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A range of phenomena connected with the propagation of waves in hydrodynamic shear flows is
studied. The problem of calculating the energy and momentum of a wave packet in a moving
medium is discussed in detail. It is shown that in many cases the momentum of a body moving in a
liquid can be correctly calculated only if the compressibility of the medium is taken into account.
The phenomenon of super-reflection of waves from the interface between moving media—the fact
that the amplitude of the reflected wave can be much greater than the amplitude of the incident
wave—is described. An interpretation of this phenomenon is given based on the concept of waves
with negative energy. It is also shown that the reflected wave can be amplified when the sign of the
dissipation in the moving medium changes. The behavior of different types of waves on a
tangential discontinuity of the velocity is described (surface and internal waves as well as Rossby
waves are studied). A separate section is devoted to resonant interaction between waves and the
flow. Here the plasma-hydrodynamic analogy and its generalization to the case of stratified media
are discussed. Resonance amplification in shear flows is studied for sound waves, surface waves
on water, and internal gravity waves. The interaction of waves with vortices is discussed briefly.
An algebraic method for solving problems is described for cylindrical vortices. Different
mechanisms of amplification of sound by vortices are examined.

1. INTRODUCTION

Oscillations and waves in hydrodynamic flows can be
studied from different perspectives. First, there is the prob-
lem of wave generation by shear flows; this is one of the basic
problems in the theory of hydrodynamic instability. The
simplest types of instabilities for flows of the type of tangen-
tial discontinuity of the velocity were discovered during the
last century (see, for example, Ref. 1); a qualitative explana-
tion of these instabilities is given in Refs. 2 and 3. The study
of wave disturbances in a flow with a continuous velocity
profile, which was initiated in the fundamental works of
Rayleigh and Heisenberg,4'5 turned out to be a very difficult
problem. The asymptotic theory of equations with singular
perturbations6'7 as well as numerical methods1'8 enabling de-
tailed analysis of a wide class of flows were developed to
solve this problem.

The efforts made to overcome the mathematical diffi-
culties arising in the theory, however, often did not clarify
the physical picture of the processes occurring. In this re-
spect the analogy that has now been developed between
wave-flow interaction in hydrodynamics and the corre-
sponding phenomena in electrodynamics, plasma physics,
and electronics has turned out to be very useful for develop-
ing the intuition, for gaining a qualitative understanding of
the phenomena, and often also for choosing the optimal
computational methods. This analogy, first pointed out by
Case,9 was later developed in different directions.10"20 As a
result it was established that concepts such as waves with
negative energy, negative dissipation, resonance between a
wave and a flow, etc., which form the basis for the theory of
plasma instabilities, also work successfully in hydrodynamic
problems. A physical explanation for the well-known results
of hydrodynamics (Lin's rules for constructing integration
contours round singular resonance points in shear flows, the
instability of flows with a point of inflection in the velocity
profile,14 Miles' theory of the generation of wind waves20)

has been given based on the plasma-hydrodynamic analogy,
and a number of new hydrodynamic effects have also been
studied—analogs of linear and nonlinear Landau damping
in shear flows,20 quasilinear interaction and induced scatter-
ing of waves by particles for wind waves in the ocean,2I'22

cyclotron absorption accompanying scattering of sound by
vortices,23'24 and others. The analogy also "works" in the
other direction: it makes it possible to study, for example,
some types of plasma instabilities, starting from known re-
sults of hydrodynamics.14 Studies of this type single out
some effects which are common to systems of different phys-
ical nature and permit constructing a unified, general-phys-
ical language that facilitates the exchange of ideas and meth-
ods from different areas of physics.

This approach also turns out to be useful for studying a
wide class of different problems—refraction, absorption,
and amplification of externally generated waves in hydrody-
namic flows. At the present time the mechanisms of the in-
teraction of waves with shear flows have been studied in the
physics of the atmosphere and the ocean for wind waves,25

internal gravity waves,26 and other waves of the hydrody-
namic type.27 Analogous processes for sound waves are un-
der study in the rapidly developing field of aerohydroacous-
tics (in connection with the problem of the generation and
absorption of aerodynamic noise and other problems of
practical importance28). The study of the propagation of
electromagnetic waves in a medium with shear flows (see,
for example, Refs. 29 and 30) is of great interest for different
problems in plasma physics (both in the laboratory and in
space), microwave electronics, and magnetohydrodyna-
mics.

Two basic mechanisms for amplification (absorption)
of waves propagating in flows of an ideal liquid can be distin-
guished. One of them is determined by the interaction with
negative-energy waves in a moving medium31 (this corre-
sponds to the so-called "hydrodynamic" instability of plas-
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ma flow), while the other is determined by resonance inter-
action with nonequilibrium particles (the analog of the
mechanism of kinetic instability of plasma waves). A dissi-
pative mechanism, when the amplification of waves in a flow
appears only in the presence of viscous dissipation, radiation
losses, etc., is also possible— this corresponds to the mecha-
nism of dissipative instability of waves in a plasma.

The unified approach, which has emerged, to the prob-
lems of the propagation of waves of different physical nature
in shear flows makes it possible to summarize investigations
of different oscillatory and wave phenomena in hydrody-
namic flows and also to propose possible directions for
further investigations.

2. THE ENERGY AND MOMENTUM OF WAVES IN A MOVING
MEDIUM

The laws of conservation of the energy and momentum
of waves are widely employed in the interpretation of results
in the theory of waves in flows. The definition of the energy
and momentum of waves in a medium, however, usually cir-
cumvents some aspects of these concepts which are not com-
pletely understood. An unsatisfactory situation arises in
connection with the well-known fact that in calculating
quantities that are second-order infinitesimals in the wave
amplitude, which the momentum and energy, generally
speaking, are, the changes in the average parameters of the
medium and, in particular, the changes induced by the wave
flow must obviously be taken into account. In so doing an
ambiguity arises in separating the fields of physical variables
into the wave field and the motion of the medium. In electro-
dynamics these questions arise in the detailed discussion of
momentum by Abraham and Minkowski for electromagnet-
ic waves in a dielectric.32 In hydrodynamic problems the
question of the momentum of quasimonochromatic waves is
also quite muddled (see, for example, Ref. 33).

This section is devoted to a detailed explanation of the
concepts of the momentum and energy of waves in a medium
and their physical meaning is clarified. Analysis of these
questions, based on comparison with classical hydrodynam-
ic flows34, leads to a definition of the momentum of a quasi-
monochromatic wave which fits in a natural manner into the
general physical ideas of quasiparticles as quanta of wave
excitations in a medium, and takes into account at the same
time the existence of wave-induced average flows, which are
responsible for a number of physical effects.

Thus the approach presented below gives a physical ba-
sis for the traditional (as a rule, formal) use of the concepts
of quasienergy and quasimomentum.

2.1. Wave momentum and quasiparticles

The energy and momentum of waves should, strictly
speaking, be defined within the framework of a nonlinear
problem and should take into account the changes brought
about in the average values of the physical fields35 by the
"detection" of the wave, i.e., as a result of the nonlinear
generation of a low-frequency perturbation whose form is
identical to that of the envelope of the high-frequency field.
Usually, however, a different approach is employed. After
the linearized problem is solved the quasienergy density %?
and the quasimomentum Pw are defined in terms of the
adiabatic invariant (wave action) N, which in the quantum
approach is the number of quasiparticles:

' = <oN, P = (2.1)

The quantity N does not depend on the choice of coordi-
nate system, and it is therefore convenient to calculate the
quasienergy ^0 > 0 in the medium at rest, after which the
quasienergy in the medium moving with velocity U can be
determined using a Galilean transformation:

CO

co — k U (2.2)

We note that for co—kU < 0 the quantity % becomes nega-
tive: it is in this sense that one talks about negative-energy
waves.35

For a wide class of problems (in particular, linear prob-
lems) we can employ the idea of quasiparticles, relying on
the formulas (2.1) and (2.2). The laws of conservation of
quasienergy and quasimomentum follow from the linearized
equations of motion, averaged over the phase of the wave,
and are related to the uniform and steady-state nature of the
undisturbed medium.33 However in studying questions such
as the interaction of waves with flows, the nonlinear effects
due to the self-action of waves, etc., it is necessary to recall
the basic definitions of energy and momentum as conserved
quantities which are connected with the fact that the laws of
motion are independent of time and location. The complete
expressions for the energy and momentum following from
the starting (nonlinear) system of equations must be aver-
aged over the phase of the wave, and the part that is quadrat-
ic in the amplitude and is determined by the wave must then
be separated. The quadratic terms which were dropped
when the starting system was linearized can, generally
speaking, make a contribution that is comparable to % and
Pw. The motions corresponding to these terms are induced
wave flows.

If the undisturbed medium is at rest, then the induced
wave flow, whose velocity is quadratic in the amplitude, ob-
viously does not contribute to the kinetic energy. As regards
the momentum of the wave motion it is convenient to sepa-
rate it into a quasimomentum ("pseudomomentum" in the
terminology of Ref. 33), determined on the basis of the lin-
ear approximation, and the momentum of the induced wave
flow. The characteristic features of these two components
can be seen in the example of gravity waves on the surface of
a heavy liquid.

Two-dimensional gravity waves on deep water are de-
scribed by the nonlinear boundary-value problem

Aq>=0,
dr| . d<f dri <3q> (2.3)

dt dx dx dy

with y = r\,

where <p is the velocity potential, V = (u,v) = Vip, and 77 is
the vertical component of the displacement of the fluid parti-
cles g = (£,77). The solutions of the linearized problem have
the form

(p=<p0exp (— ia>t+ikx+]k \y )

where
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If there is no average flow ( (V) = 0), the average Lagran-
gian velocity of a particle (Lagrangian drift)25 is given by

(2.4)

The average Lagrangian velocity decreases with depth as
~exp(2|& \y) and determines the horizontal transport of
mass:

(2.5)

The same mass flux can also be obtained in an Eulerian de-
scription, if the mass transfer in the layer between the crests
and troughs of the waves (Stokes transport) is taken into
account:

S= /p J«df/ \=p(«(0)i)>. (2.6)
— oo

Stokes transport is uniquely related with the quasimomen-
tum of the wave:

(2.7)

The average flow induced by a quasimonochromatic
wave in an ideal, incompressible liquid can be found to sec-
ond order in the amplitude by averaging the boundary-value
problem (2.3):

dh _ dip _ _ d_/ dy \
dt dy dx \ dx / y= o

(2.8)

where <J> = (<p ) andh = (77) are the potential and deflection
of the surface averaged over a period. Since the group veloc-
ity of the waves is small compared with the phase velocity of
long-wavelength disturbances, whose scale is that of the
average flow, the time derivatives can be neglected. This
gives the quasistatic problem of flow under a moving distri-
bution of mass sources on the surface >> = 0. Obviously, the
source of mass is the gradient of the mass flux S, associated
with the Stokes transport. For a packet of surface waves
there arises a pattern of stream lines, which in this approxi-
mation can be easily found by using the analogy with electro-
statics: It is identical to the pattern formed by the lines of
force of electric charges in the plane y = 0 (Fig. 1 ).

It is not difficult to show that in each section x = const
the Stokes transport of mass is completely compensated by
the induced counterflow. Indeed, from (2.8) we have in the
quasistatic approximation:

/ °d (• dflt>
— P —'dx\ J dx

= 0. (2.9)

The first term in parentheses gives the mass flux in the in-
duced flow through the section x = const, and the second
term gives the mass flux due to Stokes transport.

