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The Maxwell equations, the Minkowski material equations, and the conditions which must be
obeyed by fields on moving interfaces are used to obtain expressions for the frequencies and wave
vectors of all the waves that appear on reflection and refraction by moving interfaces, by a
tangential discontinuity of velocities of two media, and by a moving mirror. The main reported
investigations of these topics are discussed. Calculations are made of a large frequency shift, of a
considerable increase in the amplitudes, and of a change in the direction of propagation of waves
reflected by a rapidly moving mirror or by the front of a parameter traveling in a medium at rest.
Allowance is made for the Fresnel transmission of waves across such an interface and for the finite
thickness of the transition layer. The change in the parameters of the reflected wave packets is
considered together with the problem of the exchange of energy and momentum between an
electromagnetic field and a moving mirror. In the case of a tangential discontinuity the rotation of
the plane of polarization of reflected and refracted waves is dealt with, as well as the amplification
of these waves on reflection from a medium moving faster than light.

INTRODUCTION

We shall consider electromagnetic fields (in the ab-
sence of their sources) in moving media containing inter-
faces. These interfaces are surfaces (in the simplest case,
planes) separating media with different electromagnetic
properties (i.e., with different values of the permittivity and
magnetic permeability). An interface itself can move as well.
We shall assume that both media and the interface between
them are traveling at constant velocities. As a special case we
shall consider an interface between media at rest. The sim-
plest example is a medium with a permittivity £, separated
by a plane boundary from a medium with a permittivity £2

when the two media are at rest and the interface between
them is traveling at a constant velocity. These are known as
systems with a traveling parameter or with a wave of a pa-
rameter. In the case under discussion there is a traveling
discontinuity of a parameter, which is the permittivity. The
problem of the interaction of electromagnetic waves with a
traveling wave of a parameter has much in common with the
boundary-value problems in electrodynamics of moving me-
dia and we shall consider problems of both kinds.

The reflection and refraction of waves by moving inter-
faces has a number of special properties, so that in many
respects the situation is different from the interaction of
waves with an interface at rest. We can illustrate this by
recalling the main features of the thoroughly investigated
and well-known effect, which is the reflection and refraction
of plane electromagnetic waves by an immobile interface
between two media at rest (Fresnel problem). It is well
known that in this case we have an incident wave, as well as
two other waves: a reflected wave in the same medium as the
incident wave and a refracted wave transmitted to the sec-
ond medium. All three waves have the same frequency. The
directions of the wave vectors of the reflected and refracted
waves are governed by the Descartes-Snell law (the angle of

incidence is equal to the angle of reflection and the sines of
the angles of incidence and refraction are inversely propor-
tional to the refractive indices of the two media)." The am-
plitudes of the reflected and refracted waves are governed by
the Fresnel formulas and depend on the polarization, angle
of incidence, and optical properties of the media on both
sides of the interface.

The motion of an interface gives rise to several impor-
tant departures from the case just discussed. First of all, the
frequencies of the incident, reflected, and refracted waves
are all different. The angle of incidence is no longer equal to
the angle of reflection and the familiar Descartes-Snell law
governing the direction of propagation of the reflected and
refracted waves is replaced with a more complex law. The
relationship between the amplitudes of the incident, reflect-
ed, and refracted waves is also more complex and, in addi-
tion to dependences on the angle of incidence, on the polar-
ization, and on the optical properties of the media, we have
also a dependence on the velocities of the interface and of
both media. In some cases the reflected wave may be com-
pletely absent and instead a second refracted wave may ap-
pear on the other side of the interface. Allowance for the
dispersion of the media in question complicates matters even
further (several reflected or several refracted waves may ap-
pear). A quantitative analysis of all these phenomena is giv-
en below.

It is sometimes said that the mathematical apparatus of
electrodynamics of moving media is not necessary in calcu-
lations dealing with specific physical effects. According to
this point of view any problem in electrodynamics of moving
media can be solved in a reference (coordinate) system in
which the media are at rest and then the Lorentz transforma-
tion can be used to convert the results to media in motion. In
the case of unbounded media27'29 this approach is to some
extent justified, but even then all is sacrificed to the conven-
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ience of calculations. It is sometimes simpler to carry out the
necessary calculations at the onset for the case of moving
media rather than begin with the problem of media at rest,
and then make the necessary transformations. If moving me-
dia have interfaces, it is often found that the use of the elec-
trodynamics of moving media provides the only way of solu-
tion. By way of example, we shall consider two moving
media separated by a plane interface and we shall assume
that the velocities of the media are different. The simplest
example is a tangential discontinuity of velocities, known
from hydrodynamics, when the velocities of flow on both
sides of the interface lie in the plane of this interface and
differ in magnitude or direction. We can consider also a nor-
mal discontinuity of the velocity such as that encountered in
a shock wave. In such cases there is in general no reference
system in which the interface and the media separated by it
could be simultaneously at rest. This range of problems will
also be discussed below. At this point we shall mention an
interesting property of the interaction of electromagnetic
waves with a tangential velocity discontinuity. We shall
show below that in this case the reflection and refraction of
waves are accompanied by a rotation of the plane of polariza-
tion and the angle of rotation is proportional to the relative
velocity of motion of the two media.

These distinguishing features of the interaction of
waves with moving interfaces are of practical importance in
many cases. The applications include transformation of the
frequency and amplification of electromagnetic waves by re-
flection and refraction from a moving interface. We shall
mention also here the possibility of using transition radi-
ation generated at a moving interface for the purpose of ac-
celeration of charged particles. This is possible because of
inversion of the losses due to the emission of transition radi-
ation in the case of a moving interface: if an interface is at
rest, the moving charge loses its energy as a result of genera-
tion of transition radiation, whereas in the case of a moving
interface the energy of a moving charge can sometimes in-
crease.

Another possible application is that the properties of
reflected and refracted waves can be used to determine the
properties of an interface and also of the media on both sides
of it. We can thus determine, for example, the velocity of an
interface and the velocities and optical properties of media
on both sides of an interface. These possibilities are of specif-
ic interest, particularly in the case of diagnostics of plasma
streams (both under laboratory conditions as well as in
space near the Earth and far from it).

We shall now consider briefly the history of these prob-
lems. The first boundary-value problem in electrodynamics
of moving media was considered by A. Einstein within the
framework of the theory of relativity in the well-known pa-
per of 1905 in which he formulated the fundamentals of the
special theory of relativity.2

Einstein illustrated his approach by solving the prob-
lem of reflection of a plane electromagnetic wave incident
obliquely on a moving mirror. He determined the kinematic
(phase) relationships between the wave vectors and the fre-
quencies of the reflected and incident waves, as well as the
amplitude relationships. Subsequently (1929) Eropkin3 ob-
tained the phase relationships for a moving boundary of an
insulator on the assumption that the velocities of the bound-
ary and the medium are nonrelativistic (obtaining expres-

sions of the first order in respect of the ratio u/c, represent-
ing the ratio of the velocity of both media and of the interface
to the velocity of light in vacuum). In 1952 Landecker4 dis-
cussed the reflection of electromagnetic waves incident nor-
mally on an abrupt leading edge of a beam of relativistic
electrons moving opposite to an electromagnetic wave. He
demonstrated the possibility of a considerable increase in the
frequency and amplitude of the reflected signal at relativistic
velocities of the interface. However, the experiment dis-
cussed theoretically by Landecker was difficult to perform
because of the need to generate relativistic electron beams of
sufficiently high density and this was impossible at the time.
In 1956 Lampert5 drew attention to the fact that the relativ-
istic effects of an increase in the frequency and amplitude on
reflection of waves may be observed even if the interface does
not travel at the velocity close to that of light in vacuum.
Lampert pointed out that the relativistic effects can be ob-
served on reflection of waves by a moving interface if use is
made of "retarding" media in which the phase velocity of
waves was much less than the velocity of light in vacuum.
Examples of such retarding systems are waveguides partly
filled with an insulator, stopped down and helical wave-
guides, as well as various comb-like and interdigital struc-
tures. In media of this kind the degree of approach to relativ-
istic motion is governed not by the ratio u/c, where u is the
velocity of the interface and c is the velocity of light in vacu-
um, but by u/c', where c' is the phase velocity of waves in a
retarding system. The latter ratio can reach unity at much
lower velocities of a medium or an interface.

Lampert discussed the problem of reflection of a wave
incident normally on a moving interface in a retarding sys-
tem. He calculated the frequencies and amplitudes of the
transmitted and reflected waves. He found that when the
velocity of the interface exceeds the phase velocity of waves
in a retarding medium, there is no reflected wave and instead
an additional refracted wave appears behind the interface.

