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A new variant of the Einstein-Podolsky-Rosen experiment is discussed which illustrates the
complementarity principle and the indeterminancy relations for the energy and the time of
creation of photons emitted as correlated pairs in the decay of a metastable state of an atom or in
parametric scattering of light. It is shown that it is not possible a priori to ascribe to such photons a
definite temporal structure; it acquires an operational meaning only after one of the photons of the
pair is recorded by a detector with a definite frequency characteristic. A simple interpretation of
the effect is possible by means of an advanced wave emitted by one of the detectors at the instant of

the photon being recorded.

INTRODUCTION

About 50 years ago Einstein, Podolsky, and Rosen
(EPR) analyzed a thought experiment' in which the coordi-
nate and momentum of a particle were measured without
any disturbance by the measuring device—in apparent con-
tradiction with the quantum mechanical uncertainty rela-
tion. Such experiments were later performed only in Bohm’s
variant,? when dichotomous variables are observed—the
projections of the spin of protons or photons.*~” There is still
great interest in such experiments because it is observed in
them that Bell’s inequalities are violated,” which precludes
the possibility of describing them in terms of local hidden
variables. In addition, the possibility of performing EPR ex-
periments for observables with a continuous spectrum is also
obviously of interest. In Ref. 10 it was shown that such an
experiment, in which the transverse components of the mo-
mentum and coordinate of a photon are measured, can be
performed with the help of parametric scattering of light.®~'®

In this paper an analogous possible experiment is dis-
cussed for energy-time variables (a brief description is given
in Ref. 11). The main feature of this variant is that in quan-
tum theory time is not an operator quantity (the uncertainty
relation for energy and time is discussed in Ref. 17). Here
the object being measured is a wide-band optical field con-
taining two photons. Such a field can be obtained with the
help of two-photon, noncascade (without a real intermedi-
ate level) transitions in atomic beams® or with the help of
parametric scattering (Fig. 1). Although the latter method
is much more efficient and simpler than the first method, in
what follows the more familiar atomic source will be studied
(the theoretical description of this experiment, given in Ap-
pendix A, is essentially identical to the phenomenological
theory of parametric scattering'®). We note that several oth-
er instructive paradoxes are associated with noncascade,
two-photon transitions'*: the possibility of quantum ampli-
fication in an equilibrium medium, breakdown of the fluctu-
ation-dissipation theorem, and violtaion of Kirchhoff ’s law.

The best studied (as far back as the 1930s) example of a
source of correlated pairs of photons (“‘biphotons”) with a
wide spectrum is the transition of a hydrogen atom from the
metastable 28 state into the ground 1§ state (4,~0.12 um,
7~0.12 sec), which gives a continuous spectrum from ra-
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dio frequencies to the UV range (see Ref. 5). In the qualita-
tive description of such transitions it is usually pointed out
that both photons are emitted simultaneously and that they
have energies #iw and #i, where o is an arbitrary frequency
in the band 0 — w, and ® = w, — w. It is obvious at the out-
set, however, that these two properties—simultaneity of cre-
ation and definiteness of the energy—are incompatible. It
will be shown below that the quantities actually measured
must satisfy the uncertainty relation in the form Aw-At2 1,
where Aw is the resolution of the spectral instrument, mea-
suring the frequency and thereby the energy of the photons,
and At is the average difference of the reduced moments at
which the photons are recorded in the two detectors.

1. Experimental procedure. In the proposed experiment
the parameters of the photons are measured with the help of
two photodetectors, in front of which resonance filters with
regulatable central frequencies w,, (» = 1 and 2 is the num-
ber of the detector) and transmission bands 2y, €w, are
placed (Fig. 2). The detectors are assumed to have zero time
constants (for this their characteristic band must be much
greater than y,, while the duration and fluctuations of the
delay of the output current pulse must be much les than 1/
V).

The experiment consists of repeatedly preparing an
atom in the metastable state at the time ¢ =0 and record-
ing the moments at which the pulses 7 {” and ¢ " appear (/ is
the number of the test). The cases when only one detector is
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FIG. 1. The two basic methods for preparing a two-photon field with a
wide spectrum: with the help of two-quantum transitions in atoms
(® = wy — @) (a) and with the help of three-photon parametric processes
in piezoelectric crystals (b).

© 1989 American Institute of Physics 555

) I



Iy, A A R 5

0 ((wn) | >

% anxy wetyy

FIG. 2. Layout of an experiment demonstrating the EPR paradox. The
atom 4 emits two photons in opposite directions; the photons are recorded
at times ¢, by zero-time-constant detectors D, , in front of which reso-
nance filters F,, with frequencies @, and transmission bands 2y, (n =1
and 2) are placed.

