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The basic conventions regarding randomness employed in mathematics (set-theoretical
approach, algorithmic approach) and in physics (decaying correlations, continuous spectrum,
hyperbolicity, fractal nature, uncontrollability, nonrepeatability, nonreproducibility,
nonpredictability, etc.) are analyzed. It is pointed out that phenomena that are random from one
viewpoint may be determinate from another viewpoint. The concept of partially determinate
processes, i.e., processes that admit prediction over bounded time intervals, is discussed. The
theory of partially determinate processes is based on identifying randomness with
unpredictability and establishes the interrelation between the real physical process x ( t ) , the
observed process y ( t ) , and the model (predictive, hypothetical) process t ( t ) . In this theory the
degree of determinateness, which is denned as the correlation coefficient between the observed
process and prediction, is employed as a measure of the quality of predictability. Diverse
theoretical, experimental, and numerical measures of partially determinate processes as well as
examples of partially determinate fields are presented. It is emphasized that the time of
determinate (i.e., predictable) behavior rdet of an observed processXO can be much longer than
the correlation time rc, and the degree of coherence is the worst estimate of the degree of
determinateness. From the viewpoint expounded determinate chaos stands out as a completely
determinate process over short time intervals ( T ̂  rde,), as a completely random process over
long intervals (r> rdel), and as a partially determinate process over intermediate time intervals
r ~ rdet. It is significant that in the interval between rc and rdet chaotic and turbulent fields admit
both a determinate and statistical (kinetic) description.

1. INTRODUCTION

Since the time of Laplace and until comparatively re-
cently most physicists believed that given dynamic equa-
tions and initial conditions the behavior of any system can be
satisfactorily predicted on the basis of classical physics.

Confidence in the potentially unlimited capabilities of
classical physics to predict the behavior of complex systems
amazingly coexisted with an enormous number of phenome-
na indicating the opposite: developed turbulence, different
types of plasma instability, etc. This conviction gave rise
over a long period of time to a paradigm in which cases of
poor predictability are regarded as some kind of misunder-
standings due to "insignificant" factors, such as an extreme-
ly large number of participants in the motion or uncertainty
in the initial data. Though it was acknowledged that funda-
mentally unavoidable reasons for unpredictability exist un-
predictability in the character of the equations of classical
physics was by no means allowed.

In the meanwhile the idea that the predictive capabili-
ties of classical physics are limited gradually acquired force,
due largely, for example, to the remarkable works of H.
Poincare, in particular, his investigations of complex mo-
tions of the homoclinical structure type, which studies were
several decades ahead of their time," and the simple but im-
portant ideas of M. Born regarding the long-time unpredic-
tability of classical motions owing to errors in the initial
data. Eventually, as a result of the combined efforts of math-
ematicians, physicists, and experts in mechanics, at the be-
ginning of the 1970s a qualitatively new conception of the
nature of dynamic processes, namely, the idea of local insta-
bility of the behavior of the majority of the least bit compli-
cated physical systems and of the very important role of
chaotic and stochastic motions, which cannot be predicted

over long time intervals,21 was formulated.
The important concepts of mixing, local instability,

topological entropy, strange attractors, fractal dimension,
etc., that have become a part of physics and mathematics
have already been repeatedly discussed in this journal (see
the reviews of Refs. 3-6). The list of works on dynamic cha-
os is now increasing by several hundred publications per
year, and no less than ten monographs devoted specially to
this problem have already been published (aside from Refs.
1, 2, we also call attention to the books of Refs. 7-10).

The main feature of chaotic systems is that a small per-
turbation of the initial conditions for a dynamic variable or a
small change in the parameters of the dynamic system itself
causes the resulting motion to be unpredictable over a finite
time, which J. Lighthill" aptly termed the predictability
horizon.

In spite of the enormous interest in the problem of chaos
one of its main aspects—the time-limited predictability of
the behavior of dynamic systems—has not yet been exhaus-
tively described. This review is devoted to a general ap-
proach to the problem of predictability, based on the idea of
partially determinate processes, i.e., processes admitting dy-
namic prediction over bounded time intervals. This ap-
proach formalizes the unexpectedly complicated, even with-
in the framework of classical physics, "interrelationships"
between the observation y ( t ) and the prediction z ( t ) in
terms of the joint probability density w2(y, z, t) and its mo-
ments.

The central problem addressed in this review is to deter-
mine what ultimately limits predictability: noise, interfer-
ence, inexact initial data, or defects in the predictive model?
This formulation of the problem is disturbing not only to
physicists, but also to meteorologists, biologists, economists,

434 Sov. Phys. Usp. 32 (5), May 1989 0038-5670/89/050434-16$01.80 © 1989 American Institute of Physics 434



and sociologists. In western countries the problem of predic-
tion has already been addressed in an interdisciplinary man-
ner (see, for example, the special edition of the Proceedings
of the Royal Society of London, in which LighthilFs article''
was published). Has not the time arrived for us physicists
also to join forces with economists? Will we not be able to
understand together how to avoid chaos where it can and
should be avoided?

2. PHENOMENON, OBSERVATION, PREDICTION

2.1. The observed process. The role of measuring devices

In the study of a real physical process, which we denote
by x ( t ) , let the observed process y ( t ) , which, generally
speaking, has several components y ( t ) = {y, (t),...,yp ( t ) } ,
where/? is the number of independent sensors (devices), be
recorded. The observed processXO differs from the process
under study x ( t ) in several respects.

First, the measuring devices in one way or another
transform the process under study x (t): they perform filter-
ing (they alter the form of the spectrum), they introduce
nonlinear distortions, and they even affect the dimension—
the dimensipn/? of the observed process y ( t ) is always less
than the dimension q of the process studied x(t):p<q.

Second, the measuring devices always add to the result
of the measurements an additional noise component v ( t ) ,
which we shall call the measurement noise.

Third, a measuring device also introduces distortions
into the studied process itself x ( t ) . Until recently it was be-
lieved that the effect of a measuring device on the phenome-
non under study is manifested only in measurements of mi-
croscopic quantities, when the quantum nature of the
phenomena can no longer be ignored. It is obvious that the
presence of a macroscopic device can radically affect the
result of measurements in classical physics also,31 when lo-
cally unstable processes, which react strongly and over a
finite time interval even to small perturbations, are under
study.

So as not to complicate the subsequent exposition we
shall assume that none of the/? recorded components of the
signal is subjected to nonlinear and spectral distortions, but
the components of the recorded signal are subjected to addi-
tive measurement noise v(t), so that

y} (t) = x, (t) + Vj (0 (j = 1, 2, . . ., p, p < q). (2.1)

2.2. Prediction as a model process

In striving to predict the behavior of a real process x ( t )
we are actually obliged to predict only the observations y(f),
since we have no way to judge the state of the studied process
x ( t ) other than based on the indications of measuring de-
vices. Let the process y (t) be observed over a quite long time
interval from the moment t ° — T in the past up to the run-
ning time t °. It is obvious that any prediction of the behavior
of y ( t ) must be based on some hypotheses or models. For
this reason a model process z ( t ) (or in other words a predic-
tive, idealized, hypothetical process), with respect to which
the quality of predictability is to be evaluated, must be intro-
duced into the analysis together with the real process x ( t )
and the observed process X?).

The prediction must be based on some equation, rule, or
algorithm. Since we are primarily interested in dynamic sys-

terns it is natural to attempt to conform the prediction z ( t ) to
a model (hypothetical) differential equation, which we shall
write in the symbolic form

M(~, z; a, 0)=0. (2.2)

The symbol a in this equation denotes parameters of the
model that are to be refined, while the symbol 0 as a fourth
argument embodies everything that has not been taken into
account in the chosen model: insignificant perturbations,
unimportant degrees of freedom, noise, interference, etc.

The value of the observed process y° = y (t °) at the ini-
tial time t = t ° can serve as a natural initial condition
z° = z (t °) for the prediction z (t):

— ,,0 f — ,0
U . I , £ . (2.3)

More complicated formulations of this question are
also possible. For example, to reduce the effect of strong
additive noise v(f ) the observed processy(t) can be filtered,
and i f y ( t ) is the filtered signal, then the quantityy° = y(t°)
should be used for z°.

2.3. The process being studied

The description of the starting process x ( t ) is depen-
dent to the greatest extent on our understanding of the prob-
lem expressed in the choice of model. Taking Eq. (2.2) as the
model description it is useful to represent the "real" equa-
tion for x ( t ) in the form

=0, (2.4)

where a are the true (but unknown) parameters of the sys-
tem, while the factors/^ (t) symbolize the action of "the rest
of the universe." These factors also satisfy definite equa-
tions. As the predictive model is refined (made more compli-
cated) and when additional information appears some com-
ponents/^ (t) can be referred to x(t) and the dimension is
increased accordingly.