If the total momentum of the medium associated with
the traveling wave packet is defined as the volume integral

FIG. 1. The average flow induced by a packet of gravity surface waves in
an ideal liquid.

r, (2.10)

then for the solution of the type shown in Fig. 1 we arrive at
the conclusion that the total momentum of a packet of gravi-
ty waves equals zero. In reality, the total momentum of a
wave packet must be denned more carefully; this can be done
by comparing with the definition of the momentum of local-
ized flows in hydrodynamics.

2.2. The momentum of a wave packet

Localized flows in an ideal incompressible liquid are
generated by the distribution of mass sources or vorticity in a
bounded region. In particular, potential flow around solid
bodies and localized vortices belong to this class of flows. It
is not difficult to determine the transport of mass in such
flows. For vortices the total mass flux through any fixed
surface obviously equals zero (this is a consequence of in-
compressibility). For a uniformly moving sphere the mass
flux through the surfaces' (Fig. 2) is directed backward—in
the direction opposite to the velocity of the sphere U.

At the same time the total momentum of the flow is
difficult to calculate. In particular, the integral

7=$pVd 3 (2.11)

taken over an infinite volume, as is well known, does not
converge absolutely,36 since the velocity potential at large
distances has the form

f \n 1 \r, __. I A \7 _ ^^ _— «v —
(A, r)
' '- (2.12)

while the velocity field drops off as ~ r 3, thereby creating a
nonintegrable singularity as r— oo.
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FIG. 2. Potential flow around a sphere.
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The momentum of a flow is determined by studying the
nonstationary processes associated with the change in the
kinetic energy dE = UdP. In particular, for a sphere with
radius R we have36

. U/?» n 4 .
A = — , P=-npA. (2.13)

We note that the integral (2.11) over a spherical layer of
finite thickness surrounding the sphere vanishes. The mo-
mentum of the flow (2.13) is thus fixed by the contribution
of a region at infinity; this contribution is uniquely deter-
mined by the dipole moment A.

The physical meaning of this result can be understood
by replacing the potential flow around the sphere by some
artificial flow generated by a distribution of sources and
sinks over a sphere with radius R (Fig. 3). In the region
outside the sphere the flow has the form (2.12), while inside
the sphere the velocity field is uniform U, = — A/R3. Such
a field is a solution of the well-known electrostatic problem
of the polarization of a dielectric sphere in a uniform electric
field.37 Integrating over the interior region of the sphere we
obtain

p, = f pv d3r = - npR3Ui = — - npA.
J 3 3

At the same time the contribution Pe of the external region
to the total momentum is the same as for the flow around the
sphere, and is determined by the expression (2.13). As a
result the total momentum of the flow is

We shall now study a doublet consisting of a point
source and a point sink of strength Q, separated by a distance
/ and forming a dipole with the moment A = Q l/4-rr. If the
source and sink appeared simultaneously at the instant
t0 = 0, the flow is a superposition of the field of a point
source bounded by a spherical pressure jump and the field of
a point sink bounded by a rarefaction jump (Fig. 4). For
/>//c (c is the velocity of sound) the flow in a sphere with
radius r = ctis identical to the flow of an ideal incompress-
ible liquid and its dipole asymptotic behavior is given by
(2.12). The layers v+ and i>_, formed by two eccentric
spheres, contain the velocity field Ve = Qr/^irr". It is pre-
cisely these layers that determine the momentum of the di-
pole flow:

= 2 f
J

-
3

(2.14)

FIG. 3. Potential flow generated by a spherical distribution of sources.
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FIG. 4. Non-steady-state flow due to a dipole arising at the initial time
tu = 0.

An arbitrary distribution of sources g(r) creates a
more complicated flow, whose potential is determined by
Poisson's equation &cp = Q(r). But if fQ dv = 0, then in the
far zone—at a distance greater than the size of the region of
sources—the potential (2.12) is determined by the total di-
pole moment A. The expression (2.13) gives the contribu-
tion of this far zone to the momentum Pe. For potential flow
around a sphere this expression determines the total momen-
tum: P = Pe. For other flows the contribution P, of the re-
gion of sources must be taken into account. Thus, in particu-
lar, it is possible to find the momentum of a localized vortex,
for which3

A = JL J [rfl] d8r. P, = 1 p J [rQ] dV,

.-ip flrO]d»r,
(2.15)

It follows from everything said above that the momen-
tum of a localized flow in an incompressible liquid must be
defined taking into account the reaction of a region at infin-
ity to the generation of this flow. To calculate this reaction
the finite velocity of propagation of disturbances must be
taken into account in an explicit form. In particular, when
the compressibility is taken into account part of the momen-
tum is carried away by sound waves generated by the local-
ized flow that arises. This result, however, does not depend
on the type of propagating disturbances and on the evolution
of the flow in time: the total momentum of the far zone is
determined by the expression (2.13) and depends on the
dipole moment A.

The approach developed above for determining the mo-
mentum can also be extended in a natural manner to local-
ized flows induced by quasimonochromatic wave trains. We
shall examine here the simplest model of surface gravity
waves, when the length of the wave packet is />//>/l = 2ir/
k, so that the shallow-water approximation is valid for the
average flows, while the propagation of the gravity waves
can be studied in the deep-water approximation. The genera-
tion of a wave packet is accompanied by the appearance of a
source on the leading slope of the wave and a sink on the
trailing slope of the wave. The distribution of sources is re-
lated with the Stokes transport of mass, and their strength is
given by [see (2.7)]

Yu. A. Stepanyants and A. L. Fabrikant 786



FIG. 5. The average flow arising on shallow water accompanying he gen-
eration of a packet of surface waves.

termined only by the induced flow. The propagating internal
waves also carry away some of the momentum. However the
total momentum emitted by all long-wavelength modes ac-
companying the appearance of the wave packet exactly
equals the quasimomentum

/>„=

_ =

dx ~~ dx

When a source and a sink appear radiation of differentials of
the surface level occurs:

Aft = — Q A
2p<rH

( Fig. 5 ) , which, in the shallow-water approximation, propa-
gate without dispersion with velocity CH = (gff)112 ,36 In an
incompressible liquid the velocity of the flow under the wave
of a rise of the level is

2pH 2t,H

Disturbances whose scale is the same as that of the envelope
and which recede away from the wave packet carry off the
momentum

/>„=
i)

00

=1 (2.16)

Thus although Stokes transport is completely compen-
sated by the induced counterflow and the mass flux through
any section is equal to zero, the total momentum, taking into
account the rapidly receding long-wavelength disturbances,
exactly equals the quasimomentum (2.16). Obviously, an
impulse with exactly the same magnitude (2.16) must be
applied in order to excite the wave packet. In this case the
momentum and energy of the emitted quasimonochromatic
waves can be studied on the basis of the linear theory, ignor-
ing the induced flows.

An analogous picture will also hold in the limit //-» oo.
In this case, the flow shown in Fig. 1 has the dipole moment

A =

The momentum of the flow consists of two parts. The first
part is determined by the region near the wave packet—this
contribution is equal to zero exactly, since here Stokes trans-
port is compensated by the induced counterflow. The second
part of the momentum is represented by the contribution
from the far zone—it is determined by the propagating long-
wavelength disturbances, emitted at the moment the packet
arises. In this case, obviously, gravity waves with long wave-
length are such disturbances.33'34

Other types of disturbances can also carry away mo-
mentum. For example, if there is a jump in the density (pyc-
nocline) near the surface, then the appearance of a packet of
surface waves is accompanied by the emission of an internal
wave on the pycnocline with wavelength of the order of the
size of the envelope.38 If the pycnocline lies at a quite large
depth, then the surface waves do not interact directly with
the pycnocline and the perturbation of the pycnocline is de-

2.3. Absorption of a packet of surface waves. The residual
vortex

We shall study the changes in the average flow which
are brought about by the dissipation of the wave. The sim-
plest example here is a two-dimensional surface wave train.
Viscous dissipation of the train in the boundary layer at the
free surface leads to the appearance of surface flow.25 The
momentum density associated with Stokes transport trans-
forms into the momentum density of the surface flow after
the wave decays. Thus, instead of the system of sources and
sinks owing to gradients of the intensity of Stokes transport,
there arises a system of surface flows with the same mass
flow that was concentrated between the crests and troughs of
the waves and with the same sources and sinks owing to the
gradients of this flow. As a result, at the location of the dissi-
pated packet, with which the induced dipole counterflow is
connected (see Fig. 1), there remains in the volume of the
liquid a vortex consisting of precisely the same dipole coun-
terflow and surface flow and assuming the quasimomentum
of the wave (Fig. 6).

We note that if the wave packet propagates with the
group velocity, then the residual vortex arising after the
wave decays moves much more slowly—its velocity is pro-
portional to the intensity of the surface flow. To excite such a
vortex by some external action an impulse P0 would have to
be applied. In the process, momentum of the same magni-
tude would be carried off by fast long-wavelength distur-
bances.

Thus under conditions of viscous damping of a packet
of gravity waves there forms a residual vortex whose mo-
mentum is equal to the momentum of the wave packet. The
pattern of surface sources and sinks for average flows [the
quantity on the right sides in the system (2.8)] does not
change in this case, so that the emission of waves with long
wavelength and with the scale of the envelope does not occur
here."

Absorption of waves by a thin, freely floating body—a
float (Fig. 7)—occurs analogously. The absorbed wave
packet gives up its momentum, associated with the Stokes
transport (quasimomentum), to the float. As a result the
float starts to move along the phase velocity of the wave and
acquires a momentum PQ. The weight of the float in hydro-

FIG. 6. Residual vortex arising as a result of viscous dissipation of a sur-
face wave.
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FIG. 7. Motion of a float which has absorbed a surface wave.

static equilibrium is equal to the weight of the liquid dis-
placed by it. Therefore the float creates the same dipole flow
pattern and has the same momentum as would the volume of
liquid filling the submerged part and moving with the same
velocity. Thus the total momentum of the flow is equivalent
to the momentum of the vortex in Fig. 6, the difference being
that the moving float plays the role of the surface flow. As in
the case of the formation of a residual vortex, long-wave-
length disturbances are not emitted here. The induced dipole
counterflow is transformed in this case into a potential flow
around the float. We note that the flow around a body in an
incompressible liquid is characterized by some virtual
mass36; for a thin body this virtual mass is equal to zero,
while the total momentum is equal to the momentum P0 of
the float itself.

The absorption of a wave packet by a fixed wave absorb-
er is different. In this case the sources and sinks associated
with the gradient of the mass flux vanish, and the induced
counterflow vanishes with them. The absorber absorbs the
momentum P0. At the same time, owing to the change in the
field of the mass sources, long-wavelength disturbances,
which carry off the momentum — P0, are emitted. These
disturbances escape, and the neighborhood of the wave ab-
sorber remains in a state of complete rest.

Above we studied wave-induced motions in an ideal in-
compressible liquid. For a wave packet in a continuous me-
dium of a different type the corresponding picture can look
different. For example, for an electromagnetic wave in an
elastic medium there arises a ponderomotive force that acts
on a particle of the medium in the region of the leading and
trailing slopes of the wave packet. The result of the action of
this force in a solid body is not free flow, as happened in a
uniform liquid, but rather a finite displacement of the parti-
cles which is proportional to the intensity of the wave. In this
case the dissipation of the wave is not accompanied by the
formation of a residual vortex, but rather long-wavelength
acoustic disturbances are emitted.39 Another interesting
possibility, pointed out in Ref. 39, is Cherenkov emission of
sound by a wave packet in a medium, if the group velocity of
the packet exceeds the velocity of sound.

