image point falls into some sections more
often than others), then the value of v will be different for
different values of £.9) For sufficiently large N, however, the
density of points on the attractor will indeed reflect its struc-
ture. Thus the "nonuniformity" of the attractor leads to in-
strumental, in principal removable, changes in slope. We
stress here that the required length of the realization is asso-
ciated with the measured dimension. The larger the dimen-
sion the longer the realization must be in order to obtain the
required filling of the attractor with points. The empirical
estimate In N~ v(emax - £m i n), where (emin ,<emax) is the in-
terval of E in which C~ev [see Eq. (3.11)], is well
known.143

The existing changes in slope in the correlation interval
are most often due to the "structured nature" of the observ-
able, i.e., the presence of components with different dimen-
sion in the signal. These components are correspondingly
engendered by different systems, including noise systems
( for example, a noisy communication channel). In
the simplest case the structured signal is
u ( t ) =v0(t) +<ViO +...+8kvk(t), where v k ( t ) i s gen-
erated by a dynamical system the dimension of whose attrac-
tor is equal to v,, and in addition 1 >8l>82>...>8k,
v0 < v, <... < Vj.. Then as e is further reduced components
with increasingly smaller amplitudes <5, will appear in the
correlation interval, and in this manner we shall observe on
the graph intervals (£,',£,")» the tangent of whose slope angle
will be ~ v,. It is natural to term the number of breaks
(k — 1) for such a signal the degree of structure. We stress
that increasing the length of the realization does not elimi-
nate such changes in slope; quite the contrary, it makes them
sharper.

Since any observable corresponding to a real process
contains noise which produces precisely this observable the
dynamical system must be infinite-dimensional. If the sig-
nal-to-noise ratio is not too small, the correlation integral for
a real signal must necessarily have a change in slope which
separates the scale of the dynamical component from the
small scales E, where the dimension is not determined by the
noise. This makes it possible to separate the chaotic signal of
dynamical origin from the adaptive white noise by analyzing
the local slopes of the graph In C =/(ln e). An example il-
lustrating this algorithm is presented in Fig. 14, where the
correlation integral and the local slopes are presented for
different values ofs for Henon's map with noise.

in C(s)

M=1

sf a £2 Ins

FIG. 14. The correlation integral (a) and the local slope
d In C/d In £ (b) for different values of e for the Henon
map with noise.
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FIG. 15. The dependences In C = F(\n £) andD = D(M') with M = 16,
calculated from the realizations of the velocity on the axis of the open
working part (300 X 300 x 1200 mm1) of a wind tunnel with a closed re-
turn channel for {/„ = 24.2 m/s (see Ref. 146).

3.3. Flow dimension. Spatial development of turbulence

Experiments with internal flows18'144'145 not only con-
firm the idea that a chaotic (in time) velocity field in a flow
of a viscous liquid can be described in the limit /-> oo by a
finite (small) number of spatial functions, but they have also
made it possible to determine the rate of growth of the di-
mension of turbulent motion (the number of effective excita-
tions) as a function of the critical parameter immediately
beyond the point where turbulence appears.145 Moreover, it
was established in Refs. 146-148 that open flows of the type
of shear layers and jets can also contain, in the presence of
feedback transporting disturbances upstream, chaotic pul-
sations of the velocity which correspond to motion on an
attractor of low dimension.

Figure 15 shows values of the dimension D measured
based on the signal from a one-filament gauge of a hot-wire
anemometer on the axis of a jet in the open working part of a
wind tunnel for Reynolds numbers Re ~ 105 (see Ref. 146).
Feedback in the flow under study appeared owing to the
acoustic field exciting the jet in the return channel of the
tunnel. Because of the existence of comparatively strong
feedback the disturbances encompassed by the global feed-
back made the main contribution to the velocity pulsations,
and for this reason the dimension remained practically un-
changed over the entire length of the jet (the length of the
open working part L = 1200 mm; the dimensions of the
starting cross section of the jet were 300 X 300 mm2).

If the dynamical theory can indeed be used to describe a
real flowing liquid, then it should describe the phenomenon
of the appearance and spatial development of "disorder"
downstream. Obviously, this is of greatest importance for
shear flows (boundary layers, submerged jets, wakes, etc.).
How does self-production of dynamical chaos along the flow
occur? Are the scenarios of its appearance similar to those
observed in simple systems when the controlling parameter
is changed? What is the role of the structures in the flow? We
shall attempt to answer these questions.

To describe nonuniform flows adequately we introduce
the concept of flow dimension — the dimension of the tempo-
ral realization as a function of the spatial coordinates. Sup-
pose that the temporal realization of the field u(x,t) mea-
sured by the sensor is produced at each point along the flow
by a dynamical system whose motion in the M '-dimen-
sional phase space is described by the trajectory U(x,t)
= {u(x,t),u(x,t + r),...,u(x,t + (M'~ l)r)}. To calcu-

late the dimension we shall employ the correlation integral
[ analogously to (3.10)]:

C {x' e) = -

In the finite interval ee[£•,£"] the correlation integral can
be approximated by the expression

C(x, e) - ev''u). (3.14)

The functions v, (x) are the flow dimension in which we are
interested. The soundness of these characteristics is con-
firmed by direct experiments.

The development of turbulence and the change in di-
mension along a flow excited at the boundary by regular
pulsations were studied in a group of experiments. 14q~151 It
was established that both in a cylindrical jet with a parabolic
initial profile149 (Red = 500) and in a boundary layer150'151

(Rex = 105) the development of coherent structures and
the appearance of low-dimensional chaos precede the transi-
tion to turbulence. In both cases the presence of ordered
structures was correlated with the low measured dimension
of the realization of the velocity signal.

We note that for flow systems, in particular, a boundary
layer, the interpretation of the dimension of the realization is
different from the traditional interpretation. The point is
that in such systems the development of excitations is often
determined not only by the absolute but also by the convec-
tive (or only by it) instability, and the structures formed in
the process are carried off downstream. The reconstruction
of the "intrinsic" dynamics of such structures requires a
realization obtained in a moving system of coordinates,152 in
which measurements cannot always be performed in prac-
tice. At the same time the results of measurements of the
dimension in a stationary coordinate system in the presence
of an average flow always depend on the properties of the
incident flow, the dimensions of pulsations in which is deter-
mined by its history and can be too large. However the pres-
ence of quasiordered repeating structures in many flows in-
dicates that not all disturbances of the incident flow
participate in the formation of these structures (see, for ex-
ample, Ref. 148), rather their contribution depends on the
distance downstream—nontrivially in the general case
(compare curves 1 and 2 in Fig. 16). Thanks to the succes-
sive (downstream) development of new instabilities on the
background of nonlinear structures new disturbances grow
in the flow (including disturbances which decayed on the
starting section) and as a result of restructurings (bifurca-
tions) turbulence arises in the flow along the x axis. Since the
dimension is calculated based on a realization measured
with finite accuracy (or in a deliberately coarse realization,
as in the construction of curve 2 in Fig. 16) it takes into
account only excitations which make the greatest contribu-
tion to the total signal, and it may be finite. In this situation it
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FIG. 16. The change in the characteristics of the realization of u (t)
in the direction of flow in a boundary layer. 1-Correlation dimen-
sion v, ( x ) , calculated based on small scales in the phase space of the
dynamical system with M' = 12; 2-the same for large scales-v2(jt);
3-the mutual correlation coefficient K of the signal U(t) and the
signal applied to a vibrating ribbon. [The flow velocity U0 = 9.18
m/s and the distance from the hot-wire anemometer sensor to the
surface of the plate is 3 mm (see Ref. 150) ].
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is natural to employ the dimension v( x) [ or a function of the
dimension V(X,E); see Ref. 87] as one of the characteristics
describing the spatial development of the flow. It is not a
universal characteristic in the sense that it characterizes a
given concrete flow and becomes universal for flows of the
same type, in the development of which absolute instabilities
are the dominant factor. The construction of general models
and the study of their scaling properties are of greatest inter-
est precisely for such flows.

Detailed measurement of the dependence of the dimen-
sion on the downstream coordinate was performed in the
case of a boundary layer.150'151 In these measurements the
correlation integral over finite intervals £e[e,',v"], corre-
sponding to different scales in phase space, was approximat-
ed by a power-law function (3.14) and the dimension was
determined directly based on the dependence d In C/d In e.

