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Temporal polarization instability is seen as an oscillatory or random variation in time of the
polarization parameters of light interacting with a nonlinear system. Spatial polarization
instability is the formation of "frozen" complex quasiperiodic or pseudochaotic distributions of
the polarization parameters of a wave along the direction of propagation. The problem of
polarization instability or multistability is intimately related to the polarization of eigenwaves in
the nonlinear problem and their transformation as a result of "hard" and "soft" spontaneous
polarization symmetry breaking. This paper presents a review of publications on polarization
instabilities in passive nonlinear optical systems, including Fabry-Perot resonators, gyrotropic
media, systems with strong two-photon absorption, birefringent crystals, fiber lightguides, and
isotropic media.

1. INTRODUCTION. SPATIAL AND TEMPORAL
POLARIZATION INSTABILITY, NONLINEAR
EIGENPOLARIZATIONS, "HARD" AND "SOFT"
SPONTANEOUS POLARIZATION SYMMETRY BREAKING

In low-intensity optics (linear optics), the polarization
of an electromagnetic wave in a medium is independent of
the intensity of light and is uniquely related to the polariza-
tion of the radiation incident on the separation boundary
between vacuum and the medium under investigation.
Waves of a particular polarization type that corresponds to
the type of symmetry of the medium (eigenwaves) retain
their polarization parameters. For example, in an isotropic
optically active liquid (unracemized solution of chiral mole-
cules), the eigenwaves are circularly polarized. In crystals,
eigenwaves are, in general, elliptically polarized, although in
the simple special case of nongyrotropic uniaxial crystals
they are orthogonally polarized (the so-called O and E
waves). In dissipative media exhibiting linear or circular di-
chroism, arbitrarily polarized waves tend to one of the eigen-
waves of the medium as they propagate through it. The very
important point is that the "output" polarization of light has
no discontinuities. The derivatives of polarization param-
eters of the emerging wave with respect to the polarization
parameters of the incident radiation do not exhibit discon-
tinuities either.

In nonlinear optics, the situation is radically different
and both the refractive index and the absorption coefficient
of the medium are functions of the radiation intensity.

The following specifically nonlinear polarization ef-
fects have attracted increasing attention in recent years:

(a) polarization multistability and temporal polariza-
tion chaos. When the "input" intensity or polarization of
light undergoes an adiabatic change, the "output" polariza-
tion is found to be a multivalued function containing both
stable and unstable branches, i.e., the physical state of polar-
ization depends on the "prehistory" of the system (this is the
so-called polarization hysteresis). For a particular combina-
tion of the parameters of radiation and of the nonlinear me-
dium, and steady-state "input" radiation, the "output" po-
larization exhibits a self-oscillatory or pseudochaotic
variation of polarization with time, which has a continuous
frequency spectrum (Fig. la).

(b) Polarization multistability and spatial polarization

chaos. Here, we are concerned with the quasisteady-state
case, i.e., the "freezing" in time of the distribution of polar-
ization parameters along the light beam (light rays). In
complete analogy with the temporal case, there are different
possible stationary stable distributions in space (the analog
of the temporal multistability), an oscillatory variation in
the polarization parameters along the ray (analog of self-
oscillatory solutions), and a chaotic polarization distribu-
tion (with a continuous spectrum of spatial frequencies). In
the last case, the polarization parameters of the output radi-
ation leaving the nonlinear medium are found to depend
strongly and "unpredictably" on the initial conditions. This
is described by the phrase frustrated polarization instability
(Fig. Ib).

The formal subdivision into multistability and tempo-
ral and spatial instability is very arbitrary in the case of real
systems. Nevertheless, in many cases, particular polariza-
tion-unstable systems can be justifiably assigned to one or
the other class of objects. For example, when the temporal
polarization instability has a local character, due to the in-
teraction of light with an individual molecular oscillator, we
have pure temporal instability.