Induced flows for internal gravity waves in a stratified
medium are an intermediate case. Induced vortex flow arises
in the horizontal plane, while vertical motion occurs in the
same manner as in an elastic medium: buoyancy forces com-
pensate the action of the ponderomotive forces and a finite
vertical displacement of the fluid particles, proportional to
the intensity of the wave, arises.40 The calculation of the
emission of long-wavelength disturbances (whose scale is
the same as that of the envelope of the wave packet) accom-
panying generation, dissipation, and scattering of internal
waves is of great interest in geophysics (see Ref. 41, where
the first step in this direction was taken).

In summarizing the results of this section we conclude

that the traditional description of wave disturbances in a
medium, based on the application of the concepts of quasien-
ergy, quasimomentum, and wave action (number of quasi-
particles), has a definite physical meaning (see also Ref.
42 ) . In most cases the quasienergy and quasimomentum can
be regarded as the "true" energy and momentum of the wave
packet in the moving medium. This happens, in particular,
in the study of different problems involving the absorption
and emission of waves as well as in problems involving the
nonlinear interaction of waves with low amplitude.'6 In
studying below different questions regarding the interaction
of waves with flows we shall employ the concept of wave
energy precisely in the sense adopted here.

3. SUPER-REFLECTION

Here we shall study different aspects of one of the most
effective mechanisms of amplification and absorption of
waves in a nonuniformly moving medium. This mechanism
is associated with the existence of waves with negative ener-
gy or a change in the sign of the dissipation in the hydrody-
namic flow. It is convenient to study this mechanism for the
example of the simplest hydrodynamic flows — a tangential
discontinuity (TD) of the velocity — and other flows with
piecewise-constant vorticity, where the effect is manifested
in pure form and can be studied analytically. Amplification
(super-reflection) was first noted for sound incident on a
TD,43'44 and was then studied for other types of waves: inter-
nal gravity,45 electromagnetic,46 and others.

3.1 . The Miles-Ribner problem

We shall discuss in detail the simplest problem of the
reflection of a monochromatic sound wave exp ( — iat
+ ikx) from a TD (Fig. 8). Joining the solutions for the

potential, the pressure p, and the vertical displacement ( in
the y direction) rj of the particles in the medium at rest ( 1 )
and in the moving medium ( 2 )

= t'copcp1,

= — — (e'l'y — Re-*™),

112== —

, p2 = i (w — kU) p<p2,

9« Toi(7,W

(3.1)

kU

we find with the help of the boundary conditions

Pi = Pl \y=0, % = T)2 L,= 0

the coefficients of reflection and refraction of pressure
waves:

FIG. 8. Reflection and refraction of sound waves at a tangential discontin-
uity. k0 is the wave vector of the incident wave; k, and k, are the wave
vectors of the reflected and trasmitted waves.
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) + |?2/(co - «/)2]
2?1/(o (01 — kU)

(3.2)

where q, = [(a)2/c2) - k2]1'2, q2 = {[(ca - kU)2/
c2 ] — k2)'/2, and c is the velocity of sound. The sign of the
vertical component of the wave vector in a moving medium
is determined by the radiation condition vgry > 0 which can
be derived from the solution of the starting problem.47 It
follows from the dispersion equation (co — kU)2 =c2(k2

+ q\) that

3(0

<a—kU

If a> — kU<0, the radiation condition requires that we
choose the branch q2 < 0. In this case the reflected wave is
amplified: \R > 1.

To interpret the super-reflection effect it is necessary to
determine the sign of the energy of the refracted wave. Set-
ting the average Eulerian velocity equal to zero (V) = 0 (no
induced flows) we obtain the average momentum density of
a monochromatic sound wave in the medium at rest:

= -RepV=.
2pc2co

(3.3)

(the asterisk denotes complex conjugation), wherep = p/
c2,p, and v = (k/«)p are the amplitudes of the oscillations
of the density, pressure, and velocity, calculated on the basis
of the linear problem, and

is the average energy density in the medium at rest (the fact
that the average kinetic energy in the sound wave is equal to
the average potential energy in the sound wave is taken into
account ) ,36 We note that the momentum here, as for surface
waves, is related with the drift of the particles (the average
Lagrangian velocity):

ra 2pc2

In a moving medium, since the amplitude of the pressure
does not depend on the coordinate system, we obtain from
(2.2) the following expression for the average energy den-
sity:

'=»" o > — kU 2pc2(co— kU)
(3.4)

For a — kU<0 the energy density is negative. The vertical
component of the energy flux density is given by

S,=vp,9 = ^IPl ' Bg
2p(co —kU) a 2

For q2 < 0 the energy flux of the refracted wave is oriented
toward the discontinuity: Sy <0. Thus amplification occurs
owing to the influx of energy from the moving medium. In
the process a negative-energy wave is emitted into the medi-
um. The law of conservation of energy q,(l — R | 2 )
= q21T \2 can be checked directly from the expressions
(3.2).

We shall study different regimes of reflection depending
on the angle of incidence 6 and Mach's number Ma = U/c.
Representing the wave vector of the incident wave in the
form k0 = (to/c) (sin 6, cos d), we rewrite the reflection co-
efficient (3.2) in the form

R =
cos 9 — [ 1 — sin2 9 (1 — Ma sin e)'2]'7'

cos 6 + [ 1 - sin2 6 (1 — Ma sin 9)-JJ1/!
(3.5)

Three different reflection regimes are possible ( Fig. 9 ) :
1) normal reflection (q2>0,R\<\) with sin 6

< (Ma +!)-';
2) total reflection (Re^2 = 0, |/t | = 1) with

(Ma+ I )~ '<s in0< l , if Ma<2, and with ( M a + l ) " 1

<sin 0< ( Ma - 1 ) ~ ', if Ma > 2; and,
3) Super-reflection (q2<Q,\R >1 ) with M a > 2 and

s in0>(Ma- I)"1.
In the last case there exists a resonant angle of incidence

2
6n = arcsin — ,0 Ma

for which R = « . Spontaneous Cherenkov emission of a
vortex sheet — an infinitely thin layer of liquid moving with
velocity (7/2, in which the vorticity ft = rot v does not van-
ish43'44 — occurs. In the process of spontaneous emission a
negative-energy wave is emitted into the moving medium
and a positive-energy wave is emitted into the medium at
rest. The oscillations of the TD do not decay and they are not
amplified, and the energy of the sound emitted into the medi-
um at rest is taken from the entire moving medium.

For

Ma > 2/2

the TD becomes stable,36 and unstable Kelvin-Helmholtz
surface modes are transformed into waves with the phase
velocity (relative to the vortex sheet)

traveling along the discontinuity. Since

Ma<2

FIG. 9. Different regimes of reflection of sound from a
tangential discontinuity. The ranges of the angles of in-
cidence are indicated. 1—Normal reflection, 2—total
reflection, 3—superreflection.
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Vavilov-Cherenkov radiation should appear. Disturbances
traveling along the TD emit sound at angles 0, 2 , for which

sine^f^li f l + ̂ 1-(1 -Ma^
I 2 L 4

In a compressible gas with

a TD is stabilized only within the framework of a two-di-
mensional model. For disturbances traveling at an angle to
the plane, shown in Fig. 8, the projection of the velocity of
the medium on the direction of the wave vector, determining
the action of the motion of the medium on the propagation of
waves (i.e., actually the Doppler shift), decreases. As a re-
sult the condition of stability of such disturbances has the
form

Ma cos 9 5s 2/2.

Thus disturbances traveling at a quite large angle 6 are al-
ways unstable — complete stabilization of a supersonic TD in
a gas is impossible.48 Taking into account the fact that for
d = IT /I the wave no longer "feels" the motion of the medi-
um and the instability vanishes we arrive at the conclusion
that there exist maximally unstable disturbances for which
the quantity lm(a>/k) and the corresponding angle #max de-
pend on the parameter Ma.49

We note, however, that the solutions obtained on the
basis of two-dimensional hydrodynamics can be realized for
waves on shallow water.36 Here, in particular, the stabiliza-
tion of TD examined above becomes possible50 if

Ma =
U ->2jA2.

The existence of negative-energy waves in a supersonic
TD can also lead to different dissipative instabilities. For
example, by placing into a moving medium a boundary that
reflects sound we add acoustic feedback to the TD which
intensifies the reflected sound.51 The instability arising in
this case can be interpreted as a dissipative instability of the
modes of the waveguide formed by the TD and the reflecting
boundary. These modes have negative energy, and dissipa-
tion occurs owing to the emission of sound into the medium
at rest. An instability of this type was observed in supersonic
boundary layers.'

The "spreading" of the TD, i.e., the replacement of the
TD with a transitional layer of finite thickness, also leads to
instability.52 The poles of the reflection coefficient R(co,k)
move away from the real axis «into the complex plane.53 In
addition, the neutrally stable characteristic modes of the
TD, accompanied by spontaneous emission of sound, trans-
form into unstable modes.

If the TD is unstable, then the problem of the reflection
of a plane monochromatic wave may turn out to be impro-
perly posed. The validity of the solutions obtained can be
studied on the basis of more complicated models, which take
into account the non-steady-state and nonuniform nature of
the wave field, the finite width of the shear layer, etc. We
shall examine below some results for sources near a TD
which are bounded in space and time; these results permit
evaluating the applicability of Miles' solution for plane
waves.

3.2. Excitation of a tangential discontinuity by an incident
wave

In studying plane monochromatic waves we assumed
that the sound and the characteristic oscillations of the dis-
continuity are linearly independent modes. At the same time
sound waves from a real source having finite dimensions and
a finite duration initiate the Kelvin-Helmholtz instability on
the TD. The solution of this problem presents certain diffi-
culties of both a technical character and in giving a physical
interpretation of the results.54 Difficulties even arise in the
simplest formulation of the problem of reflection of a plane
pulse from the interface of equilibrium media at rest, since
precursors, which are inconsistent with causality consider-
ations, formally arise in the reflected field. The problem of
eliminating precursors is studied in detail in Ref. 54, where it
is shown that precursors are formed only if the intersection
of the incident wavefront with the interface separating the
media lasts for an infinitely long time. Big difficulties also
arise in the solution of problems concerning the reflection of
a wave from nonequilibrium media, an example of which are
TDs; here there arise problems in choosing the structure of
the wavefront of the transmitted wave, in describing the
shape of the reflected signal, etc.

All these difficulties can be avoided by using Laplace's
method to solve the indicated problems formulated as ini-
tial-value problems.55'56

We shall study as an example the emission from a mo-
nochromatic point source of mass with unit strength at a
distance h from the TD.56 The wave equations in the medium
at rest and in the moving media have the following forms,
respectively,

(3.7)

Taking into account the boundary conditions at the TD it is
not difficult to obtain the solution by the method of Fourier
transformation in the coordinate x:

r- f iIn J

where <p0 is the field of the source in an unbounded medium
at rest and R(co,k) is determined by the expression (3.2).

The contour of integration in the k plane must be cho-
sen based on the principle of causality. Since we want to
obtain the solution of the initial- value problem by Laplace's
method we must study the complex values of co correspond-
ing to growing waves, i.e., values of to quite far up in the
upper half of the &> plane. The poles of the reflection coeffi-
cient R(o),k) lie in the upper half of the complex k plane.
The integration can then be performed over the real axis k.
In order to continue analytically the obtained solution to
real values of co the integration path must be deformed in the
complex k plane, adding to the real axis loops around the
poles kj in the lower half-plane and arcs around the poles ks

on the real axis (Fig. 10).
The poles &, correspond to the characteristic oscilla-

tions of the discontinuity which grow along the x axis. Thus
the complete solution of the problem of a point source in-
cludes not only traveling sound waves [obtained by integra-
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FIG. 10. Contour of integration in the complex k plane.

tion along the real axis in (3.8)], but also a surface wave
growing along the x axis on the discontinuity.

