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Three types of systems in which the excitation of oscillations due to high-frequency energy
sources is possible have been considered. Despite widely held ideas, one can classify such systems
as self-oscillatory. Systems with times of interaction with the energy source that are short in
comparison with the period of the oscillations which arise are the first type. Systems of the second
type are those having two degrees of freedom, one of which is high-frequency and the other is low-
frequency. Transfer of the energy of the high-frequency source to the energy of low-frequency
oscillations is achieved by the formation of combination frequencies. Thermomechanical systems
are the third type. The role of the high-frequency energy source is to maintain the necessary
temperature of the element being heated. Self-modulation of the parameters is the cause of
oscillation excitation in such systems.

It was assumed until recently that self-oscillatory sys-
tems are systems which convert the energy of a steady, non-
oscillating source into oscillatory energy.1"7 Actually, such
systems satisfy the characteristic traits of self-oscillatory
systems which, in modern language, can be formulated in
the following manner:

1) independence of the amplitude of steady-state oscil-
lations from the systems initial state over a broad range, i.e.,
the existence of at least one attractor" in phase space, and

2) independence of the spectrum of oscillations from
the spectrum of the source.

However, the presence of a specifically steady energy
source is not necessary to realize the indicated traits of self-
oscillatory systems. The discovery of the possibility for
chaotic oscillations in passive nonlinear oscillators that are
under the influence of a periodic external force was the stim-
ulus for revising the definition of self-oscillatory systems.x>9

Such oscillations satisfy the traits listed above, and therefore
they can be considered as self-oscillatory.

Looking back, one may discover that a number of sys-
tems which convert the energy of a high-frequency source21

into low-frequency oscillations whose frequencies are practi-
cally unrelated to the frequency of the source has been
known for a long time in physics. These systems also satisfy
the two indicated traits, and therefore, one can assign them
to the category of self-oscillatory systems. Proper attention
has not been paid until now to the occurrence of such sys-
tems; as a consequency of this, they are found in none of the
well-known textbooks and study guides on the theory of os-
cillations.5'8'10 At the same time, such systems not only ex-
tend our ideas about free oscillations; they also have exten-
sive technical applications.

Three types of self-oscillatory systems with high-fre-
quency energy sources are considered in the present review;
the excitation of their oscillations has three different causes.

Systems with times of interaction with the energy
source that are short in comparison with the periods of the
free oscillations which arise are the first type. Here the sys-
tem controls the energy input so that it receives over the time
of interaction stimuli of the necessary magnitude and in the
necessary phase.

Systems of the second type are nonlinear systems hav-
ing two degrees of freedom, one of which responds to exter-
nal high-frequency effects (this degree of freedom, in partic-
ular, may be degenerate), and the other one responds to
low-frequency (internal) effects. Combination frequencies
arise due to the nonlinear interaction between the dynamic
variables, so that the oscillations become quasiperiodic. As a
result of the interaction of these oscillations with the oscilla-
tions of the source, a transfer of the energy of the high-fre-
quency source to the energy of the low-frequency oscilla-
tions occurs.

The third type of systems, thermomechanical systems,
essentially coincides with the classical type. The role of the
high-frequency energy source here is only to maintain the
necessary temperature of the system element being heated.
Unlike the first two types, the equations describing the free
oscillations in systems of the third type are reduced to self-
contained equations, i.e., they do not explicitly contain the
time. These systems are included in the present review main-
ly because they are little known.

1. Let us consider a pendulum interacting with the high-
frequency field of a current-carrying coil in some small inter-
val of coordinate space near its equilibrium position (see
Fig. 1). The coil power is supplied from an alternating cur-
rent circuit or from an acoustic oscillation generator. The
direction of the ponderomotive force from the coil is collin-
ear with the direction of the pendulum's motion. Such a pen-
dulum was suggested by the authors of Ref. 11. A descrip-
tion of the experimental arrangement and the results of
observing the oscillations of this pendulum are given in Refs.
12 through 18.

For small initial departures from its equilibrium posi-
tion, the pendulum executes very small forced oscillations at
the frequency of the external force. Upon increasing the ini-
tial departure, the occurrence of steady-state oscillations at a
frequency close to the pendulum's natural oscillation fre-
quency is possible. Several stable oscillation regimes with
different amplitude and phase values exist here. The selec-
tion of one regime or another depends on the initial condi-
tions. The oscillation frequency depends slightly on the fre-
quency of the voltage supplied to the electromagnet.