Very soon after the publication of Lampert's paper, To-
taro reported investigations of the reflection and refraction
of waves by moving interfaces between two media.6 One of
the media (containing the incident wave) was assumed to be
at rest and the other, as well as the interface, were postulated
to be moving at the same velocity. Totaro obtained expres-
sions for the amplitudes, frequencies, and wave vectors of
the reflected and refracted waves. In the derivation he con-
sidered the refracted wave in a reference system in which the
interface and one of the media were at rest, and then applied
the Lorentz transformation. The expressions obtained by
Totaro are cumbersome and they hinder a physical analysis
of the results. We shall show below that in this case a simpler
and clearer result can be obtained by applying the math-
ematical apparatus of the electrodynamics of moving media.

Ideas similar to those considered by Lampert were later
analyzed in detail by Fainberg7 and his colleagues.2' They
put foward the idea of an increase in the efficiency of fre-
quency and amplitude transformations by multiple reflec-
tion of waves from a moving interface. One variant of this
approach shows that a wave reflected by a moving interface
and exhibiting an increase in the frequency and amplitude is
"turned back" by a mirror at rest and is incident again on the
same moving interface. The second reflection from the mov-
ing interface increases again the frequency and amplitude.
The process can be repeated many times.
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The recent years have seen many theoretical papers on
the reflection and refraction of light by moving interfaces
and those at rest, separating moving media (Bolotovski! and
Stolyarov,8 Mergelyan,9 and Stolyarov10'11). The results ob-
tained by these authors are repeated and partly extended in a
number of more recent papers usually without any reference
to the preceding work (see Refs. 12-17). These papers give
the phase, amplitude, and energy relationships for the inter-
action of electromagnetic waves with interfaces and moving
media of different kinds, or they deal with a traveling wave of
a parameter in a medium at rest.18

These theoretical relationships were checked in a num-
ber of experiments. Hey, Pinson, and Smith19 observed a
shift of the frequency of electromagnetic waves reflected by
the front of a shock wave propagating in argon. The low
velocity of the shock wave produced a small frequency shift
(of the order of 10 ~ 3%). In spite of the fact that the change
in the frequency was very small (and, consequently, the ratio
u/c of the velocity of the shock wave front to the velocity of
light was also low), the experimental method used made it
possible to measure accurately the shock wave velocity.
Moreover, it was possible to study changes in the shock wave
velocity as it traveled in a shock tube. A change in the fre-
quency as a result of single reflection was also investigated
experimentally by Zagorodnov, Fainberg, and Egorov.20 In
this case the reflecting surface was the front of a plasma
moving at a velocity of the order of 107 cm/s. The experi-
ments were carried out in a retarding medium (in the form of
a helical waveguide), where the velocity of electromagnetic
waves was approximately 1/200 of the velocity of light in
vacuum. The relative shift of the frequency was then approx-
imately 20% and this was confirmed experimentally. It
should be pointed out that at the plasma densities attainable
at the time the transparency of the plasma was high. The
reflection coefficient of a moving plasma was low and, there-
fore, no relativistic increase in the amplitude on reflection
was observed.

A change in the frequency as a result of multiple reflec-
tion by a moving plasma had been investigated experimen-
tally on several occasions. Linhart and Ornstein21 measured
the increase in the frequency as a result of multiple reflection
of a wave from the approaching walls of a vacuum cavity in a
plasma. Zagorodnov, Fainberg, Egorov, and Bolotin22 dis-
cussed the frequency change resulting from multiple reflec-
tion of an electromagnetic wave confined between a mirror
wall and an approaching plasma front. The whole system
was inside a waveguide and the reflecting wall was a junction
between this waveguide and a terminating waveguide with a
smaller diameter. The primary wave could not penetrate this
terminating waveguide and the appearance of a wave inside
it indicated an increase in the frequency. These experiments
demonstrated an increase in the frequency by a factor ex-
ceeding 2 (precisely 2.3). The velocity of a plasma cylinder
was 2X 107 cm/s. Since a single reflection altered the fre-
quency in these experiments by an amount of the order of
w/c~0.7x 10" \ the electromagnetic wave clearly under-
went thousands of reflections.

The circumstances mentioned above (the low density
and the consequently high transparency of the plasma)
made the experiments involving multiple reflection more
difficult to carry out because each reflection from a moving
plasma reduced the wave amplitude considerably.

We have not mentioned yet any of the numerous theo-
retical and experimental investigations of the scattering of
electromagnetic waves by single charged particles. In this
case the change in the frequency of a wave due to the scatter-
ing is described by the familiar expressions from the theory
of the Compton effect. If we ignore the recoil of a particle as a
result of the scattering of an electromagnetic wave, the treat-
ment becomes purely classical and we find that the frequen-
cies and wave vectors of the incident and scattered waves
obey exactly the same relationship as in the case of reflection
of a wave by a moving interface. We shall now discuss this
question in greater detail. Let us assume that a moving parti-
cle with a momentum p, and an energy £, collides with a
photon with a momentum #k , and an energy fua , (k, is the
wave vector and <a, is the frequency of the incident photon) .
The scattering creates a photon with a momentum #k2 and
an energy fuo2 , whereas the momentum and energy of the
particle become p2 and E2, respectively. Let us write down
the laws of conservation of energy and momentum for this
process:

j), E1— £2= 7z(co2 — Wi).

We shall multiply the first of these equations scalarly by the
particle velocity v. We then obtain

(v, Ap) = — H (Ak, v),

where Ap = (p, — p, ) is the change in the momentum of a
particle due to the scattering of waves and #-Ak
= #(k2 — k, ) is the change in the photon momentum. If the

change in the particle momentum is sufficiently small, so
that its motion can be regarded as uniform, we can employ
the expression

(v, Ap) = A£,

where A£ = E2 — E\ is the change in the energy of the
charged particle due to the scattering of a wave. When this
expression is used, it follows from the laws of conservation
that the frequencies and wave vectors of the incident and
scattered waves are related by:

(k1? v) — «! = (k2, v) — co2.

We shall show below that an exactly the same relationship is
satisfied when an electromagnetic wave is reflected or re-
fracted by a plane interface moving at a constant velocity v.
However, there are major differences between the two cases
in respect of the amplitude. The difference can be demon-
strated as follows. Let us consider a monoenergetic beam of
fast electrons on which a plane monochromatic wave is inci-
dent. Let the wavelengths of the incident and scattered
waves be small (in a reference system in which the beam is at
rest) compared with an average distance between the beam
particles N~ 1/3 in the same reference system (./Vis the beam
density) . Then, the separate particles in the beam scatter the
wave independently and the total intensity of the scattered
wave is equal to the sum of the intensities of the waves scat-
tered by each individual particle, i.e., the intensity of the
scattered wave is proportional to the density in the beam
where the particle concentration is A'. We are dealing with a
set of independently scattering particles. The beam can be
regarded as a medium if the average distance between the
particles is short compared with the wavelength of the inci-
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dent or scattered wave. In this case we can expect coherent
scattering, i.e., the particles within a certain volume scatter
in phase. Therefore, the amplitude of the scattered wave is
proportional to the number of particles N per unit volume
and the intensity is proportional to the square of the density
N2. This is precisely the situation when electromagnetic
waves are reflected and refracted by a moving interface.42

We shall recall also some of the investigations of the
transformation of waves in media with a traveling param-
eter. Theoretical and experimental investigations of these
eifects were carried out by the Gor'kii school of radiophysi-
cists. An example of a medium with a traveling parameter is
a nonlinear medium in which a solitary pulse of a strong field
(soliton) is traveling at a constant velocity. Since the permit-
tivity or the magnetic permeability of a nonlinear medium
depend on the field, it follows that in the strong field region
(i.e., where at a given moment the strong field pulse is locat-
ed) the values of the permittivity or the magnetic permeabil-
ity differ from the values in the surrounding space. If such a
pulse interacts with an electromagnetic wave, the equations
for the field can be linearized in terms of this weak
wave.18'23'24 We thus have the problem of transformation
(reflection or refraction) of an electromagnetic wave by a
wave of a parameter and the latter wave does not change in
the course of the interaction, so that it can be regarded as
given. Another example of a medium with a parameter wave
is a transmission line representing a section of an RLC cir-
cuit (or a line characterized by running values of R, L, and C
per unit length). In a transmission line of this kind a param-
eter wave can be created either externally (by altering R, L,
and Cin accordance with a given law, in particular, in accor-
dance with a traveling wave law) or because of a nonlinear-
ity of the line resulting in the excitation of a strong wave.18'24

A moving ionization front in a gas is another example of a
parameter wave. On both sides of a moving front the media
are at rest and the conductivity of the medium ahead of the
front is zero, whereas behind the front we have an ionized
gas. Daume and Freidman26 investigated experimentally the
reflection of a weak electromagnetic wave by a strong mag-
netization wave in a ferrite. The velocity of the strong wave
was of the order of 109 cm/s. When the weak electromagnet-
ic wave propagated opposite to the strong wave, the weak
wave was reflected from the moving magnetization discon-
tinuity. The frequency of the reflected wave should then in-
crease by about 5-6%, as confirmed by measurements. The
power of the reflected wave was 0.01% of the power of the
incident wave and this was due to the strong absorption of
the reflected wave in the ferrite.