The solution found in this manner permits establishing
the limits of applicability of the results concerning reflection
of monochromatic plane waves from an unstable TD. In-
deed, as the point source recedes to infinity (A-> oo) , the
incident cylindrical wave approaches a plane wave near a
fixed direction. The efficiency of excitation of the surface
wave decreases exponentially. We also note that the lines of
constant amplitude of the surface wave are rays with the
slope tan 0C = Imq/lmk=l (0C = 45°).5ft For angles of
incidence 6 > Qc the solution in the form of refracted and
reflected waves becomes meaningless, since it exists against
the background of an exponentially growing solution of the
surface-wave type. At the same time for 0 < 0C the surface
wave can be neglected.

Interesting features arise when the TD is excited by a
non-steady-state source.57 Here the model of a source in the
form of an instantaneous point impulse S ( t ) 8 ( r ) is not ap-
plicable. In this case the solution of the initial-value problem
by Laplace's method becomes much more complicated: be-
cause of the existence of an increment of instability of char-
acteristic oscillations of the TD that increases without
bound as the wave number increases the singular points in
the integrand recede to infinity along the imaginary axis in
the complex ta plane. For this reason it is not possible to
choose a contour in the a> plane that would pass above all
singularities. The reflection of sound pulses from a TD was
studied in_Ref. 57. It was shown that for a stable TD
(Ma < 2^/2) the sound field is a superposition of the reflect-
ed and lateral waves, as well as three characteristic waves
emitted by the discontinuity at angles 00, 0,, and 02. For an
unstable TD the incident sound pulse excites, together with
lateral and reflected waves, a region of growing disturbances
which expands along the TD; this leads, already in the linear
approximation, to essentially explosive (i.e., over a finite
time) decomposition of the TD. The region of instability in
space has the form of a triangle, whose shape depends
strongly on the spatial spectrum of the source (this phenom-
enon is called configuiational instability).

The characteristics of configurational instability of a
TD in an incompressible medium, taking into account gravi-
ty and surface tension, are analyzed in Ref. 58.

The expression for the sound field, excited by a source
near a TD, permits finding an important characteristic of the
source—its acoustic impedance (the ratio of the amplitude
of the sound pressure at the source and its strength59). In
particular, the solution (3.8) permits calculating the acous-
tic radiation resistance of a point source near the TD:
ra = — Im[pa)(p(x = 0,y= — h ) } . For subsonic discon-
tinuities, in the limit Ma^O, we have <?, 2 = ik, and the re-
flection coefficient has a simple form:

/?=..[(<o— At/)1— o/H'to-

In this case the integral along the real axis in ( 3 . 8 ) obviously
does not contribute to ra . The radiation resistance is deter-
mined by the excited surface wave, which corresponds to the
integral over the contour around the pole ki = (1 — i)a>/U.
As a result we have

i . ;-;ra = p<o sin -
4 \

2(0/1

U
(3.9)

The quantity ra depends on the parameter 2a>h /U and can
change sign. This last fact makes it possible to explain the
mechanism of self-excitation of some types of whistles.20'60

In reality, if the source of mass is, for example, a Helmholtz
resonator, then for ra <0 the oscillations in the resonator
will be amplified.

It should be emphasized that for self-excitation of a res-
onator it is not so much the instability of the flow that is
important, but rather the presence of characteristic oscilla-
tions of the flow, its inertial properties. In particular, the
source can have a negative radiation resistance; it can even
excite neutrally stable oscillations in the flow owing to the
development of such oscillations as the jet passes through
the region where efficient interaction with the source oc-
curs.60 The characteristic size of this region—the "transit
length"—in the example presented above is determined by
the distance h from the source to the TD. This mechanism is
analogous to the mechanism of self-excitation of electronic
microwave devices, where the development of the perturba-
tions in the electron beam over a transit length h is deter-
mined by the parameter coh / U and leads to bunching of elec-
trons.61 In a hydrodynamic flow an external impulse (from
the acoustic resonator) also leads to an effect similar to
bunching: in the process of the development of the funda-
mental mode of the oscillations of the flow the velocity per-
turbations transform into pressure perturbations. The latter
perturbations, in their turn, excite the resonator, thereby
closing the feedback loop. We note here that in those cases
when the characteristic modes of the electron beam are un-
stable the excitation increment of the electromagnetic reso-
nator is determined, as in hydrodynamics, by the integral of
the wave number in the complex plane over a contour
around poles corresponding to waves that grow down-
stream.62

3.3. Negative dissipation in a moving medium

Discontinuities in a viscous medium spread into shear
layers of finite thickness, within which small disturbances
have a complicated structure.' The effect of viscous dissipa-
tion on the reflection of sound from the moving medium can,
however, be evaluated by remaining within the framework of
the TD model, as done in Refs. 63 and 64. For this we shall
examine the discontinuity between a viscous and an ideal
liquid, i.e., we shall take into account the viscosity only in
the moving layer for.y > 0. It should be emphasized that this
simple model with a discontinuity of the viscosity is suitable
only for qualitative calculations and can be employed to
study certain physical effects, for example, the effect of weak
dissipation in a moving medium on the propagation of sound
with a given amplitude at the boundary. For other types of
problems, in particular, in the study of the stability of small
disturbances, such a model may turn out to be inapplicable.
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Disturbances of the velocity in a moving viscous medi-
um can be represented in the form

U~ ~dx~ dy ' ~ dy dx

The amplitudes of the potential <p and the stream function i/>
satisfy the equations63

(3.10)i»<p=0, —— + <??>!> = 0,
>T Aifl l

where

while the pressure amplitude is given by

P = I (<D - AW) pq> [l - -g- (CO - «/)]"

Thus the general solution

(3.11)

(3.12)

is a superposition of two modes: a potential mode, represent-
ing the modified viscosity of the sound wave, and a vortex
mode, for which there are no pressure oscillations in the
linear approximation. For large Reynolds numbers
Re = v\co — kU |/c2 the vortex viscous mode oscillates rap-
idly and decays as y— oo.

The dynamic boundary conditions at the TD are that
the components of the momentum flux normal to the discon-
tinuity, i.e., the components

(3.13)

am = —

of the stress tensor, must be continuous.36 These boundary
conditions, together with the kinematic condition21 (conti-
nuity of the displacement rj = iv(co — kU) ~' permit joining
the viscous solution (3.11) and (3.12) for.y > 0 and the solu-
tion (3.1) for^jj, and/>! in an ideal fluid at rest for Re~ '<l .
As a result we obtain the reflection coefficient for sound:

be traced by studying the interaction of different types of
waves with the TD. We note that this is the most convenient
model of flow for studying a wide class of hydrodynamic
phenomena in different media: the atmosphere and the
ocean, moving plasma, many astrophysical objects, etc.

4.1. The Interface between a heavy and a light liquid

Waves which occur on the surface of the interface be-
tween media with different density and which interact with a
TD are the classical object studied in the theory of hydrody-
namic instability. We call attention, in particular, to the
large number of works on the Kelvin-Helmholtz instability
(see, for example, the review of Ref. 65). Here we shall study
only some relatively new and as yet little known results.

4.1.1. Amplification of surface gravity waves on reflec-
tion from a tangential discontinuity. The super-reflection of
surface waves incident on a TD in deep water (Fig. 11) is of
great interest in the physics of the ocean. The corresponding
boundary-value problem reduces to solving a system of inte-
gral equations; great mathematical difficulties are encoun-
tered in constructing the solution.66 An approximate solu-
tion of this problem is found in Ref. 67. Galerkin's method
was used to derive an expression for the reflection coefficient
for the amplitude of deflections of a free surface:

ix

ix
(4.1)

where

kyi = — cos 9,
g

are the projections of the wave vectors for the incident and
reflected wave, N and X are real functions of the angle of
incidence d, and angle of refraction 62 as well as the ratio of
the jurnp in the velocity to the phase velocity of the gravity
wave Ma = caU/g, analogous to the Mach number in acous-
tics.

The asymptotic behavior of the refracted field in the
limit j>-» oo and the reflection regime are determined by the
wave number ky^. For

\l/>

sin9!

R-
(co —

[ft (co -

— l + [4ivfe'/(co — kU)] ^ (3.14) normal reflection occurs: k\ > 0 and R \ < 1. In the region
[4fv*«/(co - kU)]

As v-«0 the expression (3.14) transforms into (3.2). In the
range of total reflection, where for v = 0 the reflection coef-
ficient is \R | = 1, the correction owing to viscosity deter-
mines the magnitude of the relative dissipation:

1 _|/?|i= 16v*«(o>-W/)— qi]<h
t
1"* t 4 . (3.15)

For co — kU<0 the dissipation in the moving medium be-
comes negative, which leads to amplification of the reflected
wave: \R \ > 1.

4. WAVES ON A TANGENTIAL DISCONTINUITY

The mechanism of interaction of waves whose energies
have opposite signs and the concomitant diverse effects can

sin Si

total reflection occurs: ^,=0, \R \ = 1. Finally, for
Ma > Ma2 super-reflection occurs, when ky, < 0 and \R \ > 1.

FIG. 11. Reflection and refraction of surface waves on deep water incident
on a tangential discontinuity.
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In this case for the refracted wave we have

co — kU = co (1 — Ma sin 6^ < 0

and the energy of the wave is negative. The phase velocity of
the reflected wave is oriented toward the discontinuity,
while the wave packet moves away from the discontinuity in
the direction of the group velocity, whose corresponding
projection is

«*..«
2 (co — kU)3

In the case when sin (9, = 2/Ma( \co — kU \ = a>) areso-
nance of the incident wave with the characteristic mode of
the discontinuity arises; here |R \ = oo. A single characteris-
tic mode with frequency co exists for Ma > 2 and represents
an inhomogeneous plane wave whose wave vector makes the
angle

Y = 6, = arccos —
' 2 Ma

with the discontinuity. The group velocity in it is oriented
differently on different sides of the discontinuity. This mode
represents essentially Cherenkov emission of vortex-sheet
disturbances.

Super-reflection of surface waves can lead, in particu-
lar, to instability of jet flows relative to disturbances of the
free surface.67

4.1.2. Instability of a tangential discontinuity in a strati-
fied medium. We shall now examine the discontinuity of the
density A/o = p0 — p,, which is a TD, in the presence of grav-
ity g and surface tension a. We shall assume that a=p{/
p0 < 1, keeping in mind the case of an interface between water
and air (p,/pQ~ 10~3) which is important for practical ap-
plications. We shall follow the evolution of the dispersion
curve co(k) of surface waves on the discontinuity as a func-
tion of the jump in the velocity U

a+ 1
•KU:

ok3

Po( l+a)
-AW2

•>

(4.2)

in a system of coordinates in which the bottom heavy liquid
is at rest.36'68 For U= 0 the expression (4.2) characterizes
the standard gravity-capillary waves traveling in opposite
directions (Fig. 12, curve 1). For U ̂ 0 the dispersion curves
become unsymmetric owing to the fact that the waves are
carried off by the flow. For

Po

1/4

a section where the frequency changes sign appears on the
bottom branch of the dispersion curve (see Fig. 12, curve 2):
co — kU<Q. This section corresponds to a wave with nega-
tive energy. As f/is further increased both branches contin-
ue to converge, and finally when

f/=i7K H=L'c( l+a)1 / 2 ,

they reconnect (Fig. 12, curve 3); a Kelvin-Helmholtz insta-
bility arises. Thus the appearance of this instability can be
attributed to the interaction of waves whose energies have
different signs.68-69

Negative-energy waves can grow not only owing to in-

FIG. 12. Dispersion curves for the Kelvin-Helmholtz model with surface
tension: £7=0 (1) , C/c <U<UKH (2) , and t/> C/KH (3) . The shaded
sections correspond to waves with negative energy in a coordinate system
that is stationary relative to the bottom layer of the liquid.

teraction with positive-energy waves, but also as a result of
some other mechanisms for extracting energy. Thus, analo-
gously to the plasma dissipative instability,70 taking into ac-
count viscosity in a layer at rest leads to growth of negative-
energy waves.68 Such waves become damped, if the top
moving layer is viscous. In this case, however, positive-ener-
gy waves can grow on the top branch of the dispersion curve,
since the viscosity in the moving medium with

leads to negative damping of waves for which <a — kU <Q.
Indeed, in transferring to a coordinate system where the top
layer is at rest the energy of the growing mode changes sign
and at the same time the dissipation changes sign68: in this
coordinate system the negative-energy wave grows under
the action of positive dissipation. In the process, evidently,
the presence of the instability at this mode is invariant to the
choice of coordinate system.