triggered or no detector is triggered are ignored. This proce-
dure (with fixed w, and 7, ) gives some set of pairs of
numbers ¢ {” forming two random variables with values be-
tween zero and infinity. Most “reduced” values
(£t —r,/c, where r, is the distance to the detectors)
will not, however, exceed the lifetime 7, of the metastable
state. By performing such series of experiments with differ-
ent values of w,, and ¥, it is possible to determine the de-
pendence of the distribution p(¢,, £,) on the parameters of
the filters (we note that the operational meaning of the sym-
bolsw,, 7., and ¢, is substantially different: the parameters
of the filters are established by the experimenter arbitrarily,
while the moments of the reading are random quantities).
2. The quantum theory. The calculation of the correla-
tion function of the intensities for a two-photon field, per-
formed in Appendix A, shows that the joint distribution of
the reduced moments of detection of the photons in some
approximations depends only on the relative delay
T= — Iy
[z} (r)e_zvlT—f—G (—1) e2721:
Q2 (Y1 v0)? ’ (D

D (t) = (2ry,y,)2

where Q=w, + w, — w, (this distribution is not normal-
ized).

We shall study two asymptotic forms of the function
(1). In the case of nonselective detection (¥, — o« )

p(t) =8 () (2)

(insignificant constants are dropped). This result agrees
with the customary assertion that in noncascade two-photon
transitions the photons are emitted simultaneously. Of
course, in a more accurate calculation the & function will
have a finite width of the order of the characteristic atomic
time 1/w,. In addition, in a real experiment the observed
“simultaneity” will be limited by the resolution time of the
detectors, which is now of the order of 1 nsec (see, however,
Ref. 9).

In the opposite case of highly selective detection, when
7. =0, (1) gives the uniform distribution

p (1) »6(Q), (3)

i.e., now the energies of the detected photons are correlated.
Thus the traditional ideas about two a priori properties of
two-photon emission correspond to two different methods of
observation: with ¥, = 0 and with ¢, = «. In the interme-
diate cases, however, according to (1) one cannot assign to
the detected photons either a definite energy or a definite
moment of creation.

We note that in the usual formulation of the experiment
(see Ref. 5) the time resolution of the detectors is much
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greater than the inverse bandwidth of the detected radiation;
in addition, the probability of a coincidence—the appear-
ance of two counts in one experiment at any moment in
time—is proportional to the integral of p(7):

W,

{r@dr={ @ @rdo
—o0 0

p

o PPNV (N Ye) 50 dmd (4)
QF (v 7222 A 78l N

(here, as in the derivation of (1), it was assumed that the
frequency characteristic of the filters 1, (@) has the form
Yo/ (@, — —iy,)).

Next we shall study the possible interpretations of for-
mula (1).

3. I's the quantum description of reality complete? This
question was singled out in a heading of the famous paper by
Einstein, Podolsky, and Rosen. We shall try to apply the
logic of the EPR paper to our experiment.

In the limiting cases (2) and (3), studied above, one of
the detectors is actually superfluous, since it does not give
any new information. Indeed, by observing a pulse in one
wide-band detector one can be sure, according to (2), that at
the corresponding moment in time the atom also emitted the
second photon, i.e., the nonselective detector measures in-
directly, without any perturbation, the moment at which the
second, unabsorbed, twin photon is created.

On the other hand the appearance of a count in one
narrow-band detector, tuned to some frequency w,, means,
according to (3), that a second photon with definite fre-
quency @, was created at an indefinite moment in time in the
same experiment, i.e., the selective detector performs an un-
perturbed measurement of the energy of the second photon.

Thus by varying the parameters of only the detectors
one can choose to measure without perturbation either the
energy or the creation time of photons created identically.
This, obviously, means that the photons are characterized a
priori by both these qualities simultaneously. But this con-
clusion contradicts the uncertainty relation of the quantum
theory; therefore the quantum theory does not give a com-
plete description of reality, and it can, in principle, be sup-
plemented by some ‘“hidden variables,” which determine a
priori all observed properties of the photons.

From the Copenhagen viewpoint this logical chain con-
tains a weak link—the word obviously singled out above. The
formal error made in Ref. 1 lies in assigning an individual
wave function to a separate particle (in a pair of correlated
particles), while it can strictly be characterized only by a
“mixture” of wave functions, i.e., the density matrix. The
uncertainty relation, however, pertains only to systems in
the “pure” state, described by one wave function. The im-
possibility of describing EPR experiments (for polarization-
correlated photons) on the basis of a wide class of theories
with hidden parameters was later proved experimentally,*”’
i.e., instead of supplementing quantum mechanics with hid-
den variables the EPR paper by an irony of history precluded
this possibility.

4. Semiclassical model of photons. Bell’s inequalities®
are apparently not applicable to the experiment under dis-
cussion, and the experiment explicitly contradicts only one
concrete model, which, however, is widely employed to
study quantum optical effects.” In this model the photons
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are described by classical wave packets or trains with inte-
grated energy #i,where o is some average frequency (a qua-
simonochromatic field is usually studied). Stochasticity is
introduced purely classically—it is assumed that there exists
an ensemble of packets with different parameters: the time
and direction of emission, the shape of the envelope, the po-
larization, etc. The packet propagates, is diffracted, and par-
ticipates in interference (according to Dirac—only “with
itself) according to classical electrodynamics (see, for ex-
ample, Refs. 15 and 18).