The measured value of the dimension depends on the
studied range [£',,£" ] of velocity pulsations. Changes in the
pulsations which are much less than £•, do not contribute to
the computed values of v,. The existence of such differentia-
bility of the contributions of different scales u ( t ) makes it
possible to determine the number of modes or, in the pres-
ence of additional information, even identify these modes;
this is important for constructing a dynamical model of the
downstream development of the flow.

Figure 16 shows the measured dimension of the realiza-
tion versus the longitudinal coordinate for two intervals
[^1,2 ;f",2 ] > e&ch extending over x. 10 dB and each separated
by approximately the same interval. Analysis of these depen-
dences and the spectra (Fig. 17) established that in the ex-
periment under discussion the realization at the starting sec-
tion of the plate x 5 590 mm (even taking into account the
"fine" measurements of the realization—curve / in Fig. 16)
can be represented as the result of excitation of four modes:
modes generated by a ribbon at the frequency of the external
forcing (s 87 Hz), at the frequency of the interference (50
Hz), at the frequency of characteristic oscillations of the

ribbon in the flow (sr 60 Hz), and the mode excited by vibra-
tions of the plate (ss3 Hz). These modes are actually inde-
pendent. The large changes in velocity, however, are asso-
ciated only with one mode, excited at the frequency of the
external forcing; as one can see from Fig. 16 (see curve 2),
for x < 590 mm v2 = 1.

In the region 590 mm<x<665 mm all four modes
(v2 = 4) must be taken into account even for a rough ap-
proximation of u(t). Downstream (xss665 nm), however,
in the region of formation of "spikes" characteristic for
transitions to turbulence of the catastrophic (Klebanov)
type, the dimension in the same approximation of the real-
ization decreases to two. As follows from the measurements
the cross-correlation signal applied to the ribbon and the
signal from the hot-wire anemometer (curve 3 in Fig. 16)
Tollmien-Schlichting waves at the frequency of the external
forcing of 87 Hz and its phased harmonics make the main
contribution to the formation of the spikes.

It is well known (see, for example, Ref. 153) that strong
negative spikes on the velocity oscillograms indicate local
stopping of the liquid and formation of points of inflection
on the velocity profile, a consequence of which is the forma-
tion of secondary instability. The position along the flow
(ATS:665 mm) where new modes in the flow are excited as a
result of the development of this instability is determined by
the change in the behavior of the function v(x). Farther
downstream (x > 700) these modes become determining in
the formation of pulsations with large amplitudes and their
scales become chaotic. It is interesting that, as follows from
visual observations of the flow, the breakdown of two-di-
mensional structures and formation of three-dimensional
structures occur precisely for this value of the coordinate
xx 700 mm in the boundary layer.

3.4. Generation of turbulence in structured flows. Scaling

One of the most important results in the theory of finite-
dimensional dynamical turbulence was the observation of
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FIG. 17. The spectra and realizations of the signal u (/)
at the points x indicated in Fig. 16.

universality in the basic scenarios of the "order-chaos" tran-
sition. These universal properties are determined by the type
of dynamical system (properties of the flow) and do not
depend on its details, in the same way that the properties of a
transition in critical phenomena do not depend on the specif-
ic form of the Hamiltonian of microscale motions. The na-
ture of this universality is associated precisely with the close-
ness of the systems demonstrating it to the critical point.
Indeed, we shall study the behavior of a system with close
values of the parameter e = e\ = ea— fJ. and
E = e2 = £cr +/i (fi<£). In view of the continuous de-
pendence on the parameter the equations corresponding to
these situations will be identical, to within corrections ~n
on the right sides. For the same starting conditions the be-
havior of the system with £ = £, and £ = e2 will be distin-
guishable only after a very long time T, and T-> oo aSjU-*0.
The quantity T is the characteristic time scale on which the
difference between the regular dynamics with e = ecr — p

and the chaotic dynamics with E = £CT = + ft appears. This
time (as/i-»0) can exceed by as much as desired all charac-
teristic times of our dynamical system. It is precisely for this
reason that from the viewpoint of the transition to chaos the
details of the behavior of a concrete system which are local in
time may be assumed to be unimportant. Thus the character-
istics of the transition to chaos near the critical point should
be universal. From this universality it follows, in particular,
that the simplest models demonstrating the basic paths of
the transition to chaos can be employed to describe the basic
types of critical behavior. On the basis of these models it is
possible to obtain the quantitative characteristics of the uni-
versal behavior—similarity constants10' and critical expo-
nents. In this situation the renormalization-group ideas, de-
veloped in the theory of critical phenomena and the theory of
fields, and first applied by Feigenbaum154 to study the transi-
tion to chaos through a sequence of doubling bifurcations
(see also Ref. 155) turned out to be very effective in this
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situation. Later the renormalization group method was em-
ployed to study the scaling properties of the transition to
turbulence through intermittency156 and through the decay
of quasiperiodic motions.157'158 Here the largest Lyapunov
exponent plays a fundamental role. Changes in this exponent
demonstrate universal properties, analogous to the proper-
ties of the order parameter near the critical point—it equals
zero below the threshold of the transition to chaos and de-
pends in a power-law fashion on the critical parameter above
threshold.

The most complicated and as yet least studied proper-
ties are the scaling properties of the transition to turbulence
which develops in space in flows such as, for example, jets,
shear layers, flows behind unstreamlined bodies, etc. Al-
though the observation of quasicoherent structures in these
flows indicates that models in the form of an ensemble of
structures with comparatively simple (low-dimension) dy-
namics can in principle be constructed, the available infor-
mation about their properties is still inadequate for perform-
ing a concrete analysis. For this reason the studies of the
scaling properties of transitions in space are still limited only
to those models which in the uniform approximation dem-
onstrate the same properties of critical behavior as low-di-
mensional dynamical systems. In particular, a renormaliza-
tion group description of the spatial development of
turbulence in flow systems has been given for two types of
critical behavior and a theory of the transition through inter-
mittency into spatially uniform isotropic ensembles of struc-
tures has been constructed.87'159

In constructing a dynamical model of the spatial devel-
opment of turbulence we shall keep in mind the fact that
structures analogous to those shown in Figs. 7-9, the collec-
tive dynamics of whose excitations is what leads later to the
appearance of spatial-temporal disorder—turbulence,
formed as a result of the development of primary instabilities
in a medium with flow. In the simplest formulation, dis-
cussed in Sec. 2.7, we shall employ the system of equations
(2.14), setting g = 0 (i.e., the spatial dependence of the exci-
tation on the structure is assumed to be given), to describe
the one-dimensional chain of structures:

d/4.
—i = 0) (Ait e) + Y (Ai — Ahi) -f tt (A,H + Ahl - 2Af);at

(3.15)

here <t> (Aj ,E) characterizes the dynamics of excitation on an
elementary structure; ^determines the action of one element
on another downstream; and, the feedback upstream de-
pends on x. The equation (3.15) is supplemented by bound-
ary conditions, for example, A0(t) =A exp(ifot) + c.c.—
this corresponds to excitation of a flow which is periodic in
time.

Neglecting diffusion (x — 0) the problem of the gener-
ation of spatial-temporal chaos along the flow reduces to the
problem of the appearance of a strange attractor in a chain of
elements which act successively on one another and whose
individual dynamics is regular. The existence of spatially
nonuniform stationary solutions A}(t) = A j , determined by
the relation Aj_t = (3>(Aj,£) + j/Aj)/y, is characteristic
for such a "discrete flow." If such a spatial distribution is
stable, then chaos does not arise along the flow—the motion
remains laminar. If, however, for somey =y* the solution

becomes unstable, then for/ >y * a more complicated motion
is established (in the general case this motion is character-
ized by a large dimension). This motion, for example, quasi-
periodic motion, can become unstable fory =y'** and thus
the motion can become more complicated along the flow,
until finally chaos arises for some jCT. More precisely, this
means that in the phase space of a system of/ =y'cr dynami-
cal elements (under the boundary conditions studied) there
exists an attractive limiting set—a strange attractor. In this
theory the values determining the nonuniform spatial distri-
bution of the field are the parameter which controls the tran-
sition to dynamical chaos along the chain. In typical situa-
tions this parameter enters into the problem of determining
the characteristic Lyapunov exponents along j similarly to
the controlling parameter e. From here there naturally fol-
lows the hypothesis that the scenarios of the transition to
chaos in a point system as E changes are similar to the scenar-
io, unfolding in space (along j), of the generation of dynam-
ical turbulence in the flow system.