The appearance of dissipative instability can be conve-
niently illustrated in a system moving with the "mean-mass"
velocity

-U.
l + a

In this coordinate system the light liquid moves in the posi-
tive direction with velocity U/( 1 + a ) , while the heavy liq-
uid moves in the opposite direction with the lower velocity

U
l + a

The branches of the dispersion curve here become symmet-
ric relative to the k axis (Fig. 13). For a sufficiently large
jump in the velocity there appear on the dispersion curves
sections where the phase velocity of the disturbances is lower
than the velocity of the medium; in Fig. 13 they are marked
off by rays with slope U /(1 + a) (for the light medium on
the top) and — Ua(\ + a) ~' (for the heavy medium on the
bottom). The presence of waves for which co — kU<0 and
which are retarded relative to the moving medium can lead
to dissipative instability.

It is obvious that the dissipation changes sign first in the
light medium. At the boundary between air and water this
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FIG. 13. Dispersion curves for waves on a TD in the "mean-mass" coordi-
nate system. The shaded sections correspond to potentially unstable sur-
face waves.

occurs when the wind velocity exceeds the minimum veloc-
ity of gravity-capillary waves.

Dissipation in the heavy medium (water), however, re-
mains positive up to velocities U = UC^>U'C. This delays the
onset of instability of wind-driven waves by increasing the
threshold wind velocity (see Ref. 25).

As the velocity is further increased dissipation also
changes sign in the bottom (heavy) layer (for U> Uc see
Fig. 12, curve 2), and then at almost the same time for
U>UKH(~UC, if a < ^ l ) reconnection of the dispersion
branches occurs and the Kelvin-Helmholtz instability arises
(see Fig. 12, curve 3). For a water-air boundary this occurs
at very significant wind velocities: £/KH ;s6.5 m/s. Under
real conditions the onset of the wind instability of surface
waves occurs much earlier at Us: 1.3 m/s.25

It follows from what was said above that for/), </>0 the
bottom layer of heavy liquid "carries" surface waves, whose
dispersion properties (for £/<£/KH) are disturbed only
slightly under the action of the top layer of a light medium.
At the same time, it is precisely the dissipation in air moving
faster than the wave and changing sign that gives rise to the
development of instability of surface waves, i.e., the appear-
ance of wind-generated waves. The development of this in-
stability can be evaluated on the basis of the simplest model,
consisting of a boundary between an ideal liquid and a vis-
cous (light) medium. The increment of the instability here
has the form71 (under the assumption that Im a><^Re ta)

v= — <o — kU
1+a CO

(4.3)

We emphasize, however, that the change in the sign of
the dissipation with co — kU< 0 is not related with its specif-
ic physical mechanism. In particular, the wind instability of
surface waves could be due to different factors, among which
the viscosity (possibly, turbulent) in the wind-generated
flow can play an appreciable role (see Ref. 72), together
with the mechanism of Miles' instability and other well-
known mechanisms.25

The instability associated with negative dissipation
leads to amplification of waves in a wide range of angles,
when the Kelvin-Helmholtz instability does not yet occur.
This permits distinguishing these two instabilities experi-
mentally. Unfortunately hydrophysical experiments with
the participation of negative-energy waves are largely un-

known. Leaving aside the numerous works on the excitation
of Tolmin-Shlikhting waves in boundary layers, which, ac-
cording to Benjamin,73 also have negative energy, we call
attention only to the laboratory experiment of Ref. 74, where
the development of an instability which can be interpreted as
instability of waves with negative energy was observed to-
gether with the Kelvin-Helmholtz instability at the interface
between two layers of liquid in relative motion.75

4.2. Internal gravity waves

Buoyancy waves—internal gravity waves (IGW) in a
stratified medium—are apparently the most important ex-
amples of the interaction of waves with hydrodynamic flows
in geophysical applications,26'76 since their phase velocity is
often comparable to the velocity of real flows in the atmo-
sphere and the ocean.

The equations for two-dimensional oscillations of a
layered incompressible medium have the form26

du . 1_ dP „ dv , \ dP , gp „

dt p dx dt p dy p '

dp . v dp __ n du ,dv «
dt Au dx du

(4.4)

For IGW, as a rule, the Boussinesq approximation corre-
sponding to the limit dp/dy—Q, g-> oo, N = [ ( — g/p)dp/
dy]l/2 = const can be employed. In this case the change in
the density on the scale of a wavelength becomes insignifi-
cant, but the returning buoyancy force remains. In this ap-
proximation the derivative dp/dy enters only in the Brunt-
Vaisala frequency N, and we can set p = const in the
coefficients of the equations. Then we obtain from (4.4) a
dispersion equation for IGW and their group velocity vgr:

V
ffq (cos9, -sine), (4.5)

kvgr =0, k = ka (sin 9, cos 6).

We note that only IGW with ca^Ncan propagate.
We shall study the reflection of IGW from TD, separat-

ing a medium with different stratification: N(y<0~) = Nlt

N(y>0)=N2. Joining the solution p, = exp(/9,j>)
+ R exp( — iq$) in the medium at rest for y < 0 with the

solution p2 = jTexpO'^y) in a medium moving with velocity
U for y > 0 we obtain with the help of the boundary condi-
tions at the TD

R
l - a3)'1 - ft [N\ - (co -

l - co')-1 + ft [N\ - (co -

(4.6)

l - a")'1 + ft [N\ - (<o - «/)Tl

where

<a—kU

lit

(the fact that for IGWs q • vgry < 0 is taken into account). The
law of conservation of energy following from (4.6)

l - to2)'1 (1 - | R |2) = <72 [Nl - (CD - «/)»]-i | T |»
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FIG. 14. Separation of the parameter plane, for parameters characterizing
the TD in a stratified medium, into regions with different regimes of re-
flection of IGWs at a discontinuity.

Resonances of the TD ( \R \ = oo ), which can be found
quite simply in the case of uniform stratification
JV, = JV2 = const, are of special interest. They are possible
only for c < 1. One of them is determined by the condition
c = l/2(o) = kU/2) and corresponds to the Cherenkov
emission of IGWs by a vortex sheet. The angle of emission
can be expressed by the relation

The other two resonances are determined by the condition

can also be easily derived from the expression (4.5) for vgr

and the formula for the energy density in a IGW in a medium
at rest26

, _

co' (A/1 — co") IPl1 (4.7)

using the formula (2.2) and the relation Sy = vgTy $'.
The condition for emission in a moving medium

AW

(*» + <?")" co — kU
>0

makes it necessary to choose for co — kU<0 the branch
g2 < 0. Since q{ < 0, we obtain in this case \R > 1, i.e., super-
reflection occurs. The refracted wave, as follows from (2.2),
carries off negative energy in the process.

It is convenient to classify the different regimes of re-
flection in terms of two dimensionless parameters:

c= =

\k\U kaU '

which determine the character of the refracted field of
IGWs.77 Figure 14 shows the separation of the plane of pa-
rameters (D, 1/c) into regions for each of which the re-
gimes of reflection of IGW as a function of the angle of inci-
dence 0 are shown schematically in Fig. 15. The critical
angles 0, 2 , bounding the range of total internal reflection, in
which there is no transmitted wave, are given by the expres-
sions

sin Oi: DC
''c-l' sin 02 = — DC

l+c

which corresponds to the dispersion equation
a2 + (co — kU)2 = N] for the characteristic waves on a
TD. These modes are stable for \k\< V^N}/U and trans-
form into the Kelvin-Helmholtz modes in the limit Nl ->0.

Radiating instability. When a jump in the density is
present in a stratified medium the mechanism of dissipation
associated with emission of IGWs into the surrounding me-
dium is possible for surface waves at the discontinuity. In a
moving medium the energy of the emitted leaky waves78 can
become negative, which will lead to negative dissipation of
surface waves, as a result of which such waves grow.79 The
instability associated with radiation losses also occurs in
other physical systems: for beams of charged particles in a
plasma,80 in inverted media,81 and others.

We shall show that wind waves can be generated by the
radiating instability mechanism when IGWs are emitted
into a stratified atmosphere. Confining our attention to the
simplest model, studied in Sec. 4.1, of a TD representing a
jump in the density (for a < 1) we shall take into account the
stable stratification of air: N = N2 for y > 0 and N = 0 for
y < 0. The dispersion equation for waves in such a system has
the form

a (co — I

where

x2 + co2 == ( 1 — a) gk + — k3,
Pi

(4.8)

and in addition the branch of the expression for x2 is chosen
based on the boundary condition in the limit y-* oo. It is not
difficult to obtain the instability increment from (4.8) to a
first approximation in the small parameter a < 1:

ft)

\ r*.

H "0

(.5)

FIG. 15. Regimes of reflection of IGWs. The numbers on
the diagrams correspond to the number of the region in
the parameter plane Ac"1. The different ranges of angles
of incidence, determined by the wave vectors of the inci-
dent wave, are singled out: total internal reflection
(hatched region), normal reflection (N), and superre-
flection (S).
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The radiating instability in this model exists for U> U'c and
is observed in a narrow range of frequencies

(see Fig. 13). We note that stratification in the bottom layer
(water) can also lead to a radiating instability, which ap-
pears, however, on the bottom branch of the dispersion
curve for much higher wind velocities U> Uc .

73

4.3. Rossby waves on a tangential discontinuity

The presence of a sufficiently fast hydrodynamic flow
that is capable of "overtaking" the waves incident on it still
does not guarantee the possibility of super-reflection, for
which a refracted wave with negative energy must be emitted
into the moving medium. As an illustration we shall study
the incidence of Rossby waves in the f} plane on a TD.82

The perturbation of the stream function ̂  in an incom-
pressible rotating medium in the 0 plane satisfies the equa-
tion27

a *., , Q*|> _n (410)JLAib + B^L = 0.

