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Already in 1935 S. P. Shubin1 suggested a very elegant
formulation ofthe foundations of band theory in terms ofthe
single-electron density matrix p. The subsequent develop-
ment of this formulation intended to incorporate the elec-
tron-electron interaction and formulate a rigorous metal-
insulator criterion (MIC) for many-electron systems.
However, the research carried out by S. P. Shubin together
with one ofthe present authors (S. V.) remained unfinished
because of Shubin's arrest in 1937 and his tragic death. In
addition to Shubin's original paper,1 his ideas were devel-
oped by M. I. Sergeev2 and several others,3'4 but the general
development ofthe many-particle theory of solids followed a
different path. Yet even today, some fifty years later, we find
that the results obtained in the intervening decades have not
rendered Shubin's approach obsolete. Furthermore, we be-
lieve that his ideas continue to hold significant interest, espe-
cially with regard to methodology. In this report we shall
attempt to reinterpret Shubin's ideas in the language of con-
temporary band theory.

In a crystal the density matrix p is periodic in the coor-
dinate representation:

P (r', r) - 2 <*J(r)1>a (i")>,
a

p(r'+Rn, r+Rn)=p(r', r),

(1)

(2)

where *?„!" (r), ̂  (r) are the creation and annihilation oper-
ators for an electron at point r with spin projection cr; Rn is
the lattice translation vector. Consider the properties of the
eigenfunctions <p, ( r ) of the single-particle density matrix

Jdr*p(r, r') (3)

Acting with the translation operator Tn on the vector Rn on
the left-hand side of expression ( 3 ) we obtain:

(4)

fi = $ dr'p (r + R,,, r') <p; (r')

= J dr'p (r + Rn, r' + Rn) <p, (r' + R,,)

= dr'p (r, r') qj, (r' + R,) = pT>,-.

Then, following the standard proof of the Bloch theorem,5 it
is easy to demonstrate that the functions <p, , (r ) can be repre-
sented in the Bloch-functional form:

k, r)=exp(ikr)ut(k, r), (5)

where i= (k, f) is the crystal momentum that falls in the
first Brillouin zone and f is the "zone number index",

Neglecting the electron-electron interaction we obtain
p =f(H0) and ps(k) =f(Es (k) ), where H0 is the single-
particle Hamiltonian; Ee (k) is the band dispersion; f ( E ) is
the Fermi distribution function. Then the Bloch functions
( 5 ) become solutions ofthe Schrodinger equation also. Gen-
erally, in a many-particle system [p, H0]=£Q and the func-
tions ( 5 ) as well as the eigenfunctions ps ( k ) are not directly
related to the energy spectrum. We emphasize, nonetheless,
that these functions can be introduced quite rigorously and
play a crucial role in the foundations of band theory, as we
shall demonstrate below.

As in Ref. 5, the matrix element ofthe coordinate xa in
the /= (k,f ) representation can be derived directly from ex-
pressions (5) and (6):

a | k'O = <k£ | *» | k'O + <kt | *« | k'O, (7a)

'O = ;-^-5(k-k')6jC., (7b)
dka

w 1 k'O = (2n)3 6 (k - k') f dr a! (k, r) -£- uv (k, r),
J " <JKa

(7c)

The same derivations applies for the mean value ofthe veloc-
ity operator Da = xa for the states given by Eq. ( 5 ) :

Now let us proceed to examine the problem ofthe accelerat-
ing influence of a constant homogeneous electric field F on
the electronic system ofthe crystal. As S. P. Shubin empha-
sized, ' this is the problem that determines the MIC, which is
so central to band theory. In an electronic field the Hamilto-
nian has the form

(9)

wherey' is the index which labels the electrons, W(j,j } is the
electron-electron interaction Hamiltonian. We can write the
equation of motion for the density matrix ofthe total many-
electron system U6:

i f t . = [W— eFaxa, 0],
dt

(10)

r+R»)=«t(k, r). (6) and proceed to the "interaction representation," where
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- , ,.xa (t) = (exp xa exp izet \-- —
( I D

and so forth. We note here, that the interaction representa-
tion was also originally proposed by S. P. Shubin. It was
employed in his unpublished calculations as well as in a pa-
per7 written by one of us at his suggestion.