2.4. Relation between the studied, observed, and model
processes

The interrelationship of these processes is illustrated in
Fig. 1, where the processes x ( f ) , y ( t ) , andz(0 are shown as
if they had only one component. When the noise is compara-
tively weak the observed processy(t) (the thick line) is vir-
tually identical to the real processx(t) (the broken line) for
any value of t for which the recording instruments function
properly. At the same time the prediction z ( t ) (the thin
line) is close toy(t) only on a bounded interval, which it is

FIG. 1. Processes studied in the problem of predictability: x ( t ) is the real
process (broken \ine)\y(t) is the observed process (thick Iine);z(f) is the
model, hypothetical process (fine line).
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natural to call the time of predicted behavior or, if the pre-
dictability is identified with determinateness, the time of de-
terminate behavior rdet.

In this paper I shall attempt to analyze the factors that
limit this time, i.e., the factors responsible for narrowing the
predictability horizon, and I shall present arguments sup-
porting the fact that unpredictability is ultimately caused by
the existence of noise, which is present in any physical sys-
tem.

3. RANDOMNESS AS A CONVENTION

3.1. Set-theoretical approach

Attempts to give a logical interpretation of the concept
of randomness have been made throughout the entire history
of the development of science in general and the theory of
probability in particular. The main thesis invariably consist-
ed of regarding randomness as the "absence of laws" (A. N.
Kolmogorov Ref. 12). It was found, however, that the idea
of "absence of laws" is not unique and admits many different
interpretations.

Several viewpoints regarding randomness, each of
which emerges as a unique convention, have now been for-
mulated. In most cases the different representations of ran-
domness agree qualitatively with one another, but some-
times it turns out that the process (or phenomenon) of
interest appears to be random from one viewpoint and non-
random from a different viewpoint. This is possible because
different conventions regard a phenomenon from seemingly
different planes. As a characteristic example I call attention
to the fact that the term "deterministic chaos" came into
existence at the intersection of two planes: the adjective "de-
terministic" reflects a class of differential equations which
describe chaos (these equations do not contain random
functions in the sense adopted in the theory of probability),
while the noun "chaos" corresponds to the character of the
process (local instability, global boundedness, fractal di-
mension, limited predictability). In this connection it is use-
ful to make a "separation," marking the boundaries between
existing conventions. This procedure will help to clarify the
meaning of many assertions about prediction.

I shall start with the set-theoretical approach on which
the modern theory of probability is based. In this approach
the concept of randomness is associated with the possibility
of ascribing to a given quantity a probability measure, name-
ly, a quantity is said to be random if it is determined by its
probability distributions. The definition of a random vari-
able formulated in the language of a algebras and measura-
ble functions essentially reduces to this (see, for example,
Ref. 13, p. 132). The "absence of laws" is reflected here by
the degree of spreading of the given quantity; determinate
quantities correspond to distributions described by 8 func-
tions. This interpretation is also adhered to in theoretical
physics.

In this connection recall that aside from random and
determinate (in the sense indicated above) quantities there
also exist indefinite quantities, for which probability mea-
sures are unknown or have not been determined with ade-
quate experimental reliability (V. N. Tutubalin14).

3.2. Algorithmic (complexity) approach

Even the founders of the modern theory of probability
were not completely satisfied with the set-theoretical inter-

pretation of randomness and they attempted to develop al-
ternative approaches.

The approach developed best thus far is that of A. N.
Kolmogorov and his followers (Martin-Lof, Chaitin, and
others), which is based on the interpretation of "absence of
laws" as an algorithmic complexity (the status of the ques-
tion is discussed in Ref. 15 by A. N. Kolmogorov and in the
review of Ref. 16).

As a measure of the complexity of a given sequence of
zeroes and ones {X }, / = 1, 2,..., N (any process can be rep-
resented with the help of such sequences). A. N. Kolmo-
gorov proposed taking the length of the program / (in bits)
which transforms a given sequence y} into x,. If the conver-
sion algorithm is simple, then / is significantly shorter than
the length of the sequence {x/}, so that the sequence {*, }
can be regarded as nonrandom. In the opposite case when
l~N the algorithm for the conversion £yy-} ->{x,} essential-
ly reduces to recording the sequence {x,} itself symbol by
symbol. The complexity of the corresponding algorithm can
serve as a basis for classifying a given sequence as random.
From the viewpoint of complexity almost all sequences {x,}
turn out to be random, since simple algorithms form a set of
measure zero. The situation here is identical to that of irra-
tional numbers: almost all numbers are irrational, since the
set of rational numbers has measure zero.

It is worthwhile to note also that the complexity ap-
proach admits several definitions of a random sequence, de-
pending on the choice of admissible rules for selecting the
elements: Mises-Church, Mises-Kolmogorov-Loveland,
and Martin-Lof (see Ref. 16).

The complexity interpretation of randomness is cer-
tainly original, but it should still be noted that the conven-
tion of identifying randomness with algorithmic complexity
does not completely correspond to the viewpoint regarding
the nature of phenomena that is being developed in physics.
The point is that algorithmic complexity in itself is not a
fundamental obstacle to predicting a process over bounded
time intervals: this obstacle is more likely of a technical or
even psychological character. Additional difficulties are as-
sociated with the invariable presence of physical interfer-
ence and noise, in the presence of which even algorithmically
simple processes become algorithmically complex.

3.3. Randomness criteria employed in physics

In experimental physics specific randomness criteria
that do not reduce to set-theoretical and algorithmic conven-
tions are employed.

The most primitive randomness criterion is an irregular
(aperiodic) form of the process. It is obvious that at a quali-
tative level this criterion juxtaposes randomness with peri-
odicity.

The criterion of decaying correlation reduces to the re-
quirement that the correlation function of the observed pro-
cess if>y (T) = (y(t)y(t — T)) and the correlation coefficient

"""""r^w^ (3-D

approach zero as r increases. The purpose of this criterion is
also to select periodic and aperiodic (chaotic) processes, but
it realizes this selection quantitatively. The criterion has the
obvious limitation that it cannot reveal periodicity with a
period longer than the observation time 7".
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The continuous spectrum criterion juxtaposes random-
ness, interpreted as a chaotic process with a continuous spec-
trum, with periodic processes associated with a discrete
spectrum. This criterion is obviously equivalent to the crite-
rion of decaying correlations, since the spectral density and
correlation function are related with one another via a Four-
ier transform. In spectral analysis the observation time T
determines the spectral resolution Awmin = 2w/T. If the
time T is not long enough and the interval between the dis-
crete lines is less than Awmin = 2ir/T, then a spectral instru-
ment cannot distinguish a continuous spectrum for a dis-
crete spectrum.

The continuous spectrum and decaying correlations
criteria, though they reduce the idea of randomness to a
primitive antithesis of periodicity, are still of practical value
since they can be employed as indicators of a transition from
a periodic regime to chaos. We note, however, that if these
criteria are employed systematically, then as the observation
time T is increased sooner or later we shall establish the
finiteness of the width of discrete lines (in the language of
correlation functions—decay of correlations) for any phys-
ical periodic process, and if we proceed in a linear fashion,
then we shall be compelled to call all physical processes
without exception chaos.

The randomness of objects demonstrating complex,
chaotic behavior is characterized with the help of several
indicators1'2: fractal dimension (metric, L'yapunov, correla-
tion), entropy (rate of divergence of trajectories in phase
space), and degree of order in phase space.17

In addition to these quantitative criteria other criteria
that are more qualitative than the quantitative characteris-
tics of the processes under study are employed, for example,
nonreproducibility (impossibility of obtaining the same real-
ization of a process under indentical external conditions),
nonrepeatability (which can be interpreted both as nonre-
producibility and the absence of periodicity in the given pro-
cess), noncontrollability and nonmonitorability (impossibi-
lity of creating conditions under which the process would
proceed in a prescribed manner.

The convention identifying randomness with unpredic-
tability stands somewhat apart from the other conventions.
This convention is implicitly adopted in most situations in
life and it appears in the introductory sections of books on
the theory of probability, but it cryptically vanishes from
subsequent chapters. Strange as it may seem, however, it is
precisely this aspect of randomness, which is important in
life, that has thus far not been adequately formalized, in spite
of the fact that it is directly relevant to the problem of inter-
pretation of experimental data. In what follows I shall try to
make such a formalization on the basis of the theory of par-
tial determinateness, in which reliable predictability is inter-
preted as determinateness and poor predictability is inter-
preted as randomness. Preliminary sketches of this theory
are given in Refs. 18-21, and more complete versions are
given in Refs. 22 and 23.

4. RANDOMNESS AS UNPREDICTABILITY

4.1. The statistical pair "observation-prediction"

If at the initial time ?° the quantities^ and z assume the
values y and z°, then the statistical description of the pair of
quantities (y, z) at a time t is obtained with the help of the
conditional two-dimensional probability density

FIG. 2. Evolution of a two-dimensional, conditional probability density.

u>s = W2 (y, z, t } y\ {»). (4.1)

Taking for the model process z ( t ) the natural initial
condition z° = y° [ see (2.3) ], in the limit t -»t ° we find that
the two-dimensional probability density degenerates into a 8
function:

u>5, -^6 (y° — z°) i% (y°), (4.2)

where wt(y)isa one-dimensional, unconditional probability
density for the observed process y( t). The general character
of the behavior of the probability density w2 is shown in Fig.
2: the starting 8 function spreads out with time, indicating
that the quality of the prediction given by the model function
z ( t ) becomes worse.