This equation is suitable for disturbances whose characteris-
tic frequencies are small compared with the rotational fre-
quency of the medium fl(y) = fl0 + /3y (the quasigeostro-
phic approximation).31

The dispersion equation and the group velocity for
Rossby waves follow from (4.10):

r . vrp = —3-rr (*'-?•, 2fa?). (4.11)

For/ff > 0 only waves with negative phase velocity along the
x axis are possible: k < 0. They components of the phase and
group velocities have the opposite sign:

These relations determine the direction of the wave vectors
in the incident, reflected, and refracted waves:

(4.12)

where

<7i=— [

The boundary conditions on the TD permit joining the solu-
tions (4.12) on the boundary y = 0. As a result we have82

' + ft («»-«/)«'

— kU)
(4.13)

It follows from the conditions gl2 <0 that the condition
\R | < 1, always holds, i.e., the phenomenon of superreflec-
tion does not occur here. This is explained by the fact that the
energy density in the refracted wave, propagating in a mov-
ing medium, is positive; indeed,

-p* (4.14)

Figure 16 shows the different regimes of reflection for 0> 0
as a function of the parameter c = a>/kU. The range of nor-
mal reflection is separated from the range of total reflection
by the angle

~0 <f= arcsin

The condition \R \ = oo gives a dispersion equation for
characteristic waves on the TD in a rotating medium:

0) — kU I
(4.15)

For the dimensionless parameter C0 = 2co/kU — 1 it is not
difficult to obtain from (4.15) the cubic equation
Cl + 3SC2

0 + €0 + 5=0 (where5 = 0 /2k 2U), whose dis-
criminant is A = - 1085 4 + 365 2 - 4 < 0 and which there-
fore has two complex-conjugate roots. Thus the instability of

o •.

FIG. 16. Regimes of reflection of Rossby waves from TD.
The ranges of the angles of incidence for the wave vector
(a) and the group velocity (b). 0—Propagation impossi-
ble, 1—normal reflection, 1—total reflection
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the TD remains also in the presence of rotation, while in the
limit 5—0 it transforms into the Kelvin-Helmholtz instabil-
ity.

The questions of the stability of shear zonal flows in the
/? plane are studied in greater detail in Ref. 27.

5. RESONANCE INTERACTION OF WAVES WITH A FLOW

The "spreading" of a TD, i.e., replacement of the TD by
a shear layer of finite width, not only significantly compli-
cates the mathematical apparatus necessary for studying
small oscillations, but it also leads to qualitatively new ef-
fects, which do not occur in piecewise-homogeneous flows of
the TD type. The amplitude of the oscillations of the stream
function ^ in a two-dimensional flow of an ideal incompress-
ible liquid, whose velocity V0 = ( U ( y ) , 0 ) , satisfies Ray-
leigh's equation:

0. (5.1)

-f(co-to)f + — $S-= (
m dv (5.3)

dyi T U—(<a/k)

This equation contains a singularity (a critical layer) in a
neighborhood of the resonance singular point yc, where the
velocity of the flow is equal to the phase velocity of wave
disturbances: U(yc) = co/k. In the critical layer the dynam-
ics of small disturbances can no longer be described on the
basis of Eq. (5.1)—more complicated models must be em-
ployed here. This was first done in Refs. 5 and 6 where a
small viscosity, which removes the singularity in the equa-
tions of the linear theory, was introduced. In this case the
Rayleigh equation transforms into the Orr-Sommerfeld
equation:

(5.2)

The investigation of the asymptotic behavior of the solutions
of Eq. (5.2) in the limit v—0, which permits "joining" the
solutions of Rayleigh's equation (5.1) in the neighborhood
of the singular point yc, is a problem in singular perturbation
theory.7

A different, more physical, approach to the investiga-
tion of the dynamics of small disturbances in flows can be
developed by comparing and generalizing analogous prob-
lems in systems of different physical nature. In particular,
the plasma-hydrodynamic analogy, developed thus far, has
turned out to be very heuristic for problems ofhydrodynam-
ic instability.20 Here we shall study different aspects and
possibilities of this approach.

5.1. The plasma-hydrodynamic analogy

Singularities arising in the equations for small distur-
bances at a resonance of the phase velocity of the distur-
bances with the velocity of the particles of the medium are
typical for different waves in the medium. The appearance of
singularities is best known for longitudinal waves in a plas-
ma. The oscillations in a system of free electrons with the
distribution function/ (y) under the action of a monochro-
matic electrostatic field £0exp( — ia>t + ikx) are described
by a linearized kinetic equation:

Calculating the current

j'=e(fvdv,

we obtain the following expression for the conductivity of
the plasma:

dt>, (5.4)
m J i (oi — to)

where the integrand has a singularity at v = co/k.
The rule for integrating around this singularity (Lan-

dau's rule) is obtained by solving the initial-value problem
by Laplace's method.84 In the process, the growing
(IM« > 0) field is studied, and in making the analytic con-
tinuation to real values of co the contour of integration in
(5.4) must be deformed so as to go around the singularities
in the integrand all the while remaining below them. This
gives Landau's rule for integrating around the singularities
for real values of co and k: the contour of integration in (5.4)
goes around the singularity co = kv from below. As a result
the quantity Re <7, characterizing the damping of the field, is
determined by the half-residue of the integrand:

(5.5)

Thus the sign of Re a is determined by the derivative of
the velocity distribution function with the particle velocity
equal to the phase velocity of the wave. This is actually con-
nected with the fact that the amount of work performed by a
weak wave on the particles is determined by which type of
particles are more numerous when v = co/k: particles that
overtake the wave or particles that lag behind it. If more
particles overtake the wave (dfQ/dv > 0), then Re a < 0 and
the wave grows.

The analogy between hydrodynamic and electrody-
namic phenomena in flows of particles in the perspective
studied here originated in the work of Case,9 it was then
discussed by Timofeev,10 and it was analyzed in detail in Ref.
20. This analysis made it clear that the relationship between
electrodynamic and hydrodynamic phenomena is more pro-
found than noted previously. We shall see below, however,
that there are singularities that are specific to hydrodyna-
mics and which do not have any electrodynamic analogs.

In a hydrodynamic flow particles with different veloc-
ity are located at different levels .v, and for this reason singu-
lar resonance points arise in differential equations of the type
(5.1). From the viewpoint of the analytical theory of differ-
ential elquations85 these singularities are logarithmic branch
points, ifj>c is not a point of inflection of the velocity profile,
i.e., d2U(yc )/d2y^O. The question of the relation between
the analytical solutions on both sides of yc was solved by Lin6

and Wasow.7 Their method is based on introducing a small
viscosity and constructing an asymptotic expansion of the
solutions of the Orr-Sommerfeld equation (5.2) as a func-
tion of v. The result can be summarized as follows.

The solution of Rayleigh's equation is a limiting case of
the viscous solution obtained from the Orr-Sommerfeld
equation in the limit v-»0, if the branches of the multivalued
nonviscous solution near the branch points yc are chosen
using Lin's rule for integrating around the singularities: the
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contour of integration passes in the complex y plane below
the points yc if dU(yc)/dy>0 and above them if
dU(yc)/dy<0.

It should be noted that the inclusion of a small dissipa-
tion (particle collisions) in a plasma also removes the reso-
nance singularity for Langmuir waves in the expression for
the conductivity a and makes it possible to derive Landau's
rule for integrating around the singularities. Viscous dissipa-
tion in hydrodynamics, however, corresponds to the highest
order derivative in the Orr-Sommerfeld equation. The con-
struction of an asymptotic solution of the corresponding
problem with singular disturbances — the solution of the dif-
ferential equation with a small parameter in front of the
highest order derivative — is a relatively difficult problem.

At the same time Lin's rule can also be derived by the
traditional "plasma" method: the initial-value problem can
be solved with the help of a Laplace transformation in
time.9'86 In so doing complex values of co in the half-plane
Im co > 0, which corresponds to growing solutions, are stud-
ied. Lin's rule arises in a natural manner with the analytic
continuation of the solution to real values of co.

Thus Laplace's method reveals a profound analogy
with the plasma problem solved by Landau. This analogy is
manifested not only in the final result — the rule for integrat-
ing around singular points — but also in different effects as-
sociated, in particular, with the behavior of the solutions
from the continuous spectrum (see Refs. 9 and 87).

The existence of resonance points, together with a cor-
responding rule for integrating around them, determines the
mechanism responsible for the exchange of energy between a
weak disturbance and the average flow. We note that the
resonance mechanism of damping (or amplification) of
waves is not directly related with viscous dissipation, so that
resonance interaction appears in an ideal liquid. In what fol-
lows we shall study this interaction in simple examples,
where the similarity and difference between hydrodynamic
problems and the corresponding problems in plasma physics
will be evident.

5.2. Resonance amplification of sound

The study of the reflection of sound from a flow with a
continuous velocity profile88"90 is a much more difficult
problem than Miles' problem of reflection from a TD. We
shall employ the expressions (3.1 ), which are the asympto-
tic solutions in the limits y-> ± oo , where the velocity of the
flow is U(y) -» const. The behavior of these solutions in the
region of the shear < |j>| S /) is determined by the equation for
the amplitude of the pressure1:

d'P 2 AU/dy dP

U — (co/fe) dy
0. (5.6)

For supersonic flows this equation, like Rayleigh's equation
(5.1) in an incompressible liquid, contains a singular point
yc, where U(yc) = <y/&, and the solution P(y) has, in gen-
eral, a branch point. The choice of the branch of a multiva-
lued solution is determined by Lin's rule.

The resonance interaction of a sound wave, occurring in
the critical layer in the limit y->yc, can lead to a change in
the energy of the sound. The criterion showing the direction
of exchange of energy between the wave and the flow can be
obtained from (5.6) in a general form. Multiplying (5.6) by

p* X ( U — c) 2 (where P * is the complex-conjugate func-
tion) and integrating by parts taking into account the
boundary conditions (3.1) and using Lin's rule gives the law
of conservation of energy in the form

(5.7)

The left side of this equality characterizes the relative ab-
sorption of sound and represents the difference between the
energy flux of the incident wave (with unit amplitude) and
the sum of the energy fluxes for the reflected and refracted
waves. The sign of the right side of (5.7), characterizing the
absorption of energy in the critical layer, is determined by
the slope of the velocity profile at the resonance point. The
concave sections of the profile d2£//d/<0 amplify the
sound wave, while the convex sections d2U/dy2 > 0) absorb
the sound wave.

The relation between the increment and the slope of the
profile U has a simple physical intepretation.90 Namely, the
sign of the second derivative of the velocity profile at the
resonance level determines the ratio of the number of reso-
nant particles overtaking the wave and the number of parti-
cles lagging behind the wave. If in the neighborhood of a
resonance level there are more particles overtaking the wave
than lagging behind it, then the wave is amplified, extracting
energy from the flow in this neighborhood. Indeed, we shall
study the velocity distribution function of the particles in the
flow — the number of particles per unit area and per unit
velocity interval:

(5.8)

The ratio of the number of particles overtaking and lagging
behind the wave is determfined by the derivative d//
dU= — d2£//d>'2[d£//d^]~3—in complete agreement
with the criterion (5.7). This relation between the amplifica-
tion (damping) of the wave and the derivative of the velocity
distribution function of the particles is completely analogous
to the condition of amplification of plasma waves studied
above. This analogy is obvious, since both mechanisms are
determined by the resonant particles, moving with a velocity
equal to the base velocity of the wave.

Rayleigh's well-known theorem,4 relating the instabil-
ity of shear flows with the presence of a point of inflection in
the velocity profile, can be interpreted analogously from the
viewpoint of the plasma-hydrodynamic analogy. For this we
shall employ the necessary condition for the kinetic instabil-
ity of Langmuir waves: the velocity distribution function of
the particles must have a minimum. '4 For a shear flow the
extrema of the function /(£/), at which d //d U = 0, are lo-
cated precisely at the points of inflection, where d2t/Y
d>>2 = 0. Thus Rayleigh's theorem is the hydrodynamic var-
iant of the "plasma" criterion.14

The coefficients of reflection and refraction of sound for
an arbitrary continuous profile can be calculated approxi-
mately, if the boundary-value problem (5.6) and (3.1) con-
tains a small parameter. For a "narrow" shear layer
(fj, = kl41) corrections ~p to the expressions (3.2) for the
TD can be obtained by the method of joined asymptotic ex-
pansions. In the region of total reflection, when there is no
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refracted wave, the relative amplification of the reflected
wave is small41'90 ( 1 — \R 2 ~/z, and is determined exclusive-
ly by the resonant interaction with synchronous particles —
the mechanism of superreflection, associated with the pres-
ence of a refracted wave with negative energy, does not oper-
ate here.