723 Sov. Phys. Usp. 32 (8), August 1989 0038-5670/89/080723-09S01.80 © 1990 American Institute of Physics 723



FIG. 1.

References 16 through 25 are devoted to attempts at a
theoretical explanation of the observed effects. However, the
theory that is expounded in them is either incomplete or
contains errors.

Below we shall rely on the theory developed in Refs. 21
and 26. Unlike Ref. 26, here we shall allow for the nonlinear -
ity of the restoring force acting on the pendulum.

For fairly small departures from the equilibrium posi-
tion, the equation for the oscillations of the pendulum under
consideration has the form

x + 26x + CD? (1 (1)

where f ( x , t ) is the force of interaction between the pendu-
lum and the electromagnet. Linear and cubic terms have
been retained in the restoring force in Eq. (1). Allowance for
the higher order nonlinear terms does not introduce any-
thing fundamentally new to the results.

For simplicity, let us assume that the interaction force
has the form

/ (x, t) = A cos cat for | x K b,
= 0 for |x!>&,

i.e.,

where t?(z) is the Heaviside function.
We shall also consider oscillation regimes of the pendu-

lum for which the amplitude a is much larger than the inter-
action interval b. For this condition, one can consider the
motion of the pendulum over the interaction interval as uni-
form with a velocity + aft, where ft is the oscillation fre-
quency. Therefore, one can assume the force f ( x , t ) to be
dependent only on time and the oscillation amplitude of the
pendulum, and can set

= F(a, t)

aQ
— t\Acos(i>t,
aQ I

(2)

where tn are the times of the passage of the pendulum
through its equilibrium position.

Let us notice that, with allowance for Eq. (2), Eq. (1) is
nonlinear because of the dependence of F on a, and more-
over, such a nonlinearity belongs to the class of inertial non-
linearities.4-6

We shall seek a solution of Eq. ( 1 ) with allowance for
Eq. (2) in the form

where a ( t ) and <p(t) are slowly varying amplitudes and
phases of the oscillations. Let us notice that the discrete time
/„ can play the role of the "slow" time on which a and <p
depend.

To a first approximation by an averaging method,27 we
obtain the equations for a and <p in the form

a= _ a - ( - i
nco

) n —tp]
2Q Qa

(3)
q> = — A (a)

Ab , .i- . con / fia . toft <oft \
— (— l)"sin—— I sin cos—-
f 2Q V <*>>> ®<* ®a I

i+l)n-<f]

where A(a) = ft -a>0(a)«ft, ea0(a) = a)0[l - (3yaV8]
(the fact that a > ft has been allowed for in doing the averag-
ing).

In order that Eqs. (3) have a steady-state solution, it is
necessary that their right-hand sides do not depend on the
slow time tn, i.e., on the number n. For this, it is sufficient to
set ft = a>/(2m + 1), where m is an integer.

The dependences of the stable (solid curves) and unsta-
ble (dashed curves) values of the steady-state amplitudes on
the relative detuning (a> — Ma>n)/8, where M = 2m0 + 1 is
some odd number, and for

B,•m. ' = 1,
86

are shown in Fig. 2. These dependences have the form of
nearly periodic (with a "period" 2a>0/S) sequences of a se-
ries of lobes which correspond to different values of possible
oscillation amplitudes.41 For different values of external
force amplitudes that are characterized by the quantity Bm,
the lobes turn out to be enclosed one within the other, and
moreover, the lobes with the smaller areas correspond to the
smaller Bm values. The upper sequences of lobes gradually
disappear for decreasing Bm values. Thus, the uppermost
sequence disappears for Bm = 2/ir.

Thus, as follows from the results obtained, for each
fixed set of external force parameters A and a>, there exists a
series of stable discrete values of the pendulum's oscillation
amplitudes. The pendulum's exit to one oscillation regime or
another is determined by the initial conditions. The values of
possible oscillation amplitudes, starting from some number
k, are approximately equal to26'2s

2 (2m + 1)
n (2k + 1)

b,

where k is an integer. It follows from this and from Eq. (3)
that the pendulum's interaction times with an external force
during steady-state oscillations with these amplitude values
are equal to

2ft 26 (2m + 1) ft (2m

"mk

rp ̂  I . . 1_
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where 7" = ITT/CO is the period of external effect.
In connection with this, one can give the following

physical explanation for the described effect. The average
value of the force is non-zero over the interaction time and
depends on the phase cp that is determined by the quantity
Bm. The system selects the phase of the effect so that this
force gives the pendulum a push. After half of the pendu-
lum's period of oscillation, when the pendulum, moving in
the opposie direction, will again enter the interaction zone,
the direction of the average force will be changed to the op-
posite one, since an odd number of oscillations of the current
in the coil occurs over the pendulum's period of oscillation.
Therefore, energy which compensates for damping losses
will be imparted to the pendulum during each interaction
event.

