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A review is made of research on geomagnetic pulsations, which are hydromagnetic waves of
natural origin in the frequency range 10 ~ 3-5 Hz. Methods for diagnostics of the earth's
magnetosphere and methods for electromagnetic sounding of the earth's crust on the basis of data
from the observation of pulsations are described. It is believed that the electrical properties of the
earth's crust are pertinent to the diagnostics of the magnetosphere, while consideration of the
spatial structure of the inducing field is useful in geosounding. The fluctuation and critical
properties of magnetic storms and pulsations are discussed on the basis of phenomenological
models. Estimates of the properties of the magnetosphere and of the interplanetary medium at the
earth's orbit can be made more accurate by taking account of the fluctuations in the diagnostic
approach of a black box without an input.

1. INTRODUCTION

1.1. Geomagnetic pulsations

"Geomagnetic pulsations" are oscillations of the
earth's electromagnetic field in the upper part of the overall
range of geomagnetic variations. The pulsation range
stretches from millihertz to several hertz.' Below this range
is the range of storms, bays, and other aperiodic variations of
the magnetic field; above it is the radio range.

The boundaries on this range are somewhat arbitrary,
i.e., set by convention. The range could be extended to 10~3-
103 Hz, for example, if one worked from the definition of
geomagnetic pulsations as hydromagnetic and ion cyclotron
waves in the magnetosphere.2

For more than a century now geomagnetic pulsations
have attracted research interest because of the beauty of
their shapes and also because of their complex and puzzling
behavior. They show us an example of a self-consistent inter-
action of waves and particles in a plasma, furnish informa-
tion about remote regions of the space environment of the
earth, and influence the course of magnetospheric processes,
to the point that they even determine individual elements of
the large-scale structure of the magnetosphere. These pulsa-
tions exhibit a great diversity of properties and themselves
constitute an important part of the world accessible to us.

The classification of pulsations which is presently used
was adopted at the Thirteenth General Assembly of the In-
ternational Union of Geodesy and Geophysics.1"3 Various
types of pulsations have been assigned special abbreviations
(Table I). The various types are put in two classes: PC ("pul-
sations, continuous") and Pi ("pulsations, irregular").
Morphologically, the PC oscillations are generally charac-
terized by a quasisinusoidal nature and a prolonged dura-
tion, while the Pi oscillations are generally short trains of
oscillations, noisy bursts, or wide-band radiation with a
time-varying spectrum.

It has been established that the pulsations are excited as
a result of plasma instabilities in the magnetosphere and also
in the ionosphere and the solar wind.2 This circumstance is
the primary reason for the general scientific importance of
research on pulsations. An instability and the associated
nonlinearity are the most important properties of a plasma.
The observation of pulsations makes it possible to study
these properties in detail at cosmic scales.

Since the review which appeared in Usp. Fiz. Nauk
twenty years ago,3 much has been learned about the mor-
phology and physics of pulsations. However, even a brief
description of the progress in this field would take us far off
our topic. We will therefore content ourselves with citing
only two new results, which bear directly on hydromagnetic
diagnostics.

a) It has been established that the pulsations of the most
common type, the Pc3 pulsations, are excited not in the mag-
netosphere, as was previously believed,3'4 but in the solar
wind, more precisely, ahead of the earth's bow shock.5'6 The
discovery has resulted in the suggestion of a method for diag-
nostics of the interplanetary magnetic field on the basis of
ground-based observations of Pc3 pulsations.7'8

b) Regardless of whether the pulsations are excited in-
side or outside the magnetosphere, their properties on the
earth's surface depend strongly on how close the frequency
of the pulsations is to the frequency of Alfven oscillations of
the magnetic shell which passes through the observation
point. If these frequencies are equal, there will be a reso-
nance. The structure of the field of pulsations near a reso-
nance was established in some fundamental studies.9'10 An
understanding of this structure makes it possible to suggest
an effective method for diagnostics of the magnetosphere (as
discussed below).

1.2. Method of hydromagnetic diagnostics

Hydromagnetic diagnostics is a scientific method
which furnishes the geophysicist or other interested user
qualitative and quantitative information for drawing con-
clusions about the state and possible evolution directions of
the medium near the earth on the basis of observations of
geomagnetic pulsations. Where necessary, this diagnostic
method also provides a basis for deciding which course to
follow. Research on diagnostics first arose as an officially
recognized activity in order to meet the needs of geomagne-
tism itself, for the most part. Although the methods and
apparatus for studying such questions had been known pre-
viously, hydromagnetic diagnostics began to find systematic
and widespread use in work by researchers at the Borok
Geophysical Observatory of the Institute of Earth Physics,
Academy of Sciences of the USSR (Ref. 11; see also the
monographs of Refs. 1, 2 and the bibliographic index of Ref.
13).
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TABLE I. Classification of geomagnetic pul-
sations.

Type

Pel
Pc2
Pc3
Pc4
Pc5
Pil
Pi 2

Range of periods, s

0.2—5
5—10

10—45
45—150

150—600
1—40

40—150

The physcial basis of hydromagnetic diagnostics is an
understanding of the ways in which MHD waves are excited
and propagate in the plasma environment of the earth. Part
of what we know here has come from theoretical analysis of
simplified models, and part has come from experiments. By
no means is our understanding of the matter complete. To
explain how the problem of hydromagnetic diagnostics
should be understood in the face of this uncertainty, let us
recall the overall classification of problems which are solved
in electrodynamics.

The first class is that of the direct problems or problems
of analysis. These are the familiar internal and external
problems in which sources are given, and then these sources
must be used to find the structure of a wave field in a medium
whose properties are assumed to be known. The second class
of problems is that of synthesis problems. These are more
specialized problems, in which it is necessary to find the
sources which excite a given field in a medium. The third and
final class is that of so-called inverse problems. In these
problems, one works from known sources and fields to find
the structure of the medium.

It might seem that the problem of hydromagnetic diag-
nostics would fall in the class of inverse problems. However,
as we stated with special emphasis above, we do not have
reliable knowledge of either the sources or the fields. In most
cases, we know something about the medium and something
about the field and its sources. The problem of hydromagne-
tic diagnostics should thus be classified as a mixed problem.
A picture of problems of this sort and of the approach to
their solution was drawn by Krasnushkin in a theory for the
propagation of very-low-frequency (VLF) radio waves. A
quote from Krasnushkin and Yablochkin's monograph '4 ex-
plains the essence of the matter: "In our case the properties
of the medium are given incompletely, so it is necessary to
solve a so-called mixed problem, in which one works from
known and reliable, but incomplete, data on the medium and
also from additional known data about the wave field to de-
termine unknown data about the medium and the remaining
field." We believe that the VLF theory provides us with an
example of the level which we should strive to reach in deve-
loping hydromagnetic diagnostic methods.

We will use another quote from Ref. 14 to express in a
definite way our skepticism regarding the outlook for the use
of various "empirical laws" regarding the behavior of geo-
magnetic pulsations for diagnostic purposes: "If a theory is
to be useful in practical work, the functional relationships
between the field and the medium must be derived from the
field equations and constitutive equations of the medium,
not directly from experimental data."

The desired level has not, however, been reached at this
point. At this point the diagnostic situation is of the nature of
an art, and a fairly subtle one at that. There are no written
recipes for this art. Nevertheless, this art is a rational one,
based on the methodical execution of several extremely im-
portant operations. More briefly, it has its own internal log-
ic, which can be demonstrated best with specific examples.
In selecting examples we were interested in simplicity as well
as novelty.

1.3. Magnetotelluric sounding

Geomagnetic pulsations are used not only in the diag-
nostics of the magnetosphere but also in geoelectricity, to
study the earth's crust by the method of magnetotelluric
sounding. Magnetotelluric sounding is essentially the esti-
mation of the vertical distribution of the electrical conduc-
tivity of the crust on the basis of the frequency dependence of
the surface impedance.l5'16 The surface impedance is found
from observations of geomagnetic pulsations.17J8

An idea which runs through this review is that hydro-
magnetic diagnostics and geoelectric sounding are united by
the method of magnetotelluric sounding. In the past, these
directions developed independently: In diagnostics of the
magnetosphere, no use was made of information about the
electrical conductivity of the earth's crust, and the work on
magnetotelluric sounding made virtually no use of the wave
structure of the inducing field. Exceptions to this rule were a
series of studies which are generalized in Chetaev's mono-
graph. iy The earth's crust was modeled in Ref. 19 as a hori-
zontally homogeneous conducting half-space. In the present
review, in contrast, we emphasize an approximate account
of the horizontal inhomogeneity of the earth's crust.

The asymptotic theory of the skin effect20 will be of
assistance in developing this idea of unity. Until recently, the
theory of Ref. 20 was unknown in geoelectromagnetism. At-
tention was called to it in Ref. 21, where it was emphasized
that the results of Ref. 20 could be used to advantage in
geoelectric sounding by the method of magnetotelluric
sounding. It was subsequently found that one of the equa-
tions of the theory of Ref. 20 (Rytov's formula) could find a
variety of applications not only in geoelectricity22'23 but also
in hydromagnetic diagnostics.24"26

Let us briefly outline the rest of this review. In §2 we
present the information about oscillations and waves in the
magnetosphere which we will need. In §3 and §4 we discuss
applications of Rytov's theory20 to the diagnostics of the
magnetosphere and geosounding. In §5 and §6 we discuss
questions concerning the phenomenological modeling of
geomagnetic disturbances, with an emphasis on the analysis
of fluctuating and critical phenomena.

2. OSCILLATIONS AND WAVES IN THE MAGNETOSPHERE

2.1. Ray theory

The ray theory of the propagation of MHD waves, i.e.,
geometric optics for MHD waves or, more precisely, geo-
metric magnetohydrodynamics, is based on a corresponding
local dispersion relation which is understood as a Hamilton-
Jacobi equation. In wave theory it is called on "eikonal equa-
tion." The characteristics of the eikonal equation satisfy
Hamilton's canonical equations and are rays (trajectories)
along which the energy of MHD perturbations propagates if
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the fairly stringent conditions for the applicability of the ray
approximation hold in the vicinity of each point of the family
of rays.

We restrict the present analysis to monochromatic
waves. We are accordingly assigning the perturbations a
time dependence exp ( — itot). The medium is assumed to be
inhomogeneous but in a steady state. In other words, a> (k,x)
depends on the coordinate x but not on the time. The wave
vector k then varies in such a way along array that we have
<a(k( f ) ,x (0) = const. The ray equations are27

dx
At

dig
dk

dk
At

da>

dx.
(2.1)

The goals and method of geometric MHD and those of
geometric optics (or acoustics, seismics, etc) are the same;
the only distinction is the subject matter, which is deter-
mined by the particular dispersion relation and, of course,
the applications.

The simplest dispersion relations are

a>=Ak

for magnetosonic waves and

(2.2)

(2.3)

for Alfven waves. They are derived from the linearized
MHD equations when the pressure and dissipative processes
are ignored.28 Here A = B /(4-rrp)1/2 is the Alfven velocity,
&H = |kB)/-B, B is the external magnetic field, and/3 is the
plasma density.

Formally, relation (2.2) is the same as the dispersion
relation for sound waves or for light in an isotropic medium.
Consequently, all the well-known results from optics and
acoustics concerning ray calculations27'29"32 can be applied
without changes of any sort to the case at hand. For example,
we can write

R = — (2.4)

where R is the radius of curvature of the ray, and the unit
vectot N is the principal normal to the ray. In other works, a
magnetosonic ray bends in the direction of decreasing Alf-
ven velocity, as a light ray bends in the direction of an in-
crease in the refractive index.

One might say that formally relation (2.2) has nothing
which is specifically "magnetohydrodynamic." The disper-
sion relation for Alfven waves (2.3), in contrast, is extreme-
ly specific. It follows from (2.3) that the group velocity
v = dco/d k is always parallel or antiparallel to B (Ref. 28).
This result means that the rays of Alfven waves coincide
with magnetic field lines, i.e., that the shape of the rays is
determined completely once we specify the field B(x). We
are left with calculating the refraction, i.e., the variation of k
along the ray, by means of the second equation in (2.1). This
problem can be solved in quadrature.2

The simplicity of this description, however, has been
achieved at the cost of a far-ranging simplification. As a re-
sult (for example), we conclude from (2.3) that there are no
simple caustics for Alfven waves. Let us instead assume that
a simple caustic exists. Near it, two rays will then pass
through each point of the illuminated volume: One ray
which has already touched the caustic and one which has not
yet done so. This situation would be impossible, however,
since magnetic field lines cannot intersect each other.

Let us discuss another view, which corresponds to a
different formulation of the problem. We assume that we
have a point source of Alfven waves. All rays emerging from
this source coincide with the same magnetic field line. This
line is a caustic (the envelope of a family of rays). There are
no rays other than the caustic ray; i.e., the entire space ex-
cept for the field passing through the source is in the caustic
shadow.

This unusual picture is unacceptable for many reasons;
in particular, it does not have structural stability. If we in-
corporate in (2.3) an arbitrarily weak dependence of the
transverse component of the wave vector we find a complete
change in the nature of the propagation: A deviation ap-
pears. In other words, a ray deviates from the field line, and a
normal structure of caustics is partially restored.

