УСПЕХИ ФИЗИЧЕСКИХ НАУК

<u>ФИЗИКА НАШИХ ДНЕЙ</u>

538.915

ЭЛЕКТРОННЫЙ КРИСТАЛЛ НА ПОВЕРХНОСТИ ЖИДКОГО ГЕЛИЯ

В. Б. Шикин

(Институт физики твердого тела АН СССР, Черноголовка, Московская обл.)

Ансамбль электронов, локализованных на поверхности жидкого гелия, одна из перспективных двумерных заряженных систем, интенсивно исследуемых в последнее время.

1. Причины повышенного интереса к указанному объекту связаны, в частности, с возможностью наблюдения здесь различных коллективных явлений кулоновского происхождения. Речь идет о двумерных плазменных колебаниях, интересной разновидности этих колебаний, названных краевыми или периметрическими плазменными волнами, и в особенности о явлении кулоновской кристаллизации. Наиболее фундаментальным из перечисленных коллективных эффектов следует признать кулоновскую кристаллизацию, предсказанную для трехмерных систем с сильным кулоновским взаимодействием в работах Вигнера [1-2] примерно 50 лет тому назад. Идеи Вигнера получили в дальнейшем широкое теоретическое развитие, ибо речь идет о возможности описания различных коллективных явлений в системе с сильным взаимодействием. Однако экспериментальное «освоение» этой области оказалось возможным лишь в последнее время, благодаря в основном успехам в создании двумерных заряженных систем с пространственно разделенными подвижной подсистемой и экранирующим фоном. Пример такой системы с очень высокой подвижностью электронов — это электроны над гелием. Обнаружение электронной кристаллизации в данной системе было впервые осуществлено Граймсом и Адамсом [3].

Естественно, что успех Граймса и Адамса [3] стимулировал дальнейшие исследования свойств электронной решетки как с теоретической, так и с экспериментальной точек зрения. В этой статье описаны последние достижения в данной области.

2. В оригинальной работе Граймса и Адамса [3] наличие фазового перехода фиксировалось появлением специфических электрон-риплонных мод, возникающих в спектре коллективных возбуждений электронной решетки на жидкой подложке. Природа дополнительных ветвей спектра и детали эксперимента [3] подробно освещены в обзорных статьях [4, 5], что позволяет не обсуждать здесь этот интересный вопрос. Следующая, достаточно серьезная проблема, возникшая сразу за публикацией [3], касалась возможности распространения в электронной решетке поперечного звука. Конечность модуля сдвига — обязательный атрибут кристаллического состояния. Поэтому вопрос о существовании поперечного звука в электронной решетке вполне закономерен. Экспериментальное решение этой проблемы, т. е. создание методики возбуждения поперечного звука и детальное изучение свойств модуля сдвига двумерной решетки, было осуществлено в серии французских экспериментов [6—8].

Схематический вид ячейки, использованной в [7] для обнаружения поперечного звука, представлен на рис. 1. Электронная система локализована на пленке гелия конечной толщины *d*, расположенной, в свою очередь, на диэлектрической подложке, содержащей змеевидную линию задержки. Период линии имеет масштаб толщины пленки гелия. При пропускании

Рис. 1. Схема экспериментальной ячейки из [7], использованной для обнаружения в кулоновском кристалле поперечной жесткости. На вставке в правом верхнем углу — схематический вид закона дисперсии для поперечной моды электронной решетки и «положение» рабочего волнового числа *k*_L, позволяющего измерять поперечную скорость звука в линейной области зависимости ω (*k*)

вдоль линии задержки переменного тока и при наличии магнитного поля **H**, нормального к поверхности гелия, в электронной системе возникают силы электрического происхождения, носящие сдвиговый характер. Если электронная система обладает поперечной жесткостью и частота внешнего возбуждения совпадает с частотой поперечного звука, с волновым числом, равным периоду линии задержки, то связь между линией задержки и электронной системой становится резонансно большой, что отмечается по возрастанию потерь в линии задержки.