The pendulum's oscillation amplitude and frequency
may undergo sudden changes during a smooth change of the
frequency co of the effect. A "hysteresis" is possible here, i.e.,
the values of the pendulum's oscillation amplitude and fre-
quency for increasing a> may not coincide with the same val-
ues for decreasing <u.

Let us notice that, although the pendulum's oscillation
frequency must be an odd number of times less than the
frequency of the effect, it always remains close to its natural
frequency (this is achieved by the appropriate selection of
the number m by the system). Therefore, one can consider
the dependence of the oscillation frequency fl on the fre-
quency of the effect as weak and, consequently, one can as-
sume that the necessary condition for self-oscillatory sys-
tems is present.

The so-called "gravitational machine"5' also belongs to

L J

the type of systems that is considered here29; a model of it is
depicted in Fig. 3. A small sphere is accelerated by falling
onto an oscillating plate of infinite mass; as a result of this,
steady-state oscillations may be set up. Such a model was
practically constructed by Bragg and by other researchers.
One of the models has been constructed by V. K. Astashev
and used in a device for scanning a laser beam.30 This model
was a piezoelectric plate with glass glued onto it that was
powered from an electric generator with a frequency of 200
kHz. A small elastic sphere fell onto the glass from above
and, as a result, periodic oscillations of the small sphere at
low frequency were set up.

Also the system which received the name "Andreev's
Hammer"231 is similar to the type of system under consider-
ation.

2. The start of investigations of systems of the second
type is found in M. J. Bethenod's paper32; he observed the
undamped oscillations of a pendulum suspended above a so-
lenoid switched into an alternating current circuit and
whose frequency was considerably higher than the pendu-
lum's natural frequency (see Fig. 4). The pendulum was a
small iron sphere suspended on a thread. The attempts made
by Bethenod and later on by Y. Rocard33 to explain theoreti-
cally the observed phenomena did not meet with success. N.
Minorsky,34 without a completely valid basis, reduced the
problem to the parametric excitation of the pendulum. An
attempt to explain the Bethenod effect on the basis of the
"hysteresis" phenomenon which arises in a non-linear oscil-

FIG. 3.
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FIG. 5.

latory system has been made in Ref. 356); this is being dis-
cussed at present and is apparently not entirely devoid of any
basis.

The interaction of the oscillations of the current in the
circuit which supplies power to an electric motor with the
angle of turning of the rotor has been considered in a paper
by N. D. Papaleksi.36 It has been shown that the non-syn-
chronous rotation of the rotor7' which occurred in the exper-
iment is caused by the excitation and interaction of multiple
frequencies. This is apparently the first correct explanation
of the phenomena that are observed in systems of a similar
type. One must notice that Papaleksi indicated the similarity
of the phenomenon that he considered to the excitation of
the oscillations of Bethenod's pendulum.

The system depicted in Fig. 5 has been investigated by
S. M. Rytov.37 With the condition that the frequency of the
voltage that is impressed on the loop L is considerably higher
than the natural oscillation frequency of the small iron
sphere, this system can operate as a Bethenod pendulum.

A system that is, to some degree, analogous to a Beth-
enod pendulum has also been suggested in later papers.38'39

This is an electromechanical vibrator with a capacitor in its
power supply circuit and which, together with the solenoid,
forms an oscillator circuit (see Fig. 6). The correct qualita-
tive explanation for the excitation of the vibrator's free oscil-
lations on the basis of the multiple interaction of the oscilla-
tion frequencies of the current and of the vibrator's
mechanical part is given in Refs. 38 and 39. However, some
errors have been made in them, and the results have not been
obtained in analytical form.81

Before going on to other examples of systems of the
class under consideration, let us examine the operation of the
system depicted in Fig. 6. The equations of the system have

'S///;

L<"
'////s///////////////////////,

*:

4>=^

FIG. 6.
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the form

-£- (L (x) /) + /? — + -L = {/Oo> sin <d' o* C0

d»x , d;
(4)

where L(x) is the inductance of the coil with a core, which
depends on the size of the gap between the plate of mass m
and the core, which is determined by the displacement of the
x plate, F(x,I) = (7/2)d<l>/dx is the ponderomotive force
acting on the plate,40 and $ = L(x)I is the magnetic flux.