In a cold plasma a weak k1 dependence of co ( a trans-
verse dispersion) arises for Alfven waves because of the gyr-
otropic nature of the medium and/or the electron inertia.
The gyrotropic effect is dominant at small values of kL, and
the inertial effect at large values. In a hot plasma a &+ depen-
dence of co also arises because of spatial dispersion, which is
manifested in this case as an ion-Larmor-radius effect.

Interestingly, despite the deviation of Alfven rays asso-
ciated with the transverse dispersion, these rays never turn
back [Fig. l (a)] . In other works, Alfven caustics do not
touch surfaces orthogonal to magnetic field lines at any
point in space. This property of "never rolling up" is very
simple. It does not disappear when gyrotropy or any other
modifications of the dispersion relation are taken into ac-
count.

It would appear at first glance that atmospheric whis-
tlers would have the same property. According to Story's
formula

' o> = o*11ft (2.5)

the direction of the group velocity of these waves deviates by
no more than 19° from the direction of the external magnetic
field.33 (Here a = cB/4ireN, where N is the electron den-
sity.) Actually, however, (2.5) should be replaced by (2.2)
in the limit k^ -»0. As a result, the ray of an atospheric whis-
tler can turn back, as shown in Fig. 1 (b), in contrast with the
ray of an Alfven wave.

2.2. MHD waveguides

Let us use the ray theory to describe waveguides in the
plasma environment of the earth.

Figure 2 shows a refractive waveguide which directs
magnetosonic waves across the field lines of the geomagnetic

FIG. 1. Ray trajectories of (a) Alfven wave and (b) an atmospheric whis-
tler. The dashed lines are magnetic field lines.
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FIG. 2. Contour curves of the refractive index
n = c/A in the plane of the geomagnetic meridian.
The plasmapause is at magnetic shell L = 4; a is the
earth's radius.

-30'

field.34 If we ignore the axial asymmetry of the magneto-
sphere, we can say that the axis of the waveguide coincides
with the equator of the magnetic shell under the plasma-
pause. Here A increases with distance from the axis in any
direction—northward, southward, and toward the earth—
because of the increase in B, while it increases in the direc-
tion away from the earth because of the sharp decrease in/0 in
the plasmapause." According to (2.4), magnetosonic rays
bend in the direction of decreasing A, and as a result they are
channeled along the axis of the waveguide.

In the waveguide, there is a self-excitation of waves at
higher-index harmonics of the ion gyrofrequency.35 For
such waves, relation (2.2) holds only with k\\ = 0. Even a
slight deviation of the propagation direction from the trans-
verse direction causes the dispersion relation to take the
form in (2.5). (We recall that these two relations approxi-
mate different parts of the same disperson curve.33) There is
a general formula which describes the magnetosonic branch,
but it is extremely complicated and inconvenient for analyz-
ing ray trajectories. For this reason, it is customary to use the
interpolation formula36

a = (2.6)

which reduces to (2.2) and (2.5) in the corresponding lim-
its. Here kol = a>ol/c, where <a<H is the ion plasma frequency.

Near the plasmapause we introduce orthogonal coordi-
nates (s,x,y) such that the coordinate lines x = const and
y = const coincide with field lines in the geomagnetic field.
We assume that the y axis runs along the magnetic shells,
and the x axis across them. We adopt y as a course variable.
Using the first integral « (k ( f ) ,x (0 ) , we then find from
(2.1) and (2.6) the canonical equations

_dp___af f_ dq _ dH

dpAy dq ' dy

with the Hamiltonian

H

(2.7)

fkl —[o>2 (a + bkl

where p = (ks,kx), q=(s,x), a=A2/gy, b = a2/g,gy,
f=gy/gs, h=gy/gx, and g, are the nonzero (diagonal)
components of the metric tensor.

At this point we ignore the weak.y dependence of//, and
we transform to action-angle variables. Adopting a model of
the medium (i.e., a functional dependence of a, b,f, and h on
s and je), we can then analyze (2.7) by the methods of the
theory of autonomous dynamic systems. We restrict the
present discussion to pointing out the nature of the sole sin-

gular point of the system, which is found by equating the
right sides of (2.7) to zero. In a dipole magnetosphere with a
"gyrofrequency" distribution of the plasma along the field
lines [N(s) c c B ( s ) ] , the coordinates of the singular point
are ks = 0, kx = 0, x = 0, x — xot where x0 is found as the
solution of the equation

AT
dx

(2.8)

Here 5 is reckoned from the equatorial plane, x is reckoned
from the plasmapause (toward the earth), and Lp is the dis-
tance from the center of the earth to the equator of the plas-
mapause. This singular point will be attractive if the follow-
ing condition holds at it:

-."» mr

(2.9)
dx> ~

Conditions (2.8) and (2.9) hold near the plasmapause
(closer to the earth).

A similar wave duct with an axis at the geomagnetic
equator exists in the ionosphere near the maximum of the F2
layer. The refractive index for magnetosonic waves de-
creases with distance northward or southward from the axis
because of the increase in the magnetic field, while it in-
creases upward and downward because of the decrease in
plasma density.

We turn now to a description of longitudinal wave-
guides. Their role in the propagation of MHD waves of the
PC 1 type from one hemisphere to the other was first pointed
out in Refs. 37 and 38. Among recent studies we will mention
Refs. 39-41.

One occasionally hears the idea that Alfven waves are
ducted "better" than magnetosonic waves are (Ref. 42, for
example). In the case of quasilongitudinal propagation, that
idea is incorrect. It turns out that the conditions for longitu-
dinal ducting are identical for the two types of waves. Fur-
thermore, the equations which describe the shape of the rays
of both magnetosonic and Alfven waves reduce to the ray
equation for waves in an isotropic medium.39

In the quasilongitudinal approximation, the rays of Alf-
ven waves thus have no distinguishing features. They do not
differ from magnetosonic rays or, in general, from rays of
any waves in an isotropic medium. This conclusion is of
methodological importance since it allows us to make direct
use of the existing results on the geometric optics of isotropic
media.

It is convenient to replace Hamilton's equations (2.1)
by the eikonal equation
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=n\ (2.10)

Here <p is an eikonal, and n is the refractive index found from
the local dispersion relation. This index generally depends
on the frequency, the local wave vector k = (<u/c)V<p, and
the coordinates.30

In the case of quasilongitudinal propagation in a cold
plasma we have the following expression for Alfven waves
(the upper sign) and magnetosonic waves (the lower sign):

4

where & = E + g, £% = E — g; 0 is the angle between B and
k, and e and g are components of the dielectric permittivity.
The component g incorporates the gyrotropy of the medi-
um.l-43 In a two-component plasma we would have

Qf-(os Q, -8,

where O, is the ion gyrofrequency. The applicability of
(2.11) is limited by the inequalities

^-Vcosae, co2<Q,Qe. (2.12)

If £y2^fl2, we find 02<1 from (2.12), and we can re-
write (2.11) as

(2.13)

This expression also holds over a wider frequency range if
the condition 62 < 1 is assumed to be independent.

We now use 6^\iL/Vi^, introduce the notation
E + g = n2

± , and rewrite (2.13) in the following way:

-5-(*•+£)-*• (2.14)

We introduce the scale transformation x1-»xi/V2,
kx -»V2k1( where xx are the coordinates on the surfaces or-
thogonal to the field lines of the external magnetic field. In
place of (2.14) we then have

n± (a, x). (2.15)

In this form the refractive index (as in an isotropic medium)
depends on the coordinates and the frequency but not the
orientation of the wavefront.

This approach makes possible a consistent and concise
description of a fairly wide range of phenomena involving
the propagation of MHD waves in longitudinal waveguides
in terms of the geometric optics of isotropic media. One can
essentially make use of nearly all the results of that well-
developed theory by identifying « with n+ or «_, by making
a scaling transformation, and by following the conditions for
the applicability of (2.11). For example, for plane paraxial
rays the equation describing the deviation of the rays from
the geomagnetic field line is39

- îL = — — — , U=x(s)x — Inn±(*. s); (2.16)
dsa 2 dx

where x is the curvature of the axial line. The only distinctive
feature of MHD rays is that the potential Uis half that in the
isotropic case.44

For a space plasma, the structure is typically layered
and filamentary, with layers and filaments running along the
magnetic field lines.45 In the magnetosphere this structure

forms a system of refraction waveguides, along which elec-
tromagnetic waves propagate from one hemisphere to the
other. Of particular interest for an analysis of MHD waves is
a waveguide which runs along the field lines under the arch
of the magnetosphere. In it, waves are excited at frequencies
~ 1 Hz as the result of a cyclotron instability of the distribu-
tion of radiation-belt protons.2 The growth rate reaches a
maximum at 6 = 0; i.e., the conditions for the applicability
of (2.16) hold, at least in the excitation region (in the equa-
torial zone). Using the analogy mentioned above, we can
apply to (2.16) the adiabatic-invariant method,46 in order to
find, in a comparatively simple way, the period of the oscilla-
tions of a ray along 5, the conditions for capture in a channel,
the conditions for escape from a channel, etc.39

A ray trapped in a longitudinal waveguide moves to-
ward the earth and reaches ionospheric heights. Here the
wave is partially absorbed, while it is partially reflected back
into the magnetosphere. Judging from observations, this re-
flected wave can go into the same waveguide, be amplified in
the radiation belt again, and reach the ionosphere in the op-
posite hemisphere.' However, the circumstance of impor-
tance here is that some of the wave energy is incident on the
so-called ionospheric waveguide and propagates horizontal-
ly along the earth's surface over a large distance (up to
10 000 km) from the point at which the ray entered the ion-
osphere. Although this effect is favorable for the observation
of MHD signals from distant sources, it requires that we
determine the directions of signals in the course of hydro-
magnetic diagnostics.

The idea of an ionispheric MHD waveguide was intro-
duced by Tepley and Landshoff47 on the basis of Pel obser-
vations and model-based calculations. The subsequent de-
velopment of the theory has been based primarily on
numerical solutions of the equations for low-frequency
waves in ionospheric layers (see Ref. 12 and the bibliogra-
phy there).

2.3. Oscillations of magnetic shells

In the range Pc3-5 (2-100 mHz) the lengths of MHD
waves are comparable to the dimensions of the magneto-
sphere, so geometric optics is generally inapplicable. How-
ever, there is an approach along which the eikonal depends
on two coordinates, rather than three, as was assumed
above. In other words, the ray pattern is used along two
spatial directions, while the wave (mode) structure of the
field is retained along the third. In underwater acoustics, one
speaks in terms of horizontal rays and vertical modes.48 For
a reason which will become clear below, we will speak here in
terms of transverse rays and longitudinal modes.

Let us examine the oscillations of magnetic shells. We
use Maxwell's equations

rotE = i(th rotb--f(-!=-leEc
(2.17)

with a permittivity tensor £ = diag ( IJ,E,E ) . We introduce the
curvilinear coordinates (x',x2,x3) defined in such a way that
the anisotropy axis coincides at each point with the tangent
to the x1 coordinate line. We assume for simplicity that E
does not depend on x3. For the toroidal mode b = (0,0,63),
E = (E,,E2,Q) we then find from (2.17) the equation49

dx1 dx2 dx1 (2.18)
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where gik is the metric tensor, and g = del gik.
In a cold plasma in the low-frequency limit (a> <% f l , ) we

have50 e = 6>o,/fl2,?7 = — (a^/a2, and (2.18) correspond-
ingly becomes

as

u ~ uy \ n

~dx~ ~a* ~ ' (2.19)

here s = x\ x = x2, and if> = b3. The coefficients in (2.19)
depend on x and s and are given by

£ = .
rrl/2

The transverse dispersion which arises from the elec-
tron inertia is taken into account in (2.19). In the limit
k0c — oo, Eq. (2.19) becomes the Dungey equation.51

Equation (2.19) has an interesting feature: The small
parameter is found only in the transverse operator. In geo-
metric-optics terms, the motion of the ray is fast along s and
slow along x. This circumstance suggests a way to solve Eq.
(2.19). Since the small parameter appears in a nonuniform
way in the higher derivatives, the switch to the short-wave
asymptotic behavior here will generally not be accompanied
by a switch to the high-frequency limit. It becomes possible
to study low-frequency oscillations by making use of the
computational advantages of the short-wave approxima-
tion.49

For greater clarity we consider the following equation
instead of (2.19):

a
ds

E:
as

(2.20)

This equation retains all the basic features and all the com-
plexities of Eq. (2.19), but it is more convenient for analysis.
In addition, Eq. (2.20) makes it possible to incorporate the
thermal motion of the particles at a qualitative level. For this
purpose we need to set n = — 1 k ge in the cold plasma and
fj. s: rf in the hot plasma and to assume k2 \/u \ < 1 for unifor-
mity in the two cases (here rt is the gyroradius of the thermal
ions).

We supplement (2.20) with a simplified boundary con-
dition at the ionosphere:

= 0. (2.21)
3S s=±sa

Yet another limitation, which in this case completely deter-
mines the spectrum, is the condition that the field does not
grow exponentially as x-> + oo.