Analyses of temporal and spatial polarization instabili-
ties often resort to the concept of spontaneous polarization
symmetry breaking. We shall distinguish two cases, namely,
"hard" and "soft" spontaneous symmetry breaking. When
the parameters of a nonlinear optical system or the intensity
of the light wave reaches a certain definite (threshold) val-
ue, the linear polarization of the light wave switches to right-
and left-handed elliptic polarization as a result of the devel-
opment of fluctuations. Under ideal conditions, and for iso-
tropic directions, this polarization switching occurs with
equal probability to left- and right-handed states when the
experiment is repeated a large number of times. This reflects
the property of inversion symmetry of space when electro-
magnetic interactions are taken into account (P-'mvar-
iance ).'' We shall refer to this case as hard. Examples of hard
spontaneous symmetry breaking are well knowii in mechan-
ics. This property is exhibited by the simple pendulum in the
gravitational field, when its point of suspension executes
high-frequency horizontal oscillations,1 or by the strain of a
rod with a rectangular cross section, compressed in the lon-
gitudinal direction2 (Fig. 2). In an optical system with soft
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FIG. 1. Temporal polarization chaos (a). Interaction with the nonlinear
system ensures that there is an unpredictable change in the polarization of
light. em and e'm are unit vectors in the direction of the electric field of the
wave before and after the interaction, respectively. Subscripts indicate
different instants of time. A specific example is discussed in Section 2.
Spatial polarization chaos during the counter-porpagation of light beams
in an extended isotropic medium with a Kerr-type nonlinearity (b). Sub-
scripts on the unit vectors em, which define the direction of the electric
field in one of the waves ( E a ) , label the spatial coordinate along the beam
(see Section 6 for further details).

spontaneous polarization symmetry breaking, certain par-
ticular linear polarizations of light are unstable: the expo-
nential development of fluctuations ensures that the radi-
ation leaving the system can, with equal probability, be
turned clockwise or anticlockwise, or can acquire left- or
right-handed elliptic polarization. The soft effect does not
have an intensity threshold (a special case is examined in
Sec. 3). Systems with "soft" spontaneous symmetry break-
ing are also known in mechanics. An example is afforded by
the gravitational pendulum held in an inverted vertical posi-
tion by a spring with zero extension in the strictly vertical
position of the pendulum. In this case, the parameter that
experiences spontaneous symmetry breaking is the angle of
deflection of the pendulum from its vertical position, and the
force of gravity is the analog of the light intensity.

Other physically important concepts encountered in
nonlinear polarization optics include the limiting direction
of polarization3 (Dykman and Tarasov, 1977) and nonlin-
ear eigenpolarization4 (Kaplan, 1983). These were intro-
duced by analogy with the idea of the polarization of eigen-

waves in linear optics. Here, we are concerned with
polarization states that do not vary during the propagation
of powerful radiation in nonlinear media. The concept of
nonlinear eigenpolarization is much more complicated and
extensive than its equivalent in linear optics. When several
light beams (for example, counter propagating beams) in-
teract nonlinearly, we speak of matched combinations of po-
larization parameters and intensities of all rays (in the case
of two waves, matched pairs of polarization states and inten-
sities), when their polarization does not vary during the
propagation process. In a recent paper, Gaeta et a/.5 (1987)
established a new property of nonlinear optical systems:
allowance for the finite rate at which the nonlinear response
is established (in practice, this means that the time for the
nonlinearity to be established is commensurate with the time
taken by light to cross the nonlinear medium) produces a
departure from stability at least for some sets of nonlinear
eigenpolarizations. This departure from stability can be clas-
sified as hard spontaneous polarization symmetry breaking
(see Sec. 6 for further details).

As a rule, each particular case of polarization instability
can be related genealogically to some known nonlinear po-
larization effect. The simplest class of such phenomena con-
sists of polarization self-interaction effects, which have been
analyzed in particular detail as phenomena stimulating po-
larization instability, multistability, or chaos. Here we have
in mind the self-rotation of the polarization ellipse of a pow-
erful electromagnetic wave7 (Maker et al., 1964), and the
phenomenon of nonlinear gyrotropy, i.e., the variation in the
optical activity of a medium in the field of a high-intensity
linearly polarized light wave8 (Akhmanov and Zharikov,
1967), and the self-induced rotation of polarization in cubic
crystals, due to the anisotropy of nonlinear absorption3