We shall conclude with the following comments. Al-
though the theoretical ideas underlying the experiments de-
scribed above are not in any doubt, a large change in the
frequency and the wave amplitude as a result of single reflec-
tion by a moving interface has not yet been achieved. This
has been either because of a low velocity of the interface or a
low density (and, consequently, a high transparency) of the
reflecting medium, which in the published experiments was
a relativistic electron beam or a plasma flux. Clearly, the
main hope for the more effective increase in the frequency
and amplitude lies in the progress being made in high-cur-
rent electron and plasma accelerators.

Some idea of the current experimental possibilities is
given in Refs. 48 and 49. The experiments reported in Ref. 48

achieved a sixfold increase in the frequency and doubling of
the energy of a wave as a result of its reflection from the front
of an electron beam with a current of the order of 2 kA and
an electron energy of the order of 1 MeV. The frequency
of the incident wave was 9.3 GHz (corresponding to the
wavelength of A ~ 3 mm). Similar results were reported in
Ref. 49.

We shall now consider the problems of transformation
of waves by moving interfaces quantitatively.

1. MAIN RELATIONSHIPS: INITIAL EQUATIONS AND
BOUNDARY CONDITIONS30

The Maxwell equations for a homogeneous isotropic
medium moving at a constant velocity u can be written in the
form

curlE --- ,
c dt c dt

p, divB
(1.1)

Here, E and H are the electric and magnetic fields; D and B
are the electric and magnetic inductions; p and j is the den-
sity of external charges and of the current.

The system of equations (1.1) must be supplemented by
the Minkowski material equations which contain explicitly
the velocity of the medium u:

i[«,B]|.

B-l[u,E]=fifH-l[U,
(1.2)

where £ and JJL are the permittivity and magnetic permeabil-
ity measured in a reference system in which the medium is at
rest. Equations (1.1) and (1.2) allow us to determine com-
pletely the field in a homogeneous moving medium.

We shall now consider two media separated by an inter-
face. We shall assume that one of these media is character-
ized by the parameters £, and ̂ , and the velocity of its mo-
tion is u,. The fields in this medium will be identified by the
index 1: E,, H,, B,, D,. The second medium is character-
ized by e2 and [42 and by the velocity u2. The fields in this
medium will be identified by the index 2: E2, H2, B2, D2.
The velocity of the interface between these two media is v.
We shall assume that the velocity v is generally different
from the velocities u, and u2 of the media on both sides of the
interface.

In the presence of interfaces the systems of equations
(1.1) and (1.2) have to be supplemented by the boundary
conditions for the fields and inductions. In the monograph of
Landau and Lifshitz47 these boundary conditions are ob-
tained on the assumption that the interface and media on
both sides of it travel at the same velocity. The boundary
conditions can then be derived by a simple (Lorentz) trans-
formation of the familiar boundary conditions for a refer-
ence system in which the interface and the media are at rest.
In general, when the velocities of the interface and the media
on both sides of it are different, a detailed derivation of the
boundary conditions can be made on the basis of a paper by
Costen and Adamson.41 The boundary conditions are found
to contain only the velocity of the interface, but not the ve-
locities of the media. Consequently, both approaches give
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the same boundary conditions, which in the absence of sur-
face charges or currents become

(1.3)
vn

c

where vn is the projection of the velocity of the interface
along the normal n to it.

The projections of these vector equalities along the co-
ordinate axes give six boundary conditions. In particular,
the conditions of continuity of the normal components of the
vectors B and D are obtained if we use the projections along
the normal to the interface.

We must bear in mind that if the interface is not plane,
the boundary conditions of Eq. (1.3) are local since the di-
rection of the normal to the interface n is different at differ-
ent points. This makes it difficult to find the general solu-
tions of the boundary-value problems. In the next sections
we shall discuss mainly the transformation of waves on plane
interfaces.

2. BOUNDARY CONDITIONS FOR PLANE WAVES. PHASE
INVARIANTS

We shall discuss two homogeneous moving media,
which are isotropic in the system at rest. The velocity of the
first medium will be denoted by u , , and its permittivity and
magnetic permeability in the system at rest by e, and / n t .
Similar quantities for the second medium will be denoted by
u2, £2, and //2, respectively. We shall assume that the two
media are separated by a plane interface and that this inter-
face is traveling, parallel to itself, at a constant velocity v
directed at right-angles to the plane of the interface.

We shall assume that a plane electromagnetic wave in-
cident on the interface of a medium described by £,, // , , and
U j (we shall call it the first medium) is given by

£0exp[i(k0r — (2.1)

Then the field in the first medium is the sum of the incident
wave described by Eq. (2.1) and of a reflected wave, which is

Er = E1,1exp[i(k1,1r-co1,10]. (2.2)

The total field E, in the first medium is therefore

E1 = E0.exp[t(k0r — «.„*)] + E1)lexpli(kll lr — a^t)]. (2.3)

The representation of the field in the first medium by just
two waves, incident and reflected, is not self-evident. In fact,
in the presence of spatial dispersion more than one reflected
wave may exist in a medium at rest. However, for the sake of
simplicity we shall assume that the media on both sides of the
interface do not exhibit spatial dispersion in a reference sys-
tem in which they are at rest. Then, we shall show that on
each side of the interface there are no more than two waves.
Therefore, the field E2 in the second medium can be repre-
sented by

J -f- E2,2 exp [i (k2,2r — co2,20],

(2.4)

E2 = E2,i exp [t (k2ilr — <

2), whereas a>2 and k 2 , are the frequencies and wave vectors
of these waves.

Some of the amplitudes E, , , E 2 , , and E22 in general
vanish, depending on the physical conditions. In particular,
the amplitude E, , of the reflected wave may vanish if the
amplitudes of the transmitted waves E2, are nonzero. Con-
versely, one of the amplitudes E2, of the transmitted waves
may vanish for a nonzero amplitude E , , of the reflected
wave. The conditions under which a particular solution is
realized will be considered in detail later. The fields (2.3)
and (2.4) should satisfy the boundary conditions of Eq.
(1.3). This is achieved if all the "matched" waves at each
point on the interface have the same phase.

We shall write down the equations for a moving plane
containing an interface:

(r,n)=vt, (2.5)

where n is the normal to the interface and v is the magnitude
of the velocity of the interface in the direction of its normal.
It is assumed that the moving plane crosses the origin of the
coordinate (reference) system at t = 0.

We shall now consider a plane monochromatic wave
characterized by

exp[ t (k r (2.6)

We shall write down the wave vector k in the form of a vector
sum of two terms in which the tangential component k, is
parallel to the interface and the normal component k,, is
perpendicular to it. Obviously, we can write down

Substitution of this expression into Eq. (2.7) subject to
allowance for Eq. (2.5) gives the phase of the plane wave on
the moving interface

exp [ I (k/, r,)] exp [i (kn (n, v) — co) /1

= exp[i(kt, r t )]exp[i(k, v ) — a ) / ] , (2.8)

where r, is the vector in the plane of the interface.
If the phases of all the "matched" waves are represented

in this form at the interface and if we assume that the phases
are equal there, we obtain

kot = ki.it = k2,u = k2,2t = It. (2.9)

This condition represents the equality of the tangential com-
ponents of the wave vectors of all the waves interacting at the
interface and we find that

= (k0, v) — o)0 = ( j,!, v) — o)ltl

a,i, v) — co2,! =(k2,2, v) — co2,2. (2.10)

where E2 , is the amplitude of the ith wave (where / = 1 or

This condition represents equality of the frequencies of all
the interacting waves in a reference system in which the in-
terface is at rest. This can be easily demonstrated by assum-
ing that the velocity of the interface is zero in Eq. (2. 10).

In this reference system both media generally travel at
different velocities. Hence, it is clear that the frequency
transformation at moving interfaces is entirely due to the
motion of the interface itself and not due to the motion of the
media on both sides of it. In particular, the frequency trans-
formation occurs when a wave of some parameter of the me-
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dium is traveling in a medium at rest (this parameter may be
the density, magnetization, etc.18'24).