Wishing to retain the mode structure of the field along s
and thus not to take the high-frequency limit, we will at-
tempt to use a version of perturbation theory to find the
eigenfrequencies.49 This version of perturbation theory is
based on a breakup of the system into fast and slow subsys-
tems.

We first find the solution of the Dungey problem

OS
0, (2.22)

where <pn (s,x) and A,n (x) are the eigenfunctions and eigen-
values of the longitudinal operator, which depend parame-
trically on the slow variable x. We seek a solution of our
original problem, (2.20), (2.21), as an expansion in cpn . We
then use a method of successive approximations. The zeroth-
approximation equation for the coefficients of the expansion
of ^ in cpn is

^"n / n \u M l } an= 0.
" A*i I ml I

This is an equation of the Schrodinger type. Following Ref.
50, we find its semiclassical solutions, and we find the spec-
trum from the quantization condition49

x,

1
dx

,,1/2
(2.23)

The mirror points *, 2 are found from the vanishing of the
expression in the radical; between the mirror points, this
expression must be positive. It follows that natural Alfven
oscillations exist and that in this case they have a discrete
spectrum &nv (n = 1,2,...; v = 0,1,...) only if we have fi^O,
and the Dungey spectrum /in has a maximum (fi < 0) or a
minimum (// > 0) as a function of* (Ref. 55).

If jj. = 0, then there are no natural oscillations accord-
ing to Refs. 53, 54 (see also Ref. 1). In this context one
sometimes runs into the assertion that natural oscillations
with a continuous spectrum exist (Refs. 55, 56), but that
assertion contradicts the representation of natural oscilla-
tions as oscillations for which the frequency is determined by
the system itself, not by an external agent (Ref. 57). Clearly,
this entire situation is related in a definite way to the patho-
logical behavior of Alfven rays with n = 0, as mentioned
above.

There is another way to derive (2.23), by using the rep-
resentation of rays and modes in a nearly layered medium.

By "nearly layered" we mean a medium whose proper-
ties vary rapidly along some single coordinate.48 It might
appear that in our case this would be the coordinate x, since
the plasma easily spreads out along the magnetic field lines.
Actually, it is the coordinate x. The sort of rotation through
ir/2 of the stratification direction stems from the effect of the
small parameter/z in (2.20). All this becomes obvious when
we introduce new coordinates, in which distances along x
are stretched out by a factor of// l / 2 : g = x//z'/2. The Alfven
velocity A (s,fi 1/2£) will depend on the transverse coordinate
only through the combination /u'/2|", and the small param-
eter in front of the transverse operator in (2.20) disappears.

Having established that fact, we can construct an
asymptotic theory for transverse rays and longitudinal
modes, repeating the corresponding construction from un-
derwater acoustics nearly word for word.48 In the zeroth
approximation we find an eikonal equation, from which we
in turn find (2.23).

Figure 3, borrowed from Ref. 48, shows the L depen-
dence of the Dungey spectrum. The characteristic bending
of the curves results from the transition from dense plasma
to rarefied plasma as the plasmapause is crossed; in this case,
the plasmapause is at L = 4 (Refs. 1 and 12). Near the plas-
mapause we presumably have/* > 0, so that the natural oscil-
lations are apparently concentrated near the minima of the
curves, and the L = 4 shell.

Outside this region there are no natural oscillations, but
there are so-called Alfven resonances: Oscillations of mag-
netic shells which are not natural oscillations. Resonances
are excited by bulk (magnetosonic) waves which penetrate
into the magnetosphere from the interplanetary medium, by
surface waves propagating along the magnetopause, and also
by sources inside the magnetosphere.
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FIG. 4. Incidence of a magnetosonic wave on a slab of inhomogeneous
plasma.

FIG. 3. The Dungey spectrum as a function of the magnetic-shell param-
eter Z. (Ref. 5 8). The upper scale shows the latitude at which the magnetic
shell intersects the earth's surface.

The idea of Alfven resonance was introduced by Ha-
segawa and Chen9 and Southwood.I0 This idea is frequently
used in hydromagnetic diagnostics. At the same time, this
idea cannot be judged to be a simple one. It touches on con-
ceptual questions in the theory of wave propagation. Not
surprisingly, the widespread use of this idea of a resonance of
field lines sometimes leads to errors and misunderstandings.

As a result, one would like to find some methodological
tools for bringing some clarity to the picture of field-line
resonances. Here we will work by analogy with Fosterling's
problem of the oblique incidence of an electromagnetic wave
on a slab of an isotropic dielectric. Analysis of the common
and distinctive features of the two problems makes it possi-
ble to eliminate the slightest uncertainty regarding the ques-
tion of a resonance of field lines.59 The analogy is of heuristic
value since Fosterling's problem is rich in physical content
and has been studied thoroughly.29'33

Let us examine MHD waves in a plane-layer medium.
We introduce Cartesian coordinates as shown in Fig. 4. The
field lines of the external magnetic field run perpendicular to
the plane of the figure. The plasma is inhomogeneous along
x; A(x) is a monotonic function, which smoothly converts
into a constant as x -> — oo. There are then no natural oscil-
lations, but there can be a special forced oscillation of field
lines, at a frequency set by an external force, while the local-
ization along x is determined by the position of the Alfven
resonance.

We specify the incident field to be a plane magnetosonic
wave which is propagating from bottom to top. Figure 4
shows a projection of the ray onto the x,y plane in the case in
which A (x) is an increasing function. We adopt the follow-
ing y and z dependence in the incident wave: exp(/A:||Z
+ imy). By virtue of the homogeneity of the medium alongj>

and z, the total field will have the same dependence; for ex-
ample,

bt=ty (x) exp (i &nZ + imy).

The equation for ̂  is

e-T- —-T1 +(«-"*')'H y > " A ** ' = 0,
(2.24)

where e = (ea/A)2 — k j j . The transverse components of the
magnetic field are expressed in terms of the longitudinal
component by means of

k., db, k „ m
bx=i—± -, bu =

 5—bt. (2.25)
e dx E

Aside from changes in notation, Eq. (2.24) is the same
as the corresponding equation of the Fosterling problem of
the incidence of an H wave on a slab of an isotropic dielec-
tric. We can thus immediately write a solution of (2.24).

In the region e(%) > m2 the field is described by the
geometric-optics method; it is a superposition of the incident
and reflected magnetosonic waves. The reflecting surface
e(x} = m2 is a caustic. In the caustic shadow [e(x) <m2]
the field usually falls off exponentially with distance from
the caustic. In the case at hand, a singularity arises at
£(j) = 0> against the background of an overall decrease.
This singularity is an Alfven resonance.

At resonance, energy of the incident wave is absorbed if
the medium has any, arbitrarily small deviation from a con-
servative nature. In the Fosterling problem, this effect was
found in Ref. 60. With some trivial changes, this effect can be
transferred to the MHD problem.

The entire discussion below is taken from Ginzburg's
monograph,33 which used the analogy described above.

We assume that at and k y are fixed, while m varies.21 At
m = 0, the singularity at the point E = 0 disappears. This is
obviously the case, since the value m = 0 corresponds to nor-
mal incidence on the slab. As m increases, the field singular-
ity also disappears, sooner or later. The reasons are the in-
crease in the distance between the mirror point e = m2 and
the resonance points e = 0, the exponential weakening of the
field beyond the reflection point, and the presence of absorp-
tion—even if extremely slight—in a real system. It is thus
natural to expect that the resonance would be manifested
most obviously at a certain intermediate value of m, not very
large, but also not very small.

To seek the n dependence of the Alfven resonance we do
not have to solve the MHD problem. A corresponding solu-
tion was found in Ref. 33; all that we need to do is make the
necessary changes in notation in that solution.59

In the description of one of the methods of magneto-
spheric diagnostics we need an explicit expression for the
field near the resonance. We set e = — ax, where a > 0. The
coordinate of the mirror point is x0 = — m2/a. As x-» + 0,
we then have
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bx=—ibz
k „ m2 k ; , m

, (226)v \ ™" /

where bz is taken at x = 0. If x -«• — 0, then we need to make
the substitution lnx-»ln \x — iir in (2.26), in accordance
with the limiting-absorption principle. The nonconservative
nature of the situation can be dealt with by introducing an
effective parameter A: x->x — /A. The parameter A is the
distance over which \by \ 2 falls off by a factor of two in mov-
ing away from the resonance.

2.4. Rytov's formula

In the solution of hydromagnetic-diagnostics problems,
the boundary conditions at the earth's surface are usually
adopted in the form E, = 0, bn = 0, where E,(bn) is the
tangent (normal) projection of the electric (magnetic) field
of the oscillations. In other words, the earth is treated as an
ideal conductor.I>3 In the present paper, in contrast, we take
the finite conductivity of the earth into account explicitly.
Furthermore, we take the horizontal inhomogeneity of the
earth into account in an approximate way. For this purpose
we use the theory of the skin effect,20 one of whose equations
is

bn= — — Div(£b<); (2.27)
luj

where g is the surface impedance of the earth, and Div is a
surface divergence.

The diversity of the applications of (2.27) in geoelec-
tromagnetism is based on a simple idea. Let us assume that
some of the quantities in (2.27) are known from experi-
ments, while others are unknown, to be determined. Equa-
tion (2.27) then makes it possible either to calculate the
unknown quantities immediately or to find certain limits on
them. In other words, we will read Eq. (2.27) in various
ways. In order to implement this program, of course, we
must introduce some additional assumptions, as we will dis-
cuss below.

Let us give an elementary derivation of (2.27). We as-
sume for simplicity that the earth's surface is planar, and we
assume that the Leontovich approximate boundary condi-
tions hold at the surface29:

Ex—lb,, Ey=—t,bx. (2.28)

(Here and below, the z axis is directed downward.) From
the induction equation

dEr

we find

ito \ dx

Substituting (2.28) into this equation, we find (2.27) in the
form

w

A more general derivation of (2.29), from first princi-
ples, and with an explicit statement of the applicability con-
ditions, is given in Ref. 20. In geoelectricity, Eq. (2.29) is
widely used in the simplified form

i.e., without the first term on the right side of (2.29), which
reflects the horizontal inhomogeneity of the earth (see Ref.
18 and the bibliography there). Interestingly, Eq. (2.30) is
often used erroneously to study specifically the horizontal
inhomogeneity; in the process, experimental facilities which
permit the use of (2.29) are used.

In the present paper we are interested not in the subtle
details associated with the conditions for the applicability of
(2.29) (see the detailed analysis in Ref. 20) but simply in the
fact that Eq. (2.29) is of broader applicability than (2.30).
The range of applicability of (2.29) is even wider than that of
the Leontovich boundary conditions. To demonstrate the
point, we note that Eq. (2.29) does not change if we replace
(2.28) by

£ *• L i ^G i- o r i 9G / ^ -) 1 \
X = y>y-\-—-, Ey=—L,bX + ——, (2.3 I )

dx dy

where G is some function of x,y, and a> which is linear in the
field and otherwise arbitrary. For example, if the impedance
surface proper, z — h > 0, with an impedance f „, is coated
with a high-resistivity layer of variable thickness h(x,y),
then at the surface of the layer (z = 0) we would replace
(2.28) by (2.31) with G = hE2 and f = f<, - ieah /c, where
Ez is the vertical component of the electric field directly
below the z = 0 surface. (See Ref. 22 for more details.)

3. DENSITY OF THE MAGNETOSPHERIC PLASMA

3.1. Diagnostics based on signal repetition period

We consider a wave packet with a carrier frequency co in
one of the longitudinal waveguides in the magnetosphere. In
the geometric-optics approximation, the group-delay time
(multiplied by two) for the delay of a packet of Alfven waves
between the ends of the waveguide is2

(3.1)

& z = i —£Divb,,
to

(2.30)

here O — 6.37X 10X cm is the earth's radius, BL. —0.315 G is
the magnetic field at the equator, and ft,, andp,, are the pro-
ton gyrofrequency and the density of the plasma at the vertex
of the field line which serves as the waveguide axis. The
quantity L is the distance from this vertex to the center of the
earth (in units of a). A dipole approximation of the geomag-
netic field has been used. The plasma density distribution
along the axis of the waveguide is taken to be
p(X) =/o<>( 1 — x1) ~ v, where x = sin d>, and 4> is the geo-
magnetic latitude.

A numerical calculation shows that the integral / is a
"universal" function of the ratio a>/ft() in the sense that it is
only slightly sensitive to L and v, i.e., to the latitude at which
the waveguide axis intersects the surface of the earth and to
the nature of the plasma distribution along the waveguide.'
The physical meaning of this circumstance is that the disper-
sion of the signal is dominated by the equatorial region of the
trajectory, where the difference (ft — a) is at a minimum.

With the quantity T we associate the repetition period of
the PC 1 signals31 (Refs. 1, 2, and 12). We thus assume that a
and T are known from observations. To estimate p(} from
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(3.1) we need more information about the parameter L.
Since we have/>0 ocZ, ~sr2 the estimate of L must meet some
elevated accuracy requirements.