In introducing an object of study that is new to theoreti-
cal physics it is useful to underscore how it differs from other
probability characteristics of physical processes: the proba-
bility density w2 characterizes not only the properties of the
observed physical process y ( t ) , but also the properties of the
hypothetical model process z(t), whose behavior is deter-
mined not by the laws of nature, but rather exclusively by the
models employed by the interpreter to represent the flow of
the physical processes. Thus the hypothesis z(t) is included
in the statistics together with the studied process y ( t ) . Of
course, this procedure is not absolutely new (it is sufficient
to recall the statistics of the theory of distinguishing hypoth-
eses, which was initially developed for the needs of radar and
is now widely employed in many areas of physics, where a
weak signal must be distinguished against the background of
noise and interference), but the known equivalence between
a hypothesis and an observation is not yet generally ac-
knowledged. Only meteorology, where the correlation
between prediction and observation has been employed for a
long time as a criterion for the quality of prediction, is possi-
bly an exception.

4.2. Measures of the quality of predictability

The most commonly employed measure for the quality
of a prediction is the mean-square of the error 17 = \y — z\:

0 = =<r|2> = <| y ( t ) ~ z ( t ) | 2 > . (4.3)

Based on the obvious initial condition (2.3) the variance o2^
at the initial time t = t° equals zero: o2^ (t °) = 0. Over suffi-
ciently long time intervals, when positive and negative val-
ues of the product yz are encountered equally often, the pro-
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cesses y ( t ) and z ( t ) become statistically independent:
(yz) =0. The variance o^ is then expressed as a sum of mean
squares: o^ = (y2) + (z2) (here and below we assume that
the processes y and z are bounded; in particular, they can
belong to an attractor). It is natural to call the quantity

(4.4)

the relative error. As t-» oo it approaches unity. For simpli-
city we shall assume that (y) = (z) — 0.

The correlation measure of the quality of prediction is
introduced as the normalized correlation function

(4.6)

The modulus of D(r) is always less than unity

which follows from Bunyakovskii's inequality. Using the
identity

the correlation coefficient D can be expressed in terms of

(4.7)

so that all three quantities a2,, E, and D can be equally em-
ployed to describe the quality of a prediction. But, as we shall
verify below, D has definite advantages when randomness is
interpreted as unpredictability.

The quantities a2,, E, and D can be expressed "theoreti-
cally" in terms of the two-dimensional probability density
(4.1), but these quantities can be determined directly, by-
passing w2, from experiment by collecting the required data
and performing the standard empirical averaging.

The quality of predictability can also be characterized
by a density function (the probability that y falls within a
given interval e near the prediction z, the density measure of
quality) or by the information contained in the processy(t)
about the process z (information measure of quality). Both
measures are more difficult to measure than the quantities
<7^ ,E, and D, and for this reason they are less useful.

5. PARTIALLY DETERMINATE PROCESSES

5.1. The concept of partial determinateness

The concept of partial determinateness is based on the
convention that unpredictability (predictability) of an ob-
served process based on a definite predictive model z ( t ) or a
class of models za (t) is used as an indicator of randomness
(determinateness). In this approach randomness and deter-
minateness are not juxtaposed with one another, but rather
they are regarded as the opposite poles of the same proper-
ty—partial determinateness.

Although the statistical properties of the pair "observa-
tion-prediction" are described in detail by the joint probabil-
ity density w2 it is, however, more convenient to introduce
simpler characteristics of predictability, similarly to the
manner in which the theory of coherence, together with the
joint probability density of the values of the field at different
points and different times, the moments of this density—the
coherence functions of different order—are introduced. A
simple and graphic characteristic of this type is the correla-

FIG. 3. Time dependence of the degree of determinateness. A—region of
completely determinate behavior; B—region of partially determinate be-
havior; C—region of random (unpredictable) behavior. rde,—determi-
nate-behavior time.

tion coefficient (4.5) between observation and prediction,
which we shall call in what follows the degree of determi-
nateness (predictability).

Over short time intervals T, when the model process
z ( t ) does not yet differ strongly from z°, the quantity D is
close to unity (Fig. 3). In this case one can talk about the
completely determinate behavior of the process y( t) relative
to z (r). Conversely, for sufficiently long times r the quantity
D approaches zero, indicating that the processy( t) is weakly
determinate (in the sense of weak predictability) with re-
spect to the model z(t).

From the viewpoint of the experimenter, who does not
have at his disposal an excessively large number of models, it
is natural to interpret weak predictability as randomness.
This corresponds completely to the general tendency to re-
gard randomness as the absence of laws, which led A. N.
Kolmogorov to identify randomness with algorithmic com-
plexity. In our opinion, however, the experimenter is more
likely to have at his command not the "complexity" concept
of randomness but rather a different concept that rests on
predictive considerations and which we shall call the con-
cept of partial determinateness. On the basis of this concept
everything that does not agree with the given model z(t) or
with a given class of models aa (t) is random (unpredicta-
ble).

On the basis of this approach the observed process y ( t )
is a determinate (predictable) process if 11 — D \ < 1, a ran-
dom (unpredictable) process if \D \ <^ 1, and a. partially deter-
minate (partiallypredictable) process if 0 < \D \ < 1. The re-
gions of determinate, partially determinate, and random
behavior are shown in Fig. 3. The times during which the
quantity D exceeds some value, say 1/2, is the determinate
behavior time rdct (see Fig. 3). It can be found from the
equation

#(Tdet) = |. (5.1)

5.2. Determinate behavior time. Predictability horizon

There are several reasons why the determinate behavior
time (predictability time) of the observed process y ( t ) is
limited. First of all, the observed process y ( t ) always differs
from the real process x ( t ) , since measuring devices always
introduce nonlinear, frequency and noise distortions.

Second, real processes x(t) are always subjected to dif-
ferent perturbations, which are represented in the symbolic
equation of motion (2.4) by the external forces fk ( t ) . The
external forces have both fluctuation components, which
can be described only statistically, and all possible neglected
and unknown actions, for which we retain the possibility (at
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least theoretical) of a determinate description determined
by appropriate measurements and controls of the motion.
This actually means that such components of the external
actions can be converted into components of the model z( t ) .

Finally, the third reason for prediction errors is asso-
ciated with the uncertainty of the model operator itself. This
uncertainty can be expressed both in the a priori uncertainty
of the parameters a (parametric uncertainty) and in the
structure of the model equation itself (structural uncertain-
ty ). These errors are always present in any idealized descrip-
tion of real processes. In the literature errors of this type are
sometimes called "lack of knowledge noise."

Thus the determinate behavior time depends on many
factors, of which the main ones are the measurement noise,
fluctuation actions on the system, and defects in the model.
This can be represented symbolically in the form of the de-
pendence

rr te l = F(\, AA/), (5.2)

where AA/ is interpreted as the uncertainty of the model.
To increase the predictability time we can try to reduce

the measurement noise, for which low-noise sensors and sig-
nal detectors must be employed, and we can try to improve
the quality of the model by decreasing the "discrepancy"
AM as much as possible. In any physical system, even when
all accessible means for isolating the system from the exter-
nal world are employed unavoidable noise still remains:
thermal noise, electromagnetic pickup, ageing processes,
etc. It is precisely these unavoidable fluctuation perturba-
tions that determine the potential limits of predictability.

Passing to the limits v-»0 and AAf-»0 in (5.2) we ob-
tain the limiting value

T l i m = J im
v-f l , A A f — 0

, /, 0), (5.3)

which should be regarded as the predictability horizon. This
limiting time fulfills several functions, which are physically
close, but still have different interpretations.

First of all, the predictability horizon rlim characterizes
the dynamic memory time of the system. For times longer
than rlim the two-dimensional probability density w2 no
longer depends on the initial values y0, z0 and at the same
time decomposes into a product of one-dimensional densi-
ties:

ir, (y, z. t | y°. z". f°) -*«-, (y) «-, (z) (T > T,tm). (5.4)

As a result for r > rlim we have (yz) -» (y ) (z) = 0, so that the
degree of determinateness D vanishes. We note that the con-
cept of the memory time of the system was introduced for
control systems by N. Wiener, who, however, did not duly
delineate the role of irremovable noise.

The dynamic memory time can be equally called the
time over which the system "forgets" the initial conditions.
This terminology, however, is unfortunately already "tak-
en": in the kinetic theory this time is usually taken to mean
the time rc over which the correlations become uncoupled:
after this time is reached the correlation coupling between
the values of the process y ( t ) at neighboring times becomes
weaker, and multidimensional distribution functions de-
compose into products of one-dimensional functions. The
dynamic memory time is also associated with the decoupling
of correlations, not between the values of the observed pro-

cess y(t), but rather between the values of the observations
and the prediction.