The specific quantum properties are introduced essen-
tially only in order to describe the process of detection in the
form of a “reduction postulate”: when a photon is observed
at the pointr, ¢ the field in all space vanishes instantaneously
(so that it cannot be observed at two points), and this event
always occurs in a random, unpredictable manner with a
probability proportional to the local energy of the field atr, ¢
(averaged over the optical period of the oscillations). It
should be noted that this postulate pertains only to existing
“energy”’ photodetectors which annihilate the photon; in the
last few years the possibility of “unperturbed” measure-
ments of the field in which the energy or number of photons
is conserved has been under discussion.'® With the help of
such methods it is in principle possible to observe even the
“track” of one photon—analogously to the track of a
charged particle in a Wilson cloud chamber (of course, the
trajectory of the photon will be rectilinear only in the ap-
proximation of geometric optics: the detection of a photon
by a detector with transverse size ¢ ““smears” the further
path of the photon over the diffraction angle a/A.

The longitudinal and transverse extent of a photon
packet are only statistical quantities—the coherence length
and the radius, measured in interferometers with the experi-
ment repeated many times under macroscopically identical
conditions. These parameters are determined theoretically
in terms of the first-order correlation function of the
field.'*'5*® This model give a convenient and apparently
adequate description of all known single-photon effects, ob-
served with the help of energy photodetectors, including the
famous double-slit experiment demonstrating the “wave-
particle” duality.

In the case of two-photon experiments two packets with
defininte parameters must obviously be studied in each test.
We shall show that the numerator and denominator of for-
mula (1) can be described separately in an elementary fash-
ion in terms of photon packets. We first assume that an atom
emits simultaneously two short § pulses (Fig. 3). Passing
through resonance filters they are transformed into quasi-
monochromatic packets with exponential envelopes. As-
suming that the probabilities p, (¢, ) that the photons are
recorded by the detectors are proportional to the intensities
6(t,)exp( — 2y,t,), it is easy to show that the probability
density for the difference of the detection times

20

p(‘l:):S Py (ty) ps (t;—1) de,» (5)
0
has the form of the numerator in (1). If, however, it is as-

sumed (as is usually done) that in each experiment the atom
emits two monochromatic waves with random correlated
frequencies w and & = w, — o, then the intensities I, (w) at
the outputs of the resonance filters have the form |7,(w)|?
and |7,(@) )% Let the probability for the emission of a pair be
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FIG. 3. Explanation of the dependence of the probability for observing a
pair of photons p at the moment of detection ¢, as a result of impact
excitation of filters by photon particles.

constant in the interval 0 — w,; the probability for detecting
the pair is then proportional to the integral of the product
I,(w)I,(w) over this interval. Letting the limits of integra-
tion pass to + oo we obtain the denominator of the formula
(1) [compare (4)].

Atthe same time it is hardly possible to derive the entire
quantum formula (1) with the help of solely the model of
classical packets with random parameters. Thus if it is as-
sumed that an atom emits packets of two types—short and
long, then the distribution p(¢,,t,) will acquire a “pedestal”
which contradicts (1). For example, in the case ¥, = Oshort
pulses will give at the output of the filters semiinfinite sinu-
soids; this will lead to a uniform distribution that is indepen-
dent of ¢, and w,. Long monochromatic pulses in the case
¥, = oo will give the same result. An analogous ““pedestal”
also appears in the classical description of interference of
intensities®'>?! and polarization-correlation of intensities.’
Thus it can be assumed that the distribution (1) reflects the
duality of photons: the numerator corresponds to photons as
particles and the denominator corresponds to photons as
waves.

We shall study the correspondence between the packet
model and quantum field theory. The single-photon state of
a field with definite polarization and direction of propaga-
tion is described by the wave function

150 = { g (@) 1yee-t da; (6)
0

here |1),, is the state of one mode with definite energy #iw.
We note that (6) describes a state with a definite number of
photons (equal to one) and with indefinite energy. (The
reverse situation—the state with definite energy and indefin-
ite number of photons—is also possible.'*) In the semiclassi-
cal description this state corresponds to a packet with a defi-
nite time dependence, determined by the Fourier transform
of the function g{w). The function g(o) = §(w — »,) cor-
responds to a monochromatic wave, g(w) = const corre-
sponds to a pulse of the type §(t), and the intermediate cases
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correspond to a quasimonochromatic wave having a spec-
trum of width Aw and localized in time with uncertainty
At~1/Aw, following from the properties of the Fourier
transform. When in (6) summation over different directions
of propagation of plane waves is taken into account a definite
spatial structure equivalent to a classical packet in the trans-
verse direction is added.
In the case of a two-photon field a wave function of the
type
0
[£)®) = e~ oot S f(@)11ol1)~ dos (7N
0

must be employed instead of (6) (here we have in mind the
limit ¢> 7, when the atom is known to have passed into the
ground state transferring energy #iw, to the field). Now one
can no longer assign an individual time structure to the pho-
tons: the function f(w) characterizes the general properties
of both photons. In the general case it is analogously impos-
sible to assign to the photons an individual polarization,*”’
spatial structure,'’ and phase of oscillations. '

5. Copenhagen interpretation. It is still nonetheless pos-
sible to assign to a separate photon in some formal sense an
individual wave function and a classical structure—but only
after a count appears in one of the detectors, for example, in
detector number 1. In so doing, according to the Copenha-
gen interpretation, partial reduction of the total wave func-
tion of the system occurs, i.e., the objective information
about the possible results of other measurements changes:
now it may be assumed that the atom is known to be in the
ground state, while depending on ¥, the second photonisin a
state either with a definite time of creation or with a definite
energy or in some intermediate state.