We have placed special emphasis on the circumstance
that the Pel signals propagate horizontally in the ionospher-
ic waveguide at large distances from the end of the longitudi-
nal waveguide. The latitude of the observation point thus
tells us nothing about L. (We will not go into a discussion of
studies which ignore this obvious point. ) One can attempt to
find L indirectly, from the spreading of the signals, which in
this case is manifested as a change in the slope with respect to
the time axis of structural elements in the dynamic Pel spec-
trum. The corresponding technique, which is similar to the
dispersion-analysis technique used for atmospheric whis-
tlers, was proposed by Watanabe61 and Dowden and Em-
ery.62 There are two points to be noted here, however, First,
the width of the Pel band is small, in contrast with the whis-
tler band. The accuracy of estimates of L is correspondingly
low. Second, it has been found63"65 that the very fact that the
dynamic Pel spectrum is of a discrete nature is a result of a
substantially nonlinear evolution of the wave field. If we can
still count on the applicability of an equation like (3.1), we
cannot interpret the dispersion of the signals by the linear
theory (see also Refs. 1 and 2).

There is a direct method for determining the coordinate
of the end of the longitudinal waveguide and thus the param-
eter L. The idea here is to measure two independent bearings
(the directions of the horizontal propagation of the signal)
and to determine the point at which they intersect. In gen-
eral, one would still have to correct for the lateral refracton
of the raise in the ionospheric waveguide, but we will assume
that the waveguide is a plane-layer waveguide and focus on
the PC 1 direction-finding method itself.

Using Rytov's equation, (2.29), we can determine the
bearing from Pel observations at only a single point.24"26

We first use geoelectric methods to measure f and Vf in
the Pel range at the observation point. We then measure bz

and b, in the same range. Since the signals arrive at the ob-
servation point after propagating through the ionospheric
waveguide, we replace the surface operator V in (2.29) by
ik, , where k, = ( kx ,ky ) is the local wave vector of the hori-
zontal propagation. We treat kx and ky as unknowns and
solve the equation

Q (3.2)

with the complex coefficients

A = fa, B = C = — b,- At V ;,

which are known from experiment. The bearing, as the angle
t?, between the meridian ( the x axis ) and the propagation
direction, is t? = arctan(ky/kx ).

The idea of this method is similar to that of polarization
Pel direction finding' and to directional analysis.19 It differs
from the former in that it does not require the additional
hypotheses that the Hall electrical conductivity of the ionos-
phere is low, etc.; it differs from the latter in that it incorpo-
rates the horizontal inhomogeneity of the earth's crust.

Magnetohydrodynamic direction finding is useful not
only for determining L in p0(L) diagnostics; knowing kx

and ky , for example, one can also determine the phase veloc-
ity co/k, of the horizontal propagation of MHD waves in the
ionosphere. The fluctuations in the arrival angle •& can then

be used to draw conclusions about ionospheric inhomogene-
ities along the propagation path. Finally, the slow variations
in the latitude and longitude of the end of the longitudinal
waveguide can be used to draw conclusions about the large-
scale electric field, which leads to the convection of magne-
tospheric plasma.12'66

3.2. Diagnostics based on oscillation spectra

The spectrum of magnetospheric MHD oscillations de-
pends on the spatial distributions of the plasma and the mag-
netic field. Since the magnetic field structure is known, the
data from spectral measurements can be used to evaluate the
plasma density p. Of extreme interest in this regard are Alf-
ven resonances of geomagnetic field lines. Different parts of
their spectrum are formed in different regions of the magne-
tosphere. It is thus possible to work from the known spec-
trum to reconstruct not only integral characteristics of the p
distribution but also local characteristics. For example,
from the latitude profile of the resonance frequency one can
estimate the plasma density distribution across magnetic
shells, p0(L), and from the unequal spacing of the harmon-
ics at a fixed latitude one can evaluate the distribution of p
along field lines (see Refs. 1, 3, 4, and 12 and the bibliogra-
phies there). For this purpose, data from a spectral analysis
of geomagnetic pulsations in the Pc3-5 range are used.

The diagnostic procedure is quite simple. If/is the reso-
nance frequency of the first harmonic of the oscillations of
shell L, then we have

(3.3)

here p0 is expressed in units of the proton mass, and / in
millihertz. The numerical coefficients in (3.3) correspond to
the latitude zone near the "geostationary" shell (L — 6.6).
Outside this zone, and for other harmonics, the coefficients
will be slightly different. They are found through a numeri-
cal solution of the Dangey problem (2.22).

Here, as in diagnostics based on the signal repetition
period, the primary difficulty is in estimating L. A wide-
band external source excites shells over a wide L interval,
and the spatial overlap of resonances causes the observer to
detect a fairly wide oscillation spectrum. In this case the
problem is to "sort out" the components of the detected
spectrum with respect to L. If the source instead has a nar-
row band, the problem is to determine the value of L for that
shell which is resonating at the frequency of the source. (Un-
derstandably, the position of the observer will not provide
the information required, because of the finite spatial width
of the resonance.)

The standard way to solve these problems is as follows:
A chain of observatories is set up along a geomagnetic merid-
ian in such a way that the interval of L of interest is spanned.
An interpolation of the spectral components of the oscilla-
tions is then carried out with respect to L. Among recent
studies in this direction we might cite Ref. 67.

We can describe an alternative approach, which starts
from an analysis of Rytov's equation and which makes it
possible to evaluate a> ( L ) over a finite L interval on the basis
of observations at only a single point.26

We put the observation point in a region in which the
electrical conductivity of the earth's crust is horizontally ho-
mogeneous.41 We detect the east-west component of the elec-
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trie field, Ey, and the vertical component of the magnetic
field, bz, of the oscillations. We find the distance from the
observation point (x = 0) to the shell which is resonating at
the frequency co from the expression

.v R (co)= |£ , , | |6 2 | - 1 Xsincp. (3.4)

Here (p(a) is the phase difference between the spectral com-
ponents Ey(co) and bz(u>), and I = c/co. We find the func-
tion which is the inverse of XR (co), and from it we find
p ( , ( L ) , using (3.3). (The parameter/, is related in a known
way to XR ; Ref. 1.)

We find (3.4) from (2.29), taking into account the
structure of the Alfven resonances, (2.26). We denote by A
the width of a resonance; we can then write

Here we have taken into account the rotation of the polariza-
tion through 77/2 as the oscillations pass through the ionos-
phere.12 From (3.5) we find

*, MO) , . A
dx MA

at x = 0. On the other hand, we have

dx

(3.6)

(3.7)

This equation follows from (2.29) in the case Vf = 0 and
when we note that near the resonance we have Div b, 2; dbx /
dx within terms of the order of (mA)2ln (mA), where m is
the azimuthal number, and m A < l . Combining (2.28),
(3.6), and (3.7), we find (3.4).

In a series of studies which were recently published,68~77

a pair of observatories separated by about 100 km along lati-
tude and coupled by a telemetry link was used for/? diagnos-
tics. The idea in Refs. 68-77 was to work from the equality of
the amplitudes of the spectral components, \bx (co) \, at the
two points to find the oscillation frequency of some fixed
shell (that shell which runs strictly halfway between the ob-
servatories). The method of (3.4) has the following advan-
tage over this method: The results of observations at a single
observatory yield information about the resonance frequen-
cies in a finite L interval, rather than at a fixed shell, as in
Refs. 68-77, on the basis of observations at two observator-
ies. There is also the obvious technical advantage (telemetry
is not required). These advantages are achieved due to the
implicit account in (3.4), by means of Rytov's equation, of
the electrical conductivity of the earth's crust near the obser-
vation point.

4. ELECTRICAL CONDUCTIVITY OF THE EARTH'S CRUST

4.1. Gradient of the surface impedance

We have thus reached the conclusion that Rytov's
equation is useful in hydromagnetic diagnostics. Another
important field of application is geoelectric sounding. In this
case, expression (2.27) is used (in particular) to measure
the gradient of the surface impedance of the earth's
crust.22-26

A trivial approach to the problem of measuring Vf is to
carry out magnetotelluric sounding and to determing £ at
three or more points. In general, of course, it is not possible
to avoid the procedure of multiple-point measurements off.
It is nevertheless interesting and useful to know that in cer-

tain special cases it is possible to measure Vf by observing
and analyzing the components of the electromagnetic field at
only a single point.

Let us assume that Vf in (2.29) is not known, while bz

and b, are known quantities at the given point on the earth's
surface. To calculate Vf we need more information about
Div bz. The simplest soluton is to discard the second term on
the right side of (2.29). The simplified equation,

b,= i — b ( V t , (4.1)
0>

can then be used to find51 Vf.
In order to make the transition from (2.29) to (4.1),

the length scale of the in homogeneity of g must be much
smaller than the length scale of the inhomogeneity in b,.
This condition is satisfied, for example, in seismically active
regions near geological faults.22 In this case, Eq. (4.1) has
the advantages of simplicity and economy in terms of the
number of measurements required. However, it is specifical-
ly in this case that violations of the conditions for the appli-
cability of the more general equation, (2.29), are most like-

For using (4.1) we would ideally have a field which we
know at the outset to be transverse (Divb, =0).The condi-
tion of transversality is satisfied for longitudinal and trans-
verse resonances of the earth-ionosphere cavity resonator.72

Longitudinal resonances are excited in the cavity
bounded from below by the earth's surface and from above
by the lower boundary of the ionosphere. They are often
called "Schumann resonances" after the investigator who
pointed out their existence in the 1950s. Schumann was also
the first to estimate their spectrum and quality factor, and he
pointed out that lightning discharges were a possible source
of oscillations. The resonance frequencies/, ~nc/2ira are
found from the condition that the circumference of the earth
is equal to an integer number of wavelengths. An estimate
yields/, -7.5 Hz,/2~ 15 Hz, and/,-22.5 Hz; these figures
are fairly close to the experimental values/, —8 Hz,/2— 14
Hz, and/3~20 Hz (Ref. 72).

For Schumann resonances, (4.1) becomes23

ft™ = fob!? V 1)]-i/a (4.2)

where a is the earth's radius, and n = 1,2,... is the index of
the resonance. At a frequency of 8 Hz the field penetrates a
depth of 530 m into the earth, if, for definiteness, we assume
the conductivity of the rock to be 109 s~ ' . This result means
that longitudinal resonances can be utilized to sound the
upper layers of the earth. Since the oscillations are global,
and storm sources are operating continuously, a measure-
ment of Vf can be carried out at any point and at essentially
any time. In discussing the applications of the method here
we will limit ourselves to the general statement that it would
be useful to have steady-state observations of variations in
the horizontal inhomogeneity of the electrical conductivity
of the earth near a given point in the region of interest. Ob-
servations of this type could provide information about the
development of unfavorable geological processes (incipient
stages of earthquakes, landslides, etc.).

The frequencies of the transverse resonances of the
earth-ionosphere cavity resonator, /„ ~nc/2h, are found
from the condition that the vertical distance between the
earth and the ionosphere is equal to an integer number of
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half-waves.73 At night, the lower boundary of the ionosphere
is at a height h ~ 90 km; hence/, ~ 1.7 kHz. At this frequen-
cy, the field would penetrate a depth of 37 m into the earth, if
the conductivity of the earth is 109 s-1. Transverse reson-
ances can thus be utilized to sound the very upper layers of
the earth.

Transverse resonances, like longitudinal resonances,
are excited effectively by lightning discharges. In contrast
with longitudinal resonances, the transverse resonances are
not global; they are instead local or, more precisely, regional,
since under natural conditions they are observed at distances
up to 2000-3000 km from the source. They are known as
"tweaks." The dynamic spectrum of a tweak is time-varying:
As time elapses, the carrier frequency of the oscillations as-
ymptotically approaches (from above), one of the trans-
verse-resonance harmonics/,. Correspondingly, the follow-
ing expression holds asymptotically for tweaks:

^-J|Lbir>VC. (4.3)

This expression is analogous to Eq. (4.2) for Schumann re-
sonances.

A specialist in geoelectricity should note the analogy of
the method for measuring Vf which we have justified here
through an analysis of Rytov's equation to other, similar
methods, known as the "Parkinson plane," the "Wilhelm
ellipsoid," the "Wise-Smucker-Porash vector," and so forth
(see the review in Ref. 74 and the bibliography there). One
must be in agreement here, with one important stipulation:
While the methods of Ref. 74 are based on empirical or, more
precisely, heuristic considerations, the method at hand is
based on the asymptotic theory of the skin effect.20 In this
sense it (first) allows generalizations and (second) does not
take us out of the realm of phenomenological electrodynam-
ics. The other methods which were listed above make use of
additional geometric objects, which presumably reflect the
internal structure of the earth; i.e., they implicitly assume a
certain interpretation of the measurements. The use of the
method under discussion here of course leads to an interpre-
tation problem, but that problem can be dealt with as a prob-
lem independent from the measurements. The measure-
ments, on the other hand, are carried out completely and in a
unified way in terms of surface impedance.

