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This report discusses the latest advances in research on the two-dimensional Wigner crystal on
the surface of liquid helium.

The ensemble of electrons localized on the surface of liq-
uid helium is a promising two-dimensional system of charged
particles that has attracted much intensive research in recent
years.

1. The system of electrons on a liquid helium surface has
attracted particular interest because there one may observe
various collective phenomena of Coulombic origin. These
phenomena include general two-dimensional plasmons, par-
ticular varieties of two-dimensional plasmons known as edge
or perimeter plasma waves, and Coulombic crystallization.
The most fundamental of these collective phenomena is the
Coulombic crystallization predicted for three-dimensional
systems with a strong Coulomb interaction by Wigner1"2

some 50 years ago. Wigner's ideas have benefited from ex-
tensive theoretical development, for this field holds the
promise of describing various collective phenomena in
strongly interacting systems. Experimentally, however,
such systems became accessible only in recent years, largely
due to advances in the fabrication of charged two-dimen-
sional systems with a mobile subsystem spatially separated
from the screening background. An example of such a sys-
tem, characterized by very high electron mobility, is an en-
semble of electrons on a helium surface. In this system
Grimes and Adams3 were the first to observe electronic crys-
tallization.

Naturally the success of Grimes and Adams3 stimulat-
ed further research into the properties of the electronic lat-
tice. In this report we shall discuss the latest theoretical and
experimental advances in this field.

2. In the original work of Grimes and Adams3 the exis-
tence of the phase transition was ascertained by the appear-
ance of specific electron-ripplon modes in the excitation
spectrum of the electronic lattice on a liquid substrate. The
nature of the additional branches in the spectrum, as well as
the details of experiment,3 have already been extensively
analyzed in various reviews.4'5 Thus we shall omit the dis-
cussion of this interesting subject. The next fundamental
question following from the research of Grimes and Adams
concerns the propagation of transverse sound in the elec-
tronic lattice. A finite shear modulus is an essential attribute
of the crystalline state and consequently the existence of
transverse sound in the electronic lattice is of great interest.
An experimental approach to this problem, i.e. the develop-
ment of a technique for exciting transverse sound and a de-
tailed investigation of the properties of the two-dimensional
lattice shear modulus, was developed in a series of experi-
ments by French scientists.s~8

A schematic diagram of the cell used by Deville and co-

workers7 to observe transverse sound is illustrated in Fig. 1.
The electronic system is localized on a helium film of finite
thickness d which lies on top of a dielectric substrate con-
taining a meandering delay line. The period of the line is of
the same order as the helium film thickness. When an alter-
nating current flows through the delay line in the presence of
a magnetic field H normal to the helium surface, shear-type
electric forces are produced in the electronic system. If the
electronic system has a non-zero transverse rigidity and the
excitation frequency coincides with the transverse sound fre-
quency and the wavenumber corresponding to the delay line
period, the interaction between the delay line and the elec-
tronic system is resonantly enhanced. This resonant en-
hancement is then manifested by increased losses in the de-
lay line.

A specific feature of the transverse excitation spectrum
of an electronic crystal on a soft substrate is the existence of a
finite deformation-induced threshold <y^2:
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where n is the average electron density; m is the electron
mass; EL is the intensity of the clamping field; ca and k are the
frequency and wavenumber of the oscillations; a is the sur-
face tension coefficient of liquid helium; and («2) is the
mean-square displacement of the electron from its equilibri-
um position, with {w2}<^#~'. The physical origin of the
threshold ca^ in the excitation spectrum co(k) is quite simple.
The electronic lattice is confined to the free helium surface
by the external field £\. Recall that (u2)<£n~> and, clearly,
the effective pressure exerted by the lattice on the helium
surface contains, in addition to the average value that is uni-
form over the entire surface, additional Fourier components
that characterize the local deformation of the helium surface
under each localized electron. This self-consistent deforma-
tion g(r) leads to an additional energy eELg(r). In the high-
frequency limit this energy produces a deformation-induced
threshold frequency tu^ in the a (k) spectrum (1). This fea-
ture in the collective excitation spectrum of the electronic
crystal on a liquid substrate was first predicted in Ref. 9.

The existence of the threshold a)% is clearly visible in the
inset of Fig. 1 which plots the transverse oscillation frequen-
cy against wavenumber k.