It has been shown in Ref. 38 that, with sufficient accu-
racy, one can set d4>/dx = IdL /Ax.

For small x values, one can represent the inductance
L(x) in the form of a polynomial

L(x)=LQ(l+alx+aix
2 + asx

3).

Then, F(x,I) = £0((a,/2) + a2x + (3/2)a3x2)/2.
It is obvious that, because of the dependence of L on x,

the oscillations of the current in the electrical oscillation cir-
cuit may be quasiperiodic with the fundamental frequency ca
and the quasi-period ITT/V, where v is the oscillation fre-
quency of the mechanical part of the system (with variable
x). Therefore, it is expedient to make a substitution of vari-
ables,26 after setting

I=A sin (u/+q>)+(/ ,

where A and <p are the amplitude and phase, respectively, of
the forced current oscillations at L = L0.

After writing the equations for the variables x andy and
solving them by an averaging method, we shall obtain the
following shortened equations for the amplitude B and phase
Pi of the variable x:

(5)

where

H =
g)-46X]

f/2
'-'o, (6)

no=(L0C0)-' /2, St=R/2L0, S2=a/2m, A = v-v0,
v0= (k/m)112, and K, /3, and /?2 are coefficients which de-
pend on the system's parameters.

All nonlinear terms containing powers of the amplitude
B higher than three have been discarded in Eqs. (5).

From Eqs. ( 5 ) there follows the condition for the self-
excitation of oscillations: ju><52. This condition determines
the critical value UCT for the amplitude of the power source
as a function of the frequency <a and of other system param-
eters. The dependence Ucr(o}) has a non-monotonic charac-
ter and is depicted in Fig. 7 for two particular cases: a)

The quantity Ucr reaches a minimum in both cases for
some value of the frequency a> = (om. If fl045,, then
a>m = ViT<5, and, in the opposite case, when J10><5,, we have
com = no + (6:/j5). It follows from (6) that the self-exci-
tation of oscillations is only possible for a,^0, i.e., in Beth-
enod's experiment, the pendulum must be suspended asym-
metrically.
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The sign of the coefficient ft, at the excitation threshold
determines whether the excitation of oscillations is soft
(/?, >0) or hard (/?, <0). The quantity/?, is proportional to
C/j2, and depends in a fairly complicated way on the frequen-
cy u> and the coefficients a,, a2 and a3.

An analysis of the expression for/9, shows that the coef-
ficient/?, is positive for a2 <a^/4and a,a,>0 near the left
boundary in frequency of the self-excitation region, i.e., os-
cillations are excited softly, and/?, < 0 near the right bound-
ary; there, the excitation of oscillations is hard. It is interest-
ing to notice that ̂  = 0 in the case of symmetric suspension
of the pendulum in Bethenod's experiment, i.e., there cannot
be self-excitation of the pendulum, but /?, <0 for &>>2<5,
and, consequently, hard excitation is possible.

The oscillation frequency v is close to the natural fre-
quency v(). The correction A to the natural frequency in the
steady-state regime is determined from the second of Eqs.
( 5 ) a t<p , =0.

The instability of a small-displacement capacitance sen-
sor that is used in so-called experiments with test bodies is
considered in Refs. 41, 42, and 43. Such a sensor is a capaci-
tor, one of whose plates is connected with a body whose
displacement is to be measured. The capacitor is part of an
electrical oscillator circuit which contains a source of alter-
nating voltage. One can represent the schematic diagram of
the sensor in the form depicted in Fig. 8. It is well known that
mechanical free oscillations of a body of mass m arise in a
certain range of frequencies <y when the voltage f/0 exceeds a
critical value.