To study the appearance and development of chaos
downstream—to determine the number of spatial bifurca-
tions and to find the similarity laws corresponding to them,
etc.—we shall simplify the problem as much as possible,
making the assumption that the structures are not carried off
by the flow. This situation is encountered quite often, for
example, in hydrodynamics—the boundary layers on rotat-
ing and fluted surfaces, flows above depressions, etc. In ana-
lyzing the interaction of "fixed" structures in a flow the feed-
back "upstream" is neglected, i.e., x is set equal to zero in
(3.15) and the problem of the appearance of a strange at-
tractor along j is rigorously formulated.

We shall study the case when the development of chaos
along the chain occurs through a sequence of period
doublings. Keeping in mind the fact that the dynamics of
individual elements can also be described with the help of
maps we shall employ, aside from (3.15) with x = 0, the
system

A,- ('" + 1) - /„ (A! (/;}, t) + Tl (Aj (n) - Af_, (n))

+ V5 (^ (n) - A*._t (n)) (3.16)

with the boundary conditions A0(n) = AQ\ here y, is respon-
sible for the "inertial" coupling and ^2 '

s responsible for the
"dissipative" coupling. By specifying the form of the func-
tions f0(Aj, e) we shall be able to study transitions in
chains whose individual elements have different dynamics.

Set t ing f 0 (Aj ,e ) =e~Aj(n), we write Eq. (3.16) in
the more general form

A, (n + 1) = /„ (Aj (n)) + V<p0 (A/ (n), Aj_l (n)) = f0 (A, (n), A f _ t (n)).

(3.17)

We shall assume that the coupling is weak | y\ <^ 1, and with
respect to tp(Aj^j_ , ) we set <p0(u,u) = £>0(0,0) = 0. Be-
cause the elements are identical the weakness of the
coupling guarantees that the stationary state will be a
smooth function of the coordinatey' in the interval from one
spatial bifurcation to another. Since we specified the type of
critical behavior (period doubling), we shall be interested in
the development of chaos along the chain from the starting
2N periodic regime. This behavior of chaos through a se-
quence of period doublings is realized when on all elements
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e — Ecr > 0 ( ' l ' , while on the first element — e( 1 — y) <ecr

(we assume for definiteness that A0 = 0). In the process a
stable 2N periodic regime, which transforms into a chaotic
regime asy increases, is realized at the start of the chain.

To construct the renormalization-group equations we
perform on (3.16) a scale transformation (doubling trans-
formation): we express the variables in terms of two units of
discrete time [Aj (n + 2) in terms ofAj(n)] and make the
substitution Aj -*-Aj/a. Applying this procedure ./V times we
obtain the equation of the renormalization group (RG)

= IN (Ai (")) -!- WN (Ai (">• Ai-i <")' ~ ° (V).

which decomposes into two equations:

f N ( A j ( n ) ) = afNfN^-A^-'j, (3.18)

AI \ o> ( AI A''-1

T Mv~
'

The first equation in (3.18) is a particular case of the
universal operator equation of the renormalization group

FK+1U = S~>FKF«SU, (3 .19)

in which, however, on transferring to a map through two
units of time the scale transformation is applied not only to
the functions (operators) determining the dynamics of an
individual element but also to the spatial coordinates.12'
Here we have introduced the notation S = SiS2, StU= U/a;
S2U = U /b. In the general case the variable U can be a vector
or a matrix. In Eq. (3.18), because the coordinate y is dis-
crete, the change in the spatial scale is achieved by renorma-
lizing the coupling y. As will be shown below, in the long-
wavelength limit Eq. (3.18) gives the same similarity laws as
doesEq. (3.19).

The goal of applying the renormalization-group meth-
od in this case is to find the critical exponents and the scale
factors determining the similarity of the spatial bifurcations
for this type of critical behavior in a neighborhood of the
critical point. At the same time the solution of the RG equa-
tion, if it can be found, is usually found only at the critical
point itself

U = S'GGSU, (3.20)

where the operator G is invariant relative to the action of the
renormalization group. In addition, the solutions of the RG
equations linearized near the stationary point G can be used
to find the scaling constants. In the general case this is not
sufficient. With some restrictions on the structure of the op-
erator FN, however, this problem can be solved. For this one
must be able to calculate the "preceding," increasingly high-
er order iterations, from the "following" iterations of the
action ofFN directly adjacent to the stationary point of the
RG and thus to predict the behavior of the system as a func-
tion of the parameter in an increasingly larger neighborhood
of the critical point.

In order for such a calculation to be possible the station-
ary point of the RG equation must have stretching, i.e., un-
stable, directions. The action of the operator FN in a small

neighborhood of the critical point determines the behavior
of the system in an increasingly larger neighborhood only
along such directions. We stress here that the set of unstable
directions in the function space where the operator FN is
defined cannot be continuous. Otherwise the critical behav-
ior is no longer universal—arbitrarily small changes in the
seed operator FN result in completely different similarity
laws. Thus the stationary point of the RG equation describ-
ing the universal behavior at the critical point must be a
saddle point. In addition, to determine the similarity laws it
is necessary to know only the perturbations of the operator
FN to which the eigenvalues (multipliers) of the linearized
problem which are greater than unity correspond. In what
follows we shall term them real. These multipliers them-
selves are the constants sought which determine the scale
similarity under transformations which are specified by the
perturbing operators corresponding to these multipliers.

We shall make use of these considerations to analyze
the RG equation (3.18). The stationary point of this equa-
tion is

(3.21)

Here the function g is identical to the universal Feigenbaum
function (period doubling),155 which is the solution of the
functional equation

S(U)=agg(Ula). (3.22)

We shall investigate the RG equation (3.18) in a neighbor-
hood of the stationary point (3.21). Representing
FN (Aj,Aj _ [ ) in the form

FN (Aj< Aj-J = S (Ai> + P (hN (Aj) + Y?A, (A/, A^J], (3.23 )

we obtain for the functions hN and <pN in the first approxi-
mation in /n

(3.24)

f / Al
M
I \ Q

(3.25)

The equation (3.24) is simply the Feigenbaum equation lin-
earized at the stationary point g(A ) and therefore it has one
real eigenvalue 8 = 4.669, corresponding to the eigenfunc-
tion h0(A) = 1 + O(A 2). The equation (3.25), however, is
identical to the RG equation describing the transition to
chaos in a system to two coupled parabolic maps.162 This
equation, according to Ref. 162, has two real eigenvalues:
Vi=a= — 2.5029... and v2 = 2. The value of v, corre-
sponds to the eigenfunction

Disturbances of this type can be interpreted as the introduc-
tion of an inertial coupling between point-like elements.
The value v2 = 2 corresponds to the eigen-
function q>2(Aj,AJ_l) =(A] -Aj_^4>2(Aj, A J _ , ) ,
where &2(AJrAj_ , ) ~ 1 which is responsible for the intro-
duction of the dissipative coupling.
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Taking into account the eigenfunctions which corre-
spond only to real eigenvalues Eq. ( 3 . 1 7 ) of the flow system
can be written in the following universal form:

(n + 2N) = g (A, (n)) + ^8%, (A, («))

i (A, (n) - Ahl (n)) (D, (A, (n), Ahl (n))

] (n) - A^ (n)) O, (A, (n), A^ M). (3.26)

where c, and c2 are constants which determine the value of
the inertial and dissipative couplings, respectively. It follows
directly from the form of the equations obtained that in a
neighborhood of the critical point the effect the RG transfor-
mation reduces to increasing the critical parameter fj. by a
factor of 8 = 4.669..., the inertial coupling by a factor of y,
and the dissipative coupling by a factor of 2. For the system
(3.17) this result was first obtained approximately in Ref.
163.

A characteristic feature of the systems studied in this
section is that the coupling between the elements is unidirec-
tional. In such systems there exist strongly nonuniform sta-
tionary regimes (for example, with the boundary 2N -cycle-
chaos). The RG procedure is also formally applicable to
such solutions, since unlike Ref. 164 here the spatial unifor-
mity of the solution at the critical point is not fundamental.
This nontrivial circumstance makes it possible to obtain
from (3.25) the similarity laws for the characteristics of
these regimes. In particular, the following similarity laws
can be obtained.