If the incident wave is given, i. e., if we know the fre-
quency co0 and the components of the wave vector k0, we
find that the relationships (2.9) and (2.10) allow us to de-
termine the frequencies and wave vectors of all the other
waves. For this purpose we need to use not only the relation-
ships given above, but also the dispersion equations for each
of the moving media. We shall consider, for example, the
dispersion equations for waves in the first medium30:

(to — ku,; = 0. (2.11)
c" c2 1 — (ul/c-

For a given incident wave, we know the following quantities
in the above equation: the tangential component of the wave
vector k, = I, and the combination 7, = (k,,v — a>), where
kn = (k, v) and n is a unit vector along the normal to the
interface, which we shall regard as directed from the first to
the second medium. Substituting k, = I, and kn

= (CL> + /,)/u into Eq. (2.11), we obtain a quadratic equa-
tion for the frequency co and the solution of this equation is

. . , , , [ l + *iY2(i5-Pln)(Pln + P(Pl t , dJH + pQj"

(2.12)

Qi = {[1 + xlYJ(l -&)] - d»[(l -p*) - xlY
2(p-pln)2]

+ xlY? (d, plt) [ 2 ( 1 — ppin) + (1 — P2) (d, plt)]}.

where

I,d = c —, Xj = (

u,

i \ o v a "l"
1), P = — , Pm = ,

Pit
"it

. Yi ' Pa "i 02
i= — =Pi

i 02
+Pit,

and «,„ and uu are, respectively, the normal and tangential
(to the interface) components of the velocity of the first me-
dium.

Equation (2.12) gives two values of the frequency in the
first medium, which are expressed in terms of the invariants
/, and I, , and also in terms of the parameter of the medium
(£, , yU, , u, ) and the velocity of the interface v. One frequen-
cy is a which governs the frequency of the incident wave,
and the other the frequency of the reflected wave. Knowing
the frequency («, ),,2 we find from Eq. (2.10) the following
values of the normal component of the wave vector

_ 7l) [p + x^ (P -Pln) (1 + (Plt,

It is therefore clear that the relationships ( 2.9 ) , ( 2. 10 ) ,
(2.12), and (2.13) determine completely the values of the
frequency and the wave vector for waves in the first medium.
The relationships for the waves in the second medium are
exactly the same if we replace f, \viih£2,[i\ with ,u 2, and u,
with u2 .

For given values of the invariants I{ and I, the disper-
sion equations for each of the media in contact have only two
solutions (we recall that this is true if we neglect the disper-
sion of the moving media). This justifies the representation
of the total field on both sides of the interface as a superposi-
tion of two waves described by Eqs. (2.3) and (2.4).

In the derivation of the relationships given by Eqs.
(2.12) and (2.13) and describing the frequencies and com-
ponents of the wave vectors we had assumed that the veloc-
ities of the media u, and u2 on both sides of the interface are
oriented in an arbitrary manner. Such a general formulation
of the problem leads to very complex expressions not only
for the frequencies and wave vectors, but also for the field
amplitudes. The physical features of the reflection and re-
fraction of the waves by an interface between two moving
media are best identified by considering the example of two
special cases which are in fact those discussed usually in the
literature.

In the case of an interface in the form of a normal dis-
continuity the velocities of the media on both sides are di-
rected along the normal to the interface. We shall call this
the case of a normal velocity discontinuity. It is realized, for
example, in shock waves. The interface is then the front of a
shock wave and the velocity of the interface v is the velocity
of the front of this wave. The velocity u, can then be assumed
to be the velocity of matter in front of the shock wave and the
velocity u2 is the velocity of matter behind the front. Natu-
rally, all these velocities should satisfy the condition of con-
tinuity of matter across the interface. Another example of a
normal discontinuity is the propagation of a strong field
pulse in a nonlinear medium at rest. In this case the role of
the moving interface is performed by the front (leading
edge) of a pulse. In view of the nonlinearity of the medium,
its electromagnetic properties are different on either side of
the front.

In the case of a normal discontinuity of the velocity the
expressions for the frequencies and wave vectors are simpler.
These expressions can be obtained from Eqs. (2.12) and
(2.13) by assuming that 13,, = 0. We then obtain the follow-
ing expressions for the first medium:

(2.14)
(-A)

These expressions give the frequency and the component of a
wave vector kln for two possible waves in the first medium.
They are expressed in terms of the invariants /, and I,, and
in terms of the parameters of the first medium and of the
interface. If the plus sign in front of the square root is select-
ed in the system (2.14), the frequency and wave vector of the
incident wave are obtained. Selection of the minus sign gives
the frequency and the wave vector of the reflected wave (we
recall that the tangential component of the wave vector of
the reflected wave is identical with the tangential component
of the wave vector of the incident wave).

The corresponding expressions describing the frequen-
cies and the wave vectors of two waves in the second medium
are obtained from the expressions in Eq. (2.14) by the re-
placement of x{, /?,, and y, with x2, [32, and y2.

Next, we shall consider some special cases and discuss
in detail the expressions obtained for the frequency and wave
vector of the reflected and refracted waves. We shall begin
with the problem of determination of the amplitudes Eltl,
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E2 i , and £"2,2. These amplitudes are found from the bound-
ary conditions. If, for the sake of simplicity, we assume that
no surface charges or currents appear at the interface, the
boundary conditions are given by the system (1.3). We shall
consider specifically that the interface is plane and the veloc-
ity of its motion is along the normal to the interface. We shall
also assume that the velocities of the media on both sides of
the interface are again directed along the normal to the inter-
face. Finally, for the sake of simplicity, we shall consider the
case of normal incidence of the waves, i.e., we shall assume
that the vectors k0, ku , k 2 , , and k2 2 are all perpendicular
to the interface. This relatively simple case is discussed in
Refs. 18 and 32. We shall follow the analysis given in these
two papers.

Let us assume that a plane wave of amplitude E0 is inci-
dent from a medium 1 opposite to a moving interface. An
analysis of the phase relationships shows that a reflected
wave may exist in the medium 1 and two refracted waves in a
medium 2. We can determine the amplitudes of these waves
by using the boundary conditions of Eq. (1.3). In the case
under discussion (normal incidence of the plane of the
wave) the boundary conditions of (1.3) yield only two inde-
pendent equations. We can show this by considering the
Maxwell equations (1.1) in the absence of charges and cur-
rents:

i ccurl fc = — —
c dt

divD = 0,

(2.15)

cur lH = -—, divB = 0,
c dt

for plane monochromatic waves of the type described by Eq.
(2.6). Hence, the vector amplitudes E, B, H, and D are de-
scribed by

B = [^,E|, (k ,D) = o,
L w J

D = -[— - H - ( k . B ) = = 0 .

(2.16)

We shall substitute these values of B and D into the bound-
ary conditions given by Eq. (1.3). We then obtain the condi-
tions of continuity for the following two quantities:

p> it

(<u — kv) — and (co — kv) — .
CO CO

(2.17)

We recall that these conditions of continuity are valid in the
specific case when the wave vector k is perpendicular to the
interface.

Since the quantity (a> — kv) has the same value for all
the waves interacting at the interface, we can obtain the con-
ditions of continuity of the quantities E, /a> and H, /a> at the
interface. Thus, in the case of normal incidence of a plane
wave we obtain just two conditions for finding three waves
£, , , £2,, and E2i2 • Therefore, this problem can be solved if
we invoke some additional conditions. One of them, which
makes it possible to obtain a unique solution of the bound-
ary-value problem in a number of cases, is the radiation prin-
ciple. According to this principle,' we have to select those of
the reflected and refracted waves which can carry energy
away from a moving interface. If one of the secondary waves
(reflected or refracted) does not satisfy this requirement,

i.e., if it does not carry energy away from the interface, the
boundary-value problem becomes uniquely determinate.
This is the situation observed in two extreme cases.

In the first case, which we shall call subluminal, the
velocity of the interface is less than the group velocities of the
waves in the two media next to the interface. Then, out of the
two refracted waves £2,i

 and E2 2 we have to retain that for
which the group velocity is directed away from the interface.
Consequently, in the subluminal case we have just one re-
flected wave and one refracted wave.

In the second case (which we shall call superluminal)
the velocity of an interface exceeds the group velocities of the
waves in both media. We shall then assume that the interface
moves opposite to the incident wave. In the superluminal
case there is no reflected wave, but there are two refracted
waves behind the interface.

The intermediate case when the velocity of an interface
lies between the group velocities of the two media is more
complex. The boundary-value problems must then be solved
subject not only to the radiation principle, but also subject to
additional assumptions about the structure of the interface,
stability of the interface, role of nonlinearities, etc.23"25'32'33

Allowance for these circumstances may, in particular, have
the effect that on both sides of the interface we have to allow
for either of the possible solutions. Therefore, on one side of
the interface the total field consists of the incident and re-
flected waves, whereas on the other side it consists of two
refracted waves.