Специфической особенностью спектра поперечных возбуждений электронного кристалла на мягкой подложке служит наличие конечного порога деформационного происхождения ω²:

$$\omega^{2}(k) = \omega_{\xi}^{2} + v_{\perp}^{2}k^{2}, \quad v_{\perp}^{2} = \frac{0.138e^{2}(\pi n)^{1/2}}{m}, \quad \omega_{\xi}^{2} = \frac{e^{2}E_{\perp}^{2}}{2\pi\alpha m \langle u^{2} \rangle}; \quad (1)$$

здесь n — средняя плотность электронов, m — масса электрона, E_{\perp} — напряженность прижимающего поля, ω , k — частота и волновое число колебаний, α — коэффициент поверхностного натяжения жидкого гелия, $\langle u^2 \rangle$ — среднеквадратичное смещение электрона из положения равновесия, $\langle u^2 \rangle \ll$ $\ll n^{-1}$. Физические причины, приводящие к возникновению порога ω_{ξ} в спектре ω (k) (1), достаточно просты. Электронная решетка прижимается к свободной поверхности гелия внешним полем E_{\perp} . Учитывая, что $\langle u^2 \rangle \ll n^{-1}$, нетрудно видеть, что эффективное давление решетки на поверхность гелия содержит, кроме средней части, однородной вдоль поверхности гелия, дополнительные фурье-компоненты, характеризующие локальную деформацию поверхности гелия под каждым из локализованных электронов. Наличие этой самосогласованной деформации $\xi(r)$ приводит к возникновению дополнительной энергии $eE_{\perp} \xi(r)$ и, как следствие, в высокочастотном пределе — к возникновению пороговой частоты ω_{ξ} деформационного происхождения в спектре $\omega(k)$ (1). Впервые появление данной особенности в спектре коллективных возбуждений электронного кристалла на жидкой подложке отмечено в [9].

Наличие порога ω_{ξ} четко видно на вставке в рис. 1, изображающей зависимость частоты поперечных колебаний от волнового числа k.

Существование пороговой частоты в спектре поперечных возбуждений приводит (с точки зрения постановки экспериментов по измерению модуля

Рис, 2. Появление с понижением температуры резонансов, свидетельствующих о наличии в электронной решетке конечного модуля сдвига μ Плотность 2D-электронной системы $n = 6 \cdot 10^7$ см⁻², остальные параметры эксперимента указаны на рис. 2 (из [7])

сдвига) к необходимости принятия специальных мер, учитывающих существование ωξ. Именно, необходимо возбуждать поперечный звук в области достаточно больших волновых чисел, чтобы иметь дело с линейной частью закона дисперсии (1), т. е. работать в области

 $\omega^2 \gg \omega_{\xi}^2$.

(2)

Требование (2) оказывается довольно серьезным в смысле изготовления высококачественной линии задержки, обладающей достаточно малым периодом. Практически для работы с электронной системой над гелием период λ линии задержки, удовлетворяющий требованию (2), имеет масштаб $2\pi/\lambda \approx 500$ см⁻¹. Тем не менее, французской группе из Сакле удалось достичь необходимого сочетания параметров ячейки, позволяющих рассчитывать на возбуждение поперечного звука в линейной области и реализовать соответствующие эксперименты.

Положение соответствующего волнового числа, для которого осуществлено возбуждение поперечного звука, отмечено на вставке в рис. 1 индексом k_{L} .

Конечные результаты [6, 7] собраны на рис. 2 и 3. Первый из этих рисунков демонстрирует появление резонансного сигнала, свидетельствующего о возникновении поперечной жесткости в 2D-электронной системе. Зная частоту резонанса и период линии задержки, нетрудно определить скорость поперечного звука и, далее, величину модуля сдвига µ. Соответствующие экспериментальные данные о температурной зависимости µ представлены на рис. 3.

Температура фазового перехода T_m , следующая из данных о поведении модуля сдвига, хорошо коррелирует с информацией о величине T_m , известной из данных [3], а также из других независимых измерений [10—12], выполненных позднее. Кроме того, располагая данными рис. 3, можно пойти дальше и попытаться ответить на вопрос о природе фазового перехода в электронной системе. Более конкретно этот вопрос формулируется так: возможно ли

Рис. 3. a — Модуль сдвига μ , отнесенный к его значению при T = 0, в функции от температуры. Сплошная линия — температурная зависимость μ (T), следующая из расчетов Морфа [15]; экспериментальные точки хорошо укладываются на эту зависимость. На правой шкале отложен критерий Костерлица — Таулеса (КТ) в области $\mu a_2^o/4\pi > T$; T_m — температура плавления электронного кристалла для данной плотности $n = 6 \cdot 10^7$ см⁻² (данные [7]). δ — Кинематическая вязкость электронного кристалла в функции от T для поперечных колебаний на частоте $\omega/2\pi = 1060$ МГц. Характерно резкое возрастание вязкости в окрестности температуры плавления, что можно соотнести в данной области T с появлением большого числа дислокаций флуктуационного происхождения (данные [7])