Thus in the Copenhagen interpretation the term mea-
surement sometimes can also mean preparation of a system
with a known wave function. In so doing we transfer (con-
ceptually) detector 1 from the measurement part of the ex-
perimental apparatus into the preparatory part. Detectors
with ¥, =0 and ¥, = « prepare photons with different
wave functions, and therefore there is nothing surprising in
the fact that Aw? At 5 €1 follows from (2) and (3). It may
be assumed that a narrow-band detector prepares. photon
waves while a wide-bnad detector prepares photon particles.
The initial paradox of EPR arises only if the uncertainties
Aw and At are referred to one and the same particle (or to
particles in the same state).

At the same time for fixed ¥, the formula (1) satisfies
the uncertainty relation, if Aw and At are interpreted as the
width of the maximum of (1) with respect to w, and ¢, (or,
equivalently, w, and ¢,), respectively. We shall determine
this width at half maximum; then

Aw =2y, + 27,
and
2y, 27,
so that

Ao-At=1In2-(e+&1)2>41n2, e=(y,/y,)¥2 (8)

We recall that we are talking only about the interpreta-
tion of the quantum formalism with the help of a system of
some convenient terms and concepts. The distribution (1) is

558 Sov. Phys. Usp. 32 (6), June 1989

the only consequence of the rigorous quantum theory that
can be checked experimentally (with the help of the proce-
dure described above). For this reason when we talk about
reduction (of a two-photon state into a one-photon state) or
about preparation of photons, in an experiment this means
only that the conditional probability p(¢,|¢,) is measured,
i.e., only a subensemble of tests with some fixed ¢, w,, and ¥,
is taken into account. In the theory, however, these terms
mean that it is possible to determine some one-photon state
which describes the same subensemble (see Ref. 10 for a
discussion of an example close to our problem). This ap-
proach has the advantage that the one-photon state (unlike
the two-photon state) admits a convenient ‘“‘semiclassical”
representation in the form of a packet.

In summarizing it can be asserted that the photon be-
longing to an n-photon field does not have a priori (prior to
the detection of n — 1 photons) individual space-time struc-
ture and polarization (we exclude trivial cases described by a
factorizable wave function or density matrix and the corre-
sponding classical mixture of n single-photon states). In ap-
plication to the spatial coordinates of the electrons (or any
particles with finite rest mass) this approach appears trivial;
after all it is emphasized already at the beginning of text-
books on quantum mechanics that an n-particle wave func-
tion is defined in an abstract 3#-dimensional space. In the
case of the electromagnetic field, however, the following
three factors, which promote wide dissemination of the se-
miclasical “heresy,” come into play: 1) there is a conviction,
instilled in school, that optical or radio waves with a definite
structure actually exist in the surrounding space; 2) it is
possible to give a coordinate representation for the wave
function of a field?; and, 3) two-photon effects have, until
recently, been unfamiliar.

Thus on the basis of the Copenhagen interpretation it is
operationally meaningless to ask what the atom actually
emits in a given experiment and what the structure and po-
larization of the field are. We know how (for the present?) to
calculate and measure only the parameters and indications
of some macroscopic instruments starting from the param-
eters and indications of other, “preparatory” devices. Ac-
cording to Bohr’s complementarity principle, in our case we
cannot assign a priori—prior to interaction with a classical
measurement device—any attributes to a quantum object;
thus the concepts of the coordinate and momentum of a par-
ticle characterize the device and the method of measurement
and not the properties of the particle ( Fok proposed a more
apt term—the principle of relativity with respect to observa-
tion devices™).

6. The effective field and advanced waves. The classical
interpretation of the distribution (1) in terms of photon
packets is still nonetheless possible. For this it is “‘only” nec-
essary to allow the photons to propagate backwards in time:
from one of the detectors (number 1) back to the atom and
then to the detector 2.

The intensity correlation function (1), according to
(A12), can be represented as the squared modulus of some
complex function:

T
plty. t)=|F|?, F~ S Dy Dygeionta 4ty (9

0

Here D,, are functions describing the propagation of pho-
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FIG. 4. Explanation of the dependence of the probability for observing a pair of photons on the moments of detection ¢, and the parameters of the filters o
¥ with the help of the advanced field, growing with the time constant — 1/y,, and the effective field, containing growing and decaying parts.

tons from the point of emission ry, ¢, to the point of detection
r,, t, (or vice versa) taking into account the action of the
filters (see Appendix A).

