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For several years there has been discussion on the type of electric dipole moment acquired by a
magnetic dipole moving in a medium. Now it has been accepted that the relativistic formula for a
magnetic dipole moving in a vacuum can also be used for the relation between the magnetic and
electric moments in a medium. An additional argument in support of the above statement is that
of a closed current loop moving in a vacuum, which is examined in this article. In the limit case,
this loop is equivalent to a moving magnetic dipole. A comparison of the obtained results with
known data for an electric dipole shows that in the case of a medium there are no reasons to
change relativistic transformation formulas.

The question of the relativistic transformation of the
moment of a magnetic dipole moving in a medium arose a
long time ago, due to an examination of the Vavilov-Cheren-
kov radiation of electric and magnetic dipoles.1 For an elec-
tric dipole, the result obtained was fully analogous to that
which occurs for the radiation of an electric charge: the ener-
gy of the radiation is a sine squared function of the character-
istic angle of radiation 0(sin2 6= 1 — (/?2«2)~'). In con-
trast, for a magnetic dipole oriented perpendicular to the
velocity, the energy depends in a quite complex manner on
the index of refraction, n, and 9. Relativistic transformation
formulas for the moments of electric and magnetic dipoles
were used to obtain these results, and it was assumed that
they were applicable for movement in a medium with an
index of refraction n. Thus, it was taken that an electric di-
pole p' moving with a speed /? = v/c in a stationary coordi-
nate system has the moment

p = p' — (1 — a) (1)

where a = (1 — jS2)1/2, and z, is the vector of velocity,
which is directed along the z axis. Consequently, the compo-
nent of p' perpendicular to the velocity (let us say that it is
oriented along thex axis) remains unchanged, and the com-
ponent oriented along p'z decreases, as it should, by a factor
of(l-02)1 / 2 , thatis

Moreover, it was assumed that, as in a vacuum, a moving
electric dipole induces a magnetic moment, the magnitude of
which is

m= *- i.e. m=— (3)

An analogous situation should also take place for the trans-
formation of a magnetic dipole with components m'y and m'z:

(4)
(5)

In the case of Vavilov-Cherenkov radiation by a magnetic
dipole, the magnitude of the induced electric moment used
in Ref. (1) led to paradoxical results, as was noted earlier.
They can be eliminated (but not completely, as was ex-

plained later) if it is assumed that instead of Eq. (5) there
should be2

px— — (6)

There have been arguments3 which support the correctness
of Eq. (6). And yet the argument in support of Eq. (6) was
the unfounded assumption that an elementary dipole pro-
duced by a circular current should be equivalent in radiation
to a dipole consisting of two opposite hypothetical magnetic
charges. Actually, in the case of an electric dipole, the same
results are obtained for Vavilov-Cherenkov radiation, re-
gardless of whether the moving dipole is exmained using Eq.
(3) or whether one determines the result of the interference
of two opposite electrical charges which are physically close
and moving together.2 By this, the suitability of Eq. (3) was
established for a medium as well. It was natural to examine
the radiation of magnetic charges and dipoles consisting of
these charges using an analogy which requires the following
substitutions in all formulas: efor/i,/* for E, E for H and H
for E [ see Ref. (2) ]. The result obtained was different from
the result for the usual magnetic dipole.1 It was not under-
stood until after Refs. (4) and (5) that possibly there was no
contradiction. An attempt was made to correct the result for
a usual dipole, by substituting Eq. (5) for Eq. (6). Although
now there are, apparently, no doubts about the correctness
of Eq. (5), it may useful to examine how the electric dipole
moment arises in the case of movement of a closed current
loop. This reduces the problem of magnetic dipole radiation
to an examination of a system of moving electrical charges,
from which nothing unusual should be expected. Let us as-
sume that there is a closed rectangular loop / J X / 2 in size,
consisting of four rectilinear conductors a,b,c,d (see Fig. 1).
The cross section of the conductors is cr'. The current flow-
ing through the loop is /' = cr'7', where /' is the current den-
sity, and its magnetic moment is

(7)

All these values are indicated for a coordinate system, K',
associated with the loop. Let us suppose that the system is
moving with the loop at a speed v in the direction of the z
axis. We will be interested in the results which should be
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FIG. 1.

observed in the laboratory coordinate system K. They can be
obtained in a completely elementary manner using the Lor-
entz formulas and known relativistic transformations for
current density and charge density. Of course these same
results can be obtained using the law of conservation of
charge and the formula for the addition of velocities.6

Let us examine first the case where the current loop is
perpendicular to the z axis, that is, it lies in the AC, j plane. It is
easy to be convinced that the current in the loop, measured
in the stationary system K, is

/K = (1 _ p*)V2 j' = a'/'. (8)

According to the relativistic transformation of current den-
sity we have

/, = /„ = /'. (9)

As for the conductor itself, the size of its cross section in the
direction of the z axis decreases by a factor of (1 — /32)'n;
consequently,

a = (1 — jj2)1/" a'. (10)