объяснение положения температуры фазового перехода в рамках теории Костерлица — Таулеса [13—14]? Ответ, полученный французской группой, оказывается положительным. Температура перехода, действительно, определяется соотношением Костерлица — Таулеса (μ — модуль сдвига, a_0 — вектор Бюргерса, τ — коэффициент Пуассона)

$$T_{\rm m} = \frac{\mu a_0^2 (1+\tau)}{8\pi} , \qquad (3)$$

если учесть, что $\tau \rightarrow 1$ [14], и в качестве модуля сдвига µ использовать выражение, учитывающее температурную зависимость µ (T), т. е. принимать во внимание результаты теоретических расчетов Морфа [15]. Таким образом, электронная решетка над гелием оказалась одной из интересных кристаллических структур, плавление которой происходит за счет флуктуационного размножения дислокаций.

3. Следующая важная серия экспериментов, также осуществленная французскими физиками [16, 17], касается измерения теплоемкости электронной решетки и поведения теплоемкости при переходе из кристаллической в жидкую — задача, на первый взгляд, трудно решаемая, так как речь идет об измерении теплоемкости двумерной системы малой плотности на фоне гораздо более теплоемкой жидкой подложки. Тем не менее остроумная мето-

дика, позволяющая с уверенностью выделять теплоемкость электронной подсистемы, продемонстрирована в работах [16, 17].

Для определения теплоемкости электронной решетки необходимо знать изменение $\Delta T_{\rm e}$ температуры кристалла при поглощении им определенного

Рис. 4. a — Динамика появления резонанса на частоте ω_{ξ} из (1) с уменьшением температуры в области $T < T_m$ (данные [6]). δ — Температурная зависимость ω_{ξ} (данные [18]). Интересно отметить довольно сильную зависимость ω_{ξ} от магнитного поля, возникающую в связи с влиянием H на $\langle u^2 \rangle$. Однако температура плавления кристалла зависит от H значительно слабее, что отвечает представлениям теории Костерлица — Таулеса [13]

количества тепла ΔQ . Измерение ΔQ не составляет труда, так как речь идет об оценке активных потерь, связанных с передачей ВЧ от радиочастотного контура электронной системе. Что касается измерения температуры $\Delta T_{\rm e}$ (наиболее деликатная часть методики), то согласно [16] для этой цели можно воспользоваться свойствами пороговой частоты $\omega_{\rm E}$ из (1). В самом деле, прямые измерения [6, 18] вблизи порога возникновения кулоновской решетки указывают на заметную зависимость этой частоты от температуры (рис. 4). Полагая, что при наличии перегрева электронной решетки относительно

В. Б ШИКИН

жидкой подложки частота ω_{ξ} реагирует на электронную температуру, и используя данные рис. 4 о зависимости ω_{ξ} от *T* как градуировочные, мы приобретаем возможность использовать положение частоты ω_{ξ} (*T*_e) в качестве

Рис. 5. Теплоемкость электронной решетки, отнесенная к постоянной Больцмана, $C/k_{\rm B}$, измеренная для плотности n ==1,02 · 10⁸ см⁻². Штрихпунктирная кривая — расчет фононной теплоемкости двумерной электронной решетки, соответствующей плотности с использованием модуля сдвига μ (0), равного его значению при T = 0. Штриховая кривая — тот же расчет с учетом температурной зависимости μ (T), приведенной на рис. 3, *a*. Стрелкой обозначено.положение температуры плавления $T_{\rm m}$ (экспериментальные точки и расчет из [16, 17])

термометра электронной системы. Правильность сделанных предположений проверяется экспериментально. Если, например, зафиксировать температуру жидкой подложки на определенном «расстоянии» от температуры плавления

Рис. 6. Динамика изменения температуры электронной системы в функции от времени в связи с включением (а) либо выключением (б) разогревающего поля. По оси абсцисс — время в мкс, по оси ординат - текущее значение электронной температуры Т_е в мК. Положение температуры плавления $T_{\rm m}$ отмечено стрелкой. Очевидно, что в окрестности T_m монотонность изменения T_е не нарушается, что свидетельствует об отсутствии заметной теплоты плавления при фазовом переходе кристалл — жидкость в электронной системе. Температура гелия - 135,5 ± 0,3 мК, плот-HOCTE $n_1 = 0,44 \cdot 10^8$ CM⁻², $n_2 =$ =0,95·10⁸ см⁻² (данные [16, 17])

кристалла $T_{\rm m}$ и затем адиабатически повышать температуру решетки, следя параллельно за поведением пороговой частоты ω_{ξ} ($T_{\rm e}$), то нетрудно видеть, что эта частота будет смещаться в сторону более низких значений и обратится в нуль в точке плавления кристалла, т. е. при $T_{\rm e} = T_{\rm m}$. Другими

словами, имеются необходимые условия для градуировки электронного термометра.