1. The similarity law for the period of the cycle T( fi,y)
in an element after which chaos appears. Since under the
action of the RG transformation the time scale and the mag-
nitude of the coupling y are doubled (c, = 0) and the critical
parameter /z is increased by a factor of S we have the follow-
ing similarity law for T ( f i , y ) : T( ( J . , y ) ~ y ~ } f 0 ( H/Y* )•
a = In 8/ln 2.

2. Similarity laws for the number of spatial bifurcations
and the number j*, from which chaos arises. Since under the
action of the RG transformation both these quantities do not
change, for them the following similarity laws must hold:
Nk ( A*.r> ~/i( V/r")J*( W) ~/>( A*/?" ), where/o.,.2 are
certain functions.

3.5. Effect of external concentrated forcings on dynamical
structures. Order-chaos transitions

The nearly spatially uniform chaotic regime established
in a flow system from sequentially coupled structures with
sufficiently large./ may be unstable with respect to the synch-
ronizing action of an external periodic field applied at the
boundary of the system. We shall demonstrate this for the
example of a unidirectional chain described in Eqs. (3.15)
with <b(A,£) = A-(\+i0)\A \2A and x = 0:

At
(3.27)

In the absence of a synchronizing action stabilization of
turbulence occurs in this chain — a spatially nonuniform
chaotic regime, in which the dimension, entropy, and other
average characteristics no longer depend on j fory >J, is es-
tablished along the chain.

Now, suppose a synchronizing action is applied at the
start of the chain:

A0(f) = Ase
ua*'. (3.28)

The chain should be most sensitive to synchronization at the
frequency a>s close to the partial frequencies cav of its con-
stituent elements, i.e., (taking into account the complex
coupling y) at the frequency <ys=;<yp =/?(! — Re y~)
+ Im y/Re y. The intensity I} = \Aj\2 in the stationary

spatially uniform regime of synchronization is described by
the map

//(!-/;)' =
I V l 2

1 +
• '/-i, 'o — A's. (3.29)

This map has for any value of f3 and 7 a stable stationary
point /° = l + |y | ( l+/? 2 )~ 1 / 2 , and for any amplitude of
the external field there exists a trajectory of the map which
lies entirely in the region of stability. Moreover, the regime
of full synchronization—(3.29) also turns out to be globally
stable, i.e., the infinite-dimensional phase space of the sys-
tem (3.27) and (3.28) with <os = cop does not contain any
other attracting sets.166

The time over which the regime of synchronization is
established can, however, be very long—it is determined not
only by the parameters of the system but also by the initial
degree of excitation of its constituent elements. Since the
oscillations of the elements are not synchronized, if the
spread in the initial conditions is sufficiently large a chaotic
regime should be rapidly established in the system. Synchro-
nization of this regime, starting with the first element, will
gradually encompass the elements "downstream"—a prop-
agating front of synchronization forms. In the case when the
mismatch between the frequency of the external field and the
partial frequency of the oscillations of the elements of the
chain is greater than the synchronization band, a regular
regime of beats arises at the left end of the street; this regime
will displace chaos similarly to a one-period regime—a wave
of the "beating-chaos" transition forms (Fig. 18).I66 If the
duration of the controlling periodic signal is finite, then the
moving region of synchronization—a regular spot on the
background of turbulence)—will also turn out to be finite in
space (in/).

Thus if different asymptotic states (multistability), in-
cluding also turbulent states, whose realization depends on
the initial and/or boundary conditions, are possible in the

t>5

FIG. 18. Waves of a phase transition ( y = 0.7 (1-1.70, 0 = 3.42). a-
Regular oscillations-chaos (/0>l/2); b-beats-chaos (70<l/2). (See
Ref. 166).
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flow, then concentrated forcing may turn out to be quite
effective. In this connection there arises the question of how
realistic such a situation in formed shear flows is, since in
accordance with Townsend's hypothesis,167'168 which has
been confirmed by a number of experiments, in such flows
turbulence with universal properties is established in the
self-similar region. The dominant structures in this region
can be represented in the form of vortex pairs, oriented along
the principal axis of the velocity of deformations, making an
angle of 45° with the average velocity. These vortices appear
owing to the stretching of the starting (nonuniversal) turbu-
lence by the average shear flow and serve as a coupling link
between the average flow and the small-scale turbulence,
and thus determine its properties. In the self-similar regime
the dominant structures—vortex pairs—reach a quasista-
tionary state, which is determined by the condition that in-
tensification (owing to deformations in the average shear
flow) is balanced by dissipation (owing to interaction with
smaller vortices). Townsend hypothesized that the flow
loses any memory of the initial (boundary) conditions—its
state depends on the overall geometry and not on the fine
details of the applied forces—based on the fact that the com-
pletely developed state depends solely on the turbulent ener-
gy budget. However a number of later papers contain
weighty proofs of the fact that memory of the initial condi-
tions extends into the region where the flow is usually re-
garded as self-similar. It may be concluded from the results
of Ref. 169, which were obtained in a study of wakes behind a
porous disk and behind a sphere (Re~ 104) with the same
radii and drag, that in the first case there is no shedding of
ring-shaped vortices and self-similar Townsend turbulence
with dominating vortex pairs does indeed form at sufficient-
ly large distances. At the same time large ring-shaped (possi-
bly also spiral-shaped170) vortices shed from the sphere are
observed at distances of up to several hundreds of diameters
and determine the properties of the flow. In particular, the
turbulent Reynolds number RT = 31 is substantially differ-
ent in this case from the corresponding value RT = 4 in the
wake behind a porous disk. The large-scale transverse two-
dimensional and ring-shaped vortices in shear layers and
jets, already discussed above, are other examples of struc-
tures which do not correspond to the mechanism of Town-
send self-similarity.

Thus either different asymptotic states (multistabi-
lity), realized with different initial and/or boundary condi-
tions, or states from which the transition to the asymptotic
state occurs at such long times and/or large distances that
finite perturbations strongly affect this transition, are possi-
ble even under conditions of developed turbulence. This con-
firms that it is in principle possible to change qualitatively
the properties of flows with the help of concentrated forcing.
However in experiments performed thus far with weak forc-
ings which are of practical interest131 it has been possible to
achieve flow control only up to and in the vicinity of the
region of transition to turbulence.

Among the many effects observed under concentrated
forcing of shear flows (see the reviews Refs. 173-180) the
suppression of turbulence is of greatest interest. In subsonic
jets such suppression was first observed in Ref. 181. The
experiments presented there and subsequent experi-
ments182"192 showed that the suppression is strongest at the
start of the jet and is obtained with high-frequency forcing. It

is explained by the fact (see Refs. 189 and 190) that an exter-
nal high-frequency field initiates in the shear layer of the jet
the formation of a regular chain of thin ring-shaped vortices
whose spatial period A is much shorter than the diameter d
of the jet. The most dangerous long-wavelength (A~d) dis-
turbances arising against their background have smaller in-
crements than in the case of a continuous shear layer; this is
what delays their development and decreases the energy of
pulsations on the starting section of the jet (x 5 8d). Forcing
at frequencies close to the frequencies of the most dangerous
disturbances regularizes the flow, but the integrated energy
of the pulsations usually does not decrease in the process.
Suppression of pulsations is nonetheless also possible in this
case, if the amplitude and phase of the forcing are chosen so
that the excitations developing naturally in the flow are com-
pensated by the excitations induced by the external ac-
tion. 147'193-196 Such compensation with the help of concen-
trated forcing can be realized comparatively simply in the
case when the most dangerous excitations have a narrow-
band spectrum. In particular, it makes possible complete
suppression of self-excited oscillations in a wind tunnel
whose working part is open.147'195'196 The question of the
possibility of utilizing this method for suppressing wideband
excitations actually leads to the problem of distributed
forcing.194'197'198

3.6. "Commensurate-incommensurate" transitions

We shall study a stationary periodic lattice of structures
subjected to external static forcing which is periodic in
space. In this case the flow can transform into new states,
stationary or nonstationary, depending on the amplitude
and the period of the forcing. Among the newly arising sta-
tionary states it is natural to single out three basic states,
which are qualitatively different and which transform into
one another as a result of bifurcation at the critical values of
the parameters—the supercriticality, the amplitude, and the
wavelength of the disturbance. The first state is the state of
"commensurateness," when the period of the established
lattice is related with the spatial period of the disturbance by
a rational ratio. The second state is the state of "incommen-
surateness" and is characterized by the presence of regions
in the flow where the period of the lattice is incommensurate
with the period of the perturbation. Finally, the third state is
the chaotic state when the period of the lattice varies in space
in an irregular fashion. Such states can be observed both in
static solid-state lattices (in particular, in krypton adsorbed
on graphite199 and in magnetically ordered systems200) and
in ensembles of hydrodynamic structures discussed here that
are formed, for example, under the conditions of Rayleigh-
Benard thermal convection201'202 or of the electrohydrodyn-
amic instability in thin layers of liquid crystals.92'203'204 For
small excesses above threshold the latter two cases do not
differ fundamentally, but because of purely technical diffi-
culties experimental studies have been performed only for
liquid crystals.

