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The criteria for the degree of chaos are discussed by Ya.
A. Kravtsov1 and Yu. L. Klimontovich2 elsewhere in this
issue. Their respective points of view are compared below.

Before going any further, it is important to emphasize
that the statistical description of a particular phenomenon
(if we are not concerned with quantum physics) is only one
of a number of possible methods of description. Occasionally
(e.g., in statistical physics), the statistical approach is prac-
tically the only one, but deterministic and statistical descrip-
tions can often be carried out in parallel. Let us illustrate this
by a simple example. Suppose that we have a "black box"
noise generator that produces a fluctuating voltage U( t) at
its output. This voltage can be described by specifying the
probability distributions of different order (one-time, two-
time, etc.). If we know the distributions, and measure the
instantaneous voltages U(ti),...,U(tn), we can use the sta-
tistical distribution laws to provide the most probable esti-
mate of U(t) for tk <t<tk + v or t > /„. The precision of this
estimate will depend on the statistical properties of the sig-
nal. Let us now suppose that the noise generator is actually a
computing machine that produces pseudorandom numbers
which are then transformed into a continuous signal (e.g.
the system produces pulses whose height is proportional to
the successive random numbers, and these pulses are then
passed through a frequency filter). If we know the algorithm
used to generate the pseudorandom numbers and the charac-
teristics of the system that processes the signal, we can pre-
dict the output voltage at any particular time with a high
degree of precision.

In this particular example, it is clear that the question as
to whether the signal U(t) is random or not has no special
meaning. There are problems in which it is sufficient to know
the simple statistical characteristics of the signal and there is
no need for a detailed description. However, the opposite
situation is also possible.

We thus see that the answer to the question as to
whether a particular variable is random or deterministic de-
pends on the amount of information that we have at our
disposal about the particular variable. The statistical de-
scription is the least detailed but the most universal: it is
often valid in situations in which other methods of descrip-
tion are ineffective or impossible.

It is clear from the above considerations that the ques-
tion of the degree of chaos is to some extent arbitrary: it has
to be formulated within the framework of a particular model
adopted for the phenomenon. This point of view is developed
by Yu. A. Kravtsov1 who estimates the degree of chaos in a
random process from the degree of its predictability. If we
compare two random processes, the less chaotic is that
whose behavior can be predicted to a given degree of preci-
sion over a longer period of time. Of course, prediction in
time is not the only possible one. The behavior of a random
quantity can be estimated as a function of other parameters
(for example, in terms of spatial coordinates). This defini-
tion can be generalized as follows: a random quantity t/, is

less chaotic than another U2 with respect to a parameter a if
the statistical estimate £/,(«) based on known values
{/, ( a , ) , . . . , (7, ( a „ ) is possible with greater relative precision
than the corresponding estimate U2(a) based on
U2(a{) ..... U2(an).

It is clear that if we change (improve) the model (as in
the above example of a noise generator), the relation
between the degrees of chaos of U\ and U2 may be reversed.

Of course, the definition given by Yu. A. Kravtsov, and
the above generalization of it, are not the only possible ones.
However, they have been tested in many interesting practi-
cal applications and are quite reasonable.

One of the central points of the paper by Yu. L. Klimon-
tovich2 is his definition of the degree of chaos. He defines the
degree of chaos in relation to self-organization processes
(see Section 2): the most chaotic state is the state that is the
furthest (according to the value of the control parameter)
from the state of "self-organization". The concept of "self-
organization" thus becomes the basic, primary concept. In
Section 7, Klimontovich formulates a universal quantitative
criterion for comparing the degrees of chaos of two states.
The probability density for a particular state, assumed the
more chaotic, is then given by

/„ (x) = exp (— ffeu (•*)),

i.e., the "effective Hamiltonian" is //<,„•(* ) = — I n f 0 ( x ) .
The next step is to introduce the "renormalized" distribu-
tion of the same form, but with a different (relative) tem-
perature D:

This expression involves the two unknown quantities A and
D, and two equations are then introduced to determine
them. The first is the normalization condition

and the second is the condition that the mean "energies"
evaluated for the distribution/,, and for the distribution/(x )
that is compared with/0 according to the degree of chaos are
equal:

J He!1 (X)

The final recipe for comparing the degrees of chaos is re-
duced to the following: if the value found from these equa-
tions is D > 1, the state with the distribution/it.*:) is less chao-
tic than the state f0 taken for comparison. In other words, if
the initial system taken for comparison must be "heated"
i.e., its temperature must be increased by the factor D in
order that its mean energy be equal to the energy of the sys-
tem described by the distribution/(JT), the state/(x) is less
chaotic (more ordered or "self-organized").