(Dykman and Tarasov, 1967). We note that some kind of
polarization effect is significant for the initial instability de-
velopment. The nonlinear transformation of polarization is
then small and the contribution of different mechanisms can
be analyzed additively. As a rule, nonadditive nonlinear
mixing of the contributions of different nonlinear-optics po-
larization effects occurs for parameter values for which po-
larization multistability is observed.8

Studies of polarization instabilities in optics (regarded
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FIG. 2. "Hard" spontaneous symmetry breaking in mechanical and optical systems: a—gravitational pendulum, whose point of suspension oscillates as
Acosyt ( Y%> (g//) "2) (g is the gravitational acceleration); when the oscillation amplitude A reaches the value (2gl /y2)' '2 two equivalent stable symmet-
ric states (left and right) become possible and the deflection <p from the vertical is given by cos<p = Igl/A 2y2; small fluctuations in the parameters produce
a "jump" of the pendulum from the unstable vertical state (segment 2) to branch 3 ( + ) or 3 ( — ); b—spontaneous polarization symmetry breaking in
an optical system, e.g., in a Fabry-Perot resonator filled with a nongyrotropic nonlinear isotropic medium in the case of linearly polarized exciting
radiation; the light intensity at entry to the resonator is plotted along the horizontal axis and the ellipticity at exit from the optical system is shown along
the vertical axis (this is a simplified picture; see Sec. 2 for further details) which experiences a jump from the linear to the elliptic state when the pump in-
tensity exceeds the threshold value Is.
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FIG. 3. Experimental demonstration of polarization instability in a weak-
ly birefringent fiber lightguide. A bell-shaped train of picosecond light
pulses (a) with circular polarization e± is launched into the fiber light-
guide. For low power levels, the right-polarized component of the emerg-
ing radiation (b) , detected by the photodector PH, repeats the shape of
the pulse at entry to the system. When the critical intensity is reached, and
the value of this can be estimated from the condition that the induced
change in the refractive index must be equal to the initial birefringence in
the fiber, the circular polarization ceases to be stable and a sharp circular-
ly polarized pulse appears in the photodetector channel (c). P1 and P2 are
polarizing prisms, Q and B are, respectively, the quarter-wave plate and
the Babinet compensator, and F is the fiber lightguide."* Details of the
experiment are discussed in Sec. 7.

as studies on phase instabilities) did not evolve out of noth-
ing: radiophysics has long been concerned with phase mul-
tistability in nonlinear parametric systems for which bistable
and multistable phase states were demonstrated as far back
as the 1960's [see Refs. 9 (1963), 10 (1962), and 11
(1962)].

At present, research into polarization instability in-
volves systems with external optical feedback, ring resona-
tors, and Fabry-Perot resonators filled with nonlinear media
with different types of symmetry, as well as systems without
resonators but with intrinsic or hybrid (electrooptical) non-
linearity in single-ray or multiray configurations. Publica-
tions concerned with polarization instabilities in fiber light-
guides constitute a numerous group.

Figure 3 shows a schematic diagram of one of the first
optical fiber experiments on polarization instability. The
necessary experimental techniques had been available for
many years, but had to await the more recent theoretical
developments in nonlinear polarization optics, optical bista-
bility, and stochastic dynamics of simple systems before they
could be systematically exploited in this very simple but
striking experiment.

The aim of this paper is to provide a review of current
studies of polarization instability which form a subset of an
important topic in modern optics, namely, the physics of
optical bistability.12

2. POLARIZATION INSTABILITY IN ATOMIC GASES.
SPONTANEOUS SYMMETRY BREAKING, HYSTERESIS, AND
SELF-OSCILLATIONS

The first experimental and theoretical publications on
polarization multistability in atomic gases were the result of
studies of the model proposed by Kitano, Yabuzaki, and
Ogawa13 (1981), which was subsequently called the A-sys-
tem. This involves an ensemble of two-level atoms that have
a degenerate Zeeman ground-state level and relax rapidly to
the upper level (Fig. 4). Kitano, Yabuzaki, and Ogawa pre-
dicted that, if a gas of these hypothetical two-level atoms
were to be placed in a Fabry-Perot resonator pumped by a
linearly polarized electromagnetic wave of frequency close