To explain this eifect, a lag of the restoring force acting
on the oscillator was introduced artificially in Refs. 41, 42,
and 43 (this force is equal to the force of attraction between
the capacitor's plates). Such a procedure causes objections,
if only because the system with the lag has an infinite number

fn

wwv-O

FIG. 8.
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of degrees of freedom, whereas the initial system has only
two degrees of freedom [see Eqs. (7) that are shown below,
which are also found in Ref. 43]. It is stated in Ref. 43 that
the results obtained agree with an approximate solution of
Eqs. (7). However, this solution is not shown. Nothing is
said about the physical mechanism itself for exciting free
oscillations due to the generation and interaction of multiple
frequencies. This mechanism will be discussed specifically
below.

The equations of the system have the form

q + 28x9 + -£- Qlq = -^ cos tot,
O (X) L

v?x= -F(x,q),
m

(7)

where q is the charge on the capacitor, C(x) = C0[l + (x/
du) ] ~ ' is the capacitor's capacitance, H,, = (LC0) ~

l / 2 is the
natural frequency of the electrical oscillation circuit for
x = 0, d0 is the distance between the capacitor's plates with
the spring undeformed,

2C* (*

is the force of attraction between the capacitor's plates, and
m is the mass of the small sphere.91

Comparing Eqs. (7) and (4), we see that they differ
only in the character of the nonlinearity. Making suitable
calculations, we obtain equations for the amplitude B and
phase <p, of the same form as Eqs. (5) with

[(CD' - -ul (8)

From this, it is evident that the excitation of oscillations is
possible mainly at co > fl0, i.e., on the right slope of the reso-
nance curve. This agrees with the results of Refs. 41,42, and
43, and is confirmed experimentally. It follows from Eq. (8)
that the condition for exciting free oscillations is the easiest
of all, i.e., for the lowest C/0 value, it is fulfilled for the fre-
quency aJsrll,, + (5,/VT). This lowest voltage value is

To this value of the source voltage, there corresponds the
voltage on the capacitor
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(9)

Equation (9) differs from the one shown in Refs. 41,42,
and 43 only by its numerical factor, although the mechanism
for exciting the oscillations turns out to be different.

An analysis of the expression for the nonlinearity coeffi-
cient /?, shows that the excitation of vibrations must be soft.

An analogous effect for the self-excitation of mechani-
cal oscillations must also occur in small-displacement opti-
cal sensors, where free oscillations arise due to light pres-
sure.43 It was observed experimentally during the action of
an ultra-high-frequency field on a torsion pendulum.44

The self-excitation mechanism described forms the ba-
sis for the occurrence of the mechanical free oscillations of
resonators filled with some kind of powerful radiation, for
example, electromagnetic radiation. Thus, oscillations of the
walls were observed in resonators that are used in powerful
colliding beam accelerators.45 The occurrence of elastic
wave generation in dielectric resonators that are pumped up
by a high-frequency electromagnetic field is described in
Refs. 46, 47, and 48. Questions that are essentially similar
about the appearance of negative friction for mechanical
structures in electromagnetic fields are discussed in Ref. 49.

Mechanical and electrical systems with two degrees of
freedom that are powered by energy sources of comparative-
ly high frequency are considered in Refs. 50, 51, 52, and 53.
We consider the system depicted in Fig. 9,54-57 the equations
for which can be written in the form

mix1 + fix + kx + F (x, x) = U0 cos wt,

max2 + u2i2 — n* — kx — F (x, x)

(10)

= — {/„ cos wt,

where x = x{ — x2 is the relative displacement of the masses
m, andm2, andF(x,x) is the nonlinear part of the elastic and
dissipative forces between the masses.

The nonlinear function F(x,x) in Refs. 54, 55, 56, and
57 was selected to be of two types:

F (x, x) = ax1,

F ( x , x ) = Q

= ktx + fax
for

for x < 0.

As follows from Eqs. ( 10 ) , the oscillations of the variables x ,
and x2 in both cases must be quasiperiodic with the funda-
mental frequencies &> and v, where v is the lower frequency of

Uf, COS (lit

W^

FIG. 9.
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the free oscillations. As an example, let us consider the case
F=ax2.

Proceeding in a way similar to the previous case, we
obtain equations of the form of Eqs. (5) for the amplitude
and phase of the oscillations of the variable x2 at the frequen-
cy v.

The analysis of the condition of excitation in this case is
more cumbersome than in the previous ones, but the qualita-
tive behavior of the dependence of the critical value of the
voltage t/cr on the frequency ca is the same as before. The
frequency range in which the self-excitation of oscillations is
possible for a given U is also determined in a similar way.