In thin layers of liquid crystals flow in the form of rolls
(Williams domains), whose properties are similar to those
of Rayleigh-Benard convection, arises as a result of the elec-
trohydrodynamic instability when the voltage across the
layer V is greater than the critical value Fcr. The introduc-
tion of an added voltage AF= (a/2) Fcr cos k^x periodic
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FIG. 19. Commensurate states, a-1/1, /„//, = 0.928, a = 0.097; b-1/2,
/„//, = 0.460,a = 0.114;c-l/3,/0//, = 0.370,a = 0.114. (SeeRef.204).

along the layer result in competition between modes with
two different scales and, as a consequence, leads to the ef-
fects studied here (see Refs. 92 and 203-204). Figure 19
shows as an example204 the commensurate states m/n in
which n = 1,2, and 3 hydrodynamic periods form on m = 1
periods of the disturbance. Commensurate states of higher
order with a spatial period w/t were also observed in the
experiment of Ref. 204, but as m was increased three-dimen-
sional effects made it difficult to observe these purely two-
dimensional states. When the values of I0/l\ differed by large
amounts from the ratio of small simple numbers incommen-
surate phases, characterized by the amplitude and phase of
the modulation, arose. In the incommensurate phases shown
in Fig. 20 the period of most rolls is dictated by the period of
the external forcing as in the commensurate phase 1/1, but
regions of local compression of the rolls also occur between
them. The shift <p(xk ) of the spatial phase of the k th pair of
rolls relative to the phase of the external forcing

(3.30)
\ '!

turned out to be close to the solution of the equation
datp _
dx2 c sin cp (3.31)

with appropriately chosen constants a, b, and 8:

[ 1 /9h \~\

a ami— x+8 ; (3.32)
« \ s ,'J

t t

FIG. 20. Incommensurate states, a = 0.032; the arrows mark the regions
of local compression of rolls, a-/,//, = 0.866; b-/0//, = 0.816. (See Ref.
204).

here am(u) is the amplitude of the elliptic integral of the
first kind and s is the distance between the points of compres-
sion of the rolls.

The explanation of this phenomenon is as follows! For
small excesses above threshold in the absence of external
forcing the flow can be described by the GL equations. A
spatially periodic external forcing should result in corre-
sponding changes in the symmetry of the amplitude equa-
tions. In the two-dimensional case (one-dimensional chains
of structures) use of the fact that a small external forcing
with the wave number kl destroys invariance under arbi-
trary translations and admits invariance under the group of
discrete translations x->x + 2irN/kt (&, = nk0/m, n, m are
integers), leads to an amplitude equation of the form205

(3.33)

where a is a small parameter, usually proportional to the
/nth power of the external forcing. Off resonance
mki = n(k0 + q) (q4,k0) a slowly varying function
expO'n<pc) must be inserted in the amplitude equation in ac-
cordance with perturbation theory:

where
M_
dx

- - [(A')n exp (ingx) + A" exp (inqx)\

(3.34)

(3.35)

The stationary uniform solutions A = Q exp(/ip) are deter-
mined by the relations ^ = qx + kir/n and

+ cc(n- l)Q"-2-3Q2] = 2P2^-naQ ~2 the solutions
with even k can be divided into amplitude modes with the
decrement yA = —2P2 and phase modes with the decre-
ment YV = ~~ aaQ" 2- By virtue of the condition
2P2>naQ~2 the changes in the amplitude follow the
changes in phase, which are described in this approximation
by the following equations:205

dt

6H
dx1

(3.36)

where V= aQ" 2 and <p = Q — qx. Comparing (3.31) and
(3.36) shows that this approximation describes well the
change in the sizes of the structures determined by the phase
variable in the stationary case d /dt = 0.

Generalization to the degenerate case, when there are
two types of excitations with identical (close) spatial per-
iods, with small excesses above threshold can likewise be
made under the most general assumptions. The correspond-
ing equation for A = A exp( — iqx) has the following form
in the lowest orders in e (Refs. 205 and 206):

dA
dt

dM

= (s — q*)A+2iq — — |,4|M- (3.37)
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2/14-n)and in the limit of small mismatches q2

\v\ <£1/2 transforms into an equation for the phase:

L __£ = _. ^em-»)/z sin (mp).

and

(3.38)

The experimental results discussed above and analysis
of the amplitude equations (3.34) and (3.37) show that for
one-dimensional chains of oriented convective rolls the flow
responds in a nontrivial fashion to external forcing, even in
the simplest cases. If however, the boundary conditions do
not impose strict restrictions on the orientation of the con-
vective rolls, then in a wide region of the parameters of the
external forcing the three-dimensional flow is more stable
(Fig. 21). Though the possibility for the appearance of
three-dimensional flow can apparently be predicted (see the
discussion in Ref. 204) from estimates of the Lyapunov
functional F, obtained with the corresponding extension of
(3.34) taking into account the changes along the second co-
ordinate, this flow itself cannot be described on the basis of
the amplitude equations.

3.7. Random walk of defects. Faraday ripples

The development of a dynamical theory of turbulence
and the hypothesis proposed in this connection that scenar-
ios of transitions to spatial-temporal chaos are universal
stimulated new experiments intended to observe these sce-
narios.93'207"214 These experiments confirm, in particular,
that the general properties of transitions to spatial-temporal
chaos, which are observed in real flows, are similar to those
of transitions observed in model equations and in systems of
coupled maps. However the direct observation of transition
scenarios in an ensemble of structures is often complicated
by the fact that the identification of individual structures in a
turbulent regime is a very difficult problem. One of the few
exceptions in this sense are cells of capillary Faraday ripples,

FIG. 11. Three-dimensional incommensurate states with /„//, =0.91 (see
Ref. 204).

arising on the surface of a deep liquid when the liquid is
parametrically excited. These cells are so stable that they can
be easily identified in both the transient and turbulent re-
gimes. We shall illustrate using the example of Faraday rip-
ples the scenarios most typical for an ensemble of stable
structures of a transition to spatial-temporal chaos.93'214

In the experiment under discussion93'214 a horizontal
membrane oscillates uniformly in space at a completely de-
terminate frequency/ Pairs of parametrically coupled capil-
lary-gravity waves arise on the surface of a layer of liquid on
the membrane in the oscillating "gravitational" field. For
not too high amplitude of the vibrations (pumping) these
pairs of waves form an exceptionally regular spatial lattice
with square cells. If, however, the amplitude of the oscilla-
tions of the membrane (i.e., the critical parameter) is in-
creased, an unexpected phenomenon is observed: spatial-
temporal disorder appears, but the cells do not vanish (Fig.
22). The transition from a regular arrangement of cells to a
disordered arrangement corresponds to the transition from a
discrete spatial spectrum to a continuous spectrum.

Three scenarios of the appearance of spatial-temporal

FIG. 22. The structures of capillary ripples on the surface of
a liquid under conditions of parametric excitation."'214 a-
Waves of modulation against the background of square cells.
b-Waves of modulation with dislocations. c-Two-dimen-
sional superlattice with dislocations. d-Chaotic motion of
unit cells.
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chaos were observed in the experiment of Refs. 93 and 214:
1) the appearance of one-dimensional periodic modulation
(Fig. 22b) which subsequently became chaotic; 2) the ap-
pearance of a two-dimensional "superlattice"—a lattice of
the envelope (Fig. 22c); and, 3) the formation of disloca-
tions by the mechanism of competition of one-dimensional
waves of modulation with close wave numbers, as discussed
in Sec. 2.8 (Fig. 22c). We note that the number of disloca-
tions increases as the critical parameter increases, and the
turbulence that is established represents the chaotic dynam-
ics of the interacting dislocations (Fig. 22d).