The other limiting case of smoothly inhomogeneous
flows ( y U > l ) also admits an approximate solution.89 The
resonance interaction is exponentially weak here, since the
critical level yc lies in the region of non-transmission, where
the field of the wave decays exponentially.

The position of the critical layer for a given velocity
profile is determined for sound waves by the angle of inci-
dence:

. Q ck csin 9 = — = .
V (ye)

This position is also uniquely fixed by the sign of the reso-
nance interaction

The magnitude of this effect reaches a maximum for // ~ 188

and depends on the shape of the velocity profile.

5.3. Resonance mechanism for generation of wind waves

An interesting and important example illustrating the
resonance mechanism of amplification of wind-generated
disturbances in a shear flow is the well-known mechanism of
Miles for generation of wind waves.91 Thus far this mecha-
nism has been studied in greatest detail on the basis of a
model of a quasilaminar air flow above the surface of deep
water. In this model the motion of the air is assumed to be
plane-parallel, and in studying its small fluctuations the vis-
cosity and nonlinear effects are neglected, i.e., Rayleigh's
equation (5.1) for the amplitude of the velocity fluctuations
is employed. At the same time the velocity profile U(y) of
the undisturbed flow is chosen as the profile that is realized
for the average velocity of the turbulent boundary layer
above a smooth solid surface—the so-called logarithmic
boundary layer.25 Thus the presence of turbulent pulsations
in the wind (unrelated with surface waves) is taken into
account only in the choice of the velocity profile of the shear
flow and is ignored when small fluctuations of this flow are
studied.

The use of such approximations leads to a simple model
of a shear flow of an ideal liquid above the interface—the
"carrier" of surface gravity waves—between two media with
different density. To find the growth increment of the sur-
face waves we shall integrate, following Miles,91 Rayleigh's
equation (5.1), multiplying it first by if>* and applying the
boundary conditions on the surface of the water. This gives
the following expression for the growth increment of surface
waves91,20.

Pa_ no3

pw 2k \ AV/Ay |» ! P(0)
(5.9)

The dependence of the amplification of the wind waves on
the slope of the velocity profile here is the same as the de-
pendence (5.7) of the amplification of sound waves in a
shear flow. By its very nature the Maxwellian mechanism for

generation of wind waves is analogous to the mechanism of
the kinetic instability of waves in a plasma; the sign of the
increment (5.9) is defined, as for sound, by the derivative of
the velocity distribution function of the particles in the shear
flow:

AV
AV

In the boundary layer above the water surface, where d2U/
dy2 < 0, the resonance interaction with the wind-generated
flow amplifies surface waves. A calculation of Miles' incre-
ment for a logarithmic profile gives, in many cases, values
that are close to the experimentally measured values.25

Resonance amplification of surface waves in the critical
layer of a shear flow occurs not only for wind waves. Miles'
theory has been employed to study the generation of acoustic
waves on a delay structure,20 magnetohydrodynamic waves
in the clouds of radio galaxies,92 etc.

5.4. Internal gravity waves in a critical layer

Resonance interaction of wave disturbances with a
stratified flow has a number of characteristic distinguishing
features. The Taylor-Goldstein equation26

p
Ay* U — /-(CO/A)]2

(5.10)

which extends Rayleigh's equation (5.1) to stratified media
(N 7^0), has at the critical point j>c a singularity of a higher
order than (5.1).5) Here the Richardson number
i = N2(dU/dy) ~2 evaluated at the critical point plays the
fundamental role. For Ric =R\(yc) > 1/4 the energy of
IGWs is absorbed in the critical layer.26 The interpretation
of this result is based on the use of the WKB method for
Ri> 1/4 in the neighborhood of the critical layer, where a
wave packet with decreasing wavelength approaches the
critical point over an infinitely long time.

At the same time for Ric < 1/4 the resonance interac-
tion of IGW with the flow in the critical layer can lead to
amplification of the wave. Some of the articles 95-98 in
which this possibility was examined are based on the use of
model (piecewise-linear, etc.) velocity profiles, the applica-
tion of numerical methods, and the selection of profiles U(y)
and N(y) for which Eq. (5.10) can be solved exactly with
the boundary conditions

*(— °o)=exp (i<?,

i),(+oo)=rexp (i<

where

(—1(7,2), (5.11)

q,= — k[N*(— oo)— co

q>=— [A'2(+oo) — (<o—

A criterion for resonance amplification for "narrow"
shear flows U — U0<p (y/l) (p = &0/< 1 ) , for which the char-
acteristic Richardson's number R\~N212/U2

0 <1, was
found in Ref. 77. The method of joined asymptotic expan-
sions in the parameter p enables finding the coefficients R
and T for an arbitrary "narrow" shear layer, combined with
an arbitrary "narrow" density differential, determining the
local maximum of the Brunt- Vaisala frequency in the region
of the shear: N2(y) = N2

0 + N] (y/l), N\/N2
0 ~fi. The rel-
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ativeamplincationll = \R \2 + (Req2/ql)\T\2 - 1,charac-
terizing the excess of the sum of the energy fluxes of the
reflected and refracted waves above the unit energy flux of
the incident wave and found by this method, has the form

n = . 4n\qlql\(a>/k)*lU0-a>/k)]*

|P(y)/P(°°)l'
dy [ AU/Ay (5.12)

The asymptotic expansion of the amplitude of the pressure
to a first approximation in /z

P(oo) l _ tq?u9-2-

(5.13)

where 77 is the amplitude of the displacement of the isopycnic
surface, appears here.

It is obvious from (5.12) that IGWs grow (II >0)
when they are reflected from the shear flow, if

dy Ay AUIAyy=ils.
>0. (5.14)

This criterion has a simple physical meaning, based on the
fact that the quantity

is the velocity distribution function of the particles in the
flow. In an unstratified flow

dy y

in this case the gain is proportional to the derivative

Ay Ay* \Ay

evaluated at the critical point yc .
In the presence of significant stratification

(Ni=£0, Ric Z/n) the intensity of the wave field (to a first
approximation in/z) becomes nonuniform:

¥=0.

According to (5.13) this nonuniformity is determined by the
gradient of the amplitude of the hydrostatic pressure fluctu-
ations which arise with the periodic displacement of a layer
of liquid with variable density. Because the field of the wave
is nonuniform in the critical layer the efficiency of the inter-
action of the field with the particles that overtake and lag
behind the wave is different: the direction of energy ex-
change is now determined, according to the criterion (5.14),
by the derivative of the quantity \P |2/( U).

Attributing the resonance interaction to the competi-
tion between absorption and amplification as the overtaking
and lagging particles interact with the disturbance also
makes it possible to explain the absorption of IGWs in a

critical layer with a large Richardson's number. In this case
the wave is absorbed by the lagging particles in the flow,
while only an insignificant part of the wave field reaches the
overtaking particles, capable of amplifying the wave.

Because the amplification (absorption) of the wave de-
pends on the character of the wave field in the critical layer
the criterion of amplification does not reduce to a local con-
dition of the Miles' criterion type d2U(yc )/dy2 < 0. The am-
plification of IGWs in a stratified flow is determined by a
global condition, which includes the characteristics of the
flow in the entire region studied and not only in the critical
layer. A more general condition than (5.14) for amplifica-
tion, which is valid for arbitrary Richardson's numbers, can
be derived. For this we shall employ the equation for the
amplitude of the pressure:

dP/dy

dy [U - (co/*)]2 - [t/-(co/*)p
= Q. (5.15)

We multiply (5.15) by P * and integrate by parts. The imagi-
nary part of the equality obtained gives the criterion for am-
plification in the form77:

n = — - -Im
f IP
J VJ- (co/A)]2 . (5.16)

The criterion (5.14) follows from (5.16), if the asymptotic
expression to a first approximation in ju, not containing any
singularity at the point yc, is employed for the pressure in the
integrand and a transformation is made into the upper half-
plane of the complex frequency a> = &, + iS, having in mind
the solution of the initial-value problem by Laplace's meth-
od. We emphasize that the exact expression for the pressure
amplitude has a singularity aty=yc. This does not permit
displacing the integration path in (5.16) into the complexy-
plane, i.e., reducing the integration in (5.16) as 8-»0 simply
to Lin's rule.

The results of the numerical calculation of resonance
growth of IGWs for a shear layer with the profile U = (U0/
2) [ 1 + th(>>//)], N = const are presented in Fig. 17. The
figure also shows contour lines of the maximum growth
nmax = max FI(c9) in the plane of the parameters
a)/kU0, Ri = 4Ar 2/2/f/Q. We note that resonance growth
(nmax >0) is possible not only for ca/kU0>0,5, when the
critical point lies on the convex section of the velocity pro-
file, as happens for waves in an unstratified liquid, but also
for co/kU0<0,5, when the waves are in resonance with the
concave section of the profile.

An important feature of resonance growth of IGWs is
the possibility of spontaneous emission of such waves: for
some values of the parameters Ri, a>/k, 0 the quantity II -> oo
(the contour line nmax = oo in Fig. 17). This corresponds to
resonance between the incident wave and the neutral charac-
teristic mode of the system, in which above the shear layer
(y-> oo) the field decays exponentially while below this layer
(j>-» — oo ) the field is a traveling wave. Such neutral distur-
bances, corresponding to spontaneous emission of IGWs by
the shear layer, were found in Refs. 99 and 100. We empha-
size that unlike spontaneous emission of TD here the energy
of the IGWs is not conserved: there is a critical layer where
the wave extracts energy from the stratified flow.
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FIG. 17. Resonance amplification of IGWs on a shear layer: the
isolines Flmu, = const in the parameter plane Ri,
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6. SCATTERING OF WAVES BY VORTICES

6.1. Algebraic method for cylindrical vortices

The properties of waves in shear flows, studied above,
can also be observed in flows with closed streamlines—cylin-
drical vortices. Small disturbances in axisymmetric flows are
usually studied by an algebraic method, based, as in the case
of plane-parallel flows, on approximation of the velocity dis-
tribution with a profile with piecewise-constant vorticity
and joining analytical solutions on the boundaries of the re-
gions.

In polar coordinates the amplitude of disturbances of
the form exp ( — icot + imp) for the stream function satisfies
an equation analogous to (5.2):

T "-L-" n c'(2/d'' ivn
r (co — nfi) co — n£i

(6.1)

where L = dVdr2 + r~ld/dr- (n2//-2). For v = 0 Eq.
(6.1) is analogous to Rayleigh's equation; it contains the
singular points co — nfl = 0 with a coefficient proportional
to the derivative of the vorticity dQ /dr = rd2fl/dr* + 3dfi/
dr. In Rayleigh's equation the residue of the coefficient at the
singular point had the same meaning and was proportional
to the second derivative of the velocity profile. It is also pos-
sible to prove an assertion analogous to Rayleigh's
theorem101: disturbances growing in time can exist only if
there exist points of an extremum of the vorticity where dQ/
dr = 0 in the profile of the angular velocity (in a plane-paral-
lel flow these are points of inflection of the velocity profile).