We note that the so-called decay instability phenomena
of wave processes,58 in which the energy of a high-frequency
wave is effectively converted into a significantly lower fre-
quency wave, are also among the effects of the type under
consideration.

3. One can assign certain of the large group of so-called
thermomechanical systems to the third type of self-oscilla-
tory systems with high-frequency energy sources.1()) We
shall pause for the systems considered in Refs. 59 and 60.

Consider a weightless metallic wire with a load at its
center, which is included in an alternating current circuit of
frequency u> (see Fig. 10). Under definite conditions, such a
wire can execute free oscillations both in the plane of the
diagram and also perpendicular to this plane around the
OiO2 axis. Let us first of all consider the case when the mo-
tion of the wire occurs in the plane of the diagram.59

The equation for the oscillations of the load in this case
has the form

mx — mg— 2F sin (5 — hx, (11)
where F is the tension in the wire, sin 0 = x/
I = x(x2 + L2)~1/2,2Lis the distance between the supports,
and h is the coefficient of friction.

The tension F in a wire heated by the passage of an
electric current equals61

where E is Young's modulus ( ~2-109 g/cnvsec2), 5 is the
cross section area of the wire, T is the temperature difference
between the wire and its environment, a is the linear thermal
expansion coefficient (~10~5 deg~'), /0 = (x\ + L 2 ) ' / 2 i s
half the length of the wire in the unstretched state at T = 0,
and x0 is the sag of the wire for T = 0 and m = 0.

Assuming ( / — / „ ) ^/0, we obtain the following expres-
sion for F sin /3:

FIG. 10.
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Fsinp = ES — aT\ —
'o

(12)

We write an equation for the temperature T assuming
that the cooling of the wire occurs according to Newton's
Law with a heat transfer coefficient q which depends on the
velocity modulus.H) In accordance with Refs. 60 and 62, we
set q = q0 + q, x\l/2, where q0~0.00\3SM W/deg, and 5sid

is the area of the side surface of the wire.
Then the equation for T will have the form

(13)

where c is the specific heat of the material of the small sphere
(ess0.5 J/g-deg), and R is the resistance of the wire. The
resistance R increases as the wire is heated and lengthens,12'
so that

(14)

where/?, —0.006 deg ' and/?2s0.2 (the value of /?2 is de-
termined by the Poisson coefficient).

In order to investigate the stability of the steady-state
solution of Eqs. (11) and (13), we write linearized equa-
tions for the departures from the steady-state solution
I" = (x — xss )//„, and i? = (T — T S S ) / T S S . These equations
have the form

? + 26g + colg =

where

no ft 2 __ £-3 I g -*.»

K = 2ES

= — a (15)

1

mil

a =

The system of Eqs. (15) describes self-oscillatory sys-
tems with inertial excitation in a linear approximation.64"67

The condition for the self-excitation of oscillations in such
systems has the form

Ka> 26(o)S + 267+ v2). (16)

It follows from this that the dependence
of the wire's resistance on its deformation (o^O) and
sufficient inertia for the wire's temperature change
(7<7cr = [S2 + (Ka/28) - oil ] "2 - S) are the causes of
the possible self-excitation of oscillations.

In order to check whether the excitation of oscillations
is soft or hard, one must retain the most significant nonlinear
terms in the initial equations. Solving these equations ap-
proximately by the Krylov-Bogolyubov asymptotic method,
we obtain to a first approximation for a small parameter the
following equation for the amplitude A of the oscillations:

where//, = Ka/2(y2 + «o), and//2 and//3 are some positive
coefficients which depend on the parameters of the system.
It follows from the fact that //2 > 0 that the excitation of

oscillations is hard. Therefore a steady-state regime of free
oscillations is possible even for//, <8.

We note that the condition for the self-excitation of os-
cillations/z,> 8, which follows from Eq. (17), agrees with
inequality (16) if SY^CD^ + T2- This inequality is the condi-
tion for the applicability of the asymptotic method used.

Let us now consider the general case, when the wire can,
in addition to the vertical displacements, execute oscilla-
tions around the O{O2 axis. Introducing the turning angle <p,
let us write the equations for the motion of the load and for
the change of temperature T:

mx = mg cos q> — 2F sin p — hx + nucp2,

mxtp + 2mx q> + //<p + mg sin q> = 0,

met = - q,T - qi (x
2 + *V)1/4,

(18)

where Fis determined by Eq. (12) and R by Eq. (14). The
equations for the departures £ = x — xss and & =T — Tss

are independent of <p in a linear approximation. Therefore,
everything that has been said previously is valid for them.