A similar, though somewhat different, picture of chao-
tic motion of dislocations is also observed under conditions
of thermal convection in a horizontal layer of argon
(PlXl), placed in a cylindrical container (Fig. 23).212 The
difference lies in the fact that here dislocations appear not in
the lattice of waves of modulation, but rather in the lattice of
the starting structures—Benard convective rolls. As the
Rayleigh number increases the convective rolls at first un-
dergo periodic motions, which then transform into random
walks accompanied by the generation, motion, and vanish-
ing of dislocations.

We shall study in greater detail the first scenario of the
transition to chaos. A theory which agrees with experiment
was constructed for this scenario in Ref. 114. Using the pro-
cedure described in Sec. 2.7 a discrete analog of the GL equa-
tions can be constructed for the complex amplitude of the
wave of modulation from the starting continuous equations,
but now in a parametric variant

dt
- a A,) + i | A, |My + jQ (A,H + Ahi - 2AJ),

(3.39)

where Q is determined in terms of the parameter q, equal to
the number of discretization links at the wavelength A of the
wave of modulation: Q = (vg/yA)q2/4ir, whereug and /are
the group velocity and damping decrement of the capillary
waves. The system (3.39) replaces the active medium by a
chain of coupled parametric generators, each of which is
equivalent to an elementary unit of the medium with the
characteristic scale A /q.

The system of equations(3.39) was solved numerically
for two types of initial conditions: a) small deviations on the
background of a uniform equilibrium state A and b) distri-
butions^ with high amplitude oscillating rapidly along the
chain.

For small excesses above threshold complicated sta-
tionary states with a large number of oscillations on the pro-
file AJ appear in the chain. In the case of initial conditions of
the type a) the stationary regime is reached through a sec-
ondary instability of the periodic spatial modulation.214 Sta-
tionary regimes of a different type are formed with the initial
conditions b). Their spatial structure is modelled by the
product of a complex function of the coordinates with rela-
tively small changes in phase and rapidly oscillating modu-
lus by a real sign-alternating function. As the critical param-
eter e = (h — I) is increased the troughs between the beats
on the profile \Aj \ contract. At h = 1.85 the stationary state
becomes unstable—weak oscillations in time appear. The
character of the oscillations indicates that the transition to
chaos is realized through intermittency.215

The above picture of the chaotic dynamics of modula-
tion spikes is in good qualitative agreement with the experi-
mental results. The computational results for small excesses
above threshold predict the formation of large troughs on
the modulation of the experimentally observed profile. In

FIG. 23. The transition to turbulence under conditions of ther-
mal convection of argon in a cylindrical cell.212 a-e = 0.05-sta-
tionary rolls; b-e: £ = 0.14-one-period oscillations with forma-
tion of dislocations, f: e = 1-deformations of the rolls, g: e = 2-
appearance of cross rolls; h: e=;4-formation of pairs of small
rolls near dislocations, i: £~4-nonstationary structures.
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addition the displacement times of the dark fringes agree
with the restricting times accompanying the establishment
of stationary states in the numerical calculation. For exam-
ple, for h = 1.4 (£ = 0.4) this is the time?- lOOy'1 ~3s. In
real time the fastest restructurings with h = 2.2 have the
scale t2~T2Y~ ' sO.12 s, which also agrees with the visual
estimates for the regime of developed chaos. As numerical
experiments show Eq. (3.39) for the same values of the pa-
rameters can describe different established chaotic regimes.
This means that its phase space contains simultaneously sev-
eral different stochastic attractors, the emergence onto one
of which is determined by the initial conditions. Visually, in
the experiment, to this set of attractors there corresponds a
set of spatial images (structures), which are established
against the background of capillary ripples with the same
value of the critical parameter.

We call attention here to the following important fact.
The chaos observed in the experiment of Ref. 214 was almost
always two-dimensional. Near the threshold for its appear-
ance, however, it is almost a superposition of one-dimension-
al, mutually orthogonal, modulation structures; this is what
justifies the construction of a one-dimensional theory based
onEq. (3.39).

3.8. Multidimensional chaos. Relation oi the dimension of
turbulence with the number of collective excitations

For sufficiently large critical parameter (amplitude of
vibrations) the properties of the observed turbulence no
longer depend on the path by which it appears—turbulence
consists of spatial-temporal dynamical chaos in an ensemble
of interacting capillary cells. A model theory (see Ref. 216)
of such turbulence can be constructed using the discrete ana-
log of Eq. (2.14)

. = 4W —(1 + , + x (1 - ic) (A,.,

(3.40)

or in the one-dimensional variant—Eq.(3.15). We shall as-
sume that the boundary conditions in the analysis of collec-
tive motions in ensembles of the form (3.15) and (3.42) are
periodic (respectively) :

A,,i (t) = AW.I (t), AJ,I (t) = /4/.,t.v (t).

(3.41)

(3.42)

Assuming that in some region of the parameters a stable
stochastic regime is realized in the ensemble (3.15) or
(3.40), we shall determine the dependence of the character-
istics of chaos on the parameters of the ensemble—the
numbers of elements N and the magnitudes of the couplings
x between the autostructures—elementary cells of Faraday
ripples. Assuming that the turbulence established is on the
average spatially homogeneous, i.e.,

141* = M (3.43)

and, in addition, the average pulsations of the intensity are
small

I4l2-H2 = z/- ?<H4, (3.44)

the Lyapunov exponents of the motion under study on a
strange attractor can be calculated explicitly and the de-

pendence of the Lyapunov dimension DL on the parameter K
can be calculated. In particular, for K < 1/4 we have216

(3.45)4 | a | * - l

in the one-dimensional variant and

2x){[ ( l+P 2 ) 1 < a + 2]|a|2-l}-i (3.46)

in the case of a square lattice.
It is natural to compare the dimension of stochastic sets

in one- and two-dimensional ensembles of structures with
the same parameters and the same number elements (Fig.
24). It is obvious that the dimension of chaos in a two-di-
mensional ensemble with a given coupling between the
structures is always less than in a one-dimensional ensemble
with the same number of elements. This is explained by the
fact that the degree of autonomy of the structures (the di-
mension of chaos increases as the degree of autonomy de-
creases) is determined not only by the magnitude of the cou-
pling between the neighbors but also on the number of
neighbors: as the number of couplings increases the auton-
omy of an elementary structure effectively decreases and
therefore the collective motions become more ordered. This
is what corresponds to the lower value of the dimension.

As the autonomy of the structures increases the number
of collective excitations which can exist in ensembles of the
form (3.15) and(3.40), as we shall now prove, continuously
increases. For this reason it seems obvious that the above-
discussed increase in the dimension of chaos as x decreases
should be related with the appearance of new independent
motions in the ensemble. Also they should obviously be un-
stable.

We shall demonstrate the truth of this proposition using
the example of the system (3.15) and (3.40), collective exci-
tations in which have the form of steady-state traveling
waves:

A, (t) = /l"!) exp (i (<o<"V •-.- /e" (3.47)

Substituting (3.47) into (3.15) gives the dependence of the
intensity of these waves on the propagation constant

|M<n' | ! ! --=l-4xsins^ (3.48)

and the dispersion law for these waves is

(3.49)

1/4 //.?

FIG. 24. The Lyapunov dimension DA of a stochastic set in an ensemble of
./Vautostructures.2'6 1-For a one-dimensional "lattice" (xf = N2/^).
2-For a square lattice (x * = x*/2N}. 3-For a cubic lattice
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= — 1 — 4xsin»

where 0 w = ± 2irn/N, n = 0,l ..... N/2. Immediately
above the threshold for the appearance of structures, i.e., for
not too large critical parameter, the coupling between the
cells is quite strong. The ensemble of structures demon-
strates only a trivial regular behavior. The stability of the
spatially homogeneous regime is determined by the expo-
nents (seeRef. 216):

0(o r / e(0 "- a1"!1'
» -- J: 1 — (4xcsin2— i - ; Spxsin* — ,

(3.50)
whence it follows that for

(3 .51)

all A (;)<0 and the regime of spatially homogeneous oscilla-
tions in an ensemble of N cells is stable.