In determination of the frequency and wave vector of
the reflected and refracted waves we assumed above that the
values off and/* are constant, independent of the frequency
co, and of the wave vector k. In other words, we ignored the
dispersion. If the dispersion is allowed for, the number of
solutions of Eq. (2.11) for given invariants I, of Eq. (2.9)
and 7, of Eq. (2.10) can generally be more than two. The
amplitudes of the new waves can be determined if we have
some additional boundary conditions, because the number
of the boundary conditions given by Eq. (1.3) is then gener-
ally insufficient.

If the wave is incident obliquely on a moving interface,
once again all the discussion given above remains valid.
However, we must bear in mind that the concepts of the
subluminal and superluminal cases, etc., are no longer gov-
erned by the absolute values of the group velocities, but by
their projections along the normal to the interface.

3. REFLECTION OF WAVES FROM A MOVING MIRROR, FROM
AN INSULATOR, AND FROM A TRAVELING PARAMETER

The problem of the reflection of light from a moving
mirror was first discussed by the well-known paper of Ein-
stein, published in 1905 (Ref. 2), where he formulated the
fundamentals of the special theory of relativity. The solution
of the problem in question was given by Einstein in two
stages. First, the characteristics of an incident electromag-
netic wave (frequency, angle of incidence, and amplitude)
were transformed to a reference system in which the mirror
is at rest and this system was used to find the quantities
describing the reflected wave. Einstein followed this by
transformation back to the laboratory coordinate system.
The approach presented in the preceding sections can be
used readily to solve this problem directly in the laboratory
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coordinate system without the need to transform from one
inertial reference system to another.

We shall consider a mirror moving in vacuum at a con-
stant velocity v and assume that this velocity is directed at
right-angles to the mirror plane. We shall introduce a Carte-
sian coordinate system (x, y, z) in such a way that the z axis
is directed along the normal to the mirror plane. We shall
assume that the mirror is moving in the negative direction of
the z axis and that its velocity is v. Therefore, the position of
the mirror at a moment t is described by the equation z
= — vt (Fig. 1 ).We shall assume that a plane electromag-

netic wave of Eq. (2.1) is incident on this mirror:

Em =Re {F0exp [i(kcr - ay)]}. (3.1)

Here, the symbol Re denotes the real part of the expression
following it. Therefore, the field Ein can be written in the
form

E,n = 1 {E0 exp (i (k0r — oy)] + E»* exp [— i (k0r - co00]}.

We shall select the x and y axes of the Cartesian system in
such a way that the vector k0 lies in the (x,z) plane which we
shall call the plane of incidence (Fig. 1). In the case of a
perfectly reflecting mirror there is no transmitted wave.
Therefore, in solving the boundary-value problem it is suffi-
cient to allow only for the reflected wave, which can be de-
scribed by

Er = Re (3.2)

It follows from the boundary conditions of Eq. (2.9) that the
wave vector k, of the reflected wave lies in the plane of inci-
dence (x, z).

We shall first determine the wave vector k, and the
frequency &>, of the reflected wave. This can be done using
the following relationships:

It = &„ sin ft0 = fex sin 9i.
(— Ij) = (co0 + kav cos »„) = (M! — ̂ u cos!

(3.3)

(3.4)

(3.5)

here, &0 is the angle of incidence and t?! is the angle of reflec-
tion (Fig. 1). The relationships given by Eq. (3.3) represent
the dispersion equations for the propagation of light in vacu-
um. They follow from Eq. (2.11) if we assume that £ ,= / / ,
= 1 (KJ =0). The relationships given by Eq. (3.4) are the

to' .

consequences of Eq. (2.9), whereas the relationship (3.5)
follows from the expressions in Eq. (2.10).

Using Eqs. (3.3)-(3.5), we can express the frequency
of the reflected wave co, and the angle of reflection «?t in
terms of ca0 and t?0, respectively:3'

„ _„ [l + (o'/e')l+2(o/c)cosdo

1 -

sin 81 => -a- sin »0 = —
(!>! 1 • (o/c) cos d0

(3.6)

(3.7)

These expressions are interesting not only in connection
with the problem under discussion, which is the reflection of
waves from a moving mirror, but also give some idea on the
properties of the reflected waves in more complex cases. In
particular, we shall show that these expressions are in a sense
valid also in those cases when the wave passes partly through
a moving interface or a mirror is moving in a refracting me-
dium. In the latter case the quantity c is the velocity of light
in the medium under consideration.

We shall now discuss Eqs. (3.6) and (3.7). If the mirror
is moving opposite to the incident wave (y>0) , it follows
from Eq. (3.6) that the frequency of the reflected wave w,
exceeds the frequency co0 of the incident wave. If the incident
wave catches up with the mirror ( v < 0 ) , the frequency of the
reflected wave is always less than that of the incident wave.
Equation (3.6) becomes particularly simple in the normal
incidence case (i?0 =0):

to, =
1 - (v/c) (3.8)

It is clear from Eqs. (3.6) and (3.8) that at relativistic veloc-
ities of a mirror the reflection changes the frequency consid-
erably.

Equation (3.8) can be derived on the basis of simple
physics. Let us assume that the wave incident on a moving
mirror can be described by

At the point z = — vt, where the mirror is located, the phase
of this wave is

This means that the field on the mirror surface oscillates at a
frequency

Therefore, the mirror is a moving oscillator oscillating at the
frequency co'. This oscillator emits in the forward direction a
wave whose frequency is shifted relative to co' in accordance
with the Doppler effect34

= 0 ' + ("/C)

FIG.

coi ̂
I — (v/c) " , I — (o/c)

This relationship is identical with Eq. (3.8). The same rela-
tionships can be derived by the Lorentz transformation us-
ing the results of the conventional problem of the reflection
of light by a mirror at rest. In fact, if an electromagnetic
wave described by

exp[i(^z—aO ]
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is incident along the normal on a mirror at rest, the reflected
wave is proportional to

exp[— /(Az+uOl:

since the frequencies of the incident and reflected waves are
in this case identical while the directions of propagation are
opposite. We shall consider the same problem in a system of
coordinates moving at a velocity v in the positive direction of
the z axis. In this system the mirror velocity is — v, whereas
the frequencies of the incident and reflected waves are, re-
spectively,

C0,=
CO — kv , 'and (o, = CO +

Therefore, the ratio of the frequencies of the incident co\ and
reflected u>'2 waves in the system in which the mirror moves
toward the incident wave at the velocity v is

mi CO — kv 1 — (V/C)

CO + kv 1 (vie)

since k = w/c. The above expression is identical with Eq.
(3.8).

The angular dependence of the reflected radiation is de-
scribed by Eq. (3.7). If the mirror moves toward the inci-
dent wave ( y > 0 ) the angle of reflection i?, is always less
than the angle of incidence *?0. Irrespective of the value of
i?0, the angle i?, tends to zero as the mirror velocity ap-
proaches the velocity of light. If the mirror moves in the
same direction as the incident wave (v < 0), the angle of re-
flection 1?, is always greater than the angle of incidence. In
this case (v < 0) there is a range of the angles of incidence t?0

and the velocities of the mirror v in which the angle of reflec-
tion i?, exceeds 77/2. This can be demonstrated by writing
down the expression for cos t?,, which follows from Eq.
(3.7) for sin t?, wheni><0:

(3.9)

where 13 = v/c > 0. The denominator in the above expression
is always positive and the numerator changes its sign when
cos t?0 = 2/?/(l +/?2). If the angle of incidence t?0 becomes
greater than cos" '[2/7/(l + £2)], we find from Eq. (3.9)
that the angle of reflection ??, becomes greater than ir/2. It is
then found that the wave vector of the reflected wave meets
at an acute angle with the direction of the mirror motion.
The reflected wave propagates behind the mirror, but does
not catch up with it. In fact, the projection of the phase ve-
locity of the reflected wave along the normal to the mirror
surface (along the z axis) is in this case (cos #, <0) equal to
c cos i? | (Fig. 1). Using Eq. (3.9), we can readily show that
if

we find that

v—c|cosO,|

(3.10)

(3.11)

i.e., the projection of the phase and group velocities (which
are equal in our case because waves propagate in free space)
of the reflected wave along the direction of the mirror mo-
tion is positive and its absolute value is less than the mirror

velocity. This means that the reflected wave still carries en-
ergy away from the moving mirror.

The left-hand side of the inequality (3.10) means that
the incident wave delivers energy to the mirror moving away
from it (c cos i?0>y), which is exactly as expected.

We shall now calculate the reflected wave amplitude.
We shall consider two cases discussed separately below.

a) The electric vector of the incident wave is perpendic-
ular to the plane of incidence, i.e., E0 = E0ey, where ev is a
unit vector in the direction of the y axis (Fig. 1). Then, the
reflected wave has the same polarization as the incident
wave, i.e., E, = Eley. We shall use the first of the boundary
conditions in Eq. (1.3) and express the magnetic induction
B in this condition using the field E taken from the Maxwell
system of equations (2.16) for plane monochromatic waves.
If the first boundary condition of Eq. (1.3) is projected
along the normal to the interface, we obtain

* b
o* c i i* c n—E0-\ £x = 0.