Используя указанную возможность, авторы [16, 17] получили следующие конечные результаты, представленные на рис. 5, демонстрирующие поведение теплоемкости С в функции от Т. Согласно оценкам [16] эта теплоемкость соответствует ее фононному значению, вычисленному для двумерной решетки. На рис. 5 дано сравнение теории с экспериментом, причем на одной из кривых $\mu = \text{const} = \mu$ (0), а на другой учтена зависимость μ от *T*. Этот вариант расчета лучше согласуется с экспериментом.

Логическим завершением содержательной серии [6, 7, 8, 16, 17] стали эксперименты по измерению теплоты плавления электронной решетки при переходе в жидкое состояние. Дополнительная трудность при этом заключается в том, что в жидкой фазе частота ω_ε (1) обращается в нуль и пропадает прямая возможность измерения электронной температуры. Авторы работ [16, 17] преодолели указанную трудность с помощью ячейки, позволяющей создавать электронную систему с двумя разными значениями электронной плотности *n* (реально ячейка имела цилиндрическую геометрию, причем в области $0 \leqslant r \leqslant R_1$ создавалась плотность n_i , а при $R_1 < r \leqslant R_2$ плотность n_{2}). Обе электронные подсистемы находятся в хорошем тепловом контакте, и можно считать, что их электронные температуры совпадают. Параметры эксперимента подобраны так, что в окрестности температуры плавления электронной подсистемы 1 с меньшей плотностью подсистема 2 остается в кристаллическом состоянии, и потому ее пороговая частота $\omega_{\Xi}^{(2)}$ может использоваться в качестве термометра.

Экспериментальное значение теплоты перехода оказалось близким к нулю (рис. 6) (с экспериментальной точностью). Это утверждение коррелирует с предсказаниями теории Костерлица — Таулеса о природе фазовых переходов, имеющих в своей основе флуктуационное размножение дислокаций.

Автор благодарен Ф. Уильямсу за постоянный обмен информацией и возможность ознакомления с труднодоступными публикациями [16, 18].

СПИСОК ЛИТЕРАТУРЫ

- Wigner E. P.//Phys. Rev. 1934. V. 46. P. 1002.
 Wigner E. P.//Trans. Farad. Soc. 1938. V. 34. P. 678.
 Grimes C. C., A dams G.//Phys. Rev. Lett. 1979. V. 42. P. 795.
 Эдельман В. С.//УФН. 1980. Т. 130. С. 675.
 Монарха Ю. П., Шикин В. Б.//ФНТ. 1982. Т. 8. С. 563.
 Gallet F., Deville G., Valdes A., Williams F. I. B.//Phys. Rev. Lett. 1982. V. 49. P. 212.
 Deville G. Andrei F. Y. Williams F. I. B.//Ibidam.
- 7. Deville G., Valdes A., Andrei E. Y., Williams F. I. B.//Ibidem. 1984. V. 53. P. 588.

- 1964. v. 55. г. 588. 8. Marty D., Poitrenaud J.//J. de Phys. 1984. Т. 45. Р. 1243. 9. Шикин В. Б.//ЖЭТФ. 1977. Т. 72. С. 1619. 10. Рыбалко А. С., Есельсон Б. П., Ковдря Ю. 3.//ФНТ. 1979. Т. 5. 947.
- [11] Marty D., Poitrenaud J., Williams F. I. B.//J. de Phys. Lett. 1980. T. 41. P. L311.
 12. Mehrota R., Guo G. J., Mast D. B., Dahm A. J.//Phys. Rev. Ser. B.
- Mehrota R., Guo G. J., Mast D. B., Dahm A. J.//Phys. Rev. Ser. B. 1984. V. 29. P. 5839.
 Kosterlitz J. M., Thouless O. J.//J. Phys. Ser. C. 1973. V. 6. P. 1181.
 Thouless O. J.//Ibidem. 1978. V. 11. P. L189.
 Morf R. H.//Phys. Rev. Lett. 1979. V. 43. P. 931.
 Glattli D. S. These L'Universite de Paris-Sud. Centre d'Orsay, 1986.
 Glattli D. S., Andrei E. Y., Williams F.I. B.//Surf. Sci. 1988. V. 106 P. 17.

- 196. P. 17.