For vortices with constant vorticity, in which
ft = n0 + ( x / r ) , Eq. (6.1) has exact solutions of the form
i/f = i//a = Ar" + Br~n. This makes it possible to employ
the algebraic method, using profiles of the angular velocity
consisting of several parts with uniform vorticity and delim-
ited by tangential discontinuities or breaks in the rate of
change of the velocity. For such a "piecewise" profile it is
not difficult to find a solution by joining expression of the
type ̂ a in each part with the help of boundary conditions on
the discontinuities.23 In particular, for a cylindrical TD
(Fig. 18a) we have the dispersion equation
co2 + (co — «no)2 = |n | f l o> which transforms into the Kel-
vin-Helmholtz equation in the limit «-»oo (in this case

. Its solution

corresponds to unstable modes for all n>2. The mode n = 1,
corresponding to displacement of the vortex as a whole, is
obviously neutrally stable.

For a different model—Rankine's vortex (Fig. 18b) the
dispersion equation describing neutral stable oscillations has
the form (« — «ft0) [co — (n — 1 )fl0] = 0.

Within the framework of the algebraic method it is also
possible to determine, with the help of a model, the effect of
viscosity on oscillations of vortices. For this it is sufficient to
study a discontinuity between a viscous liquid and an ideal
liquid, i.e., to take into account the viscosity, for example,
only in the nucleus of the vortex. Taking into account viscos-
ity with dQ /dr = 0 does not change the solutions ^a since
they identically satisfy Eq. (6.1). Increasing the order of the
equation, however, with v/0 leads to the appearance of ad-
ditional linearly independent solutions, which for large
Reynold's numbers Re oscillate strongly and decay along
the coordinate r as the distance from the source increases.
The boundary conditions on the discontinuity at r = a—
continuity of the components of the momentum of the flow
which are normal to the mobile boundary—permit joining

a

a

FIG. 18. Profiles of the angular velocity and vorticity for differ-
ent cylindrical vortices, a—cylindrical TD. b—Rankine's vor-
tex.
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nonviscous solutions in the region outside the vortex and a
linear combination of nonviscous and damped viscous oscil-
lations in the nucleus of the vortex. This method gives for the
oscillations of the Rankine vortex, to a first approximation
in the parameter Re = v/fl0a

2, the dispersion equation

«==(«—1)Q 0 —n(n—1), (6.2)
a2

which corresponds to damped oscillations. The interpreta-
tion of this result must take into account the fact that in a
medium rotating more rapidly than the angular phase veloc-
ity of azimuthal waves (a> — n£L0 <0), dissipation is nega-
tive. However the energy of the oscillations of the vortex is
also negative102

. «. 19

(6.3)

where £0 is the amplitude of the displacments of the bound-
ary of the vortex nucleus.

The negative energy of the characteristic oscillations of
the vortex makes possible radiating instability of the vortex
in a compressible medium.103 For^ = fl0/c< 1 the oscilla-
tions are close to incompressible oscillations for r<a, but the
non-steady-state flow associated with them emits sound in
the wave zone r ̂  A. As a result of the extraction of energy by
the outgoing sound waves the amplitude of the oscillations
grows.

6.2. Amplification of sound by vortices

The existence of negative-energy waves in a rotating
medium makes possible, in principle, amplification of a
sound wave incident on the vortex. This, however, requires a
negative-energy sink; in a plane-parallel TD the escape of
refracted waves to infinity played the role of just such a sink.
For vortices in which the region of the nucleus is finite this is
not possible. Here, however, amplification of scattered
sound is possible owing to a change in the sign of viscous
dissipation in the vortex nucleus.

Consider the scattering of sound by a vortex of size
= 27rc/<y.23'24 The field in the far zone

C

-i/a

»M-'(T-t-7)]

(6.4)

is determined by the coefficients of reflection of cylindrical
harmonics

n _ , , / 2nio> \1/a ,
Kn = 1 + I - — I fn,

where

is the scattering amplitude. Energy exchange between the
wave and the vortex is characterized by the quantities Rn\,
which can be found to a first approximation in the parameter

l. For this it is sufficient to join the solution for
r^,A, obtained by the algebraic method, and the solution for
/•> a in the form of a sum of incident and reflected cylindrical
waves. For Rankine's vortex with a viscous nucleus it is not
difficult to obtain by this method23

8nv/aa

2c

sl"l co — rcO,
[co-(n-

(6.5)

For co — «fi0 < 0 sound is amplified: Rn\>\. The amplifi-
cation of sound by a rotating viscous vortex represents the
acoustic analog of the effect studied in Ref. 104, where it was
shown that electromagnetic waves can be amplified when
they are scattered by a rotating, conducting cylinder and
gravitational waves can be amplified when they are scattered
by a collapsing rotating body.

It should be noted, however, that the mechanism of vis-
cous dissipation of sound in a vortex flow does not reduce to
simple absorption, but rather is determined by linear trans-
formation into rapidly decaying vortex waves.

In vortex flows with a smooth profile and dQ /dr^O the
resonance mechanism of absorption (amplification) of weak
disturbances, analogous to the mechanism of cyclotron ab-
sorption of waves in magnetoactive plasma,23 is also possi-
ble. This mechanism exists for v = 0, when Eq. (6.1) con-
tains singularities where co — nCl = 0. The integration
around these singularities is performed in the same manner
as in the case of rectilinear shear flows following Lin's rule.6

Following Refs. 23 and 24, we shall examine the reso-
nance mechanism of amplification of sound scattered by a
cylindrical vortex with an arbitrary, continuous profile of
the angular velocity fl( /-)- For this we shall calculate the
quantity L ( r ) — Re(r2u*v), where V = (u,v) is the ampli-
tude of the velocity fluctuations. For />a (a is the size of the
vortex nucleus) the flow is a potential flow; it is not difficult
to derive for the potential 4> the equation24

dr1 dr
(66)

Multiplying (6.6) by inr<b* and integrating by parts from
r— r ,(a<r,</l) to r= r0>/l we find that L(r,) =L(r0).
For/* = coa/r<£ 1 and O, S co the approximate solution of Eq.
(6.6)

(6.7)

where H(
n

l} and H(
n

2} are Hankel functions of the first and
second kind, gives

2 | n j
n

1411 (| a. I1-i). (6.8)

At the same time, for r4.A the medium can be regarded as
incompressible and Eq. (6.1 j (with v = 0) can be employed.
Multiplying this equation again by inn//* and integrating by
parts, applying the rule for integrating around the singular
points, we obtain

where S l ( r n ) = co/n. Comparing this expression with (6.8)
we note that
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Thus if the vorticity decays as r increases, then the sound
wave is amplified on reflection from the vortex ( Rn\>\).
The vorticity usually decays monotonically away from the
axis of the vortex, and the sound wave is therefore amplified
by the vortex.

For /•>a the solution of Eq. (6.1) has the form

\-\Rn\
_dQ
dr

(6.9)

It follows from here that L(r ,) = - 2n2 B 2lmqn. Then,
using the formula (6.8), we obtain

\-\Rn\*-- /toa

'fe
(6.10)

The dimensionless quantities qn are determined by the pro-
file of the relative angular velocity fl/ca. For n = + 1 the
solution of Eq. (6.1) has the form

and therefore the quantities q ± , are real. Thus in an ideal
liquid reflection of the first cylindrical harmonics is elastic.
The resonance mechanism of dissipation, associated with
the existence of the singular points rn , operates only for n^2.
In particular, Fig. 1 9 shows the result of the numerical cal-
culation of Im <72

23 for the profile

The cross section for absorption of a plane wave by a
vortex is determined by the harmonic with n = 2:

-
(0

-
(0

/'coa \3

(T)
,Im

For vortices with decreasing vorticity (dQ/dr<0) the
absorption cross section is negative; in this case the scatter-
ing of a wave by the vortex is accompanied by amplification
of the wave. We also note that for fl ~ a the absorption cross
section is of the same order of magnitude Jw

3a as the scatter-
ing cross section.23,24

7. CONCLUSIONS

This review covers a realtively small range of phenome-
na and problems associated with the propagation of waves in

0.5

-10

-20

FIG. 19. Resonance amplification of sound by a vortex in an
ideal liquid: Im, as a function of the frequency.

shear hydrodynamic flows. Because of the limited space
available here many important and interesting questions di-
rectly related with the subject of the review as well as per-
taining to closely allied areas were omitted. We shall list
some of these questions, which in our opinion should at least
be mentioned briefly.

Interaction with shear flows has been studied many
times as a mechanism for generation and amplification of
different types of waves in a plasma.14 The characteristic
oscillations and stability of TD in magnetohydrodynamics
were studied in Ref. 105, superreflection of magnetohydro-
dynamic waves from TD was studied in Refs. 106-108, and
superreflection of electromagnetic waves from TD was stud-
ied in Ref. 109. For resonance interaction of electromagnetic
waves with shear flows in a magnetic field it was found that
the exchange of energy between the wave and the flow in the
critical layer depends on the derivative of the velocity distri-
bution function of the particles in the hydrodynamic flow.'10

The interesting possibility of a transition between plasma
and hydrodynamic criteria for resonance amplificaion was
established in Ref. I l l , which is devoted to the study of
waves in the critical layer of a plasma flow in the kinetic
approximation. In this case the phase velocity of the wave is
synchronized not only with the particles at the critical level,
which move with the average velocity of the flow, but also
with particles in other layers whose velocity deviates from
the average value.

Nonlinear effects in the interaction of waves with a flow
form another group of problems that were omitted from this
review. Here the plasma-hydrodynamic analogy is also em-
ployed extensively.20 The nonlinear dynamics of a critical
layer, analogous to the dynamics of plasma particles in reso-
nance with a Langmuir wave in velocity space, has been
studied in Refs. 112-115. A quasilinear theory21 and a theo-
ry of stimulated Raman scattering by particles of the flow22

for wind waves in the ocean have been developed. The hy-
drodynamic analog of the plasma echo in a shear flow was
studied in Ref. 116.

The analogy to problems in plasma physics and elec-
tronics makes possible a new approach to the theory of aero-
dynamic sound generators,28'117 in particular, it makes pos-
sible new types of sound generators that are similar to
existing electronic devices.20

In this review the theory of oscillations of vortices and
their interaction with external wave fields has been studied
very briefly. A separate review could, in principle, be devot-
ed to this subject. Here, however, in our opinion, there are
many unsolved or inadequately studied problems. They in-
clude, in particular, some problems in geophysical hydro-
dynamics: emission of atomspheric waves by cyclones and
tornadoes,"8'119 interaction of different types of waves with
oceanic vorticies,120 etc.

It would be natural to attempt to extend the results pre-
sented here to different types of waves in the atmosphere and
the ocean (Kelvin and Poincare waves, inertial gyroscopic
waves, trapped shelf waves27), in the earth's magneto-
sphere,121 in the solar wind,'22 and in the sun's atmo-
sphere.123 Also of interest is a study from this perspective of
waves in realtivistic flows (we call attention to Refs. 124-
126 which are devoted to the instability of a relativistic TD),
which is necessary for solving a number of problems in astro-
physics (see, for example, Ref. 127).
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"However the further evolution of vortices beneath the surface of a heavy
liquid can in some cases be accompanied by emission of gravity waves.'2K

2lThe use of an incorrect kinematic boundary condition in Ref. 63 led to
the wrong result.

"We point out here an analogy with drift waves in a nonuniform plasma,
which under certain conditions can be described by the equations of the
geostrophic approximation.83 The results obtained below also hold,
therefore, for drift waves on TD.

4>The weak amplificaion here is associated with the obvious fact that in a
"narrow" shear layer there are few resonant particles.

"We note in passing that taking into account the viscosity in a stratified
medium does not eliminate the singularities in the corresponding gener-
alized Orr-Sommerfeld equation, which was first derived by Drazin,93

but merely lowers the order of the singularity. The singularity can be
removed in this case by taking into account diffusion, which smears the
stratification, but in so doing the order of the equation is increased to
sixth order.94
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