The mean value of any operator A becomes6

{A (0> =.Sp,(/(/ (0) = Sp (A (t) U (0),

while the equation of motion takes the form

dU (t) =
 ieFa, j ~ „) jy ^ j_

df ft

Let us decompose xa (0 as

(12)

(13)

xa (t) = xa + j j dTOa (T) = *»» + .vjf + j dtiia (T). ( 14)
o o

In the |k£> representation only the first term contains a
singularity of the same order as the derivative of a (5-func-
tion. The other two terms, xa

2 and va ( t ) , are less singular.
They can lead to interband transitions and to Zener break-
down, but can be ignored in calculating the system response
to a weak, homogeneous constant field, i.e. in the derivation
of the MIC.5 Consequently, we can perform the xa (t) ->xa '
substitution in Eq. (13). Let us write the density matrix of
the total TV-electron system Uin terms of the Bloch functions
(5):

It follows from ( 7b ) that for a single-particle operator/

?, /] l k'O = 2 Kk£ I *£' 1 k"O <k"S" I / 1 k'O

(15)

Equation (13) then takes the form

~ (kxCx, . . . . kv
of (0 1

ft
/=! "Ax

(16)

One can easily verify by direct substitution that the solution
of the Cauchy problem for Eq. (6) can be written as

(17)

where k , ( f ) = k, — (eft /h). Furthermore, the time depen-
dence of the^single-particle density matrix p, which is ob-
tained from Uby integrating over the coordinates of all elec-
trons save one, follows the law

[recall that/) is diagonal in the Bloch-functional representa-
tion (5)]. The time dependence of the mean value of any
single-particle operator A is thus

(19)

Formally equation (19) appears identical to its analog in
single-particle theory,1 but we have also shown that it re-
mains valid for many-particle systems as long as interband
transitions are neglected (we emphasize that the band index
f was introduced in Eqs. (3), (5) and is not directly related
to the energy spectrum).

Substituting the current density operator ja — eva for
A, we can calculate its time derivative at t = 0, which is the
standard practice in the derivation of the MIC.5 We obtain

dt

where

(20)
k.S

plays the role of the inverse effective mass tensor. As in usual
band theory, this quantity is periodic in k in the inverse lat-
tice. Consequently, if/o£(k) = pt, is independent of k, the
contribution of the appropriate band to dja/dt is zero. This
is usually proven5 by transforming the volume integral (20)
into the surface integral of va (k, g ) over the Brillouin zone
boundary, with the opposite faces of the zone canceling each
other. In the usual band theory one can have ps = 0 ( empty
band) and/7,. = 1 (full band), and the well-known Wilson
MIC5 can be formulated in the following manner: if at tem-
perature T = 0 all bands are either empty or full, the crystal
is not a metal. As we have shown, generalizing this criterion
to the many-electron case involves two modifications: first,
the band classification is performed using the eigenfunctions
of the single-particle density matrix, rather than the single-
particle Hamiltonian; second, one should take into account
the possibility of the system remaining nonmetallic even
•wiihpg 7^0,1. Thus we have proven that the system cannot
be metallic if the bands are uniformly occupied at T = 0. The
converse is not necessarily true: in general, one can construct
a distribution /0f (k) which differs from a constant and yet
turns the integral (20) into zero.

Now we shall cite a number of concrete cases in which
this MIC is applied to many-particle systems. As a first ex-
ample, consider the approximation employed by Gutz-
willer8 to describe a strongly correlated electron gas. In this
approximation the distribution function
p(k) = I,0 (ck(T + ck(7 ) takes on a very simple form

p (k) = alt

Ef, (22)

, 0) (18)

where 0<a2<al<\; z = a\ — a2 is the discontinuity in the
distribution function at the Fermi surface £k = Ef . Substi-
tuting (22) into (20) and integrating by parts we obtain
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ctt
.p(k)=_-l!L2

™ k

(23)

This result indicates, in particular, that dja/dt~Z and
tends to zero as Z-»0. Consequently, in the Gutzwiller ap-
proximation Z plays the role of the "effective number of
carriers," which was deduced in Refs. 9, 10 from other con-
siderations.