4.2. Impedance equation

We assumed above that the unknown quantities in
(2.29) were first k,, then Div b,, and finally Vf. We now
assume that the surface impedance f is unknown, and we
rewrite (2.29) in the form

^JL-f-sJL + C: + D = 0. (4.4)
dx dy

Equation (4.4) may be thought of as a differential equation
for the impedance £(u>;x,y) under the condition that the co-
efficients

A = bx, B = 6,. C = Div t(, D = i — bz
c

are known from observation.22 This approach generalizes
the method of geoelectric sounding, which is widely used
today, to the case of a horizontally inhomogeneous earth.
Specifically, the algebraic relation75'76

(4.5)

is replaced by a differential equation for the impedance,
(4.4).

In order to implement this approach, one clearly needs
highly accurate synoptic observations from a fairly dense
network of magnetometers. In contrast with the preceding
section of this paper, this approach does not require a priori
information about the structure of the inducing field, since
everything that is necessary for the sounding is accumulated
during the observation of the field by this network. Such
networks exist. For example, in northern Scandinavia there
are conveniently situated several tens of well-equipped ob-
servatories.75"77

In the limits ls </A and ls >/fc we can replace (4.4) by
(4.1) and (4.5), respectively (here le and lb are the length
scales of the variations in the impedance and in the magnetic
field). These two limiting cases, however, differ greatly in
their importance to geosounding. Expression (4.1) provides
nontrivial information about the structure of the earth's
crust on the basis of observations at one point, while (4.5)
requires observations at many points, so that, broadly speak-
ing, the more general approach based on (4.4) can be taken.

4.3. Seismomagnetic waves

The motion of the conducting layers of the earth's crust
in the magnetic field of the earth's core during the propaga-
tion of seismic waves induces an alternating electromagnetic
field. These effects are included in the present review be-
cause seismic waves constitute a natural source of geomag-
netic pulsations inside the earth. Furthermore, one can work
from the results of synchronous detection of seismic and
magnetic signals to form an interpretation parameter, whose
frequency dependence would contain information about the
structure of the geoelectric cut.78"81

The expected seismomagnetic effect is fairly large. At
first glance this is a surprising result, since the sea-wave ef-
fect, which is analogous in many ways, is proportional to the
amplitude of these waves and increases with increasing con-
ductivity of the medium.82 For moderate wave motion, the
perturbation of the magnetic field is ~ 10 ~10 T. The conduc-
tivity of the earth's crust is an order of magnitude lower than
that of seawater, while the amplitude of seismic waves is at
least two or three orders of magnitude smaller than the am-
plitude of sea waves. Nevertheless, the magnetic effects of
seismic and sea waves are comparable. The reason is that the
condition for freezing in for this circle of problems is

where a is the conductivity of the medium, and 7" and v are
the period and phase velocity of the wave. This condition is
not the same as the condition Rm > 1, where Rm is the mag-
netic Reynolds number. In both of these cases we have
Rm^l. However, while we have Y~ 1 for seismic waves, we
have 7< 1 for sea waves; i.e., in this sense the earth's crust is
much more effective than a sea wave in entraining the geo-
magnetic field in its motion.

Let us treat the earth's crust as a conducting elastic
object in an external magnetic field. We know that magne-
toelastic waves can propagate in such an object; these waves
are described by the self-consistent system of equations of
the theory of elasticity with a ponderomotive force and the
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equations of quasisteady electrodynamics.83-84 Since the in-
equality B^ (4ira)l/2 holds by a wide margin in the earth's
crust, however, the ponderomotive force can be ignored
(here a is the shear modulus). In this approximation, mag-
netoelastic waves propagate at the same velocity as elastic
waves but have a different polarization. Specifically, the
propagation of a magnetoelastic wave is accompanied not by
a deformation of the object but by oscillations of the electro-
magnetic field.

The deformation field £(x,f) can thus be assumed giv-
en. In the far zone, we need consider only the surface Ray-
leigh wave, since bulk waves decay rapidly with distance
from the focus of an earthquake, while a Love wave causes a
negligible induced magnetic effect, because of features of the
polarization.

Let us assume that a Rayleigh wave is propagating
along the x axis along the surface of an object which fills the
half-space z<0: | = a(z)exp(/7oc). There is no j> dependence
of £, and we have ^y = 0. We assume a time dependence
exp( — /&>?), but we will not explicitly indicate it. The com-
ponents a(z) are85

a.,= x,wexp (x,z) +kwexp (x,z),
av=—iku exp (x(Z) —iv.iW exp (x,z).

(4.5')

Here
/ , , (I)2 \ 1/2

Kt = k2 '

co = ctk\\ — = — | I — — (I —
2

v increases monotonically from 0.874 to 0.955 as the Poisson
ratio increases from 0 to 1/2.

In the conducting layers of the earth (z<0) the quasi-
steady magnetic field b satisfies the equation29

(A+p2)b = p2[(BV)|— B(V|)], (4.6)

where p = (1 + /) (2ira(a/c2)1/2. Let us assume that a de-
pends on only z and that the function cr(z) is piecewise-con-
stant. In air (z> 0), we can use the equation Ab = 0. Fur-
thermore, we have (Vb) = 0 in both media. At the surface
z = 0 and at the interfaces between conducting layers we
have the condition that b is continuous. We substitute the
field |"(x,f) into the right side of (4.6), use (4.5), and seek a
solution which vanishes as z-» + oo. The solution is deter-
mined uniquely by the conditions which we have imposed.

If cr does not depend on z, then at z>0 we have

*=— ibz = bxaexp [k(ix—z)],

where

and

uT

(4.7)

(4.8)

T=ikBx+x,B,, L = i'nlBI+kB1,
q^=(kt — pi)'1', Re^X).

If displacement currents are ignored, we would have
by = 0. When these currents are taken into account, it is
found that by is smaller than bx and bz by a factor of about
( 477CT/&)).

In this model, the magnetic signal b and the seismic
signal a at the frequency a>, with known B and v = co/k un-
ambiguously determine o. As the interpretation parameter
we could use, for example, the ratio bx/az at z = 0.

A more realistic model of the electrical conductivity of
the earth should incorporate the stratification, including a
sedimentary jacket, a crystalline foundation, and a well-con-
ducting base. In the most general case of a multilayer medi-
um, relation (4.7) remains unchanged, but the expression
corresponding to (4.8) becomes extremely complicated. We
will thus limit the discussion here to a limiting case which is
in a sense opposite to that of a homogeneous half-space. Spe-
cifically, we assume that a stratum of sedimentary rock with
a conductivity a has a thickness h such that the relation
kh -^ 1 holds. We furthermore assume that the nonconduct-
ing crystalline foundation is on an ideally conducting base,
which lies at a depth z = — H, where H^-h and kH^> 1. We
then have81

bxt> =
P2hk (uT + wL)

(4.9)
(1 — i ) k — p*h

Expressions (4.8) and (4.9) correspond to the high-
frequency (&A>1) and low-frequency (kh^l) asymptotic
cases. The first makes it possible to determine a, and the
second ah; together, they make it possible to determine both
parameters of the sedimentary jacket — its conductivity and
its thickness — if the frequency dependence of bx/ax is
known over a sufficiently wide range.

For the earthquake of 28 March 1964, with an epicenter
in Alaska, we have <y~ 0.3 s~' , k~ 10~6cm~',anda~ 1 cm
according to observations at Bergen Park (US).86 We set
B~ 5 X 104 nT, a = 109 s~ ', h ~2 X 105 cm, and H~ 5 X 106

cm. The conditions for the applicability of (4.9) are satis-
fied, and from that expression we find bzs 0.05 nT. This is a
small but observable quantity.

We take another example from the field of research on
seismoelectromagnetic phenomena which accompany a
powerful explosion on the earth. A few kilometers away
from the industrial explosion in Khorezm Province on 25
July 1983, surface waves with w~ 6 s~', k~2x 10~5cm~',
and a~ 1 cm were observed.87 The conditions for the appli-
cability of (4.8) hold. The conductivity in the vicinity of the
explosion is cr~2x 109 s~'. With B~5X 104 nT we then
find 6-0. 2 nT.

Note that the induced seismomagnetic signal has a cir-
cular polarization in the vertical plane [see (4.7) ]. This cir-
cumstance distinguishes this signal in a radical way from
other magnetic effects of seismic origin, e.g., from the piezo-
magnetic signal or the magnetostatic signal associated with
the motion of magnetic anomalies in the field of the seismic
wave. Both these signals are linearly polarized. The specific
polarization of the induced seismomagnetic signal can be
utilized to discriminate this signal against noise.

Finally, we wish to call attention to the circumstance
that the ratio of the horizontal components of the electric
and magnetic fields gives us not the earth's surface imped-
ance, as in the Tikhonov-Kan'yar method, but the velocity
of a seismic wave8 ' :

is the coordinate system of the unperturbed surface
of the earth.
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5. PHENOMENOLOGY OF MAGNETIC STORMS

5.1. Predicting magnetic storms

An intense magnetic disturbance accompanied by an
increase in the ring current in the radiation belt is called a
"magnetic storm."12 Diagnostic questions are of foremost
importance for the prediction of storms, since in many cases
the basic errors in a prediction stem from an incorrect assess-
ment of the current state. With this point in mind, let us
examine the prediction of magnetic storms of sudden com-
mencement.

It is of course impossible to diagnose the preflare situa-
tion at the sun on the basis of the observations of geomagne-
tic pulsations alone. The opposite opinion has been ex-
pressed,88 but we will assume that the flare has already
occurred, and we take up the question of whether it is possi-
ble to work from data on pulsations to predict the time at
which the storm will begin, i.e., the time at which the shock
front of the flare-associated flux will make contact with the
earth's magnetosphere.

Before the front of this flux touches the magnetosphere,
seismic oscillations in the magnetic field due to the penetra-
tion of hydromagnetic waves into the magnetosphere may be
observed at the earth's surface (these waves lead the flare-
associated flux). According to the estimates of Ref. 89, the
expected frequency of the hydromagnetic precursor is ap-
proximately 0.1 Hz, and the average lead time is close to 8 h.
The front of the flux is also preceded by a charged-particle
flux. The penetration of these particles into the magneto-
sphere and then into the ionosphere at high latitudes may
form a precursor in the form of a riometric-absorption bay.90

Once the storm has begun, the prediction problem be-
comes one of estimating the strength and duration of the
storm beforehand. For an accurate formulation of the prob-
lem we should choose a model for the evolution of the ring
current, which is responsible for the main and recovery
phases of a storm.

The complex structure of the magnetosphere and the
complex behavior of its constituent structural elements
hinder a "microscopic" modeling of a magnetic storm, i.e.j a
systematic description on the basis of the equations of plas-
ma physics. The microscopic approach does yield an under-
standing of parts of the overall picture, but if we work from
first principles alone then we would be essentially unable to
draw an overall picture of, for example, a Dst variation,
which is the most important manifestation of a magnetic
storm. As in other cases of this sort, we are thus justified in
attempting phenomenological modeling.

Constructing a phenomenological model for describing
a Dst variation means choosing an evolution equation as
simple as possible. Ideally, this choice would be based on
physical and geophysical considerations. The parameters of
the equation must be found from observations. For example,
the familiar RBM model is 9I

= q(t)~ (5.1)

where

Uandp are the velocity and density of the solar wind, Bz is a
component of the interplanetary magnetic field, and D is
related to Dst in such a way that it is equal in magnitude, and
opposite in sign, to the magnetic disturbance due to the ring
current. The right side of (5.1) models the sources and sinks
which form the ring current of a magnetic storm. The pa-
rameters D0, a, E0, fj,, and a of the model are sought from
observations.

The idea underlying short-term predictions (a few
hours in advance) can be summarized as follows: The Dst
variation can be estimated beforehand by observing the state
of the medium near the earth ahead of the front of the mag-
netosphere by means of a space vehicle.6' Figure 5 shows an
example of such a prediction for the storm of 23-24 Febru-
ary 1984 (Ref. 93). The solid line is the Dst variation, the
crosses are predictions based on the RBM model,91 and the
circles are predictions based on one modification of that
model.94

When the external sources feeding the ring current are
turned off or greatly weakened, and the recovery phase (i.e.,
the final stage of the storm) begins, the researcher is faced
with the question of how long this phase will continue. The
RBM model estimates the decay time of the ring current to
be ~ I/a. It turns out that this estimate can be improved
substantially on the basis of the information about the cur-
rent state of the magnetosphere which is embodied in geo-
magnetic pulsations. Clear predictive indications of the end
of a storm have been found experimentally. For example, a
reduced activity of Pc2 and Pi2 pulsations and an increased
activity of Pel pulsations indicate a brief storm. In contrast,
the absence of Pel pulsations and a high activity of Pc2 and
Pi2 pulsations indicate a disturbance which is a long way
from subsiding.95

5.2. Stochastic equivalent of the RBM model

In the RBM model, a Dst variation is treated as a signal
from the output of some dynamic system. A prediction based

.nT

<7=0, £<£„,

FIG. 5. Example of a Dst variation during the magnetic storm of 23-24
February 1984 (solid line). The crosses and circles show Dst predic-
tions.1"
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on an analysis of this system is expressed by a point estimate,
without an indication of confidence interval. However, since
the RBM model performs a phenomenological reduction of
an indefinitely large number of degrees of freedom of the
magnetosphere, the degrees of freedom which have not been
taken into account will experimentally create a scatter which
converts the deterministic function D(t) into a random
function.