(DO coi
(3.12)

If we now consider the projection of the same boundary con-
dition on the mirror plane, we obtain

C00

F + (3.13)

These relationships can be simplified using the fact that
(a>0 — k()v) = (<a, — k,v) andk0x = klx [seeEqs. (2.9) and
(2.10) for the invariants 7, and I,]. Therefore, both Eqs.
(3.12) and (3.13) give the same ratio which can be used to
find the amplitude of the reflected wave:

_§!_ = ZL. (3.H)
CO! W0

It follows from the above ratio that the amplitudes of the
incident and reflected waves differ by the same factor as the
corresponding frequencies. Using Eq. (3.6), we readily ob-
tain

•„. (3.15)

We recall that the mirror velocity v = c/3 is positive in the
case when the mirror moves opposite to the wave.

b) The magnetic vector of the incident wave is perpen-
dicular to the plane of incidence, i.e., H0 — H0ey (Fig. l ) . In
this case the second boundary condition of Eq. (1.3) yields
two relationships which can be obtained from Eqs. (3.12)
and (3.13) if we replace E0 with//0 and£, with//,. These
relationships yield the amplitude H, of the magnetic vector
of the reflected wave:

(3.16)

The relationships given by Eqs. (3.15) and (3.16) are simi-
lar although they apply to cases of different polarizations of
the incident wave. This is not surprising because in vacuum
the amplitudes of the electric and magnetic fields in a plane
monochromatic wave are identical.

It is clear from Eqs. (3.6) and (3.14)-(3.16) that re-
flection of an electromagnetic wave from a mirror moving in
vacuum transforms its frequency and amplitude in accor-
dance with the same law.

We considered here the laws of reflection from a mov-
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ing ideal mirror. If behind a moving interface we replace the
reflecting metal with a transparent insulator, the expressions
for the frequencies and directions of propagation of the re-
flected wave remain unaffected. However, the amplitude of
the reflected wave is now different from that given by Eqs.
(3.15) and (3.16). In the simplest case when the wave is
incident on an interface along the normal and the moving
medium behind the interface exhibits no dispersion, the ex-
pressions (3.15) and (3.16) for the amplitude of the reflect-
ed wave now have an additional factor equal to the Fresnel
reflection coefficient of an insulator at rest. In the case of
oblique incidence these expressions become more com-
plex.32

We mentioned earlier (in the Introduction) a system
with a parameter wave traveling in a medium at rest. The
velocity of a parameter wave can have any value and, in
particular, it can be higher than the velocity of light in the
medium or even in vacuum. We shall consider this possibil-
ity by discussing an example of a transmission line represent-
ing a chain of cells with given values of the parameters,
which can be the capacitance, resistance, and inductance.
Such a transmission line is characterized by a definite veloc-
ity of a signal traveling along it. The parameters of each of
the cells can be varied by an external agency. We shall con-
sider the simplest case when a transmission line is composed
of cells with the same parameters, for example, when the
capacitance of each cell is C0. We shall assume that at some
initial moment the capacitance of the first cell changes from
C0 to C,, whereas the capacitances of the other cells are
unaffected. After a time interval A? the capacitance of the
first cell is restored to its initial value C0 and at the same
moment the capacitance of the second cell is altered from C0

to C,. After the same time interval Af, the capacitance of the
second cell recovers its initial value C0 and the capacitance
of the next (third) cell is altered from C0 to C,, and so on.
Obviously, a parameter wave travels along this transmission
line and in this case the capacitance is the parameter. The
velocity of this wave can have any value and, in particular, if
A? tends to zero, the parameter wave velocity tends to infin-
ity because in this case the capacitance of all the cells in the
line changes simultaneously. Obviously, a parameter wave
can be created not only in a transmission line, but also in a
continuous medium and this can be done by, for example,
altering the refractive index of the medium with the aid of
the Kerr effect in a strong external electromagnetic field.

Any plane monochromatic wave propagating in a medi-
um at rest where there is a traveling parameter will be trans-
formed at the traveling discontinuity of the parameter by
partly passing across the discontinuity and partly becoming
reflected by it. Expressions for the amplitudes of the trans-
formed waves can be found in Ref. 32 for some specific laws
governing variation of the traveling parameter. We shall not
consider these results in detail, but we shall discuss one im-
portant feature of the transformation of waves by a discon-
tinuity of a traveling parameter. If the velocity of the param-
eter is less than the velocity of waves in a medium at rest,
then on one side of the parameter discontinuity there are two
waves (incident and reflected), whereas on the other there is
only one (transmitted) wave. The frequencies and compo-
nents of the wave vectors of the reflected and transmitted
waves can be found from Eqs. (2.12) and (2.13) for the

reflected wave and from the corresponding equations for the
transmitted wave [see the discussion after Eq. (2.13)]. In
the case of the transmitted wave, expressions of the type
given by Eqs. (2.12) and (2.13) yield two possible solutions.
We have to select that solution which corresponds to the
removal of energy from a moving parameter discontinuity.
Usually this solution is in the form of a wave traveling in the
same direction as the incident wave. The amplitudes of the
reflected and transmitted waves can be found from the con-
dition of continuity of Eq. (2.17) at the moving parameter
discontinuity.

When the velocity of a parameter discontinuity exceeds
the velocity of waves in both media, the set of solutions de-
scribed above becomes invalid. We shall assume that the pa-
rameter discontinuity travels toward the incident wave and
the velocity i; of this discontinuity is greater than the velocity
of light c/n, in the medium at rest in front of the discontin-
uity and greater than the velocity c/n2 in the medium at rest
behind it. Since the phase velocity c/n, is now less than the
velocity of the parameter v, the wave cannot catch up with
the discontinuity. On the other hand, in the medium at rest
behind the moving parameter discontinuity both possible
waves, given by solutions of Eqs. (2.12) and (2.13), transfer
energy away from the parameter discontinuity because its
velocity v is higher than the phase velocity c/n2 of each of the
waves (they cannot catch up with the moving interface).
Therefore, the structure of the solution is as follows. On the
one side of the parameter discontinuity there is only the inci-
dent wave, and on the other there are two transmitted waves.
In this case there is no reflected wave.

If the velocity v of the traveling parameter is higher than
the phase velocity of light in one medium and lower than the
phase velocity of light in the other medium (for example, if
c/«, <y<c/«2 andc/«2 <y<c/« , ) , the selection of the so-
lutions of both sides of the discontinuity is much more diffi-
cult.33 In particular, in the case when c/n, < v <c/n2, there
is only one solution on either side of the parameter discontin-
uity: in front of the discontinuity it represents the incident
wave, and behind the discontinuity it represents the trans-
mitted wave moving away from it. The reflected wave and
the second transmitted wave do not remove energy from the
moving parameter discontinuity and, therefore, should be
ignored. Consequently, we are faced with an overdetermined
problem: we have to determine the amplitude of just one
transmitted wave and for this we have two independent
equations [the boundary conditions given by Eq. (2.17) ]. It
was shown by Ostrovskii33 that in this case the parameter
discontinuity becomes unstable.

In the other case when c/n { > v > c/n2, the problem be-
comes underdetermined. In fact, in this case on one side of
the parameter discontinuity we have not only the incident
but also a reflected wave, because the latter moves energy
away from the interface (c/n, > v ) . On the other side of the
discontinuity both possible waves also remove energy from
the moving parameter discontinuity because the velocity of
the discontinuity v exceeds the velocity c/n2 of both waves
and, therefore, these waves cannot catch up with the discon-
tinuity. It follows that there are three waves: one reflected
and two transmitted. Their amplitudes can be found if we
have just two boundary conditions [see Eq. (2.17) ]. These
conditions are insufficient and they should be supplemented
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by a further condition selected on the basis of physical con-
siderations.33

The problem of transformation of waves by a discontin-
uity of a parameter traveling at a superluminal velocity is
related to the problem of transformation of waves in a homo-
geneous medium which is far from equilibrium. In fact, a
medium at rest has a refractive index n, ahead of the param-
eter discontinuity and the index behind the discontinuity is
«2. In this case we have v > c/n, and v > c/n2 and, as pointed
out already, in front of the discontinuity there is one incident
wave, whereas behind it there are two transmitted waves. If
the velocity of this discontinuity now tends to infinity, we in
fact obtain an instantaneous change in the refractive index
throughout all space from the initial value n, to n 2 - Hence,
in particular, it follows that in the case of such a discontin-
uity one plane monochromatic wave splits into two plane
monochromatic waves (of different frequency) and the lat-
ter travel in two opposite directions.35'36