The second interesting example is furnished by the case
of an antiferromagnetic dielectric. This situation corre-
sponds to the ground state of the narrow-band Hubbard
model with the number of electrons equal to the number of
sites. The antiferromagnetic dielectric was originally exam-
ined by Slater11; a more detailed discussion is available in
Ref. 12. In this system the non-zero single-particle mean
values are

(24)

where x is the antiferromagnet vector; uk, uk are the param-
eters of the u-v Bogolyubov transformation, expressed in
terms of the trial electron spectrum.12 We are only con-
cerned with the condition

uk + u k = l . (25)

In order to obtain pk we must diagonalize the matrix of ele-
ments (24)

det = 0. (26)

Taking into account (25 ) we find that equation (26) has two
solutions: pk = 0 and pk = 1. Accordingly, a state with
mean values as in expression (24) is nonmetallic in view of
our MIC criterion (in Ref. 12 this result was obtained by
direct calculation of the frequency-dependent conductiv-
ity).

A third nontrivial example is furnished by the narrow-
band Hubbard model in the limit of a nearly half-full band
( see Ref. 1 3 ) . As the authors of Ref. 1 3 demonstrated, in this
model carriers with the "incorrect" spin projection in the
ferromagnetic phase can be described by the Green's func-
tion

G+ (k, E) = (E - * (27)

where fq is the trial electron spectrum;/, =/Uq ); tf>q is the
magnon frequency; Nq — ) is the Bose distribution
function. Neglecting the magnon energy &uq, we find that
G+ (k, E) does not depend on k. Consequently the distribu-
tion function

P+ (k) = - — f dEf(E) Im G+ (k, £).
n J

(28)

also does not depend on k and hence in this model the cur-
rent carried by the states with the "incorrect" spin projec-
tion is zero within limits set by the ratio of the electron to

magnon masses. In Ref. 13 this result was obtained via a
fairly cumbersome computation of conductivity.

The above examples demonstrate the utility of Shubin's
MIC in the analysis of concrete many-particle models. The
metal-insulator criterion also permits us to discuss an im-
portant general question: whether the metal-insulator tran-
sition (MIT) can be related to the changes in the symmetry
of the system.14 It turns out that this is possible, and that the
metallic phase plays the role of the lower-symmetry (or-
dered) phase. The point is that if the density matrix p is
proportional to the unity matrix (considering only a single
band for simplicity), then its eigenfunctions form an arbi-
trary orthonormal set of linear combinations of the Bloch
functions (5). In other words, the full band can not only be
described by a Slater determinant of Bloch functions, but
also of Wannier functions, as well as an infinite number of
other functions. In a partially filled band the Bloch-func-
tional representation is unqiue. Apparently this is the sym-
metry of the nonmetallic phase that is broken by MIT. The
continuity of the metallic energy spectrum in the vicinity of
the ground state can then be treated as a manifestation of
Goldstone's theorem, while the single-particle density ma-
trix

(r-r')l (29)

becomes the correlation function of the order parameter: it
falls off exponentially as r — r | -> oo in the nonmetallic
phase (and is generally proportional to S(r-r') if
p ( k ) = const), and falls off according to a power law in the
metallic phase (because of the discontinuity inp(k) at the
Fermi surface). Thus, even though an MIT order parameter
may be difficult or even impossible to define, the notions of
long-range order and symmetry-breaking can still be applied
to this type of phase transition.

The techniques involving the exact single-particle den-
sity matrix could be fruitfully applied to other problems in
solid state physics, particularly to the problem of the elec-
tron-phonon interaction. We believe that the above-dis-
cussed examples suffice to demonstrate the fecundity of an
idea proposed by S. P. Shubin fifty years ago and subsequent-
ly bypassed in the development of band theory because of the
tragic events in our history.
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