As in other, similar situations, it is useful here to simu-
late the degrees of freedom which have not been taken into
account by a random force with a zero mathematical expec-
tation and a ^-function correlation.96 It is then possible to
derive a Fokker-Planck equation for the distribution func-
tion F(D,t):

dFOf i O , , r\\ n. \ T

-r- + ̂ 7rK'?-aD)fl = N d-F (5.2)

For simplicity here we are assuming that the intensity of the
random force, N, does not depend on the state of the system,
D. Solutions of (5.2) make it possible to seek the confidence
interval of the prediction [which is of the order of (N/
a)"2].

The additional (sixth) parameter of the model, N, sim-
ulates the effect exerted on the ring current by the rapidly
varying processes which play out in the magnetosphere and/
or the solar wind. The reader interested in how these pro-
cesses are monitored experimentally and how numerical val-
ues are found for Nis directed to Ref. 96. All that we will say
here is that data on the intensities of geomagnetic pulsations
are useful for estimating N.

5.3. Source and sinks

A modification of an equation of the type in (5.1) and
the introduction of additional parameters in the model are
widely used in the modeling of Dst variations.92'94'97 In going
from (5.1) to (5.2) we also introduced a new parameter, N.
If we wish to go further in this direction, however, it is useful
to choose some guiding principle. The theory of critical phe-
nomena appears to be the most appropriate guidance here.96

The dependence of the source q on the controlling parameter
E in the RBM model suggests that we are dealing with a
phase transition at a certain critical value E = E0 (Fig. 6).
Less obvious is the role played by phase transitions in the
formation of sinks [the second term on the right side of
(5.1)]. We believe that again in this case the theory of criti-
cal phenomena will provide a basis for some modification of
the RBM model.

We consider the dynamic system
dW

a?
(5.3)

so that we can reach an understanding, at the phenomeno-
logical level, of how aq(E) dependence of the type in Fig. 6
arises. The question before us reduces to the choice of the
form of the potential W(q,E). The postulate

_£)-£i + ̂ l (5.4)
2 3

under the additional restriction g>0 is sufficient to give us
the RBM g ( E ) model, since the stable critical points of (5.4)
dre q = 0 at E<E0 and q = fj,(E — EQ) at £>E0.

A dynamic treatment of q opens up the possibility of
stochastic generalizations of (5.4), and this possibility in
turn gives us a basis for a meaningful choice of N is (5.2).

FIG. 6. The source of a Dst variation as a function of the azimutha! com-
ponent of the electric field in the RBM model (schematic diagram).

However, what besides the empirical correspondence gov-
erns the choice of specific expression (5.4) for the potential
Wl In the pioneering study of Ref. 91, a dependence q~E2

was tried as an alternative to q~E at E> E0. It was found
that the effect was to make the approximation to the experi-
mental points worse. However, the choice ofq~E2 for the
comparison clearly was not motivated by anything. A dy-
namic approach indicates a more appropriate alternative.96

For comparison with (5.4) we adopt the Ginzburg-Landau
potential

IP so TI (£.-£)-£- -f-f . (5.5)
2 4

Then q = 0 for E < E0 as before, but for E>EQwe have

?=[t|(£-£,)]*. (5.6)

This dependence is shown by the solid line in Fig, 7 (Ref.
96). Also shown here are experimental points from Fig. 2 of
Ref. 9 1 . The fair agreement between theory and observations
is evidence that expression ( 5.6) is at the least no worse than
q(E) of the RBM model.

The Ginzburg-Landau potential is usually chosen on
the basis of the symmetry of the system. In the case at hand,
we do not have such symmetry considerations to work with,
and at this point it is not clear just how we are to seek the
"actual" potential W{q, E) unless we simply try various al-
ternatives. AtE>E0 we must therefore set

and attempt to determine accurately the critical index jc
from experiments. Until we have done this, we can assert no
more than the following: The RBM model gives us x = 1,
which corresponds to potential (5.4), while the Ginzburg-

q, nT/h

50

2.5

10 £, mV/m

FIG. 7. Bifurcation diagram in a modified RBM model (see the text prop-
er).
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Landau model, (5.5), predicts x = 1/2, which does not con-
tradict observations.7

We turn now to the sinks. The main question here is as
follows: How are we to understand, and how are we to mod-
el, the well-known empirical fact that the duration of a storm
decreases as its strength increases? Afanas'eva and Ka-
linin100 state that "very large storms tend to be very brief."
The same thought has been expressed in other ways in many
papers, although opposite opinions have also been expressed
on this matter.

This property is modeled by replacing a = const by
a(D) in (5.1). In Ref. 94, I/a was represented as a
piecewise-constant function of D. It is more convenient to
make a smooth replacement and to expand a (D) around the
origin:

a (D)=a0+ «,£>+ . . . , (5.7)

where a, >0. The reason is that in the opposite case the mod-
el would describe an unnatural self-amplification of a Dst
variation.

We link the meaning of the second term in (5.7) with
the excitation of MHD waves as a result of an instability of
the ring-current particles. (See Ref. 12, for example, regard-
ing the meaning of a0.) The particles are scattered by waves
and escape from the ring current progressively more rapidly
as the wave amplitude increases. The wave amplitude in turn
becomes progressively larger as the current increases. Phe-
nomena of this sort fall in the realm of critical phenomena.
We do not have room here to describe comprehensively ap-
plications of the corresponding theory to the modeling of
Dst variations. We will restrict the discussion to two recom-
mendations which follow from an analysis of the self-excita-
tion of waves in the magnetosphere.

First, it is useful to make the replacement q-*qq0/
(q + q0) in (5.1), where q0 is one more phenomenological
parameter of the system. The idea is that D should reach
saturation ~q0/a [or ~q0/al)

['2 in the case of (5.7) as
q— oo, in accordance with Kennel and Petchek's idea102 re-
garding a "stability limit" of the radiation belt. Such a renor-
malization of the source is more effective than choosing a
complicated D dependence of the sinks.

Second, the theory of critical phenomena makes it pos-
sible to reinterpret and possibly improve a0 with allowance
for the structural features of the magnetosphere. As in the
RBM model, the source is time-varying, and it is useful to
treat the sink as also being time-varying. However, while the
time dependence of the sink was implicit in Ref. 94 and in
Eq. (5.7), in the version which we are proposing here an
explicit dependence would be introduced: a0 increases as the
plasmapause moves away from the earth more rapidly. The
situation here is essentially that the critical flux of fast parti-
cles from the outer side of the plasmapause is higher than
that from the inner side. For this reason, the outward motion
of the plasmapause "eats away" particles of the ring current
and weakens the Dst variation. The position of the plasma-
pause can be monitored from the ground by the methods
described in <f>3.

To conclude this section of the paper we wish to stress
that phenomenological modeling of Dst and other goemag-
netic variations not only solves applied problems, e.g., the
prediction problem, but also enriches and adds depth to the
traditional set of problems. In other words, it raises some

new questions and points some new directions for interpret-
ing existing results. Finally, the phenomenology makes it
possible to formalize some new ideas which follow from a
morphological analysis of geomagnetic disturbances.

6. PHENOMENOLOGY OF MAGNETIC PULSATIONS

By analogy with wave phenomena in optics, acoustics,
and radiophysics,102~104 we would naturally expect that fluc-
tuations of the field of geomagnetic pulsations would con-
tain information about the excitation and propagation
mechanisms and—a particularly important point for our
purposes—about the structure of the magnetosphere. One
can cite only a few papers which have allowed for the cir-
cumstance that the magnetosphere is a randomly inhomo-
geneous medium. To a large extent, this situation is due to
the difficulty of experimentally studying effects of the fluctu-
ations of the medium and of the wave field in the range of
geomagnetic pulsations. With the measurement apparatus
available today, it is not possible to take up many interesting
problems, e.g., that of fluctuations in the angle of arrival of
the radiation.8'

There is yet another, and not unimportant, reason for
the delay in stochastic studies of pulsations. This is the ina-
dequate level of development of the deterministic theory.
Dynamic problems, if they are posed more or less appropri-
ately, i.e., if the nonlinearity of the pulsations and the com-
plex structure of the magnetosphere are taken into account,
are not amenable to solution. For the time being we are thus
blocked from taking the customary path to analyzing sto-
chastic systems, which is essentially one of replacing the nu-
merical functions in the corresponding deterministic model
by random functions and evaluating the probability for some
state or other of the system.

With these comments in mind, we should refer to the
study of fluctuation and critical phenomena which was be-
gun in Refs. 105-109. Only the "coarse" parameters of the
fluctuations, i.e., parameters which could be measured reli-
ably (amplitude fluctuations, group delay, etc.) were select-
ed for study. In an effort to avoid the second difficulty listed
above, the deterministic models of the pulsations were re-
placed by extremely simplified phenomenological models,
which were used to formulate some simple problems for
choosing between alternative possibilities.

6.1. Self-oscillator or filter?

Geomagnetic pulsations are quite frequently quasimon-
ochromatic oscillations. Two types of models are being dis-
cussed in the geophysical literature in an effort to explain
these oscillations. We will call these the "self-oscillation"
and "filtration" models. In the models of the first type it is
suggested that the pulsations arise from a plasma instability,
i.e., upon a bifurcation from an equilibrium state of the focus
type, with a transition to a nonlinear regime and the forma-
tion of a limiting cycle. In theories based on models of the
second type it is assumed that the magnetosphere contains
selective filters (or amplifiers) which pass narrow bands of
the spectrum of noise which penetrates into the magneto-
sphere from the solar wind.

The carrier frequency and other spectral properties of
the pulsations are simulated equally well by the models of
the two types. Nevertheless, a choice between the the two
types of models can be made by studying flucuations of the
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amplitude of pulsations. In the case of a self-oscillator, a
Gaussian amplitude distribution will be observed at the out-
put, while in the case of a selective filter there will instead be
a Rayleigh distribution.

Experimentally, one constructs an empirical distribu-
tion of the fluctuations of the pulsation amplitude and com-
pares them with Rayleigh and Gaussian distributions. In the
case of a reliable approximate agreement, one can draw a
conclusion about the type of oscillatory system which gener-
ated the pulsations.

6.2. Black box without an input

The black-box idea always arises where the subject un-
der study is inaccessible to direct observation. In dealing
with such entities we advance hypotheses regarding the in-
ternal structure; i.e., we construct models as structural and
functional approximations of the object. The hypotheses are
usually tested against experimental results in an input-out-
put approach. The object is approximated by a purely dy-
namic model; i.e., the fluctuation phenomena which occur in
any real system are totally ignored. The incorporation of
fluctuations in the model and the use of the methods of the
statistical theory of oscillations open up the possibility of
obtaining information from the output signal alone. The
diagnostic model of a black box without an input is based on
the idea that the distributions of the flucutations in the am-
plitude and phase in oscillatory systems of various types may
be quite different from each other. It is thus possible to work
from the output signal to draw certain conclusions about the
internal structure and operation of the system. The method
pointed out in the preceding section of this paper provides a
very simple realization of this idea. At this point we will
discuss a more complex example, in which the correlation
properties of the pulsations are used to seek dynamic equa-
tions describing certain aspects of the oscillation process. In
other words, the inverse problem of the statistical theory of
oscillations is solved.

The correlation method for studying an uncontrolled
self-oscillation system on the basis of its signal was proposed
by Gudzenko.104 This method is being used successfully to
analyze the mechanisms which form the cyclic activity of the
sun.110 The ideas of Refs. 104 and 110 were used in Ref. 106
to expand the range of application of the correlation method:
It was used to study the oscillation properties of the magne-
tosphere on a simple empirical basis involving observations
of geomagnetic pulsations.

Dynamic equations for modeling pulsations are sought
in a class of models with a single degree of freedom. The
disturbance of the geomagnetic field is taken to be the signal
at the output, and it is assumed that the instantaneous state
of the system is characterized by a point in a phase plane.
The motion of the imaging point is described by a system of
two second-order differential equations.

In addition to the dynamic characteristics (which are to
be sought) the system contains fluctuation <5-correlated
terms. It is assumed that if fluctuations are ignored the sys-
tem has a limiting cycle, i.e., an asymptotically stable closed
orbit in the phase plane. Fluctuations lead to normal and
tangential excursions from the limiting cycle. The dynamic
parameters of the system are determined through a correla-
tion analysis of the excursions of the trajectory from the
average limiting cycle.

By taking this route one can find the form of the limiting
cycle which simulates the pulsations which originate inside
the magnetosphere, the rigidity of the system, the deviation
of the system from isotropy, the nonlinear distortion factor,
the amplitude dispersion, and the phase diffusion. Conse-
quently, the output signal by itself, which has the form of a
fragment of a sine wave, contains much nontrivial informa-
tion about the magnetosphere.

As an alternative to the self-oscillation model, the fol-
lowing model is being studied: an oscillator with friction
which is subjected to a resonant external force in the pres-
ence of a Langevin source. This formal model corresponds to
the idea that the pulsations are of extramagnetospheric ori-
gin, with an additional idea about local Dungey-Hasegawa
resonances. Waves coming from behind the shock front pen-
etrate into the magnetosphere and act on the resonator in the
manner of a periodic force. The additional Langevin force
simulates the noise. The corresponding Fokker-Planck
equation for the distribution functions of the amplitude and
phase of the output signal is used to find an equilibrium solu-
tion which makes it possible to formulate a criterion for test-
ing the model.