Further the quantity rlim characterizes the reversible-
behavior time, i.e., the time during which the system can still
return to its previous state upon the reversal (imagined, of
course) of the velocities of all the particles. If the time inter-
val Af after the time t * at which the velocities are reversed is
short compared with r,im, then the dynamic system de-
scribed by the classical equations can reproduce the state
existing over a time Af up to the moment of reversal. If,
however, A? > rlim, then even with ideally precise reversal of
the velocities of all the particles the system will not return to
its previous state owing to irremovable noise and interfer-
ence, which are not time-reversed at the moment t *.

Finally, the time rlim is comparable to the information
memory time rjnf, which was introduced in the investiga-
tions of Refs. 24 and 25 to denote the time over which the
observed process .y ( t ) loses information about noise that had
previously acted on the system (in Refs. 24 and 25 systems of
the strange attractor type were studied). The comparability
of rlim and rinf in order of magnitude follows from the fact
that both quantities can be expressed in terms of the same
probability density w2.

5.3. Partial determinateness and partial coherence. Degree of
determinateness as a measure of internal couplings in the
process

It is very important that the determinate behavior time
rdet can be much longer than the coherence (correlation
time rc, which serves as a characteristic scale for the decay of
the degree of coherence (autocorrelation coefficient) (3.1).

Indeed the time rc is the typical interval between two
neighboring maxima on the graph of the observed process
or, which is equivalent, the inverse width of the spectrum
TC ~ I/Aft). The predictability time rdet, however, is deter-
mined by completely different factors: the noise level, the
accuracy of the model adopted, etc. In other words the time
rdet depends significantly on the a priori information about
the dynamics of the system, and it is thus not surprising that
in many cases rdet >rc (Fig. 4).

It is also important that the degree of coherence (3.1)
appears as the worst degree of determinateness. We have in
mind the following: if we do not have a dynamic equation for
the model z(t), then the prediction must be constructed
based only on the observed processy( t ) . In the simplest case
the prediction z ( t ) over the time t can be taken as the value
y(t — r) at a preceding time (according to the principle "to-
morrow will be the same as today").

z (0 = y (t - T) (5.5)

and in this case the degree of determinateness (4.5) converts
into the degree of coherence (3.1). Correspondingly the cor-

1,0

0,5

FIG. 4. Typical relation between the degree of determinateness £>(r) and
the degree of coherence K y ( r ) .
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relation time appears as the lower limit of the determinate
behavior time. We shall present several examples illustrating
this result in the next section.

It is well known that the correlation coefficient charac-
terizes the degree of linear coupling between random quanti-
ties. In particular, the correlation coefficient A^(T) reflects
the linear statistical relation between the values of the ob-
served process j> at the times t and t — r. What then charac-
terizes the degree of determinateness Z>(T)? By definition
D(T) describes the relation between the observation y ( t )
and the prediction z ( t ) , i.e., the relation between what actu-
ally happens and what we think should happen.

This relation, which is revealed by means of the dynam-
ic equations of the type (2.3), can be termed an internal (or
dynamic) coupling and the quantity D can be termed the
coefficient of internal (dynamic) correlation.18"21

5.4. Dynamic chaos as a partially determinate process

The question of the nature of dynamic chaos and the
relation between randomness and determinateness in chaos
has given rise to vigorous debate, reflected by the "random-
ness-determinateness of strange attractors" paradox as well
as the confusing term "deterministic chaos," which is now
firmly ensconced in the physical literature. These discus-
sions are by no means finished, since many questions con-
cerning randomness and determinateness in chaos have not
yet been adequately resolved. It appears to us that the discus-
sions presented here regarding the ambiguity of the concept
of randomness and the idea of partially determinate pro-
cesses permit casting new light on some aspects of chaos.

The "randomness-determinateness of strange attrac-
tors" paradox has become acute because not everyone parti-
cipating in the discussion regards the question of random-
ness as a question of convention. How then does chaos
appear from the viewpoint of the conventions that were men-
tioned in Sec. 3?

The overwhelming majority of conventions emphasizes
in chaos the features of randomness. Indeed a strange attrac-
tor is characterized by a stationary probability distribution
(or, which is the same thing, by an invariant measure) and
therefore it is random in the set-theoretical sense. Further,
chaos is random from the viewpoint of the theory of algorith-
mic complexity and from the viewpoint of many physical
criteria: it has a continuous spectrum and decaying correla-
tions; it can be assigned a fractal dimension; exponential di-
vergence of trajectories is characteristic for chaos; etc.

At the same time "mathematical" chaos, i.e., chaos not
subjected to noise, is described by a determinate equation
which does not contain random forces or random coeffi-
cients. It is precisely this fact that has led to the term "deter-
ministic chaos."

In spite of the fact that the concepts of "chaos" and
"determinate equations" lie in different planes there have
been many discussions attempting to reconcile randomness
and determinateness. The best known viewpoint is that of J.
Ford, who saw the resolution of the paradox in the theory of
algorithmic complexity: if the process is represented by a
sequence of symbols, as done in symbolic dynamics, then
this sequence will be algorithmically complex and in this
sense random, especially since almost all initial conditions
are also algorithmically complex.27 This approach is unsatis-

factory in that it completely ignores noise that is present in
any real dynamic system.

Finally the theory of partial determinateness based on
interpretation of randomness as unpredictability presents
one more point of view. On the basis of this convention ran-
domness and determinateness are regarded from the very
beginning as opposite poles of the same property—partial
determinateness. This approach can evidently also be ex-
tended to dynamic chaos, which thus appears as a partially
determinate process, i.e., as a process that is completely de-
terminate for r<rdet and completely random for r>rdcl.
Since deterministic chaos admits prediction only over
bounded time intervals, r<rdet, it is more correctly termed
partially determinate.

There is no great difficulty in estimating the time rdct

for locally unstable processes demonstrating chaotic behav-
ior.18-21

If/I, > 0 is the largest of the Lyapunov indicators, then
for the mean-square error cr2, we have the estimate

a* ~ (a? + a} + O\M) «2>ilt, (5.6)

where the quantities cr2,, cr2-, and a^M characterize the con-
tribution of three basic factors determining the prediction
error: the measurement noise v(t), fluctuation processes
/(/), and the uncertainty AAf of the model operator M.

Since the degree of determinateness D(T) can be ex-
pressed in terms of cr2, by the formula (4.7) we obtain from
the condition .D(rdet) = 1/2 the estimate

Tdet

This expression implies that the predictability horizon,
achieved in accurate measurements (cr2, <o/) and based on
a satisfactory model (cr| M <o/), is determined only by the
action of fluctuations:

2X, In (5.8)

From here follows the important conclusion that the ran-
domness of chaos, interpreted as unpredictability, is ulti-
mately determined by the action of fluctuation forces.

We note that the estimate (5.7) agrees with the infor-
mation analysis performed by Shaw24 and Crutchfield and
Packard.25 It is true that in Refs. 24 and 25 only the measure-
ment noise was taken into account, and then only in a medi-
ated form—as the uncertainty of the measurements cr2,. The
information renewal time calculated in Refs. 24 and 25 is
written in our notation as

T""~ 2XTln~l^~- (5-9)

The very slow logarithmic growth of the predictability
horizon (5.7) as the noise level cr2- decreases indicates that
even microscopic fluctuations owing to thermal noise and
quantum uncertainties can grow to macroscopic magnitudes
over a finite time. For example, if (y2)l/2 is a measured vol-
tage of the order of 1 volt while oy is the rms value of the
fluctuations of order 10~6V, then

(5.10)

A decrease in the noise level by six orders of magnitudes
(which, of course, is not realizable in practice) will increase
the predictability horizon by only a factor of 2:
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In spite of the fact that the chaos predictability time is
relatively short it still is longer than the correlation time rc ,
roughly estimated as I/A,. Thus for the numerical data em-
ployed in (5. 10) we have r,im ~ 14rc .

5.5. Combined average. Quasirandom processes

The degree of determinateness (4.5) is a local charac-
teristic of the congruity of the processes y(t) andz(r), refer-
ring only to the time t. There is also a different variant of
comparison, in which the behavior of processes over the en-
tire observation interval (r °, f = /° + r)is analyzed. To this
end we introduce the combined average, which combines
statistical averaging, denoted here by angular brackets, with
time averaging, i.e., time integration over the observation
interval ( t °,t ) . We shall denote the latter by parentheses, for
example,

- - y(t')z(t')dt'. (5 .11)

Denoting the combined average by braces we obtain for the
average of the product y ( t ) z ( t )

{yz} =-- ((uz)) --,- -i- \ <y (*') z («')> df . (5.12)

The corresponding degree of determinateness is introduced
as

n / v {!/(«) z( ' )}//, ( T ) - ^ / ^ 1 Q \{i/'-'OH1 (*» ' p. 1J)

and gives an integral measure of the congruity referring to
the entire observation interval (t °,t). Here lie the advantages
of Df (T) over D(T) , since time averaging reduces the contri-
bution of the measurement noise v approximately by a factor
of (Ao>vr) l / 2 , where A«v is the width of the noise spectrum
in the measurement system.