We shall now return to the problem of reflection by a
moving mirror. If we know the laws of reflection of mono-
chromatic waves, we can consider the reflection of a wave
packet. Let us assume that a wave packet incident on a mov-
ing mirror is characterized by an electric field

(3.17)

For simplicity, we shall assume that the wave packet is trav-
eling along the z axis at a velocity c opposite to the moving
mirror; the vector E0 is perpendicular to the z axis. The func-
tion/(£) describes the shape of the packet. We shall expand
the packet of Eq. (3.17) as a Fourier integral in terms of
plane monochromatic waves:

E (z, t) = E0 f d wf (co) exp f — ion (t — (3.18)

Each of the components of the Fourier expansion is a wave of
frequency co and of amplitude /(«)E0. The above expres-
sions allow us to find, for each of these waves, the corre-
sponding reflected wave

t (z, C0j) expj— zco! (* + 7) ]

(3.19)

We recall that in our case we have <y , (<y ) =&)(! +/?)/
(1 — /?) . Summing the reflected waves at all frequencies, we
obtain the following expression for the wave packet reflected
by the moving mirror:

+ 30

E! (Z, (\ = J c! C^E! (Z, Wl (co)) exp \— ico, (co) (t + -

t+ — (3.20)

It therefore follows that the reflected wave packet may
form from the incident packet in the following way. Let the
distribution of the field in the incident packet be described by

a function/(z) at some moment in time. Then, the field dis-
tribution in the reflected packet is described by «/(az),
wherea= (1 + /?)/(! —13) . Hence, it follows in particular
that if the mirror is moving toward the incident packet of
spatial dimensions of the order of /, the spatial size of the
reflected packet decreases by a factor a = (1 +/?)/(! — /?)
and the field within the packet increases by the same factor.
It is clear from Eq. (3.20) that the change in the spatial
dimensions of the packet is related to the frequency transfor-
mation as a result of reflection. The following conclusion can
be deduced from these expressions. If we select some point z
and measure the duration of the passage of the wave packets
across this point, we find that the time taken by the incident
packet to cross this point is r and the time taken by the
reflected packet is r/a = T(\ — /?)/(1 + /?), i.e., in this case
(with the mirror moving toward the incident packet) the
duration of the reflected signal is I/a times less than the
duration of the incident signal.

For the sake of simplicity we limited ourselves above to
the case of the normal incidence of waves (and packets) on a
mirror. However, we can equally easily consider also the
case of oblique incidence. All the qualitative conclusions
drawn above remain valid. As far as the quantitative rela-
tionships are concerned, the quantity a for the oblique inci-
dence case does not represent the ratio (1 +/?)/(! — /?),
buta(#0) = [1 +/?2 + 2/3cos *?„]/(! -/?2).

Formally, the same approach can be used to show that
an increase in the mirror velocity can be used to create pulses
of any duration, which can be as small as we wish. However,
we must bear in mind that short duration pulses contain
high-frequency components and for these components a cor-
rect description requires allowance for the dispersion. For
example, it is known that if the mirror is ideal at optical
frequencies, then beginning from wavelengths correspond-
ing to soft x rays, the window becomes increasingly transpar-
ent.

The problem of generation of short light pulses by re-
flection from a mirror moving in an accelerated manner was
considered by OstrovskiT.33'37 It should be noted that the li-
mitation due to the dispersion of the mirror at high frequen-
cies remains valid in this case as well.

In our analysis it is assumed that an interface is perfect-
ly abrupt, i.e., that the size of the transition layer at the inter-
face is much less than all the other characteristic lengths of
the problem. If the mirror is moving toward the incident
wave, in the relativistic limit the wavelength of the reflected
wave can become very short, i.e., it may be comparable or
even less than the size of the transition layer. In the extreme
case when the reflected wavelength is much less than the
thickness of the transition layer, the reflection coefficient
becomes exponentially small.38'39

Since the reflection alters the frequency and amplitude
of the incident wave, it follows that the energy flux and den-
sity in the reflected wave differ from the corresponding pa-
rameters of the incident wave. This in turn means that ex-
change of energy occurs between the radiation field and the
mirror. If reflection increases the wave energy, this means
that the mirror does work on the field. In the opposite case
the field does work on the mirror. Exchange of energy is, of
course, impossible without a corresponding exchange of mo-
mentum and, therefore, strictly speaking the mirror should
exhibit acceleration. However, we shall assume that the
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change in the mirror velocity is negligible either because the
mass of the mirror is sufficiently high or because there is
some mechanism which compensates for the change in the
mirror energy (for example, the mirror may be set in motion
by an external force and the work done by this force may
maintain a constant mirror velocity).

The energy balance on interaction of a moving mirror
with the incident radiation can be made clearer by invoking
the law of conservation of energy of an electromagnetic field.
It follows from the system of Maxwell equations (1.1) writ-
ten down for vacuum (D = E, B = H) that for an arbitrary
volume V bounded by a surface a, we have

At

(3.21)

We shall assume that the surface a is in the form of two
planes parallel to the reflecting plane of the mirror and locat-
ed on both sides of this plane.

We shall apply Eq. (3.21) to a part of the volume corre-
sponding to a unit surface of the mirror. We recall that the
electrical and magnetic fields vanish behind the mirror. Un-
der these conditions obviously the left-hand side of Eq.
(3.21) is equal to — v W, where u is the mirror velocity and
Wis the electromagnetic energy density:

w =
4n

(J5J + EJ) (3.22)

(we recall that E0 and £", are the amplitudes of the incident
and reflected waves, respectively). The second term on the
right-hand side of Eq. (3.21) can be denoted by 5Z (we are
assuming that the vector element of the surface da is direct-
ed along the outer normal). We then obtain

— J( j ,E)dV = — vW — S2. (3.23)

The quantity j on the left-hand side of Eq. (3.23) is the den-
sity of the surface currents induced on the mirror by the
incident wave. It therefore follows that the volume integral
on the left-hand side of Eq. (3.23) is essentially a surface
integral. Moreover, the following relationship is obeyed on
the mirror surface:

E( = _ i[v,H],, (3.24)
c

which follows from the fact that in a reference system in
which the mirror is at rest the tangential component of the
electric field vanishes on the mirror surface. Substituting the
above relationship on the left-hand side of Eq. (3.23), we
obtain

f ( J , E ) d V
J

o, (3.25)

where the surface of integration a is identical with the mirror
surface and the positive direction of the velocity v is identi-
fied in Fig. 1. Equation (3.25) contains

F L =l j [ j ,H]do. (3.26)

field of the wave on the currents flowing on the mirror sur-
face. It is clear from Eq. (3.25) that the projection of the
force FL on the mirror velocity v is equal to the optical pres-
sure on the moving mirror:

FL=p. (3.27)

Using Eqs. (3.25) and (3.27), we find that Eq. (3.23) be-
comes

pv=—Sz—vW. (3.28)

Equation (3.28) is an analytic expression of the statement
that the work pv performed by a unit surface area of the
mirror per unit time against the forces of the field consists of
two parts: the work ( - Sz) used to alter the energy flux in
the wave on reflection and the work ( — v W) associated
with the change in the volume occupied by the field.

4. REFLECTION AND REFRACTION OF ELECTROMAGNETIC
WAVES BY A TANGENTIAL VELOCITY DISCONTINUITY

We shall now consider two moving media separated by
a plane interface. If the velocities of the media on both sides
of the interface are parallel to it, obviously, a discontinuity of
the velocity on transition across the interface has only a tan-
gential component. Examples of tangential discontinuities
of the velocity can be found in hydrodynamics and aerody-
namics (ocean and air currents) and in plasma physics (ion-
ospheric flows and laboratory plasma jets). In all these ex-
amples we shall assume that the interfaces are at rest, i.e.,
that the normal components of their velocities are zero.