6.3. Diagnostic applications

Diagnostics of the interplanetary medium ahead of the
front of the magnetosphere on the basis of data from ground-
based observations rest to a large extent on the idea that
geomagnetic pulsations of one type are of extramagnetos-
pheric origin.5 For the most part, these are pulsations in the
Pc3 range (20-100 mHz). However, with anomalously
large (5>15nT)or anomalously small (B < 3 nT) values of
the interplanetary magnetic field ahead of the magneto-
spheric front, waves are excited in the Pc2 range (0.1-0.2
Hz) or the Pc4 range (7-20 mHz). These waves can pene-
trate into the magnetosphere and contribute to the pulsation
spectrum observed on earth.'"•n2 On the other hand,
sources inside the magnetosphere may be activated in the
Pc3 range. The net result is that we are faced with the prob-
lem of separating the intramagnetospheric and extramagne-
tospheric pulsations not on the basis of the range to which
they belong but on the basis of some independent character-
istic.

The diagnostic model of a black box without an input
appears to be the most suitable one for solving this problem.
According to Ref. 106, the empirical distribution of the am-
plitude of "typical" Pc4 pulsations is, with a high probabili-
ty, approximately Gaussian, while a Rayleigh distribution is
a poor approximation of the observations. Such oscillations
arise more probably inside the magnetosphere than outside
it. A further analysis of the phase portrait of the oscillations
confirms this conclusion. Incidentally, in the course of this
study it was found that there is a weakly defined sawtooth
nature in the form of the Pc4 pulsations; this point is of im-
portance for diagnostics of the magnetospheric plasma on
the basis of the pulsation spectrum.

In contrast, the fluctuation properties of "typical" Pc3
pulsations correspond to the model of an oscillator subjected
to external forces.107 Pulsations with such properties can be
utilized to evaluate the strength of the interplanetary mag-
netic field B (Ref. 1) and the velocity of the solar wind, U
(Ref. 113). In the B diagnostics one takes the frequency, and
in U diagnostics the amplitude of the pulsations in combina-

693 Sov. Phys. Usp. 32 (8), August 1989 A. V. GuPel'mi 693



400

ZOO

1968

17

FIG. 8. Broken line—Interval estimate of the velocity
of the solar wind on the basis of data on geomagnetic
pulsations; points—results of direction observa-
tions."3

tion with geomagnetic-activity indices. Figure 8, borrowed
from Ref. 113, illustrates the situation. The interval estimate
of U has been made on the basis of observations of geomag-
netic pulsations near Irkutsk. The points show the results of
direct measurements on a satellite.

7. CONCLUDING REMARKS

The simplicity and richness of Rytov's formula make
possible some nontrivial applications in magnetospheric
physics and geology. This is not, however, an exact formula.
We have avoided discussing the applicability conditions, but
even so it is clear that (2.27) and applications based on it do
not work near a shoreline, near a geological fault, or in other
such places.

Is it possible to suggest an alternative approach which
would retain the idea in general terms but which would not
be based directly on (2.27)? With respect to geological ap-
plications, the answer is definitely no. Applications of that
type are phrased in terms of a surface impedance. They lean
heavily on the structure of (2.27) and break down if that
structure is violated. In such cases it is necessary to resort to
other methods. These other methods are described in detail
in the specialized literature. 17~19J14~"7

For magnetospheric applications, in contrast, there is
the hope of retaining the general idea of our approach in
cases in which Rytov's formula cannot be used. For this pur-
pose we need to study the conductivity distribution in the
lower half-space near the observation point by geoelectric
methods and then jointly solve the internal problem (for the
earth's crust) and the external problem (for the magneto-
sphere). The solutions are to be joined at the interface. In
other words, we should examine the problem of hydromag-
netic diagnostics as a mixed problem in the sense stated in
the Introduction. The emphasis here is on the preliminary
study of the electrical conductivity of the lower half-space.
Once this indefiniteness has been removed, it becomes possi-
ble to use additional relationships between the components
of the electromagnetic field in order to improve the accuracy
of magnetospheric diagnostics. Diagnostic applications of
(2.27) may be thought of as a simplified model of proce-
dures of this type.

The second set of questions which we have covered in
this review concerns fluctuation and critical phenomena.
Some interesting possibilities in this direction have been
pointed out. In addition, we would like to call attention to
Ref. 108, as we have already mentioned. Kalisher and Polya-
kov have raised the question of diagnostics of inhomogene-
ities of the magnetospheric plasma on the basis of data on
fluctuations of the Pel repetition period.

The phenomenological modeling to which we have re-
stricted the present review is sometimes contrasted with (on

the one hand) a microscopic description and (on the other)
a search for empirical relationships by regression analysis.
We have already discussed the difficulties in a microscopic
description of global processes of the Dst-variation type.
With regard to the regression method, we note that it is capa-
ble of solving applied problems, but since it is not oriented
toward interpretation it surfers from a semantic vagueness
and does not by itself enrich our understanding of geomag-
netic phenomena. Even if we take into account the increased
accuracy of regression analysis, as discussed in Ref. 97
(among other places), the phenomenology still has the ad-
vantage that it gives us a general picture of magnetospheric
processes, at the cost of discarding details. Our purposes in
these concluding remarks has been to answer the criticism of
phenomenological models undertaken in Ref. 97.

"If the thickness of the plasmapause is ignored, the result is something
akin to a whispering gallery.

2llf the problem is reformulated in terms of magnetospheric physics, m
becomes the azimuthal number.

3lHere we are ignoring the circumstance that a Pel trajectory may be
"composite,"' i.e., may consist of regions in which energy is carried by
magnetosonic waves. (See the preceding section regarding the longitudi-
nal ducting of magnetosonic waves.)

4lln other words, we have Vf = 0 in (2.29). The generalization to the case
Vf ^0 is obvious.

5'In order to calculate both components of the complex vector Vf, one
needs two independent measurements of the magnetic field components
for different polarizations of b,.

61 An estimate of g on the basis of observations of the activity of geomagne-
tic pulsations on the earth was made in Ref. 92, and a Dst variation was
successfully reproduced.

7IA preliminary analysis" of 15 magnetic storms yields x values in the
interval 0.33-0.75.

"'This problem, at least, can apparently be solved in the near future by
means of the "MHD direction finder" described in §3.

'A. V. Gui'ermi and V. A. Troitskaya, Geomagnetic Pulsations and
Diagnostics of the Magnetosphere [in Russian], Nauka, M., 1973.

2A. V. Gui'ermi, MHD Waves in the Plasma Environment of the Earth
[in Russian], Nauka, M., 1979.

3V. A. Troitskaya and A. V. Gul'el'mi, Usp. Fiz. Nauk 97, 453 (1969)
[Sov. Phys. Usp. 12, 195 (1969)].

4J. A. Jacobs, Geomagnetic Micropulsations, Springer-Verlag, N.Y.,
1970.

5A. Gul'el'mi, Space Sci. Rev. 16, 331 (1974).
6A. V. Gul'el'mi, Priroda, No. 4, 44 (1985).
7A. V. Gui'ermi and O. V. Bol'shakova, Geomagn. Aeron. 13, 535
(1973). [Geomagn. Aeron. USSR 13, 459 (1973)].

8C. T. Russell and B. K. Fleming, J. Geophys. Res. 81, 5882 (1976).
9A. Hasegawa and L. Chen, Space Sci. Rev. 16, 347 (1974).
'"D. J. Southwood, Space Sci. Rev. 16, 413 (1974).
"V. A. Troitskaya and A. V. Gul'el'mi, Space Sci. Rev. 7, 689 (1967).
12A. Nishida, Geomagnetic Diagosis of the Magnetosphere, Springer-Ver-

lag, N.Y., 1978 [Russ. transl., Mir, M., 1980].
"Diagnostics of the Magnetosphere and of the Medium near the Earth

Based on Observations of Geomagnetic Pulsations (Soviet and Foreign
Literature, 1963-1965). Bibliographic Index No. 23664 [in Russian],
GPNTB SO Akad. Nauk SSSR, Novosibirsk, 1975.

I4P. E. Krasnushkin and N. A. Yablochkin, Theory of the Propagation of
Ultralong Waves [in Russian], VTs Akad. Nauk SSSR, M., 1963.

694 Sov. Phys. Usp. 32 (8), August 1989 A. V. Gul'el'mi 694



15A. N. Tikhonov, DokJ. Akad. Nauk SSSR 73, 295 (1950).
I6L. Cagniard, Brevet d'invention francais Nr. 10, dem. 6 Oct. 1950, del.

28 Jan. 1953.
I7M. N. Berdichevskii, Electrical Exploration by the Method ofMagneto-

telluric Profiling [in Russian], Nedra, M., 1968.
I8J. R. Wait, Geo-eiectromagnetism, Academic Press, N.Y., 1982 [Russ.

transl., Mir. M., 1987].
I9D. N. Chetaev, Directional Analysis ofMagnetotelluric Observations [in

Russian], IFZ Adak. Nauk SSSR, M., 1985.
2"S. M. Rytov, Zh. Eksp. Teor. Fiz. 10, 180(1940) not translated prior to

vol. 28.
2 IA. V. Gul'el'mi, Izv. Akad. Nauk SSSR. Ser. Fiz. Zemli, No. 3, 95

(1984). [Izv. Acad. Sci. USSR Phys. Solid Earth 20(3), 245 (1984)].
"A. V. Gul'el'mi and M. B. Gokhberg, Izv. Akad. Nauk SSSR. Ser. Fiz.

Zemli, No. 11, 122 (1987). [Izv. Acad. Sci. USSR Phys. Solid Earth
23(11) (1987)].

"A. V. Gul'el'mi, V. F. Ruban, and N. N. Rusakov, Izv. Akad. Nauk
SSSR. Ser. Fiz. Zemli, No. 2, 33 (1989). [Izv. Acad. Sci. USSR Phys.
Solid Earth 25(2) (1989)].

24 A. V. Gul'el'mi, Geomagn. Aeron. 29, 370 (1989). [Geomagn. Aeron.
USSR 29 (1989)] .

"A. V. Gul'el'mi, M. B. Gokhberg, and V. F. Ruban, Dokl. Akad. Nauk
SSSR (1989) [Dokl. Acad. Sci. USSR Earth Sci. Sect. (1989)].

2"A. V. Gul'el'mi, Planet. Space Sci. 37, 1230 (1989).
27L. D. Landau and E. M. Lifshitz, Hydrodynamics [in Russian], Nauka,

M., 1988. [Engl. transl. of earlier edition Fluid Mechanics, Pergamon
Press, Oxford, 1959 and 1986],

2SH. Alfven and C.-G. Falthammer, Cosmical Electrodynamics, Oxford
Univ. Press, London, 1963 [Russ transl., Mir. M., 1967].

2gL. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Me-
dia, Pergamon, Oxford, 1984 [Russ. original, Nauka, M., 1982].

'"Yu. A. Kravtsov and Yu. I. Orlov, Geometric Optics of Inhomogeneous
Media [in Russian], Nauka, M., 1980.

"V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of
the Diffraction of Short Waves [in Russian], Nauka, M., 1972.

"R. B. Vaganov and V. Z. Katsenel'baum, Fundamentals of the Theory of
Diffraction [in Russian], Nauka, M., 1982.

"V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma, Per-
gamon, N.Y., 1971 [Russ. original, Nauka, M., 1967].

14A. V. Gul'el'mi, Pis'ma Z. Eksp. Teor. Fiz. 12, 35 (1970) [JETP Lett.
12,25 (1970)].

"A. V. Gul'el'mi, B. I. Klain, and A. S. Potapov, Planet. Space Sci. 23,
279 (1979).

3hA. V. Gul'el'mi, Geomagn. Aeron. 22, 427 (1982). [Geomagn. Aeron.
USSR 22, 354 (1982) ] .

"B. A. Tverskoi, Geomagn. Aeron. 7, 226 (1967). [Geomagn. Aeron.
USSR 7, 177 (1967)].

•'*T. Kitamura and J. A. Jacobs, Planet. Space Sci. 16, 863 (1968).
WA. V. Gul'el'mi, B. I. Klain, V. N. Repin, and A. R. Polyakov, in:

Research on Geomagnetism, Aeronomy, and Solar Physics [in Rus-
sian], Nauka, M., No. 66, 1983, p. 29.

4"I. S. Dmitrienko and V. A. Mazur, Geomagn. Aeron. 23, 279 (1983).
[Geomagn. Aeron. USSR 23, 220 (1983) ].

41 A. S. Leontovich, V. A. Mazur, and V. N. Senatorov, Zh. Eksp. Teor.
Fiz. 85, 141 (1983) [Sov. Phys. JETP 58, 83 (1983)] .

4-M. W. Witchalls, Planet. Space Sci. 20, 1817 (1972).
4'H. G. Booker and R. B. Dyce, Radio Sci. 69A, 463 (1965).
44A. V. Gurevich, Geomagn. Aeron. 19, 462 (1979). [Geomagn. Aeron.