Assume that the dependence of the conditional proba-
bility of a reading at detector 2 on ¢, for some fixed value of ¢,
is being measured. According to (9) and the postulate of
detection the function F(¢,) plays the role of an effective
field, whose intensity at the point r,, #, determines the proba-
bility for a reading at detector 2. We shall study the structure
of this field. The function D, describes both the propagation
of the usual, retarded field from r,to r, and the propagation
of the advanced field from r, to ry, so that with the product
D,,D,,wecan associate the pathr, -r,—r, (seeRef. 10fora
more detailed discussion). The integration in (9) in the ap-
proximation 7 = « is a Fourier transform, as a result of
which each component o of the advanced field generates the
component @ =w, — o of the effective field, i.e., the frequen-
cy subtraction effect, well-known in nonlinear optics, occurs
(the analogous transformation can be observed in reality if
the atom and the field are in coherent states; unlike the well-
known incoherent spontaneously induced emission'*'* here
the incident and scattered fields have definite phases).

Thus, according to (9), to determine the time structure
of F(t,) of the photon 2 it can be assumed that at the time ¢,
the detector 1 emits an advanced wave in the form of a short
& pulse (Fig. 4), which is converted by the filter 1 into a
packet with an average frequency w, and an envelope grow-
ing exponentially with the time constant — 1y,. Under the
action of this packet the atom emits a retarded packet of the
same shape but with the “conjugate’ carrying frequency @,
which is what gives the function 6(7)exp( — 2y,7) in (1).
On passing through the filter 2 the effective field undergoes
minimum attenuatioin at resonance (@, = @), which is de-
scribed by the denominator of (1). Finally, the function
8( — 7)exp(2y,7) in (1) is explained by impact excitation
of the characteristic oscillations of the filter 2 accompanying
the passage of the sharp trailing edge of the effective field.
The complete structure of the effective field F(t,) taking
into account the “carrying” frequencies is shown in Fig. 4.

Calculating F(7) according to (A16) gives the follow-
ing simple result for its Fourier transform;

ViV

(01— 0 —ivy) (@3 — 0+ i)

v (10)

F (0) =, (0) My (0) = —

(in comparing with Fig. 4 the indices 1 and 2 must be inter-
changed). This function characteristically has poles in both
the upper and lower complex frequency half-planes, so that
F(7) does not satisfy the causality principle. If one filter is
absent (¥, = «), then F(7) is simply a function of the re-
sponse of the other filter. From (10) we find (in the approxi-
mation @y, 7= w0 ):
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F(1)= S F (o) e~ do

8 (%) exp [(— iy —y1) T1+8 (—T) exp [(— i@y +75) T]

=27,V — Qi (v1-57)

(11)

(here the factor exp( — iwgyt,), ensuring that Fis symmetric
in the indices 1 and 2, has been dropped). We note that the
function F(7), more precisely the convolution with itself,
can actually be observed—with subpicosecond resolution—
with the help of the interference method.”*"!

Thus by admitting backward propagation of the signal
from one of the detectors to the emitter it is possible to ex-
plain in an elementary fashion the distribution (1) by
successive passage [see (10)] of one packet through both
channels (taking into account the nonlinear scattering of the
advanced field by the excited atom).

7. Action at a distance? In interpreting the formula (1)
in terms of reduction or the effective field there naturally
arises the question of whether or not superluminal transmis-
sion of information is possible [this problem was discussed
extensively in connectin with polarization EPR experiments
(see Refs. 24-26)].

By varying the parameters of, for example, filter 1—the
frequency @, or the bandwidth y,—it is obviously possible to
modulate the frequency or duration of the pulses of the effec-
tive field F(#,). If it is acknowledged, following the Copen-
hagen interpretation, that on emission photons do not have a
definite structure and photon 2 acquires structure only at the
moment of detection in the detector 1, then an instantaneous
change of, for example, ¥, should instantaneously affect the
longitudinal extent of the photon 2, no matter how far away
itis at the time. The interval between the points of detection
of the photons can be easily made space-like (even taking
into account the delay in the filters) by increasing the dis-
tance between the detectors. (We note that in the case of a
parametric source the photons are strongly correlated with
respect to the directions of propagaton, so that the detector 2
can certainly overlap each photon whose twin is detected by
the detector 1.) Thus information about the change in y,
should propagate with superluminal velocity, and this con-
tradicts the special theory of relativity.

This paradox is resolved by the fact that no method
exists for measuring the extent (just like the a priori polar-
ization®*) of one photon (this assertion pertains only to de-
tectors that annihilate photons; in principle, it is possible to
detect a photon without perturbing its energy,'® but in this
case the formula (1) is not applicable and a special analysis
is required). It is tempting to employ a quantum amplifier to
“clone” photons,?® but the characteristic noise of the ampli-
fier makes this method useless.”®
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If, on the other hand, the moment of emission of a given
pair ¢, and the distance r, are known, then by observing at
some moment ¢ the reading in the wide-band detector 2 it is
possible to draw a conclusion with some degree of reliability
about the extent of the photon 2, hardly much greater than
t—t,— (ry/c). However f, is a random, unpredictable
quantity, which is unknown to observer 2. It can be evaluat-
ed from 7, r|, and y,, but transmission of this information to
the observer 2 requires an auxiliary communication channel,
which immediately undermines the idea of a superluminal
telegraph. In other words, the starting formula (1) itself is
predicated on comparison of the indications of both detec-
tors with the help of standad methods of communication.
Attempts are sometimes made to resolve such paradoxes in
quantum mechanics using terms of the type “noninforma-
tive action at a distance,” which obviously do not contain
anything new compared with the term “‘reduction of the
wave function.”