It is known from the theory of signal processing that if
the noise is Gaussian, then time-averaging of the observed
signal y ( t ) with the weighting function z ( t ) is equivalent to
optimal filtering of the signalz(f). Thus Z>,(r) is an optimal
(in the sense indicated above) measure of determinateness.
For these reasons it can be expected that the corresponding
determinate behavior time T,det will be somewhat longer
than rde], though it is still difficult to estimate by how much.
It can also be expected that the measure of determinatensss
D,(r) will be more sensitive to the choice of model than is
D ( T ) .

We can give the following brief definition of quasiran-
dom signals and processes based on the measure of determi-
nateness (5.13): these are signals (processes) that satisfy all
criteria for randomness (they have a continuous spectrum
and a decaying autocorrelation function, they admit a statis-
tical description, they are algorithmically complex, etc.) ex-
cept one, viz., the degree of determinateness relative to the
model signal (process) z(t), constructed based on the same
algorithm or simply copied fromy(t), equals unity.

A quasirandom signal can satisfy all possible tests for
randomness of the type to which random-number generators
in computers are subjected, but it does not satisfy the test for
congruity with its own copy. If the copy or algorithm are

unknown, however, then a quasirandom signal is indistin-
guishable from a random signal.

5.6. Randomness-determinateness transition. Do "truly
random" processes exist?"

On the basis of the theory of partial determinateness
"ignorance," i.e., the uncertainty of the model operator M,
in the calculation of Z) is just as important as different fluctu-
ation factors. The degree of determinateness D can increase
both because one of the factors fk (t) is included in the ex-
panded dynamic model z l ( t ) and because the model z ( t ) is
improved with the same fluctuation factors. In this respect
the concept of partial determinateness only over long time
intervals (r > r,im ) agrees with the assertion that on the basis
of classical physics stochasticity is wholly generated by dy-
namics, while over times shorter than r^m the predictability-
unpredictability boundary is not fixed and depends on the
capabilities (or possibilities) of the observer to suggest suc-
cessful hypotheses. This has the consequence that random-
ness of the process y( t) with respect to one model z, (t) does
not contradict the fact that the process y ( t ) itself at the same
distance T from the starting point t ° will be determinate with
respect to a different, better model z2 ( t ) . The corresponding
"transition" of a process from a random into a determinate
one is shown in Fig. 5, which shows the degrees of determi-
nateness Z), ( T) and Z>2 (t) corresponding to the models zl (f)
and z2(t). Of course, such a transition is possible only if
rSrlim.

Since no system of hypotheses can be complete (this is a
modification of Godel's assertion) it is always possible to
shift, at least slightly, the boundary of "ignorance."41 In con-
nection with the mobility of the boundary of "ignorance" we
note that an investigator who has a powerful computer has a
decided advantage in transforming random processes into
determinate processes over an investigator who does not
have a computer, since the computer facilitates sorting of
different models, differing, for example, by the values of sev-
eral parameters.

Unlike the complexity approach, which can bring out
arguments regarding randomness only after all imaginable
tests for the absence of laws have been performed, the con-
cept of partial determinateness permits checking only some
hypotheses, namely those that the experimentor has at his
disposal (or those which he can check). This agrees with the
practice of experimentation in natural science, in which pro-
cesses are divided into random (unpredictable) and deter-
minate (predictable) precisely based on checking of differ-
ent hypotheses.

The theory of partial determinateness is not limited by
the complexity of the model, as in the algorithmic approach:
in those cases when a prediction is vital one can even use very
complex algorithms made accessible by modern computers.

Sir)

FIG. 5. The "randomness-determinateness" transition occurring as the
model is refined.
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As a result a process that appears to be random, "not con-
forming to law," for one investigator who does not have a
computer may become determinate for an investigator who
does have a powerful computer. In my opinion the role of
computers in the aspect of the problem discussed here has
not yet been fully acknowledged.

Of course, over times longer than the limiting time of
determinateness r,im even the most powerful computer will
be helpless: in this case any determinate forecasts are equiva-
lent in the sense that no forecast can give reliable predic-
tions, i.e., for all predictions Z>~0.

In connection with the possibility of the transition
"randomness-*determinateness" I shall also discuss the
question of "truly random" processes. It is obvious that the
conventions regarding the division of processes into random
and determinate can also be extended to judgments regard-
ing "true randomness": the question of "true randomness"
can be discussed only on the basis of some conventions, and
in so doing it is desirable to have quantitative criteria for the
concept "true."

This pertains to the set-theoretical approach, the algor-
ithmic theory of probability, and the theory of partial deter-
minateness discussed here. On the basis of this theory ran-
domness of an observed process appears as a relative
property manifested on comparison with the model process,
and without indicating the class of predictive models it is
impossible to distinguish a determinate (predictable) pro-
cess from a random (unpredictable) process. Here one can
talk about "true" or "real" randomness only conditionally,
allowing for the process to cross the predictability horizon
r,im: for T > r,im the behavior becomes completely unpredic-
table (D—0) on the set of all conceivable models.

The predictability viewpoint may turn out to be very
constructive in attempts to define the concept of noise. It is
easiest to formulate a definition of noise based on the con-
verse: if the process admits prediction based on some algo-
rithm, then it can be effectively subtracted out (compensat-
ed), and it will no longer be noise or interference. Therefore
noise is a process for which we do not have a predictive mod-
el. In particular, dynamic chaos becomes noise when
T > Tdct, while for T < rdc, it is at least partially predictable
and in this sense is no longer noise (of course, also partially).

5.7. Related questions

The idea of partial determinateness is relevant to a very
wide range of questions in general physics. I shall mention
some of them.

First, the naive idea of a priori separability of errors into
random and systematic can be made more convincing if the
systematic errors can be linked with imperfections of the
model, hypothesis, or theory.

Second, by improving the predictive model z ( t ) we
solve the inverse problem of dynamics, and in so doing the
condition for the degree of determinateness D to be maxi-
mum (or the predictability time rde, to be maximum) can be
employed as a criterion for matching of the observations
y ( t ) with the hypothesis z ( t ) .

Third, if the angular brackets (yz) are interpreted not
as the average value of the product yz but rather the number
of coincidences between the value of y and z within some
range e/2 of quantization of the data, then D will be the
empirical probability that the difference \y ~ z\ does not ex-

ceed £/2. This shows that the degree of determinateness can
be given a probabilistic interpretation.

Fourth, recall the relation between the degree of deter-
minateness [more precisely, the scalar product (y, z) ] and
the characteristic functional of the process .y (this functional
is expressed as ®y (z, t, t °) = (exp [/ (y,z) ] ) ). Two points
are important here: the model processes z ( t ) appear as trial
functions (this is a new interpretation of trial functions),
and the functional <by exhibits singular behavior on the class
of functions that approximate well the observed process
y(t).

6. EXAMPLES

6.1 . Predictability in the case of a stretching piecewise-linear
mapping

To illustrate the general propositions I shall present
computational results demonstrating the exceptionally im-
portant role of noise and the no less important role of the
model in the question of predictability of systems exhibiting
complex behavior. Figures 7-10 below show the results of
calculations of the degree of determinateness D and the cor-
relation coefficient Ky , obtained in Ref. 21 for a system that
is described by a one-dimensional, piecewise-linear mapping
of the segment (0, 1 ) on itself (Fig. 6).

= {Ax}

!/„ = Xn,

where «is the discrete time, {Ax} is the fractional part of the
number Ax,fn is the fluctuation perturbation with a uniform
probability density in the interval 10 ~ p </< 10 ~p, and p is
an index characterizing the strength of the fluctuations (in
our example 2 <p < 6). In this case I neglected the measure-
ment noise v, setting yn = xn, and for the model z I took the
equation

z,, = F (zn_t). (6.2)

It follows from Fig. 7a, corresponding to the value
A = 2 (see Fig. 6b), that for values of the index p in the
interval from p = 2 to p = 6, i.e., for a noise level ranging
from 10~6 to 10~2, the degree of determinateness D(fi) is
close to unity over time intervals fj, = n — «° of the order of
5-15 time steps, after which it drops quite rapidly to zero.
The determinate behavior time/udet depends strongly on the
noise level and satisfies the logarithmic relations of the type
(5.11) with/I, = \/A. Since af= 10- V/3, for A = 2 we
have

^-toJLcc,,

FIG. 6. The piecewise-linear mapping (6.1) with/4 = 2 (a), 1.1 (b), and
9.9 (c).
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?0 ff
FIG. 7. Character of the dependence of the degree of determi-
nateness (a) and the degree of coherence (b) on the discrete
time/i for real values of the noise level (p = 2-6).

which agrees very well with the actual values of//det extract-
ed from Fig. 7a.21 In particular, for/? = 6 we obtain

The correlation coefficient Ky drops to the level ~ 1/2
already at practically the first time step; in addition, Ky is
insensitive to the noise level (Fig. 7b). This result indicates
that there is a profound difference between the correlation
time and the prediction time.