For /?c> 1 as x decreases (from the value x0) new col-
lective motions are successively engendered in the system
( at x = xk ) from the trivial equilibrium stately = 0. In the
phase space of the system (3.15) this corresponds to soft
generation at x = xk from the states of equilibrium of pairs
of limit cycles (corresponding to oppositely propagating
waves), and in addition all periodic motions appearing in
this manner are unstable. This can be proved by studying the
characteristic indices of the trivial equilibrium Aj :

1 — 4xsin2 — + 4/cxsin2—-• .
2 *

(3.52)

Comparing (3.52) and (3.34) it is not difficult to see that the
number of unstable directions in phase space, i.e., the num-
ber of positive Re A (/), with given x' is equal to the number
of steady-state waves appearing as x decreases from x0 to x',
while the increments of the perturbations along unstable di-
rections are determined by the intensities of these waves:
Re A (;) = \A <0|2. Since the periodic motions appear from
the trivial equilibrium in a soft manner, they inherit (at the
moment a new unstable direction is engendered) the expo-
nents of the state of equilibrium along the remaining inde-
pendent directions. For this reason at the moment of cre-
ation the periodic motion with i = 1 is characterized by one
unstable direction (it corresponds to growth of spatially ho-
mogeneous disturbances) of the motion, the periodic motion
with i = 2 is characterized by three unstable directions, etc.
If it is now assumed that the newly created unstable direc-
tions belong to a strange attractor, then it is easy to interpret
the result that the dimension of chaos increases monotoni-
cally as the autonomy of the structures increases—as x de-
creases, trajectories for which the number of unstable direc-
tions is of the order of the number of the created cycle
(periodic motion with 0= 0 < 0 ) appear in the attractor.
Thus the number of unstable periodic solutions of the form
(3.47) which exist for a given value of x is the lower limit of
the dimension of the attractor.

3.9. Scaling properties of developed turbulence. The fractal
structure of the field of dissipation of turbulent energy

One of the most fundamental properties of developed
hydrodynamic turbulence is the existence of an interval of
scales L<g /< / d (inertial interval) in which the statistical
characteristics of the velocity field satisfy a definite scaling
law (where L is the global scale of the flow determined by the

external forces and/or boundary conditions, while /d is the
scale on which viscous dissipation becomes significant,
1A~L /Re3/4). The first and best known example of such
scaling is Kolmogorov's — 5/3 law217 for the energy spec-
trum E ( k ) of the velocity pulsations:

F(h\ Ccb-''3 (3 S3^Lj I K f — t_« t<fv . ^ »J.-0 J /

This universal power-law spectrum is obtained by the meth-
od of dimensions14' under quite general assumptions about
the local homogeneity and isotropy of turbulence for large
Re. Here e is the rate of dissipation of turbulent energy per
unit volume and Cis Kolmogorov's constant. The simplicity
of the dimensional approach, which yields results which
agree well with the physical and numerical experi-
ments,214'224 is amazing given the complicated mathemat-
ical structure of the Navier-Stokes equations. Moreover, the
Kolmogorov spectrum is observed in experiments even for
moderate Reynolds numbers and/or in the range of compar-
atively small wave numbers, for which, with respect to all
criteria, turbulence is not isotropic and homogeneous. This
is especially surprising, taking into account the fact that
such a dimensional approach is not applicable for the
Burgers model of turbulence, the equations for which, just
like the Navier-Stokes equations, have one dimensional pa-
rameter—the viscosity, and in the nonviscous limit—the en-
ergy integral.225 A fundamental feature of Burgers model is
that it does not contain internal stochasticity, i.e., stochasti-
city not related with the external noise; internal stochasticity
is characteristic of real three-dimensional hydrodynamic
turbulence. Numerical experiments with dynamical systems
of high order confirm that the universal scaling laws in the
inertial interval are indeed characteristic for any nonlinear
systems with an invariant and internal stochasticity which
remain in the nonviscous limit and can be determined from
analysis of dimensions.225"227

It is obvious that the "scaling property" mentioned
above does not exhaust all properties of the Navier-Stokes
equations and cannot determine the detailed structure of the
turbulence, even for extremely large Reynolds numbers. In
particular, from the scale invariance of the equations of hy-
drodynamics of an incompressible liquid (2.4) and (2.5)
with respect to the transformations

p

(3.54)

in the inertial interval it follows that the exponent a cannot
be determined from an analysis of the dimensions without
invoking additional hypotheses. Kolmogorov's inertial-in-
terval theory assumes that the rate of dissipation of turbu-
lent energy averaged over a region of size r
£~{( ku\3)/r~e0(r/r0)

a ~~' does not depend on the dimen-
sions of this region, i.e., a = 1. In this case the moments
{| AM \ p ) (( ) indicates spatial averaging) satisfy the follow-
ing Kolmogorov-Obukhov scaling law:217'228

<|A«|">~ r1", (3.55)

where £p =/?/3.
In the experiments of Ref. 229, which were performed

with large Reynolds numbers, it was found, however, that
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, and this discrepancy increases asp increases. This
discrepancy can be eliminated, if it is assumed that the active
(from the viewpoint of energy transfer upwards along the
spectrum) part of the turbulence is distributed on a fractal
subspace. We shall study the physical interpretation of the
origin of such fractals for the example of the simplest model,
the idea for which was formulated in Refs. 230-233 and
which was later termed the /? model.

We shall assume that the cascade transfer of energy
from large vortices to small vortices does not encompass the
entire volume of a large vortex, but rather only the active
part of the volume, and we introduce the coefficient
(3= 2D/3 , equal to the ratio of the volume of the newly
formed vortices with scale /„ + , ~ 2 ~ ("+ ' '/Q to the volume
of the starting vortex with scale /„ ~ 2 ~ "/„, where /„ is the
characteristic scale of the entire flow. Since in the cascade
process energy is transferred at a constant rate,

(3.56)

whence it follows that

- 2)
(3-Dp). (3.57)

It is easy to show that in accordance with the definition
(3.4) Dp is the fractal dimension of the region occupied by
active vortices [here, of course, the "physical" transition to
the limit under the condition that r>rd is presumed in
(3.4) ]. Although in this model the free parameter Dp is not
determined, the fact that gp is a linear function of p is an
exact consequence of the model. Figure 25 shows the experi-
mental data of Ref. 229, which confirm the linear depend-
ence of |p on/? for/? < 7, but for larger/7 a deviation from this
dependence is observed. As we shall see this can be explained
by the multifractal structure of the turbulence.

To construct the multifractal model234"236 we shall as-
sume that the dissipation is concentration on the sets S(A)
with dimension D(h), on each of which the scaling analo-
gous to that studied above but with its own index h holds in
the inertial interval:

A «(/•)-/•*.

It is natural to assume that the relative number of cubes
with edge r on the set S(h) will be proportional to

|Aw | dp (h) /•M (3.58)

In the limit of small r the weighting function p ( h ) can be
assumed to be a slowly varying function, so that the method
of steepest descent can be employed to calculate the integral
in (3.58); this gives the relations

D*(h)l
(In r)~ -rp. (3.59)

where h * is determined by the conditions
dD (h)

dh = P,
(h)

dh2

12

FIG. 25. The dependence (3.54) of the scaling index £„ on the number of
the moment^ in the model of uniform fractals with Dff = 2.83 (straight
line) and the experimental data of Ref. 229 (circles).

For small r it may be assumed that

= SP, (3.60)

so that the fractal spectrum D ( h ) can be determined in a
parametric form from the measured dependence E,f = g( p ) :

h = | dp.

(3.61)

(3.62)

In particular, for Kolmogorov turbulence gp = p/3; for this
reason the fractal spectrum consists of one point h = 1/3,
at which Z>(l/3) = 3. For the P model
gp = [p(Dp - 2)/3] + 3 - D, h = (De-2)/l, and natu-
rally D(h) =Dp. The /? model gives the best agreement
with experimental data for p<7, if D = 2.83. Such a small
difference in D from the corresponding value for the Kolmo-
gorov turbulence explains why the — 5/3 law is observed so
consistently in many experiments. Indeed, if the local rela-
tion between the scales r and the wave numbers k is em-
ployed for approximate calculations and it is assumed that
k ~ r ~ ' , then we obtain for the spectrum in the 13 model