Quantum correlation, however, can still be employed
for communication, but not superluminal communication. '
We shall employ frequency modulation. We place in the
path of the photon 2 a dispersive prism and two detectors 2’
and 2", recording photons with frequency w; and w%. But
the appearance of a count, for example, in the detector 2’ still
does not permit asserting that a definite filter with frequency
@, — @} has been placed in front of the detector 1, for after
all the photon 1 with this frequency could have been ab-
sorbed by any filter 1. This difficulty can be overcome by
placing in the path of the photon 2 an optical shutter which
opens only when a count appears in the detector 1. The shut-
ter eliminates the “superfluous” photons 2 (i.e., it replaces
the coincidence scheme), but in the process the interval be-
tween the transmitter and the detector becomes time-like.

CONCLUSIONS

Thus wide-band two-photon radiation, formed when an
atom in a metastable state decays (or when pumping pho-
tons in matter decay owing to macroscopic nonlinearity)
enables the realization of a variant of the EPR experiment in
which the field does not have a priori a definite temporal
structure and there is a complementarity between the ob-
served energy of the photon and its localization in time. The
form (8) of the uncertainty relation, unlike many others,
contains directly only the measured parameters. The duality
of the photons is clearly manifested in the structure of the
formula (1), whose numerator is characteristic for particles
while the denominator is characteristic for waves. Unlike the
traditional two-slit experiment, here the “naive” semiclassi-
cal model with photon packet and the detection postulate is
rejected (the possibility of unifying these two characteristic
quantum experiments—the two-slit and EPR type experi-
ments—was examined in Ref. 12).

The foregoing graphic interpretation with the help of
advanced and effective fields could also be useful for study-
ing other two-photon experiments, including polarization*~’
and interference,”®'>?” as well as experiments associated
with the spatial localization of photons.'® This interpreta-
tion predicts, for example, the existence of quantum beats in
noncascade two-photon transitions: when a metastable level
is split by an amount %) the distribution (1) in the case
7. > should have the form 6 (7) (1 + cos({2¢,)) (compare
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the beats owing to splitting of the intermediate level in cas-
cade transitions, observed in Ref. 28).

The experiment discussed above, with verification of
the distribution (1), is fully realizable. Of course, such an
experiment will not lead to anything unexpected, and it is
interesting only as a graphic illustration of the most para-
doxical aspect of the quantum theory. We offer in connec-
tion with this the following statement by Jaynes®: “I am
convinced that many who defend the Copenhagen interpre-
tation most fervently do so only because they never thought
deeply enough to realize its full implications.”

I am grateful to V. B. Braginskil and Yu. I. Vorontsov
for fruitful discussions.

APPENDIX A.INTENSITY CORRELATION IN THE TWO-
PHOTON FIELD TAKING FILTERING INTO ACCOUNT

The probability of detecting two photons at the points
x, and x, is proportional to the normal (normally ordered)

intensity correlation function®”:

Pie=C0|EYVEE Y ELY |0y (A1)

here E;;,, =E (r,,,7, ) is the field at the point x,, (for now
we assume that ¢, > ¢,), the index H corresponds to the Hei-
senberg representation, and the averaging is performed over
the intial state |0) = |b )|vac) (b1is the index of the metasta-
ble state of the atom). The transformation to the interaction
representation is performed by the unitary operator S:
Ey () =S T (1)E(£)S(2) (see, for example, Ref. 14).

Let the interaction occur only in the bounded time in-
terval 0 — T (T can be determined, for example, by the time
of flight of the atom through the “field of view” of the detec-
tors; in the case of parametric scattering 7Tis the duration of
the pumping pulse), and then for ¢ > 7" the operator S does
not depend on the time. In this case S(¢,)S * (¢,) = 1,sothat

(t1,.>T). (A2)

Here the operators E{*’ and E{*’ (as well as
E{=>, E{7’)commute, sothatp,, = p,, and the restriction
t, > t, can be dropped.