If in the model equation (6.2) the coefficient A is sub-
jected to small variations &A, then the time/^de, will be af-
fected by the uncertainty of the model for A/4 ib af, since in
this case

Studying the dependence of/zdet on the hypothetical value
A = A + Ay4 (Fig. 8) or, which in practice is more conven-
ient, the dependence of the degree of determinateness Don A

for fixed fj., two practically important problems can be
solved: the parameter A in the physical system can be esti-
mated, for example, by the value giving the maximum pre-
diction time/idet and the noise level in the system af can be
determined from the width of the curve in Fig. 8. Both prob-
lems of this type always arise prominently in radar and so-
nar, but these methods are less often employed in physical
studies of systems exhibiting complex behavior.

Changing the parameter A in the mapping (6.1) strong-
ly affects the quality of prediction. Figures 9a and lOa show
the dependences D (ft) for mappings with small (A = 1.1),
average (A = 2), and large (A =9.9) slope with/; = 2 (Fig.
9a) and/; = 1 (Fig. lOa). For/; = 1 noise constitutes—10%
of the typical value y~ 1, while for/? = 2 it constitutes about
1%.

FIG. 8. The determinate-behavior time/idcl as a function of the hypotheti-
cal parameter A in a neighborhood of the true value A.

FIG. 9. Behavior of the degree of determinateness (a) and degree of co-
herence (b) for different values of the parameter A and for a moderate
noise level {p = 2).
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FIG. 10. Same as Fig. 9 but for a significant noise
level p= 1.

These figures show how the predictability time in-
creases as the slope A of the mapping (6.1) decreases. Thus
for A = 9.9 and/? = 1 the timeyUdet = 1.4, while for A = 1.1
it increases up to 4.7 (Fig. 1 Oa). The time fidet also increases
similarly for/) = 2 (Fig. 9a). Moreover it follows from Figs.
9b and lOb that on transferring from a small value A = 1.1 to
a high valued = 9.9 and from a low noise level oy ~ 10~2 to
a high noise level ery~10~' the correlation time remains
virtually unchanged and equals approximately one time
step.

Similar results can also be obtained for the mapping
realized by the logistics curve F(x) = rx( 1 — x). Here phe-
nomena associated with "premature" onset of chaos owing
to noise are interesting.28-29

6.2. A real generator with a tunnel diode

A generator with a tunnel diode in the oscillatory cir-
cuit for generating chaotic oscillations was proposed in Ref.
30. This generator produces trains of oscillations with in-
creasing amplitude which are replaced each time by a damp-
ing process in the unblocking diode (Fig. 11). If the behav-
ior of the generator is described by the mapping yn -»>>,, + { ,
where .y,, is one of the sequential maxima of the signal, then
in the (yn, yn + \ ) plane the experimental points
yn +, = F(yn) form characteristic configurations that are
close to the theoretical configurations. A smooth polynomi-
al approximation F(y), which later served as a theoretical
prediction model zn+l = F( zn ), was constructed in Ref. 31.
The coefficients of the polynomials were determined from
experimental data by the least-squares method.

The form of the experimental mappings is shown in Fig.
12: no external noise in Fig. 12a and with external noise in
Fig. 12b. The degree of determinateness D (/j.), shown in Fig.
13 by curve 1 (no noise) and curve 2 (with noise), was calcu-
lated according to the dynamic model and from the experi-
mental data. As expected the introduction of noise reduced
the prediction time /ide, (approximately from 10 to 5 dis-
crete units).

The main value of the analysis performed in Ref. 31 lies

tln-H

Ut-i
Un

in the fact that a method was tested in practice for solving the
inverse problem of the theory of nonlinear oscillations using
the idea of partial determinateness. An inverse problem of
this type was studied by L. I. Gudzenko32'33 who was study-
ing regularity in the appearance of sun spots. He also de-
pended on models, but he analyzed only the statistics of the
experimental data themselves and not the joint observation-
prediction pair statistics.

6.3. Prediction of low-dimension chaos based on similar
events in the past

In the foregoing discussion I constantly emphasized
that the predictability time rdet can be much longer than the
correlation time rc. This assertion can be made stronger by
asserting that rde, can also be longer than the prediction time
based on autoregression models. This assertion was demon-
strated successively by J. Farmer and J. Sidorovich26, who
compared for a number of systems (the logistics mapping,
the Maki-Glass equation with retarded argument, Taylor-
Couette flow, and Rayleigh-Benard convection) the autor-
egression prediction zar (t) with prediction based on similar
events in the past.

1.0-

O.f

FIG. 11. The character of the process y( t) for a generator with a tunnel
diode in an oscillatory circuit.30

FIG. 12. The experimental (dots) and theoretical (lines) mapping for a
generator with a tunnel diode.3' The variance of the noise in b is approxi-
mately double that in a.
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FIG. 13. The behavior of the degree of determinateness for a generator
with a tunnel diode without noise (1) and with noise (2).

The prediction based on similar events in the past is
based on finding preceding times t * such that the value of
y ( t ) at t = t * equals the value of y (t °) at the initial moment
of interest, while the behavior of y(t) for t < t * is similar to
that of the observed process for t < t °. Then the value of the
observed process y ( t ) for t> t * in the past is taken as the
prediction at the time t>t°:

z (/» -L T) = y (t* + T). (6.4)

In this prediction the behavior of the process y( t) itself in the
past is employed as a kind of analog computer. This ap-
proach is sometimes employed for long-term weather fore-
casting. The largest errors in prediction based on past behav-
ior are associated with the fact that the behavior of the
process y( t ° — T) prior to the moment of observation t ° and
of the process y (t * — r) prior to the reference time t * by no
means agree with one another as closely as they should. The
implicit assumption that at the time t * the system was "the
same" as at the running time t° is another important source
of error. As a rule this assumption is difficult to check, and it
is yet another example of the application on faith of the fore-
casting principle "as it was, so it will be."34

As shown in Ref. 26 the maximum predictability time
can be many times longer than the characteristic time rchar,
evaluated as the inverse of the frequency a)p corresponding
to the maximum of the energy spectrum. For a wide spec-
trum with bandwidth Aw that is comparable to the "peak"
frequency cop the characteristic time fchar is comparable to
the correlation time rc. In Ref. 26 it was found that the typi-
cal ratio Y = TA* /'char =5-10, and tends to increase (some-
times up to a factor of 100 and more) as the dimension of the
attractor decreases to d = 2; conversely, it tends to drop (to
values 7 — 3 and less) as the dimension increases t&d~ 3-10.
Another valuable result obtained in Ref. 26 is the experimen-
tal confirmation of the fact that the error E grows exponen-
tially with the time r.

6.4. Degree of predictability in M. Born's example

In his time M. Born noted35 that long-term unpredicta-
bility is inherent to not only quantum but also classical me-
chanics, though it has a different, nonquantum, nature asso-
ciated with the unavoidable measurement errors. This
important and, in general, old idea was illustrated in Ref. 35
by an example that elucidates very clearly the problem of
unpredictability even in simple systems in which there is no
local instability. The problem is that of a particle moving
with a velocity v between two parallel walls y = 0 and y — a,
alternately reflecting from them. If AU is the error in deter-
mining the velocity, then after a time ra ~a/Ai; the uncer-
tainty of the coordinate Aj>~ Air? will equal the distance a

between the walls, so that for t^>ra ~aAu the probability
density for the particle coordinate will become uniform:
w(y) = const = I/a.

From the viewpoint of models the time ra ~a/&v must
be regarded as a predictability horizon for the coordinate^ of
the particle. To calculate the degree of determinateness in
this case the motion of the particle being studied ̂ ( t) should
be examined together with the motion of the model particle,
whose velocity vm is a parameter of the model and can differ
from v by not more than Ay. Omitting the calculations and
the obvious graph of the function D( r) we note that for all its
simplicity Born's example is a graphic model of many prob-
lems in radio physics and optics. Here are two examples of
problems of this type. Over what time intervals does the un-
certainty of the phase if? = a>t becomes comparable (after
subtraction of an integer number of 27?-) with 2-rrl At what
distances does it become impossible to determine the phase
difference between two modes in a multimode waveguide?