If the frequency of the free oscillations of the variable x
lies in one of the parametric resonance regions for the vari-
able qp,3 then the excitation of vertical oscillations of the
small sphere will necessarily lead to oscillations of the turn-
ing angle tp. But if this condition is not fulfilled, then the
excitation of oscillations of cp is possible only in a hard man-
ner due to the fact that the temperature oscillations will con-
tain the second harmonic of the oscillations of the angle <p,
which will cause modulation of the variable x at this frequen-
cy. The latter, in turn, will lead to the "parametric" pumping
of energy into the oscillations of the variable <p. Eqs. (18)
allow one to calculate the steady-state amplitude of the oscil-
lations for such a process.

The examples considered in this paper show convinc-
ingly that certain nonautonomous sytems, and especially
systems containing high-frequency energy sources, can be-
have like self-oscillatory systems. Here the mechanisms for
exciting free oscillations can be diverse. Three such mecha-
nisms have been considered in this paper, but is it possible
that other ones also exist. The understanding of this type of
phenomena helps the correct approach to analyzing the pro-
cesses in similar systems. We note that examples of all three
types of systems were achieved experimentally and have
been demonstrated at a number of conferences and seminars.

The authors are grateful to S. M. Rytov, K. N. Bar-
anskiT, V. B. Braginskii, and to I. A. Yakovlev for discussion
of the paper and for a number of valuable suggestions, and
also to D. B. DuboshinskiT, Yu. V. Galkin, M. A. Eme-
1'yanov, M. I. Kozakov, B. I. Kryukov, L. M. Litvin, and to
V. V. Rudnev for their research material that has been kind-
ly made available.

"The set of points in the phase space of the system towards which all the
neighboring phase trajectories converge is called an attractor. In partic-
ular, a stable singular point and a stable limiting cycle are attractors.

2IA source whose oscillation frequency is much higher than the frequen-
cies of the free oscillations that are excited is called a high-frequency
source both here and below.

"The case where the function defining the coordinate dependence of the
periodic force is odd has been considered in Refs. 68 through 71.

""The sequences are not strictly periodic because of the change of the
number m.

"Such a name appears to us to be not entirely fortunate, since here the
energy is not drawn from a gravitational field but from the high-frequen-
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cy source which causes the oscillations of the plate.
6)In patent depositions72'73 and in other papers, M. I. Kozadov, D. B.

Duboshinskii, and Ya. B. Duboshinskii gave the following explanation
of the mechanism for exciting oscillations in systems similar to Bethen-
od's pendulum: The asynchronous conversion of high-frequency energy
to low-frequency energy during the interaction of two physically homo-
geneous or heterogeneous oscillatory systems occurs because of the fact
that at least one of the parameters of the high-frequency oscillatory
system is modulated by the motion of the passive low-frequency system,
so that the high-frequency system passes through the values of the direct
and reverse resonances an even number of times over the period of the
low-frequency oscillations; as a result of this, the force acting on the low-
frequency oscillatory system is transformed from a symmetric (qua-
dratic) to a dynamically double-valued one.

"Rotation whose frequency is not a multiple of the power source frequen-
cy is called non-synchronous.

R)We note that the system suggested in Refs. 38 and 39 apparently corre-
sponds most closely to the type of oscillations described in the present
paper. For in the Bethenod and Rytov systems, the excitation of oscilla-
tions can be caused both by the mechanism described here, and also by
the action of a periodic quadratic force that is non-linear in the coordi-
nate.

9IA11 expressions are written in the plane capacitor approximation.
""Thermomechanical oscillations of conductors in a vertical plane were

demonstrated in 1924 by N. I. Dobronravov and A. I. Shal'nikov; the
intense free oscillations of a heated conductor around the O,O2 axis (see
Fig. 10), or the so-called horizontal thermomechanical oscillations
were apparently first experimentally detected in 1971 by Ya. B. Dubo-
shinskii.

' "An error has been made in Ref. 59: it is assumed that q = qa + q,x,
which cannot be.

l2)The change of resistance during deformation is called the tensoresistive
effect.63
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