In regard to experiments concerned with the shear
modulus, the existence of the threshold frequency in the
transverse excitation spectrum means that the data should
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FIG. 1. Experimental cell of Ref. 7 employed to mea-
sure transverse rigidity of the Coulombic crystal. The
inset shows a schematic dispersion relation for the
transverse mode of the electronic lattice; the arrow
marks the "operational" wavenumber kL where one
can measure the transverse speed of sound in the linear
ca(k) regime.

be corrected for the additional factor of cog
2. More precisely,

the transverse sound should be excited in the large wave-
number range where the dispersion relation (1) is linear, i.e.
in the region where

«2»cof. (2)

The above requirement (2) places a stringent constraint on
the design of a high-quality delay line of a sufficiently small
period. In the case of an electronic crystal on a helium sur-
face, the period A of the delay line that satisfies condition (1)
is such that 2ir/Ax500 cm"1. Nonetheless the French
group at Saclay succeeded in building an experimental cell
which made it possible to excite transverse sound in the lin-
ear dispersion regime and carry out the planned experi-
ments.

The wavenumber kL which corresponds to the excita-
tion of transverse sound is marked in the inset of Fig. 1.

The final results of this research6-7 are summarized in
Figs. 2 and 3. Figure 2 illustrates the appearance of the reso-
nant signal which indicates the formation of transverse ri-
gidity in the 2D-electron system. The speed of transverse
sound and, consequently, the shear modulus ,u can be easily
calculated from the resonant frequency and the period of the
delay line. The corresponding experimental data on the tem-
perature dependence of fj. are collected in Fig. 3.

The temperature of the phase transition Tm that can be
extracted from the temperature dependence of the shear
modulus is in good agreement with the value of 7^ obtained
by Grimes and Adams,3 as well as subsequent independent
measurements.10"12 Moreover, from the data in Fig. 3 one
can proceed to theorize on the nature of the phase transition
in the electronic system. To be more precise, can the value of
this phase transition temperature be explained by the Kos-
terlitz-Thouless theory?13-14 The French group obtained an
affirmative result: the transition temperature is indeed de-
termined by the Kosterlitz-Thouless relation ( f j . is the shear
modulus; a0 is Burger's vector; T is the Poisson coefficient):
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(3)

as long as one lets r-> 1 (Ref. 14) and substitutes the tem-
perature dependent value of the shear modulus f i ( T ) , i.e.,
takes into account Morf's theoretical computation.15 Thus

we find that the electronic lattice on the helium surface be-
longs to that interesting class of crystalline structures where
melting occurs by the fluctuational multiplication of dislo-
cations.

3. The next important series of experiments, also car-
ried out by French physicists,16-17 focussed on the heat ca-
pacity of the electronic lattice and the behavior of this heat
capacity during the crystal-liquid transition. At first sight
this problem appears insoluble because the heat capacity of
the low-density two-dimensional system should be swamped
by the much greater heat capacity of the liquid substrate. An
ingenious experimental approach described in Refs. 16, 17
solved this problem and made it possible to measure reliably
the heat capacity of the electronic subsystem.

In order to determine the heat capacity of the lattice one
must measure the change in temperature ATe of the crystal
as it absorbs a given quantity of heat AQ. The measurement

90 mK

cocl2ir= 1060MHz.fi = 128V/crrr1
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FIG. 2. Resonance appears as the temperature is lowered, indicating the
formation of a finite shear modulus fi in the electronic lattice. Density of
the 2D-electron system n = 6-107 cm~2, other parameters shown in the
figure (from Ref. 7).
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FIG. 3. (a) The elastic shear modulus/j normal-
ized to its extrapolated T = 0 value, plotted as a
function of temperature T. The solid line plots the
temperature dependence n(T) calculated by
Morf"; experimental points fall onto this line with
good accuracy. The right-hand scale permits a di-
rect comparison with the Kosterlitz-Thouless
(KT) stability criterion in the fial/4ir> T regime;
Tm is the melting temperature of the electronic
crystal at the experimental density n = 6 • IO7 cm ~J

(Ref. 7). (b) Kinematic viscosity of the electronic
crystal vs T for transverse oscillations at the fre-
quency <o/2ir = 1060 MHz. The characteristically
sharp rise in the viscosity near the melting tempera-
ture can be attributed to the appearance of a large
number of fluctuational dislocations in this tem-
perature range (Ref. 7).