6.5. The predictability of a quasisinusoidal signal with
fluctuating phase

The problem of predicting a quasisinusoidal signal with
a fluctuating phase leads to unexpected results. Neglecting
the measurement noise and the amplitude fluctuations we
write the signal generated by a self-oscillatory system of the
Thompson type in the form y ( t ) = cos [co0(t —1°)
+ <p(t) ], where q>(t) is the random phase whose variance is

characterized by the coefficient of diffusion D^\
fyp(t) — tp(t°ff) =DVT. If the strictly sinusoidal signal
z(t) =cos[(<y0 + H) (t-t°) +^( f° ) ] with a slightly dif-
ferent frequency but with the same starting phase q>(t°) is
taken as the prediction for^( f ) and the combined average
(5.12) is taken as the comparison criterion, then the degree
of determinateness is given by

This expression is a good illustration of the relation be-
tween the fluctuation factors (in this case this is the coeffi-
cient of diffusion of the phase Dv ) and the model parameter
H. The predictability time is estimated from (6.5) as

Q.!/. • (6.6)

To increase this time we can reduced H, i.e., we can
refine the reference frequency. Obviously, for Cl^D^ it be-
comes impossible to increase rdet further, so that the quanti-
ty Tdet ~ \/Dv plays here the role of the predictability hori-
zon. This time equals the correlation time rc ~ \/Dv of the
complex envelope Y, since in this case Ky ( T)
= exp( — DVT). This problem has the characteristic fea-

.ture that in the general case ( ft £ Dv ) the predictability time
does not exceed the correlation time (rdet <rc ). This occurs
because in a Thompson generator the correlations decay ex-
clusively owing to noise, and not owing to the complex form
of the oscillations, as in the case of dynamic chaos. Here the
predictability horizon cannot be moved by improving the
model, since the random fluctuations of the phase owing to
thermal and shot noise do not admit deterministic modeling.
This is one of the facts suggesting the following thought:
even "the most chaotic" chaos leaves hope of obtaining a
prediction over times longer than the correlation time, while
the usual Thompson generator hardly permits reaching TC .
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In this (and only in this!) sense the predictability of sinusoi-
dal oscillations is worse than that of chaotic oscillations (of
course, the achieved predictability time for chaos is much
shorter in absolute magnitude than for generators of sinusoi-
dal oscillations).

7. PARTIALLY DETERMINATE FIELDS

7.1. Degree of determinateness of scalar and vector fields

The idea of partially determinate processes can be ex-
tended naturally to fields, including wave fields22'23. In this
case the observed field Y(r, t ) , which depends on three spa-
tial coordinates and the time t, must be compared with the
model field Z(r, /) in some space-time region.

In addition to the uncertainty factors already indicated
above for partially determinate processes (fluctuation per-
turbations in the real process x; measurement noise, causing
the observation y to differ from x; uncertainty of the ideal-
ized model equation for z), in the case of fields the errors
associated with the fact that the observational data Y are
obtained from a finite number of points rk, k = 1,2 K,
must also be taken into account. As a result of this the start-
ing data for intermediate points must be calculated with the
help of some interpolation procedure, which, naturally, ad-
ditionally degrades the predictability. For a scalar field 7(r,
t) the degree of determinateness relative to the model field
Z(r, t) is best introduced with the help of the relation

n M iy (r' {) z (r> t)} ti MA'QV1) — ({yz(r, t)}{Za(r, i)})1/2 ' *- '

where the braces indicates simultaneous space-time and sta-
tistical averaging.22 If Y(r, 0 and Z(r, t) are vector fields,
then the product Y(r, t) Z(r, t) in (7.1) must be regarded as
a scalar product. If the fields are complex, then the complex
conjugate of the model field Z must be employed, as done in
expressions for the complex coherence function.

The arguments regarding the finiteness of the determi-
nate behavior time can obviously be extended now to spatial
regions: three-, two-, or one-dimensional. The idea of par-
tially determinate fields could be useful for many problems
in hydrodynamics, acoustics, optics, plasma physics, etc. We
shall examine some examples.

7.2. Spatial predictability of speckle-inhomogeneous fields

Speckle-inhomogeneous fields are formed as a result of
the superposition of many waves and are characterized by a
high degree of nonuniformity of the interference pattern.
The scale of variation (correlation radius) of this pattern lc

is related with the width of the angular spectrum A0 by the
relation 7C ~A/A0. The term "speckle fields" ("granular"
fields) itself originated in optics, though complex interfer-
ence fields of the same type are encountered in radiophysics
and in acoustics, for example, in multimode oceanic wave-
guides.

It turns out that the random (in the sense of decaying
correlations) character of speckle fields does not preclude
predictability over distances greater than the correlation ra-
dius lc. Such a prediction can be made in two stages23: first
the sources of the field are determined from the speckle pat-
tern measured on a finite aperture — /a/2<x</a/2 (as-
sumed to be one-dimensional to simplify the discussions)
and then the field Z(r), which serves as the prediction out-
side the aperture, is reconstructed from the sources found.

The possibility of reconstruction (extrapolation) of the field
outside the aperture \x\ > 7a /2 is itself based on the fact that
dynamic equations (the wave equation or Maxwell's equa-
tions) and the measured values of the field on the aperture
are available.

Of course, the size of the aperture 7a limits the possibil-
ity of resolving the sources, and for this reason the predicta-
bility (determinateness) length 7de, usually does not exceed
the aperture size 7a, but at the same time it is obviously larger
than the correlation radius 7C. Both these features are reflect-
ed in Fig. 14, which shows the intensity of the starting
speckle-inhomogeneous field /(*) and the degree of deter-
minateness D(x), characterizing the quality of the recon-
struction of the field outside the aperture.

These constructions make it tempting to use the recon-
structed field to increase the resolution of the aperture. This
possibility is, however, unrealizable in reality, since the re-
constructed field does not contain any additional informa-
tion aside from that existing on the starting aperture.

7.3. Partial predictability of turbulent flows. Region of
compatibility of dynamic and kinetic descriptions

After the foregoing discussion the idea that the behav-
ior of a turbulent flow can in principle be predicted will no
longer seem strange. Of course, to make a prediction one
must first acquire the necessary initial and boundary data on
the flow with the help of a system of sensors, and the predic-
tion itself extends only over limited spatial and time inter-
vals, which, however, are larger than the spatial and time
correlation radii of the turbulent field.

For anyone who is accustomed to stochastic models of
turbulent flows such a prediction may seem unacceptable for
purely psychological reasons: is it really possible to predict
phenomena for which kinetic equations have been devised,
equations for weak or strong turbulence, etc.? And yet, a
determinate (or more precisely, partially determinate) de-
scription of turbulent fields based on equations of hydrody-
namic type with corresponding initial and boundary data do
not at all contradict the kinetic description, since they are
compatible in some space-time region.36

In the time domain the region of compatability is the
interval from the correlation time rc up to the predictability
time rdet:

TC =e t *£ "Cdet- (7.2)

In this interval the correlations between the values of the
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FIG. 14. The character of fluctuations of the amplitude ofaspeckle-non-
uniform field on an aperture (-4/2<*<4/2) (a) and the degree of
determinateness D(x) (b).
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observed field have decayed (decoupled) to such an extent
that the kinetic description is now applicable, but the deter-
minate description has still not lost any force, since predic-
tion and observation are still correlated. The compatibility
of the two descriptions should not be surprising, because
here one is dealing with two different methods for describing
the same phenomenon: if the purpose of the determinate de-
scription is to predict the instantaneous and local values of
the fields, which it is possible to do within the region of deter-
minateness, then the kinetic approach is from the very begin-
ning oriented toward determining the average characteris-
tics.

7.4. Determination of nonuniformities in a waveguide from
the interference pattern

As is well known, in multimode waveguides the field
has a complicated, randomly-similar interference structure.
Is it possible to determine based on this interference struc-
ture whether or not random nonuniformities are present in
the waveguide?

Numerous calculations, performed predominantly for
sound waves in oceanic waveguides, show that the spatial
correlation functions of the field are virtually insensitive to
nonuniformities of the medium. On the other hand the de-
gree of determinateness, which depends on detailed agree-
ment between the observed and model (computed) fields, is
extremely sensitive to the presence of nonuniformities.37 It
should be noted that there is an asymmetry in the results for
D j£ 1 and D < 1. If the equality D = 1 indicates absolutely
that there are no nonuniformities, then for D < 1 any differ-
ence in the interference patterns Y(g) and Z(f) (£ is the
coordinate transverse to the axis of the waveguide) can indi-
cate both the existence of nonuniformities and the existence
of some other factors that have been ignored in the model
(for example, unevenness of the walls).

7.5. Weather prediction. Value of a forecast

Weather forecasts are probably encountered more often
than any other dynamic predictions. For the questions dis-
cussed in this paper a weather forecast is important in that it
reflects all the most characteristic features of a physical pre-
diction.

7.5.1. Existence of a predictability horizon

It was discovered in meteorology earlier than in other
natural sciences that long-range predictions have a limit de-
termined by the local instability of dynamic processes in the
atmosphere. Strange attractors, a detailed analysis of which
led to an understanding of the existence of fundamental lim-
its of predictability, were first discovered in meteorology (E.
N. Lorenz, 1963).38

7.5.2. Advantages of a dynamic prediction over a statistic
prediction

The fundamental advantages of a dynamic prediction
over statistic methods, based on a rectilinear correlation
principle of the typey(t° + T) z z y ( t ° ) ("tomorrow will be
the same as today") or on more refined evaluations of the
autoregression type, mentioned in Sec. 6.4, were clearly re-
vealed in the example of weather prediction. Obviously the
linear couplings of the type <y(t)y(t — r) poorly reflect
deep hydrodynamic processes, an adequate description of

which is hardly possible on any basis other than a dynamic
description with appropriate "input" information. In recent
publications by the leaders of modern meteorology E. N.
Lorenz39 and J. Mason and R. S. Treas40 the possibilities of
dynamic prediction for Europe and North America are
characterized by reliable predictions of up to seven to ten
days51 while predictions based on the principle "tomorrow
will be the same as today" hardly extend to two-three days.
The two-three day interval is linked with the fact that for
scales of the order of several hundreds of kilometers the dou-
bling time of the perturbations under typical conditions in
the earth's atmosphere equals precisely two-three days.