The two-photon emission is described by second-order
perturbation theory (we assume that T<7), so thatin (A2)

Pra=(O|S*ESES B ES |0y

T to
§=50 = @n) { iVt § dov ). (A3)

0 v}

The operator S must transform thesstate |b ) [vac) into |a) |2)
(where |2) is a two-photon state), so that in (A3) in the
dipole approximation

v (ZO) =—d (to) Er(»_’ = E Gym (to) damEé_)v
" (A4)
V)= - S dwo,,,d,,E o exp [ (0mp + 0) 8],
\]
Where Opn = |m>(n|’ Opn (t) = Um"el'w,,,,,l, Tum T np

=0,,0,,., and E, is the Fourier transform of E,. Now
(A3) assumes the form
T

8 = ik~ S dtg0ap (o) D) dgmEL?
¢ m

X S do d,E_uet (0, + 0)™ (A5S)
b
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Let us assume that the spectrum of the detected field is
restricted to the region w,/2 + A, and A <€ |w,,, |; then in the
denominator of (A5)

@ ©
Gmp + 0 R Oy —}—T(:(oma——go-. (A6)

In addition

T

F
S@ = (2ih) ioabs dtge~ 0t B ES,
{

(A7)

where we have introduced the tensor

Rop=—2k"1 2 444 (a)mb —I"%)-i )

m

which we shall assume is real (a,f = x,y,z). We note that
the formula (A7) is equivalent to using the following effec-
tive “‘dispersion-free”” Hamiltonian''

Ver = 0o, BB +hee. (A8)
determining S ' to first order in x.
We substitute (A7) into (A2) (to simplify the problem

we ignore the tensor nature of x):

T
2 3 ,_
pam (%) o
0

X (Vac]E(()J:“)ZE(()E({)E(Q')E(1+)E%')2]\'ac). (A9)

1t is easy to verify that the correlation function in (A9) and

therefore p,, can be factored: p,, = | F,|*. Here the function
T

Fpy=Fp=- S digeiots (vac | EYVETVE [vac), (A10)
¢

was introduced; it is the “‘probability amplitude” or the “‘ef-
fective field.”

We reorder the operators in (A10) into normal order
with the help of the commutator

[ES, E{7)=—ihD,y=1ihD§,. (ALD)
Since E |, "’ |vac) =0, we can set in (A10)
E(+)E( )2 ___ [E(+) E( )2] —_— _thDiﬂ
multiplying this equality on the left by E, gives
— 2#°D,,D,,, so that (A10) assumes the form
T
Fp= —hx S dtge-ioetoD, Dy, (A12)

0

Thus the effective field is essentially the Fourier transform
(at the frequency w,) of the function D,,D,,, truncated for
to<Oandt;>T.

Representing E‘*’ in (Al1l) as a sum of photon cre-
ation and annihilation operators gives the spectral distribu-
tion of the function D :

(2]

w=1(2m)7 S A3k, exp [i (kryy— Opty)], (A13)
where o, = clkl|, r g =1, — 1y, 1, = £, — £, (the analogous
expression for D, is obtained by interchanging the indices 1
and 2). Integrating over directions gives
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Wy
D,=4, S domn, (») exp [—ia) ( tyo—
0

2)].

where A, = 0! /2mc*r g, i = |T'yo|. Here the term with the
phase w[t,, + (r,,/c)] was dropped (since it describes the
propagation of the retarded field from r| tor,, which contra-
dicts the condition 7, > T>¢,) and the spectrum has been
limited by the transition frequency ®,,. In addition, the sub-
stitution o’ —» w17, (w) was made; here 7, (@) is the transfer
factor of the filter in channel 1 and w, is the central frequen-
cy of this filter. This phenomenological description of the
filtering process is admissible for calculating the normal cor-
relation functions of the field (see Appendix B).

Setting the limits of integration in (A 12) equal to infin-
ity gives, substituting (A14),

Fpp=hnd,Age=0osF (1), T=t,—t,, (A15)
F()y= S don, () N, (0y— ) e~ et (A16)

¢
(the substitution ¢,r,/c—t, was made). Let

9, =y, (@, —o—iy,) "', where w,>®,>¥, >0, and
then the formulas (10) and (11) follow from (A16). Final-
ly, from (11) we obtain the expression (1) for
p(r)=|F(r)|* (it was assumed that 8(x)6(x) = 6(x) and
0(x)0(—x)=0).

We shall explain the physical meaning of the function
D . With the help of (A11) we find

\E EO)V]C (EH)E( )>Vd(‘, ihDioy (A17)

i.e., D, determines the correlation function of the free field
(antinormal function) in the vacuum state (‘‘zero fluctu-
ations”). Furthermore, the operators in the interaction rep-
resentation E(*’ satisfy the homogeneous wave equation
OE‘*’ =0, sothat D ,and therefore F, (with 5, = 1) are
also the solution of this equation ( this follows easily from the
spectral representation (A13). Now assume that a clasical
source of the field with a given time dependence is present in
the vicinity of the point r,. We shall use for simplicity the
“dipole” interaction Hamiltonian — d(¢)E(r,?) (thisisad-
missible in the case of a quasimonochromatic source—see,
for example, Ref. 15) and the scalar description; then to first
order in d

SO (1)) = — (ih)t S d (1) E (v. 1) dt,. (A18)
0

Setting S = 1 4+ S'" gives the field in the Heisenberg repre-
sentation (i.e., taking into account the source) at the time ¢,
and at the point r, of the wave zone:

1y

= E{PD (B, s» (1) = E{7 - gd(to) 10 Aty

1)

EL) =
(A19)

It is easy to see that the next corrections equal zero (since d
and D are not operators). The hermitian conjugate equality
expresses E §,;’ in terms of D% = — D, and therefore the
total field E,,, = E{,}’ + E;;’ is determined analogously
to (A19) interms of 2Re D\, = /[ E|,E,}/#. With the help of
A13itcanbeshown® that 2Re D, can be expressed in terms
of the second derivatives of the function
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Dy(r, = [6 (t—2)—8(t+=) ], (A20)
which is called the Jordan-Pauli propagator (here r = r,,,
t = ty,). Thus the hermitian free-field operators at the points
x,X, do not commute only if these points can be connected
by a light signal.