We shall now assume that a plane monochromatic elec-
tromagnetic wave is traveling in one of the moving media
and this wave is incident on a tangential discontinuity sur-
face. We have to determine the characteristics of the reflect-
ed and refracted waves. We shall direct the z axis along the
normal to the interface between these media (Fig. 2) . We
shall assume that the medium in the half-space z < 0 has the
permittivity^, and the magnetic permeability/z, in a system
at rest. The corresponding parameters of the medium locat-
ed at z > 0 in the reference system at rest are e2 and ̂  2. We
shall denote the velocities of the media by u, and u2, respec-
tively. Obviously, the vectors representing these velocities
lie in the (x, y) plane. We can always select such a reference
system in which one of the media (for example, that charac-
terized by e, ,/i,, and u , ) is at rest. Then, the other medium
(characterized by £ 2 > / u 2 > and u 2 ) must be in motion, i.e., it
must "glide" against the medium at rest. Therefore, in order

The quantity FL is the Lorentz force exerted by the magnetic FIG- 2.
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to solve the problem of the reflection and refraction of waves
by such an interface we must (for fundamental reasons) em-
ploy the mathematical apparatus of the electrodynamics of
moving media. For the sake of simplicity, we shall assume
that the medium with £, and [i, containing the incident and
reflected waves is at rest, whereas the medium with £2 andju2

containing the transmitted wave is moving at a velocity u in
the plane of the interface, i.e., we shall postulate that
u = uxex + yyey, where ex^z are unit vectors. We shall pos-
tulate that the wave vector k0 of the incident wave is located
in the (x, z) plane and makes an angle i?0 (angle of inci-
dence) with the z axis. It then follows from the above discus-
sion [see Eq. (2.9) ] that the wave vectors of the reflected k,
and transmitted k2 waves also lie in the (x, z) plane, i.e., in
the plane of incidence. The frequencies of the incident o>0,
reflected <y, , and transmitted o>2 waves are also equal. This
follows from the relationships given by Eq. (2.10) in which
the velocity of the interface is in our case zero. The invariants
/, and /, introduced earlier now become

h — kn = ku=k2f, /!= G)0 = «! = 0>2 = (0. (4 .1)

Substituting these values in Eqs. (2.12) and (2.13), we ob-
tain the following expressions for the components klz and
k2z of the wave vectors of the reflected and transmitted
waves, respectively:

(4.2)

where

x2 = e2u2 — 1 , v'3 = ( 1 = tit = uxex + uyey.

We obtained the above expressions from Eqs. (2.12) and
( 2. 1 3 ) by substituting /? = 0, 13 , „ = 0, /?2n = 0, /?, , = 0, and
P-i, — u/c- There are two possible signs in front of the square
root in the expression for k2z and we have to select that
which corresponds to a wave with a group velocity directed
away from the interface. 1>4°

When we know the components of the wave vectors of
the incident, reflected, and transmitted waves, we can find
the angles of reflection and refraction:

tg ft. = •

(4.3)

Hence, it is clear (Fig. 2) that the angle of incidence t?0 is
equal to the angle of reflection i?, and the angle of refraction
t?2 can be found using Eqs. (4.3) and (4.2). We have thus
determined the wave vectors of the reflected and refracted
waves.

The vector amplitudes (E,, H , ) of the reflected (E2,
H2 ) and refracted waves can be expressed in terms of the
vector amplitudes (£0, H0) of the incident wave, subject to
the boundary conditions given by Eq. (1.3). The actual cal-
culations and the final expressions9'u'4''43 are quite cumber-
some. Therefore, we shall not give the final results in their
complete form, but consider only some simple special cases.
We note first of all one important feature which distin-

guishes the problem of reflection and refraction by a tangen-
tial discontinuity from the corresponding problem of media
at rest.

In the problem of reflection and refraction of light at an
interface between two media at rest (classical Fresnel prob-
lem), we shall consider separately two main cases. In one of
them the electric vector of the incident wave lies in the plane
of incidence (which is the x, z plane in Fig. 2), whereas the
magnetic vector is perpendicular to the plane of incidence. It
is then found that the electric vectors of the reflected and
refracted waves also lie in the plane of incidence, and the
magnetic vectors are perpendicular to it. In the other case
the electric vectors of all the three waves—incident, reflect-
ed, and refracted—are perpendicular to the plane of inci-
dence and the magnetic vectors lie in this plane. Therefore,
the distribution of the field vectors relative to the plane of
incidence is a property which is invariant for all three waves
in the sense defined above. The situation is different in the
case of reflection and refraction of waves by a tangential
discontinuity of the velocities of two media. For example, if
the electric vector of the incident wave is perpendicular to
the plane of incidence, the electric vectors of the reflected
and refracted waves are no longer perpendicular to the plane
of incidence, i.e., they have nonzero (and generally differ-
ent) projections on the plane of incidence. We may therefore
say that the reflection and refraction of waves by a tangential
discontinuity rotates the plane of polarization of the reflect-
ed and refracted waves. The angle of rotation of the plane of
polarization depends on the optical parameters of the two
media, on the velocity discontinuity on the tangential dis-
continuity, and on the angle of incidence. Therefore, mea-
surement on the angle of rotation can provide additional
information on the parameters of the media.

We shall now illustrate these results by considering a
simple example.'' Let us assume that a plane monochromat-
ic wave is incident from vacuum on an interface with a mov-
ing medium and the velocity of the medium lies in the plane
of the interface. The situation is still described by Fig. 2, but
we must bear in mind that in this case we have u , =0, £,
= //, = 1, u2 = u = uxex + uyev, /u2 = 1, £2 = £• We shall

consider the case when the electric vector E0 of the incident
wave is perpendicular to the plane of incidence (which is the
x, z plane), i.e., E0 = E0yey. Then, using the boundary con-
ditions of Eq. (1.3), the dispersion equation (2.11), and the
relationships in Eq. (4.1), we obtain the following expres-
sions for the components of the electric vectors of the reflect-
ed (E , ) and transmitted (E 2 ) waves":

• + •
2* xfij

2k n

£<« = 0, (4.4)

where x=(e-l), &~ = (/? \ + I 3 2
y ) , u = c/3=c/3xex

+ c/3yey, k0x = (w/c)sint?0, kaz = (w/c)cosj?() and the
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expression for k2z can be obtained from the expressions in
Eq. (4.2). The components Elz and E2z are described by

(4.5)

which in a medium at rest is equivalent to the condition that
the electric field vectors E are transverse. In the case of a
reflected wave propagating in vacuum this condition is of the
form(k,, E,) =0.

We shall now analyze the expressions given above. It
follows from them that if the incident wave E0 has only one
component E0y, then the reflected and refracted waves have
all three components of the electric vector. This means that
the electric vectors of the reflected (E , ) and refracted (E 2 )
waves are not perpendicular to the plane of incidence, i.e.,
they are rotated relative to the vector E0 in the incident
wave. It follows from the expressions in Eq. (4.4) that the
components Elx = E2x governing the rotation of vectors E,
and E2 relative to the vector E0, are proportional to the
component^ of the velocity of the medium in the direction
of the vector E0. lf/3y = 0, we have Elx = E2x = 0, i.e., the
vectors E, and E2 are parallel to the vector E0 and the rota-
tion of the plane of polarization no longer takes place. It
should also be mentioned that Elx = E2x vanishes for x = 0,
because in this case there is no interface and it also vanishes
when/? x = ck0x/co. The details of the treatment are found in
Refs. 9, 11, and 41.

We note here one further interesting possibility asso-
ciated with the transformation of the waves by a tangential
discontinuity. Let us assume that the z = 0 plane separates
two media (Fig. 3), one of which is located in the region z > 0
and is moving at a velocity u along the x axis and the other
located at z < 0 is at rest. We shall assume that a wave whose
coordinate and time dependences are described by a factor
exp[i(k0zz + k0xx — cot) ] is incident from the medium at
rest characterized by £ i and /^ j on the interface. At z = 0 the
field at the interface becomes ex.p[i(k0xx — tot)}. This
means that an excitation created by the incident wave travels
along the interface. The velocity of this excitation is o)/k0x.
If the refractive index of the medium at rest«, = (£|^,) l / 2is
sufficiently large, then in a certain range of angles of inci-
dence the excitation travels along the interface at a velocity
much less than the velocity of light in vacuum. In this case
(Fig. 3) the velocity of the moving medium may be higher
than the velocity of the excitation u>co/k0x=c/
(« , sint?0), i.e., the medium may overtake the excitation
traveling along the interface. If the velocity of the medium
relative to the excitation exceeds the phase velocity of light

in this medium (in a reference system in which the medium
is at rest), the reflected wave removes from the interface a
greater energy than the energy delivered to the interface by
the incident wave. Therefore, the presence of reflection am-
plifies the wave. The necessary energy is provided by the
moving medium which is therefore slowed down. This effect
was pointed out first by Lupanov44 and it is analogous to the
inverse Vavilov-Cherenkov effect.45'46

CONCLUSIONS

The following point should be made. Einstein proposed
in 1905 a practically complete form of the special theory of
relativity. In over 80 years from this time nothing was added
to this work as far as fundamentals of the theory are con-
cerned. This applies not only to the intellectual content of
the theory, but also to the formulations used in this theory
and the concepts introduced for the purpose. In many
branches of physics (for example, in the design of charged-
particle accelerators) the special theory of relativity is the
foundation of engineering calculations. The examples of the
transformation of waves by moving interfaces considered
above essentially follow from one particular problem consid-
ered by Einstein in his well-known paper of 1905.
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