7.5.3. What actually limits the accuracy of a forecast?

Each of the three interfering factors—fluctuation per-
turbations, measurement noise, and defects in the model—
can make a perceptible contribution to the limit of accuracy
of a forecast. However the relative importance of separate
factors decreases with time; this is characteristic for other
physical phenomena also.

At the present time the most significant errors are asso-
ciated with the uncertainty of the input data: the network of
weather stations is too sparse, and systems for collecting in-
formation and feeding it into a computer are still too ineffi-
cient. One would think that as the number of ground stations
increases, especially in regions outside of Europe and North
America, the network of marine stations on ships in the
ocean is expanded, and measurements from space are im-
proved, the quality of forecasts will improve, and the errors
associated with defects in the dynamic model will become
predominant. Some significant failures in forecasts ("mal-
functions") can already now be attributed to the fact that
separate factors, most often moisture transfer, were neglect-
ed or not taken into account correctly in the dynamic equa-
tions. By expanding the measurement network and at the
same time improving the model, meteorologists are taking
into account atmospheric eddy motions on increasingly
smaller scales, gradually transferring these motions from the
category of fluctuations (from the viewpoint of the present
level of description) into the category of the degrees of free-
dom taken into account in the model.

As increasingly smaller scales are incorporated the
forecasts will become more accurate. However, will the
"physical" predictability horizon, where the perturbations
introduced by the sensors will start to have an appreciable
affect on the forecast, be reached? The answer is obviously
no, because limitations of an economic and technical charac-
ter will appear much sooner.

7.5.4. Relation between the accuracy and cost of a forecast

It is obvious that expansion of the network of observa-
tion stations, gathering data from high masts and weather
balloons, creation of telemetric networks, including the use
of satellites, will all increase the accuracy of a forecast and at
the same time forecasts will become more expensive. Assum-
ing that the cost of a forecast increases in a power-law fash-
ion we can write a symbolic equation of uncertainty of the
type

r£« ~ const. a> 1, (7.3)

where Fis the cost of a forecast and E is the relative mean-
square error. In the opinion of specialists, who take such
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limitations into account, the period of a forecast, achievable
in our century with a quality sufficient for supporting civil-
ian aircraft flights, will hardly reach 15 days. In any case
predictability over 30 days is thought to be unfeasable. It is
true that in individual cases a period of 15-20 days is achie-
vable even today, but such cases are exceptions: they refer to
periods with especially stable weather during the summer
and winter. The forecast period can also be increased when
only the character of the weather and not the exact values of
the pressure and temperature is predicted, i.e., a more or less
wide "corridor" of the parameters is indicated.

In concluding this section we note that uncertainty rela-
tions of the "cost-accuracy" type (7.3) appear in virtually
any physical experiment: to reduce the measurement error
we must inevitably spend more money.

8. THE NATURE OF RANDOMNESS

8.1. Hierarchy of models, levels of description, and degrees
of determinateness

In the phrase "the nature of randomness" it is hardly
possible to interpret randomness other than as unpredictabi-
lity, so that the question of the nature of randomness essen-
tially reduces to the question of how well our predictive
models characterize the behavior of processes occurring in
nature.

One must first stipulate the degree to which a problem is
to be analyzed. This is important, since the same phenome-
non can demonstrate completely determinate behavior on
the basis of, say, the hydrodynamic description and be com-
pletely indeterminate at the molecular level. A determinate
description of macrosystems obviously cannot be achieved
at the molecular level because it is impossible to fix the start-
ing state and record the change in the state of the system of
molecules in time and space. There are even fewer possibili-
ties of realizing a determinate description at the quantum-
mechanical level. It would be tempting to introduce, by anal-
ogy to (7.1), the degree of determinateness for the wave
function ^(r,,...,iv, t) of a system of N particles. However it
would be difficult to give a physical content to this concept,
since it is virtually impossible to prepare the starting (quan-
tum) state i/j° or control the further behavior of the if> func-
tion (it is premature to discuss the possibilities associated
with hidden variables). For this reason, one can talk about
deterministic predictability only starting with a definite lev-
el, namely, the level of effects recorded by macroscopic de-
vices. Such effects admit either a classical description or a
quantum-mechanical probabilistic description. Further we
can adhere to different levels of description even within the
framework of classical physics: this depends on the number
of degrees of freedom taken into account, on the number of
known participants in the interaction, and on the range of
spatial and time scales taken into account. Thus there ap-
pears a hierarchy of models, differing by the degree of detail
of the phenomena studied. There also arises a corresponding
hierarchy of degrees of determinateness: Dl>D2>OJ...,
and the predictability is all the better (Dj > D} +, ) the larger
the details the model operates with. Thus in the problem of
weather forecasting studied above predictability for the
smallest scales studied (tens of kilometers) is always worse
than for scales of the order of 1000 km.

From the viewpoint of the indicated hierarchical struc-
ture of predictive models the nature of randomness must be
sought in the factors that introduce the largest errors into
the forecast claiming to give the most detailed possible de-
scription. In concrete cases these factors can belong to any of
three basic classes of forecasting errors: fluctuation forces,
measurement noise, and uncertainties of the model. This
means that in studying the question of the nature of random-
ness the hypothesis of uncertainty and incompleteness of the
model can be regarded on the same level as the assumptions
about the action of fluctuation forces and measurement
noise. In other words, ignorance emerges as a fully objective
component of the nature of randomness.

8.2. Fundamental and practical limits of predictability

It is obvious (we started from this, introducing quanti-
tatively the predictability horizon in Sec. 5.2) that as the
model is refined and the measurement errors are reduced
fluctuation forces become the most important and, more-
over irremovable reason for long-term unpredictability. Ul-
timately these are thermal and quantum-mechanical fluctu-
ations, which cannot be completely avoided under any
circumstances, as well as different external fields (electro-
magnetic, gravitational, neutrino, etc.), from which the sys-
tem of interest cannot be completely shielded. From the
viewpoint of a classical description these fluctuations must
be regarded as a constant source of perturbations for classi-
cal trajectories: they seemingly "scramble" the phase space.
If the classical system is locally unstable (and this is true for
most more or less complex systems), then it becomes a gi-
gantic amplifier of thermal, quantum, and other fluctu-
ations, i.e., essentially a generator of randomness. The com-
bination of the two indicated factors—the presence of
unavoidable microfluctuations on the one hand and local
instability of macrosystems on the other—must evidently be
regarded as a fundamental reason for randomness in our
universe. Of course, if the resolution of the question of the
nature of randomness is returned back to the practical level,
then for most systems the limits of predictability will still be
reached on the macroscopic level. Aside from real noise and
real "ignorance noise" the perturbations introduced into the
object under study by measuring devices can also play an
important role here. For locally unstable systems the funda-
mental role of this restriction is yet to be studied. Does the
connection of a sensor to an electric circuit or the insertion of
an anemometer into a fluid flow not leave any trace? After all
measurement devices can have a much stronger effect on the
course of locally unstable processes under study than the
flapping of the wings of a butterfly on the other side of the
world from us (see Ref. 43 for a discussion of some impor-
tant considerations).

9.ARSCONJECTANOI

The arguments presented here are an attempt to formal-
ize the very nontrivial "relations" between observation and a
predictive model on the basis of the concept of partial deter-
minateness, which identifies unpredictability with random-
ness. This concept is convenient, intuitively acceptable, and
de facto widely employed in natural science in the interpre-
tation of experiments. Quantitative criteria which the theory
of partial determinateness poses can be easily realized in
practice, for example, with the help of correlators and in one
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form or another have already been employed in physics and
allied areas of science.

The significant dependence of the accuracy of predic-
tion on the quality of a hypothetical model of a phenomenon
corresponds well with the version of the theory of probabili-
ty that J. Bernoulli called "ars conjectandi"—"the art of
conjecture."41

Dynamic prediction has greater possibilities than sto-
chastic prediction,6' since the latter is oriented from the out-
set toward describing averaged and coarsened characteris-
tics (probability distribution functions, statistical
moments). However a dynamic forecast depends tremen-
dously on a successful model. It is here that ars conjectandi
comes into play.

There is no doubt that the idea of partial determinate-
ness will also be useful in the solution of many other impor-
tant problems not mentioned above, such as the problems of
vision, associative memory, image recognition, directedness
of evolution, self-organization of complex systems, and arti-
ficial intelligence.

In conclusion I am deeply grateful to V. L. Ginzburg
and the participants of his seminar for their interest in the
problem of predictability, V. I. Tatarskii and V. S. Etkin for
numerous useful discussions of the questions touched upon
here, L. Sh. Il'kova for assistance in performing the calcula-
tions, and A. S. Chirkin for valuable critical remarks.
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