FIG. 4. Model of a two-level atom used to analyze polarization instability
in atomic gases.'' The main transition occurs without a change in the total
angular momentum (J = 1/2—7= 1/2) and involves a degenerate Zee-
man sublevel of the ground state (A-system).

to the single-photon absorption resonance, the polarization
of radiation leaving the resonator could assume the follow-
ing three values after the intensity of light had reached a
certain definite threshold value (hard regime): (1 ) linear
polarization (as in the incident radiation); (2) elliptic polar-
ization (right-handed ellipse), (3) elliptic polarization
(left-handed ellipse). When the intensity reaches its thresh-
old value, the linear polarization becomes unstable, i.e., the
system tends toward spontaneous polarization symmetry
breaking during fluctuations in the polarization of the inci-
dent radiation or fluctuational departures from the uniform
distribution of atomic spin directions relative to the light-
beam axis. An adiabatic reduction in light intensity then pro-
duces a switching of polarization to the linear state for a
lower pump intensity (polarization-intensity hysteresis). In
western literature, this effect is referred to as optical insta-
bility (OT) or polarization switching (PS).

The existence of two stable elliptic polarizations above
the threshold is due to the circular birefringence that arises
as a result of the optical pumping of the corresponding Zee-
man transition. It influences the change in the eigenfrequen-
cies of the resonator and, hence, its transmission coefficient
which is different for right and left circularly polarized
waves. The stability of elliptic polarization, i.e., its trista-
bility, is assured by a suitable choice of the relative position
of the absorption line and the resonator mode in the spec-
trum.21

The A-system simulates with sufficient precision the
transition observed in sodium vapor in a buffer gas used to
suppress hyperfine structure and hole burning. The required
effect can be observed by suitably tuning the cavity resonator
and choosing its g-factor. When the light intensity is of the
order necessary to saturate the transition, the polarization of
the output radiation returns to the linear state.

The first experiments were performed by Cecchi et al.]f>

(1982), who used a continuously-operating dye laser ex-
ploiting the 2S|/2-»2P]/2 transition (589.6 nm) in sodium
vapor. Polarization hysteresis was observed as the laser in-
tensity was varied in the range 5-30 MW, and a small depar-
ture from linear polarization at entry to the cavity resonator
could be used to select a right- or left-handed hysteresis cycle
at exit from the system. An original resonator design with a
windowless cell was proposed by Hamilton et al.<7 (1983)
for the investigation of polarization switching states. It obvi-
ated the problem of residual birefringence in windows, and
enabled them to perform a detailed study of polarization
hysteresis and of polarization switching states for a frequen-
cy-scanned laser.

Kitano et al. '* (1981) developed the idea of optical tri-
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FIG. 5. The A-atom in the Fabry-Perot resonator in a transverse magnetic
field2'(a) The oscillograms show the establishment of the self-oscillatory
regime for the intensities of the circular components <r+ and a~ at exit
from the resonator containing a sodium cell in an external magnetic field
//exceeding the critical value. Note that the intensity oscillations are in
antiphase. The zero along the time axis corresponds to the instant at
which the laser is turned on; Pis a polarizing prism and MI-M2 are reso-
nator mirrors. The radiation entering the resonator is linearly polarized
(b).

stability and examined the behavior of the A-system in a
resonator to which a static magnetic field was applied at
right angles to the beam. They showed that, for certain par-
ticular ratios of the parameters of the system, the polariza-
tion at exit from the resonator exhibited self-oscillations
with frequency of the order of the Larmor frequency. These
self-oscillations were observed experimentally by Mitschke
etal.19 (1983) for a magnetic field of a few tens of microtesla.
The critical field was found to depend on the ^-factor of the
resonator and on the detuning from resonance (Fig. 5) [see
alsoRefs. 20-22 (1984) and 23 (1986)].

A subsequent analysis of the A-system in a resonator,
performed by Savage et al.14 (1982), showed that, in the
dispersion approximation (absoroption neglected), and
when the saturation of transitions was taken into account,
the asymmetric stable states could become unstable, and this
would lead to the self-oscillatory polarization state in the
absence of the external magnetic field, to the doubling of the
period of the oscillations, or to chaotic motion, i.e., optical
polarization turbulence. In a later paper (1983), Carmi-
chael et a/.24 found a complicated chaotic structure with
"windows" of periodic motion, typical for the Lorentz at-
tractor or the Duffing oscillator [see, for example, Ref. 25
(1984)].