£ (fe) - fe(-5/3)-[(3-D)/3] fg £(-5/3)-<l/18)_

The small correction to the exponent can hardly be reliably
measured in experiments, which usually concern a compara-
tively small range of wave numbers (on a logarithmic scale).
The fact that D ̂  3 is nonetheless fundamental, since it
means that the turbulence is highly inhomogeneous — the
relative fraction of the volume occupied by active vortices
r~D/r~i approaches zero for sufficiently small values of r.
In other words, the structure of this part of the space is the
same as that of a Cantor space U. The following simple rela-
tion is almost always satisfied in the isotropic case between
the dimension D of the set U and the dimension of the sets
formed by the intersection of U with a plane S or a line L
(see, for example, the discussion in Refs. 132 and 237):

which is extremely important for determining the values of
D experimentally, since it is often necessary to confine the
experiments to one-dimensional measurements. If Taylor's
hypothesis is employed in addition to this relation and it is
assumed that the temporal realization corresponds to the
intersection of frozen-in turbulence and a straight line (for
example, the straight line OX along the flow:
d /dt = — U0d /dx ) , then DL (h) can be determined experi-
mentally. In Ref. 237 such measurements were performed
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FIG. 26. The average multifractal spectrum for developed turbulence in
different flows: in laboratory boundary layer, behind a grid, in the wake of
a cylinder, and in the atmospheric boundary layer. The broken curves
bound the region containing the experimental points.237

for one of the terms appearing in the expression for the dissi-
pation of turbulent energy e~ (du/dx)2~ (U0du/dx)2. The
results of measurements of DL (h) of the spectra of devel-
oped turbulence with different flow geometries and Reyn-
olds numbers (Fig. 26) are virtually identical to one another
and extend from h = amin = 0.51 to h = amax = 1.78 while
the maximum value/(a0) = 1 is reached at a0 = 1.117.237It
follows from the dependences presented that the greatest
dissipation of energy £~r"~' for small r (singular in the
limit r-»0) occurs on fractal subspaces with dimension
/(a < 1) </( 1) =;0.95 (here, as we have already pointed out,
the fractals are meant in the physical sense, since it is as-
sumed that all scales of r exceed the Kolmogorov scale ld).

The results presented above indicate that for large
Reynolds numbers most of the volume of the turbulent liq-
uid is passive with respect to energy dissipation, and there-
fore also with respect to the transfer of energy upwards along
the spectrum. In the Navier-Stokes equation for the vorticity

^- + rot (uxca) = W2w (3.63)
dt

the only nonlinear term directly responsible for this trans-
formation is VX (wXff l ) . From here it may be concluded
that the most probable distributions of the vorticity o>(r) in
developed turbulence are those that minimize this term
(with the exception, possibly, of the component describing
the trivial transfer of vorticity). Recent studies238 indicate
that this principle for suppressing nonlinearity is not a
unique property of the Navier-Stokes equations and is satis-
fied for a wider class of nonlinear systems. The qualitative
interpretation of the suppression of nonlinearity with small
dissipation (Re-» oo ) consists of the fact that the system is
most likely to be found in the region of phase space (or func-
tion space, if we are talking about fields), where its motion is
slowest:

- - R e -
dt

It can be expected that further investigations of this
problem will make it possible to formulate more exact vari-
ational principles, suitable for finding quasiequilibrium co-
herent structures with long lifetimes. It is possible that the
spiral structures, widely discussed in recent years,239'243 in
which the velocity field and the vorticity are oriented pre-
dominantly parallel to one another, belong to this class.

4. CONCLUSIONS

Three directions in the theory of turbulence—statisti-
cal, structural, and dynamical—developed in parallel and
practically independently, even comparatively recently. The
results obtained in each direction pertained to different
problems and answered questions arising in qualitatively dif-
ferent experimental situations. Now it seems surprising that
such autonomy has existed for so long and an impetus
towards and possibilities (!) for constructing a single unified
theory appeared only in the last five years.

The interaction of the structural and dynamical ap-
proaches to turbulence are especially clear today. This, in
particular, is attributable to many experimental successes,
which convinced investigators that turbulence with moder-
ate Reynolds numbers is spatial-temporal chaos of interact-
ing structures. Qualitative proof of this fact is provided by
experiments in which hydrodynamic flows are visualized;
quantitative proof, however, is obtained by special analysis
of measurements and comparatively simply in numerical ex-
periments. Thus computer studies of two-dimensional tur-
bulence described by the Navier-Stokes equations with peri-
odic boundary conditions244 have shown that the dimension
of the chaotic set, calculated with the help of the definition of
Lyapunov exponents, is usually much less than the number
of elementary (harmonic) excitations engendering the flow.
This fact has a clear interpretation—the chaotic dynamics of
the flow is determined only by the large number of indepen-
dent (in this case—large-scale) excitations; the rest are
strongly coupled with them, i.e., they form coherent struc-
tures. This result was obtained previously for turbulence de-
scribed by the two-dimensional Ginzburg-Landau equa-
tions.216 It can be asserted that the dimension of the chaotic
motion—turbulence—is correlated with the number of
structures (spiral waves, defects of the wave lattice, etc.),
interacting with one another.

The discovery of a relation between the dimension of
turbulence for large Reynolds numbers and the number of
modes in the inertial interval is of great interest. Here only
isolated results have as yet been obtained (see, for example,
Ref. 245), but it is precisely in the analysis of multidimen-
sional stochastic sets, which vary very uniquely as the width
of the inertial interval increases, that it may be possible to
explain the phenomenon of self-similarity of turbulence
from the viewpoint of nonlinear dynamics.

We thank I. S. Aranson, A. V. Gaponov-Grekhov, and
M. V. Nezlin for fruitful discussions.

1' For wave fields it is known as the modulation instability,'' also some-
times called the Benjamin-Feir instability.9

21 In the absence of a two-dimensional wave such disturbances with
Re S 5772 decay.

3) Here the picture of Ref. 45 is presented. This picture is typical for labo-
ratory experiments, though it is obvious that other transitions are also
possible, depending on the properties of the disturbances in the incident
flow.

41A remarkable property of this system is its gradient nature. Because of
this property the obtained results regarding the instability of "elemen-
tary" localized structures can also be extended to a Hamiltonian system
of the form d2u/*2 = -SF/Su, d2v/dt2 = - SF/Sv. We stress
that the stability of the solutions forming at the minimum of the func-
tional F is only a necessary condition for these static solutions to be
stable in the Hamiltonian system with the same potential function. In
the case when there are no internal resonances (corresponding to the
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nonlinear excitation of the characteristic degrees of freedom of the lo-
calized structure), however, this condition is also sufficient. Direct
computer experiments have confirmed the existence of stable three-di-
mensional "particles" of the type shown in Fig. 6 in the Hamiltonian
system presented.

" The n-dimensional cubes covering the set may turn out to be "almost
empty," and because of this it may be that D < n. For the usual sets the
definition (3.4) gives obvious results. Thus for a set of isolated points we
have N(e) = N and D = 0; for the segment L of a line N(e) = L /e,
D= I; for the area S of a two-dimensional surface N(e) = S/e2,D = 2;
etc.

"Of course, the solution of Eqs. (3.6) (with given initial conditions at
t = 0) actually describes the neighboring trajectory only as long as all
distances /, (/) remain small. This circumstance, however, does not ren-
der meaningless the definition (3.7), in which arbitrarily long times are
employed. The relative change in the lengths over a long time t enters
into (3.7); within the framework of the linear approximation it gives the
same result as successive relative changes over time intervals during
each of which linearization of the equations is admissible.

" Taking into account the Lyapunov exponent that equals zero makes a
contribution of + 1 to the dimension D L , corresponding to the dimen-
sion along the trajectory itself.

8) The exact definition of the correlation interval is predicated on passing
to the limit N-> oo.

91 It may even happen that in a short realization there is simply not enough
time for separate details of the attractor to be manifested.

'0) As is well known, the states of matter near the critical point at different
temperatures differ only by the spatial scale of long-range correlations.
For this reason the thermodynamic functions of one or another state
behave similarly and can be obtained from one another by a corre-
sponding scale transformation. This property of critical phenomena is
called scaling. Behavior of scaling type is also characteristic of transi-
tions to chaos;154 the nature of scaling is essentially the same as that of
universality as a whole.

1'' The significance of the parameter e = ecl is that of a critical point in the
transition to chaos in each individual element.

12> Equation (3.19) for describing a transition to chaos in a medium with
diffusion, consisting of elements described by Feigenbaum's mapping,
was first studied in Refs. 160 and 161.

I 3 ) Such forcings are usually realized with the help of vibrations of the
borders forming the flow or vibrating ribbons inserted additionally into
the flow. Small pulsations of the flow rate in jets and acoustic irradia-
tion at subsonic velocities can in most cases be classified as concentrat-
ed forcings, since the disturbances which they introduce are trans-
formed effectively into modes of the hydrodynamic flow only near the
borders.'71'1"

141 The term dimension in this case is employed in its everyday sense and
refers to the units of measurement of physical quantities.
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