USSR 19, 307 (1979)].
45H. Alfven and G. Arrhenius, Structure and Evolutionary History of the

Solar System, Reidel, Dordrecht, 1975 [Russ. transl., Mir, M., 1979].
4AA. V. Gurevich, Geomagn. Aeron. 11, 961 (1971). [Geomagn. Aeron.

USSR 11, 810 (1971)] .
47L. Tepley and R. K. Landshoff, J. Geophys. Res. 71, 1499 (1966).
4KJ. B. Keller and S. M. Papadakis (eds.), Wave Propagation and Under-

water Acoustics, Springer-Verlag, N.Y., 1977 [Russ. transl., Mir, M.,
1980].

4gA. V. Gul'el'mi and A. R. Polyakov, Geomagn. Aeron. 23, 341 (1983).
[Geomagn. Aeron. USSR 23, 281 (1983)].

5"V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetized Plasmas [ in
Russian], Nauka, M., 1970.

5 IJ. W. Dungey, Cosmic Electrodynamics, Cambridge Univ. Press, Cam-
bridge 1958 [Russ. transl., Atomizdat, M., 1961].

52A. B. Migdal and V. P. Krainov, Approximation Methods in Quantum
Mechanics, Benjamin, N.Y., 1969. [Russ. original, Nauka, M., 1966.]

"A. V. Timofeev, in: Voprosy Teorii plazmy, Atomizdat, M., Vol. 9,
1979, p. 205. [Reviews of Plasma Physics, Consultants Bureau, N.Y.,
Vol. 9, 1979, p. 265.]

54V. A. Mazur and A. B. Mikhailovskii, A. L. Frenkel', and I. G. Shukh-
man, in Voprosy teorii plazmy, Atomizdat, M., Vol. 9, 1979, p. 233.
[Reviews of Plasma Physics, Consultants Bureau, N.Y., Vol. 9,1979, p.
299].

"H. R. Radosky, Planet. Space Sci. 19, 1012 (1971).
™A. L. Krylov, A. E. Lifshitz, and E. N. Fedorov, Dokl. Akad. Nauk

SSSR 247, 1094 (1979) [Dokl. Acad. Sci. USSR Earth Sci. Sect. 247
(1979)].

"P. E. Krasnushkin, foreword to the Russ. transl., Mir, M., 1983 of the
book: P. Bhatnagar, Nonlinear Waves in One-Dimensional Dispersive
Systems, Oxford Univ. Press, London, 1981.

5*K. Yumoto and T. Saito, J. Geophys. Res. 88, 10041 (1983).
"A. V. Gul'el'mi and A. S. Potapov, in: Research on Geomagnetism,

Aeronomy, and Solar Physics [in Russian], Nauka, M., Vol. 70, 1984, p.
149.

MV. B. Gil'denburg, Zh. Eksp. Teor. Fiz. 45, 1978 (1963) [Sov. Phys.
JETP 18, 1359(1963)].

6IT. Watanabe, J. Geophys. Res. 70, 5839 (1965).
"R. L. Dowden and M. W. Emery, Planet. Space Sci. 13, 773 (1965).
"'A. V. Gul'el'mi, Pis'ma Zh. Eksp. Teor. Fiz. 13, 85 (1971) [JETP Lett.

13, 57 (1971)] .
MF. Z. Feygin and Yu. P. Kurchashov, J. Geomag. Geoelectr. 26, 539

(1975).
65S. V. Polyakov, V. O. Rapoport, and V. Yu. Trakhtengerts, Fiz. Plazmy

9,371 (1983) [Sov. J. Plasma Phys. 9, 216 (1983)].
"'W. Baumjohann and G. Haerendel, in: Solar Wind-Magnetosphere

Coupling, Y. Kamide and J. A. Slavin (editors), TERRAPUB, Tokyo,
1986, p. 415.

"A. V. Gul'el'mi, N. A. Zolotukhina, and I. P. Kharchenko, Geomagn.
Aeron. 28, 917 (1988). [Geomagn. Aeron. USSR 28 (1988)].

6*L. N. Baranskii, Yu. E. Borovkov, M. B. Gokhberg, and S. M. Krylov,
Izv. Akad. Nauk SSSR. Ser. Fiz. Zemli, No. 8, 1985, p. 74. [Izv. Acad.
Sci. USSR Phys. Solid Earth 21(8), 610 (1985)].

""L. N. Baranskii, Yu. E. Borovkov, M. B. Gokhberg, and S. M. Krylov,
Planet. Space Sci. 33, 1369 (1985).

™A. Best, S. M. Krylov, Yu. P. Kurchashov, D. S. Nikomarov, and V. A.
Pilipenko, Geomagn. Aeron. 26,980 (1986). [Geomagn. Aeron. USSR
26,829 (1986)].

71L. N. Baranskii, S. L. Belokrys, Yu. E. Borovkov, M. B. Gokhberg, K.
Grin, and E. N. Fedorov, Dokl. Akad. Nauk SSSR 299, 1347 (1988)
[Dokl. Acad. Sci. USSR Earth Sci. Sect. 299 (1988)].

72P. V. Bliokh, A. P. Nikolaenko, and Yu. F. Filippov, Global Electro-
magnetic Resonances in the Earth-Ionosphere Cavity [in Russian],
Naukova dumka, Kiev, 1977.

"I. Ohtsu, Proc. Res. Inst. Atmos. Nagoya Univ. 7, 58 (1960).
74G. P. Bregori and L. J. Lanzerotti, Rev. Geophys. Space Phys. 18, 203

(1980).
75A. G. Jones, Tectonophysics 90, 37 (1982).
7"K. Pajumpaa, Rept. Geophys., No. 15, 1 (1988).
77K.-H. Glassmeier, J. Geophys. 48, 127 (1980).
78A. V. Gul'el'mi, Izv. Akad. Nauk SSSR. Ser. Fiz. Zemli, No. 7, 112

(1986). [Izv. Acad. Sci. USSR Phys. Solid Earth 22, No. 7, 604
(1986)].

7"A. V. Gul'el'mi, Geomagn. Aeron. 26, 467 (1986). [Geomagn. Aeron.
USSR 26, 383 (1986)].

8"L. P. Gorbachev, Magn. Gidrodinam., No. 2, 3 (1987). [Magnetohy-
drodynamics USSR (1987)].

8' A. V. Gul'el'mi, M. B. Gokhberg, B.I. Klain and N. N. Rusakov, Dokl.
Akad. Nauk SSSR 293, 828 (1987) [Dokl. Acad. Sci. USSR Earth Sci.
Sect. 293 (1987)].

82L. I. Dorman, Questions of Magnetohydrodynamics and Plasma Dy-
namics [in Russian], Izd. Akad. Nauk LatvSSR, Riga, 1962, p. 63.

"L. Knopoff, J. Geophys. Res. 60, 441 (1955).
"4V. I. KeTlis-Borok and A. S. Monin, Izv. Akad. Nauk SSSR, Ser. Geo-

fiz., No. 11, 1529 (1959). [Bull. Acad. Sci. USSR Geophys. Ser. No. 11,
1089 (1959).]

"5L. D. Landau and E. M. Lifshitz, Theory of Elasticity [in Russian],
Nauka, M., 1987.

86F. Eleman, J. Geomagn. Geoeiectr. 18, 43 (1965).
87M. A. Sadovskii, G. A. Sobolev, and 1.1. Migunov, Dokl. Akad. Nauk

SSSR 244, 316 (1979) [Dokl. Acad. Sci. USSR Earth Sci. Sect. 244
(1979)].

HBO. V. Bol'shakova, L. I. Miroshnichenko and V. A. Troitskaya, Kosm.
Luchi, No. 1,69 (1978).

"*A. V. Gul"el'mi and K. G. Ivanov, Geomagn. Aeron. 24, 489 (1984).
[Geomagn. Aeron. USSR 24 (1984)].

'"'N. A. Zolotukhina, in: Research on Geomagnetism, Aeronomy, and So-
lar Physics [in Russian], Nauka, M., No. 66, 1983, p. 51.

91 B. K. Burton, R. L. McPherron, and C. T. Russell, J. Geophys. Res 80,
4204 (1975).

g2A. S. Potapov and T. N. Polyushkina, in Research on Geomagnetism,
Aeronomy, and Solar Physics [In Russian],Nauka, M., Vol. 85, 1988, p.
16.

"W. Baumjohann, in: Solar Wind-Magnetosphere Coupling, Y. Kamide
and J. A. Slavin (editors), TERRAPUB, Tokyo, 1986, p. 3.

"4Y. I. Feldstein, V. Yu. Pisarsky, N. M. Rudneva, and A. Grafe, Planet.

695 Sov. Phys. Usp. 32 (8), August 1989 A. V. Gul'el'mi 695



Space Sci. 32, 975 (1984).
95A. L. Kalisher, L. Z. Sizova, A. D. Shevnin, and V. A. Troitskaya,

Geomagn. Aeron. 25, 97 (1985). [Geomagn. Aeron. USSR 25, 76
(1985)].

96 A. V. Gul'el'mi, Geomagn. Aeron. 28, 272 (1988). [Geomagn. Aeron.
USSR28 (1988)].

97I. V. Kovalevskii, A. E. Levitin, and M. K. Fedoseeva, Geomagnetic
Variations and Currents in the Earth's Magnetosphere [in Russian],
IZMIRAN SSSR, M., 1986, p. 116.

98R. Gilmore, Catastrophe Theory for Scientists and Engineers, Wiley,
N.Y., 1981. [Russ. transl., Mir, M., 1984].

"A. V. Gul'el'mi, A. S. Potapov, and T. N. Polyushkina, in: Research on
Geomagnetism, Aeronomy, and Solar Physics [in Russian], Nauka, M.,
Vol. 85, 1988, p. 95.

IOOV. I. Afanas'eva and Yu. D. Kalinin, Geomagnetic Disturbances [in
Russian], Akad. Nauk SSSR, M., 1960, p. 5.

IOII. F. Kennel and H. E. Petchek, J. Geophys. Res. 71, 1 (1966).
I02S. M. Rytov, Introduction to Statistical Radiophysics [in Russian],

Nauka, M., Part I, 1976.
I03S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to

Statistical Radiophysics [in Russian], Nauka, M., Part II, 1978.
104L. I. Gudzenko, Irv. Vyssh. Uchelon. Zaved. Ser. Radiofiz. 5, 572

(1962). [Sov. Radiophys. 5 (1962).]
I05A. L. Kalisher, Geomagn. Aeron. 15, 952 (1975). [Geomagn. Aeron.

USSR 15, 684(1975)].
'""A. V. Gul'el'mi, B. I. Klaln, and A. R. Polyakov, Geomagn. Aeron. 23,

630 (1983). [Geomagn. Aeron. USSR 23, 510 (1983)].
I07A. V. Gul'el'mi, B. I. Klam, A. S. Potapov, A. R. Polyakov, in: Re-

search on Geomagnetism, Aeronomy, and Solar Physics [in Russian],
Nauka, M., No. 66, 1983, p. 38.

I01<A. L. Kalisher and A. R. Polyakov, Geomagn. Aeron. 24, 772 (1984).
[Geomagn. Aeron. USSR 24, 630 (1984)].

I09A. L. Kalisher and B. I. Klaln, Geomagn. Aeron. 26, 865 (1986).
[Geomagn. Aeron. USSR 26, 738 (1986)].

"°L. I. Gudzenko and V. E. Chertoprud, Astron. Zh. 39, 758 (1962)
[Sov. Astron. 6, 590(1962)].

"' A. V. GuPeFmi, A. L. Kalisher and T. B. Rusakova, Geomagn. Aeron.
28, 916 (1988). [Geomagn. Aeron. USSR 28 (1988)].

' I2A. V. GurePmi, A. L. Kalisher, and T. B. Rusakova, Geomagn. Aeron.
29, 302 (1989). [Geomagn. Aeron. USSR 29 (1989).]

"3A. S. Potapov and T. N. Polyushkina, in: Predicting the Evolution of
Natural Phenomena, I. P. Druzhinin and V. P. Kukushkin (eds.) [in
Russian], Nauka, Novosibirsk, 1982, p. 12.

114L. L. Van'yan, Electromagnetic Depth Sounding, Consultants Bureau,
N.Y., 1967 [Russ. original, Nedra, M., 1965.]

115M. N. Berdichevskii and M. S. Zhdanov, Interpreting Anomalies in the
Variable Electromagnetic Field of the Earth [in Russian], Nedra, M.,
1981. [ Revised and expanded English edition entitled Advanced Theo-
ry of Deep Geomagnetic Sounding. Elsevier, Amsterdam, 1984].

116V. I. Dmitriev and M. N. Berdichevskii, Geomagn. Aeron., No. 28, 5
(1982). , ^

"7B. Sh. Zinger and E. B. Fainberg, Electromagnetic Induction in Inho-
mogeneous Thin Layers [in Russian], IZMIRAN SSSR, M., 1985.

Translated by Dave Parsons

696 Sov. Phys. Usp. 32 (8), August 1989 A. V. Gurel'mi 696