Arecchi et a/.16 (1983) found multistable (bistable and

quadristable) solutions when they took into account the co-
herence of the ground states of the system. Giusfredi et al.27

(1985) investigated a Fabry-Perot resonator containing so-
dium vapor without the buffer gas, but with competing tran-
sitions between hyperfine and Zeeman levels, which ensured
the presence of multistable polarization states. This system
is significantly different from the simple A-atom. Compli-
cated hysteresis curves were recorded by frequency scanning
and varying the temperature and the magnetic field. The
influence of saturation of transitions, vapor density, and res-
onator tuning on the hysteresis cycles were investigated ex-
perimentally by Giacobino28 (1985). Spontaneous polariza-
tion symmetry breaking in atomic vapor was investigated by
Adonts et al.29 (1984) for J= l/2-*/=3/2 transitions.
The papers of Hamilton et al.3" (1982) and Areshev et
a/.31'32 (1982, 1983) are devoted to studies of polarization
instability in the ring resonator.

Kitano et a/.33 (1984) found that optical polarization
instabilities could occur in the A-system even in the absence
of the Fabry-Perot resonator. Delayed feedback, which is
necessary for chaos to occur, can be produced with a A /8
plate and a mirror that returns a substantial proportion of
the radiation back to the gas-filled cell (Fig. 6). This exam-
ple provides a simple and clear demonstration of the reasons
for the optical polarization turbulence (chaos). The magne-
tization Mz in the direction of a ray is proportional to the
population difference between the ground-state sublevels,
and can be determined from the balance equation. If the
normalized intensity J+ of right-polarized light is high in
comparison with /_ and the damping T/a, the light field
ensures that the spins of all the atoms point in the direction

NQ A/S
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Spontaneous polarization Window
Isymmetry breaking;

Linear

polarization

Period >| -L-f crisis
doubling tr,»
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Lefl-handed
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idoubling
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FIG. 6. Polarization chaos in an optical system without a resonator: a —
optical system for observing polarization chaos;-12 the cell C contains a gas
of two-level atoms (A-system), e.g., sodium vapor; mirror M returns part
of the radiation to the cell after the /i /8 plate; b — when Ln is large, the
description of the magnetization of the gas reduces to the discrete map
%n + i = i"sialrn , where // is a measure of the intensity of light; on the
birfurcation diagram, the chaotic variation in X for// >fi* corresponds to
the chaotic behavior of the gas magnetization, Faraday rotation, and,
consequently, chaotization of polarization after the exit mirror M.
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of the beam. The cell rotates the polarization of light by an
angle proportional to the magnetization and to the thickness
L of the cell, and the change in polarization produces a
change in the reflection conditions in the mirror + wave
plate system. When the delay tR = 2L0/c in the optical delay
line between the cell and the mirror and back again is taken
into account, a self-consistent equation can be obtained for
the normalized magnetization mz =MZ/M0, which gives
the polarization at exit from the system (through the mir-
ror):

d = - (F + 2o/0) mz (t) + RaI0 sin [2klmz (t _*„)!.

When the delay tR is large enough, a linear change of vari-
ables in this equation will reduce it to the discrete map

Xn+i = Xn

where

X = 2klmz H [x = 2klRI0 (F + 2/c)-1

and A: is a function of the detuning from resonance.
Even a pocket calculator will then suffice to verify that

this map demonstrates chaotic behavior ( Fig. 6b ) . Which of
the two branches of opposite symmetry will be taken up by
the system at the point /* = 1 when the normalized intensity
H is altered adiabatically will be determined by small fluctu-
ations in the system (spontaneous symmetry breaking), e.g.,
fluctuations in the input polarization (the system is symmet-
ric under the replacement of X with — X, i.e., under the
replacement of right-handed with left-handed polarization
ellipse). A change in light intensity is accompanied by peri-
od-doubling cascades, after which the polarization becomes
a random function of time (polarization turbulence). More
detailed analysis shows that chaotic motion in the system is
demonstrated by the so-called crises of chaos,34 in which the
dimension of a chaotic attractor (amplitude of polarization
fluctuations) can increase rapidly for a small change in in-
tensity.