of Ag presents little difficulty because it arises from the ac-
tive losses from the RF circuit of the electronic system. As
for measurement of A7e (the delicate part of this tech-
nique), according to Glattli16 one can make use of the
threshold frequency a>{ in (1). Indeed, direct measure-
ments6-18 near the formation threshold of the Coulomb lat-
tice point to a marked dependence of this frequency on tem-
perature (Fig.4). Assuming that as the electronic lattice
becomes hot with respect to the liquid substrate the frequen-
cy <0g reacts to the electronic temperature, we can employ
the data of Fig. 4 on the temperature dependence of <uf for

calibrating the frequency a>^ ( T c ) and use the latter as a ther-
mometer for the electronic system. The validity of this as-
sumption can be experimentally verified. For example, if we
fix the temperature of the liquid substrate at some "separa-
tion" from the melting temperature Tm of the crystal and
then raise the lattice temperature adiabatically while keep-
ing track of the threshold frequency a>^ (Tc), this frequency
clearly should diminish and eventually go to zero at the
melting point of the crystal, i.e. when Te = Tm. In other
words, the necessary conditions for calibrating the elec-
tronic thermometer do exist.
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FIG.4. (a) Appearance of a resonance at the frequency ioe (1)
as the temperature is lowered in the T< Tm range (Ref. 6). (b)
Temperature dependence of o>{ (Ref. 18). Note the fairly strong
dependence of ta( on the magnetic field, arising from the effect of
H on (u2). The influence of H on the melting temperature of the
crystal is much weaker, however, in agreement with the Koster-
litz-Thouless theory.13
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FIG. 5. Heat capacity of the electronic lattice normalized by the Boltz-
mann constant, C/kB, measured for n— 1.02-10* cm"2. Dash-dotted
line plots the calculated phonon heat capacity of a two-dimensional elec-
tronic lattice at this density using the/*(r= 0) shear modulus; dashed
line plots the same calculation using the temperature-dependent /j.(T)
shown in Fig. 3(a). The arrow marks the melting temperature Tm (ex-
perimental points and calculations from Refs. 16, 17).
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The authors of Refs. 16 and 17 employed this technique
to measure the temperature dependence of the heat capacity
C, which is illustrated in Fig. 5. According to estimates of
Ref. 16 this heat capacity corresponds to the phonon contri-
bution calculated for the two-dimensional lattice. In Fig. 5
the theory is compared to the experiment: one of the theo-
retical curves uses fj. = const = /u(0), while the other takes
into account the temperature dependence /u (7"). The latter
curve accounts for the experimental data better.

This outstanding series of experiments6"8'l6-17 was
crowned by the experimental measurement of the heat of
melting of the electronic lattice in the solid-liquid transition.
This experiment was hindered by the additional complica-
tion that in the liquid phase the threshold frequency a)g goes
to zero (1) and hence the temperature of the electronic lat-
tice is no longer directly measurable. The authors of Refs.
16, 17 overcame this difficulty by designing a cell to hold an
electronic system with two regions of different electron den-
sities n (actually, the cell was cylindrical in geometry, where
the region 0<r</Jj contained density nt and the region
/?,<r</J2 contained a different density n2). The two elec-
tronic subsystems were in good thermal contact so their elec-
tronic temperatures could be taken as equal. The experimen-
tal parameters were selected such that near the melting
temperature of the subsystem 1, which had a lower density,
subsystem 2 would remain in the crystalline state. Conse-
quently the threshold frequency o^ could be used as a ther-
mometer for the whole system.

The experimental value of the heat of transition ap-
proached zero within experimental error (Fig. 6). This cor-
relates with the predictions of the Kosterlitz-Thouless theo-
ry of phase transitions that are driven by fluctuational
multiplication of dislocations.

The author is grateful to F. Williams for constant ex-
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FIG. 6. Temperature of the electronic system as a function of time after
the heating field has been (a) switched on and (b) switched off. Thex-axis
is time in us, thej>-axis is the electronic temperature T, in mK. Evidently
in the vicinity of Tm the electronic temperature changes smoothly and
monotonically, indicating no appreciable heat of melting in the crystal-
liquid phase transition. Helium temperature was 135.5 ± 0.3 mK, densi-
ties n, = 0.44-10* cm-2, n, = 0.95-10" cm-2 (Refs. 16, 17).

change of information and for communicating the otherwise
inaccessible Refs. 16 and 18.
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