We emphasize that the sign of the difference ¢, — t,=t¢
in the formulas (A18)—(A20) can be arbitrary: they associ-
ate with d(¢,) both the future (z>0) and the past (¢ <0)
field. If, however, based on physical considerations the func-
tion D, in (A19) is multiplied by €(¢), then the equivalence
of the future and past is destroyed. In this case the upper
limit of integration in (A19) can be replaced by + <, so
that the product D,,8(t) will be the Green’s function (“‘re-
tarded”) for the positive-frequency field E {;"’. Thus the
factor 8(¢) as well as 8( — ¢) transforms the solution of the
homogeneous wave equation into the solution of the inho-
mogeneous wave equation with the function 5§*(x) on the
right side. We note that a combination of the form
D,,6(t) + D,,0( — t)—the causal or Feynman Green’s
function (propagator)—is often employed.

APPENDIX B. PHENOMENOLOGICAL DESCRIPTION OF
FILTERING IN QUANTUM OPTICS

From the classical viewpoint the description of the ac-
tion of a linear frequency filter on the radiation is elemen-
tary—one must simply multiply the propagation function in
the frequency representation D(«) by the transfer factor of
the filter 7(@). In the temporal representation the field is
transformed by the filter according to the law E’(t) =
nE(t), where 7 is the integral operator corresponding to
17(@). In the quantum theory, however, such a transforma-
tion of the field operators destroys the commutation rela-
tions (i.e., it is not unitary), and it extinguishes the zero-
point fluctuations. This transformation is nonetheless
admissible, but with one stipulation—the free-field opera-
tors E*’ (¢) must, in this case, form a normal correlation
function.

We shall first study one mode of the field. If the mode is
in a coherent state |a), then as a result of a linear interaction
with a cold thermostat the state remains coherent, and only
the amplitude of the state changes: |a)' = |ga).'>*' In ap-
plication to our problem 7 is the transfer factor of the filter at
the frequency of the mode w, . A wide class of states of the
field can be described with the help of a diagonal coherent
representation of the Glauber-Sudarshan density matrix
P(a)*® In this case the normal observables
fv(@t,a)=fy (a) are calculated according to the classical
averaging rule:

Iy (@)= tx @ P (@) d2a. (BL)
Thus P(a) plays the role of a two-dimensional probability
density in the plane Re a X Im a (for some states, however,
P(a) is singular and even assumes negative values, so that it
is said to be a quasiprobability).

It is obvious that changing the scale a —na results in
the transformation

P (a):CP(—%‘—), (B2)

where C = ||~ Therefore after the filter
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fn@) =C{ fx@P(5)Ca=(fyma). (B3

This rule can also be proved in an analogous manner
with the help of a nondiagonal representation of the density
matrix, so that itholds for arbitrary initial states of the mode.
We note that according to (B2) the damping does not
change the functional form of the P distribution; however
the analogous conclusion for the distribution of other quan-
tities, for example, the number of photons, is not always val-
id (this situation can be employed for absolute photome-
try's"(’).

The rule (B3) can also be extended to a multimode
field. When there is no mixing of modes

P (o)) =CP({22}), =T Iml2 (B4)
3
analogously to (B2). From here
(fa (faa})Y" = I~ ((max}))- (B5)

This relation justifies introducing the factor #,(w) in
(A14). We shall find, for example, the two-point correlation
function at the output of the filter:

EPESY = & (o) & (o)) P (o) ][ e
R
={ & ) 8 (o) P (@) [ o
13

= (*E) MES), (B6)

here

én ({ah}) = ﬁ 2 (h(‘)h)‘/zah exp (ikr, — iogts). (B7)
13

The antinormal correlation function (E{*’E {~’) differs
from (B6) by the “zero-point fluctuations” — i#D,,, on
which the filters do not operate. The phenomenological de-
scription of other linear transformations can be included in
quantum optics in an anaolgous fashion'®'*: diffraction, fo-
cusing, spatial and polarization filtering, etc.

YAside from the breakdown of Bell’s inequalities other, less universal,
criteria for the quantum effects to be nonclassical are known; for exam-
ple, breakdown of the Cauchy-Schwartz inequality, the nonpositive na-
ture of the Glauber-Sudarshan P distribution, etc. (see Refs. 13 and 20).
Here we confine our attention to a discussion of the nonclassical nature
of the distribution (1) only at the qualitative level.
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