The application of this criterion often leads to results
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that are difficult to understand from the common sense point
of view. Suppose, for example, that we have to compare the
following two Gaussian distributions with different param-
eters:

The above procedure then readily yields the following
expression for D:

If a2 = o%, then Z>> 1 for any a^O, i.e., we have "self-orga-
nization". This conclusion can be regarded as reasonable
because we have a nonzero mean. However, when a = 0, but
cP- > a^ , we again have D > 1 . According to the above crite-
rion, the latter case must also be looked upon as "self-organi-
zation" i.e., we must consider the state with the greater
spread of values of x as the less chaotic. This result is difficult
to comprehend.

The conclusion that the laminar flow of a liquid is more
chaotic than the turbulent flow is one of the results of the
application of Klimontovich's criterion that is difficult to
interpret. Let us compare the two criteria put forward in the
above papers. The question is: if turbulent flow is less chaotic
than laminar flow, is there some flow variable that can be
predicted more precisely for turbulent than for laminar
flow? The answer to this question is as follows: since laminar
flow is considered at a higher temperature than the turbulent
flow, thermal fluctuations within it must be greater. Conse-
quently, for the cooler turbulent flow, we can predict vari-
ables averaged over the thermal fluctuations with a greater
precision than for the hotter laminar flow. This relies on the
assumption that the averaging scale is the same in both cases
and is small in comparison with typical macroscopic scales
of the problem,

For example, suppose that the volume Fover which the
velocities of molecules in a gas are averaged is so small that,
from the point of view of hydrodynamics, the mean velocity
evaluated over this volume can be regarded as the instanta-
neous flow velocity at a point. (We note that, in Glukhov-
skii's paper entitled Statistical description of the motion of a
Brownian particle in a turbulent flow? the dimensions of the
volume Fwere assumed small in comparison with the inter-
nal turbulent scale. ) The mean velocity of a molecule within

the volume can then be found for the cooler turbulent flow
with a greater precision than for the hotter laminar flow.
However, if we repeat this measurement (i.e., average over
the volume V) a large number of times with a sufficiently
large step in time, we find that, for the laminar flow, the
additional averaging over the ensemble of all the measure-
ments will lead to a further reduction in the uncertainty in
the mean velocity, whereas, for the turbulent flow, the mea-
surement uncertainty will not be reduced by the turbulent
fluctuations.

The apparently paradoxical conclusion that turbulent
flow is less chaotic than laminar flow is thus seen to refer to
thermal and not to hydrodynamic fluctuations. Whenever
this formulation of the problem is of interest in any particu-
lar situation, it cannot give rise to any objection. However, it
must be remembered that the conclusion that the turbulent
flow has a higher degree of order has nothing to do with
hydrodynamic fluctuations.

The above paradox can also be examined by considering
the following "gedanken" experiment. Suppose we have a
closed ring channel in which turbulent flow is specified as
the initial state. Viscosity will then damp out the turbulence,
and the flow will become laminar after a certain interval of
time. Turbulent energy will be transformed into heat, i.e., we
shall have laminar flow with energy equal to that of the ini-
tial turbulent flow. Since this process occurs naturally in
time, the final laminar state will have higher entropy than
the initial turbulent state, which is in accordance with the
formulation put forward by Klimontovich. However, the
temporal development proceeds from the turbulent to the
laminar flow, and not the other way, i.e., there is no sense in
which we can speak of "self-organization" here.

There is no doubt that the criteria for estimating the
degree of chaos in "self-organizing" systems present us with
very interesting questions, and that Yu. L. Klimontovich
has rendered valuable service with his formulation. How-
ever, the above examples show that his criterion is not unam-
biguous.
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