If we consider Eqs. (9) and (10), we immediately get Eq.
(8). The magnetic moment of the loop is directed in this case
along the z axis or antiparallel to it, and since the length of
the conductors, / ; and / '2, remains unchanged, it is equal to

As expected, this coincides with Eq. (4). Let us turn now to
an examination of a more complex case, when the current
loop lies in the x,z plane (see Fig. 1). We will assume that a is
directed along the x axis, and b is directed along the z axis,
that is, parallel to the velocity. The direction of the current in
each of the sections of the loop is indicated by arrows in the
figure. The magnetic moment, which is equal to Eq. (7) in
system K', is in this case perpendicular to the plane of the
figure. It is directed along the negative^ axis:

Tl\l't. (12)

Let us now determine the current in each of the sections of
the loop. Section a is perpendicular to the velocity. Thus, the
current in section a is equal to Eq. (8), that is,

/„ - /K = (1 - P2)1'2 J'; d3)

it is obvious that Jc = — Ja •
To determine Jb, in which the direction of the current

coincides with the direction of the velocity, we use relativis-
tic transformation formulas for current density and charge
density. If in the K' system the charge density in the conduc-
tor is equal to zero, then in system K

J*= (1-£2)1/2 7'" d4)

Thus, a charge density also arises in the conductor

o = — / ' (15)f7 lA «2 \ l /2 CZ \ '

The cross section of section b is perpendicular to the veloc-
ity; consequently, ab — a1'. As a result, we get

r _b •a'/'. (16)

For section d the current and charge density have the oppo-
site sign in relation to Eqs. (15) and (16). It should be no
surprise that Jb^Ja. Indeed, conductor b now has an elec-
tric charge, and the charge density p moves along with it at a
speed v, which is equivalent to the current density

1

and, consequently, to the current (since ab = a')

(17)

(18)

Comparing Eqs. (13), (18), and (16), we get, as we should,

•T* = J* + JP- d9)

If we turn to the limit case, it is easy to determine the dipole
electric moment of the loop from Eq. (15). Indeed, the elec-
tric charge q+ contained in the b section of conductor is
equal to p, multiplied by the volume of the conductor ab 12.
Since, as a result of the Lorentz reduction, / 2 = (1 — /?2) ' / 2

/ 2, we obtain

?* = -3-*'V- (20)

Section d contains obviously, the same charge, but of oppo-
site sign. They are separated by a distance /1 . If / '2 <£ I \, then
these charges may be considered an electric dipole directed
along the x axis and equal to ql [. Consequently [see Ref.
(7)],

If we bear in mind that m' has a single component, — m'y
= m' [ see Ref. (12) ], we find that Eq. (5) is satisfied. This,

of course, is an obvious result, since Eqs. (5) and (21) are
equally the result of relativistic transformations. However,
in Eq. (21) the result is very obvious. Charges q+ and q~ in
current conductors b and d indeed arise from their move-
ment in the direction of the z axis, and there is no reason to
think that if the movement occurred in a medium, that it
could be otherwise. As already stated in the beginning of the
article, in the problem of Vavilov-Cherenkov radiation, we
correctly considered two such charges separated by a dis-
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tance / ( as a moving dipole (under the condition, of course,
that /| <A, where A is the wavelength of radiated light).
This is a very significant argument for the applicability of
Eq. (5) also to the case of movement in a medium. If this is
so, then such a. dipole should induce a magnetic moment. As
a check, we determine its magnitude. From Eqs. (3) and
(21), we get

% (P) = - (22)

This, however, is only that portion of the moment which is
created by the charges moving with the conductor. In addi-
tion, we have the current yloop = (1 — /?2)1/2a7',flowingin
the loop [see Eq. (13)]. The area of the loop in the K system
is(l —P2)112 /I/j.Comparing this with Eq. (17),we have

ms (K) = -(1 - m (23)

Hence, the total magnetic moment induced by the current
loop located in the plane which coincides with the direction
of movement, is

m = m (p) + m (K) = m . (24)

Thus, as should have been expected, the magnetic moment of
a dipole perpendicular to the velocity is the same in the K'
coordinate system as in the K laboratory system. It is also

clear that the electric dipole moment [Eq. (21)] and the
magnetic moment [Eq. (24)] are strongly linked. If for the
electric moment the transformation Eq. (6) is taken instead
of Eq. (5), then this necessarily leads to a change in m in Eq.
(24), which is related in a complex manner to the index of
refraction. In principle, this can not be ruled out, but there is
no basis for it. Indeed, the only reason for the transformation
[Eq. (6) ] was that in this case the formula for the energy of
Vavilov-Cherenkov radiation becomes analogous to the for-
mula for the radiation of the charge. If we consider the com-
plication of the formula for m which would be caused by the
transformation [Eq. (6)], then this argument ceases to
hold. From what has been said, it follows that the same
transformations of dipole moments should be used in the
case of movement in a medium as are used in a vacuum.
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