Yabuzaki et a/.35 (1984) investigated experimentally
the A-system without a cavity resonator (sodium vapor with
buifer gas) in the optical system of Fig. 6a, but without the
optical delay line. Chaotic motion was not observed in this
case, but the system did demonstrate spontaneous symmetry
breaking. As in the Fabry-Perot resonator, a transverse mag-
netic field produces an oscillatory motion of polarization at a
frequency close to the Larmor value. Transitions (hops)
between the two stable branches (elliptic polarizations of
opposite sign ) do not occur as the parameters are varied, but
they can be produced by an additional pulse of circularly
polarized light. After careful adjustment of the system, i.e.,
accurate setting of the relative orientation of the polarizing
prism and the axis of the wave plates, the symmetry breaking
(exit to one of the symmetric elliptic solutions) at the
threshold intensity is accompanied by "choice noise" which
is observed for about a minute. The system demonstrates
polarization hysteresis when the /I /8 plate in the feedback
loop is replaced with a combination of a quarter-wave plate
and a linear polarizer ( Glan prism ) .

McCord and Ballagh36 (1985) have pointed out an in-
teresting possibility whereby the intensity of a circularly po-
larized beam can be efficiently controlled by a second beam

of opposite circular polarization, using the selective pump-
ing of A-atoms.

Optical transitions in A-atoms occur, as already noted,
without a change in the total angular momentum (J
= 1/2-.J = 1/2). Ballagh and Jain37 (1984) and Parigger

et a/.38 (1985) have noted the interesting polarization phe-
nomena that can be observed in Fabry-Perot resonators
filled with atomic vapor when transitions with a change in
the total angular momentum (/= l-»/ = 0) are excited.
This atomic system is fundamentally different from the A-
system. Polarization asymmetry is not spontaneously nucle-
ated in this case because of Zeeman coherence at the J = 1
level. However, when a longitudinal magnetic field is ap-
plied and destroys the Zeeman coherence of the ground
state, the intensity-polarization hysteresis is observed. Sa-
marium vapor was chosen for the investigation (7F,->7.F0

transition, A = 570.68 nm). The principle of the experiment
is analogous to that shown in Fig. 5, except that the magnetic
field is applied longitudinally rather than transversely to the
beam, using the Faraday scheme. The results of a detailed
experimental investigation have been reported by Parigger et
a/.39 (1986), who also investigated the polarization switch-
ing states. The right-polarized radiation component is a non-
single-valued function of the intensity of the right-polarized
radiation. The situation is mirror-inverted when the direc-
tion of the magnetic field is reversed. In other words, we can
speak of polarization bistability controlled by the magnetic
field.

At present, publications on polarization instability in
Fabry-Perot resonators filled with atomic gases have almost
completely ceased to appear. However, the basic ideas on
polarization chaos and polarization multistability, put for-
ward in the course of studies of A-atoms, have been found to
be fruitful in the study of other systems.

3. LIMITING POLARIZATION DIRECTIONS, POLARIZATION
OSCILLATIONS, POLARIZATION MULTISTABILITY, AND
CHAOS IN CUBIC CRYSTALS

In linear optics, the polarization of a wave propagating
in an arbitrary direction in a nongyrotropic cubic crystal
(m3m, ml, 43m) remains constant.31 Dykman and Tarasov
[Ref. 3 (1977) and Ref. 4 (1978)] have investigated the
dissipative mechanisms of nonlinear resonance interaction
between light and impurity levels in cubic crystals with a
triply degenerate excited state, which transforms according
to the vector representation of the cubic group (Fig. 7), and
noted the existence of a new polarization effect in which a
linearly polarized ray propagating along the four-fold sym-
metry axis of the crystal (e.g., {001)) retains its polarization
state if, and only if, the electric vector points along (100),
<010>, <110), or{T10). The saturation of impurity levels in
a wave whose polarization is different from any of those just
noted is accompanied by rotation of the polarization vector
toward the nearest of the directions 000) or (010): the
weaker field component (Ex or Ey) is absorbed more
strongly. The (110) or (TlO) polarizations are unstable: a
minute fluctuation grows exponentially with sample thick-
ness, tending to the nearest four-fold symmetry axis. The
system thus tends to soft spontaneous polarization symme-
try breaking without a threshold (the first experimental ob-
servation of this effect is described in Ref. 42).

Zhadanov et a/.43 (1980) related in a more general
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FIG. 7. "Soft" spontaneous polarization symmetry breaking without a
threshold in a cubic crystal: a—model of the impurity in the local field of
the cubic crystal;3 the V-system with a threefold degenerate excited level
(the state \z) not shown); the*) and \y) levels are populated by radiation
polarized along the x and y axes, respectively; b—"soft" spontaneous po-
larization symmetry breaking in a dissipative cubic crystal (nonzero
imaginary part of the anisotropic component of the tensor ̂ (3)); the inten-
sity / incident on the crystal is plotted along the horizontal axis and the
direction of the polarization of the light wave, 9, is plotted as a function of
the position coordinate z in the crystal along the vertical axis; branch 1—
unstable, branches 2+ and 2~—stable nonlinear eigenpolarizations;
#~00exp(T7/z) on the initial segment.

form, the nonlinear transformation of polarization in cubic
crystals to the sign of the anisotropic combination of the
components of the cubic nonlinear susceptibility tensor
Aj'131 =A/ ini ~ ^Xn22 and, having experimentally investi-
gated the orientational dependence of the nonlinear self-ro-
tation of the plane of polarization in gallium arsenide
(43/n), have discovered stable and unstable (repulsive) po-
larization eigenstates for linearly polarized light. This ques-
tion was subjected to a detailed theoretical analysis by
Zhdanov et a/.44 (1981), Zheludev45 (1981), and Zheludev
and Petrenko46'47 (1984) for crystals of higher and interme-
diate categories.

The anisotropy of the third-order nonlinear susceptibil-
ity tensor is typical for all cubic crystals in which, in contrast
to the isotropic medium, the combination of components
Ay3) is, in general, nonzero. Contributions to the evolution
of the anisotropic part are provided not only by impurity
transitions, but also by interband transitions as well as tran-
sitions involving the participation of excitons.4'

If the polarization is different from the eigenpolariza-
tion, its structure transforms as light propagates through the
medium: the polarization rotates toward the nearest stable
direction, and the rate of rotation depends on the imaginary
part of the anisotropic component of the cubic nonlinear
susceptibility, Im A^<3), and on the intensity of light. More-
over, self-induced ellipticity is produced and depends on the
intensity, the thickness of the crystal, and the real part of the
anisotropic component of the tensor ^(3). The sign of
Re Aj<3) determines the sense in which the end point of the
electric field vector traces out the ellipse.51 The sign of the
anisotropic part of the tensor ^<3) depends not only on the
crystal type, but also on the wavelength of light. In principle,
this dependence gives rise to a completely new type of polar-
ization effect, i.e., spectral-polarization instability. A small
change in the wavelength of light in the region A^(3) = 0
produces the switching of stable and unstable axes and, con-
sequently, polarization switching at exit from the crystal by
amounts that, in principle, can reach up to 45°. The scale of
the effect is determined by the derivative <9Im{A;f(3l}/<9/l.
This quantity has been measured for gallium arsenide

(T= 300 K, dlmA^Vd/l^lO-9 cgs//zm; Ref. 48). The
heating of the crystal can also lead to a change in the sign of
anisotropy; for example, in gallium arsenide, the point of
nonlinear isotropy f A^-(3)(v0) = 0] shifts toward the red as
the temperature increases at the rate dv0/dT~3 cm"1/
deg~'. The effect is significant for lasers with relatively long
pulses that succeed in producing appreciable heating of the
crystal: as the intensity increases, radiant heating should
give rise to observable interchange of stable and unstable
polarization states and polarization jumps during the laser
pulse (thermal polarization instability). The subdivision of
these effects into self-induced rotation and self-induced el-
lipticity is valid only for small nonlinear transformations.
Nonadditive mixing of the contributions due to different po-
larization self-interaction effects [see Ref. 51 (1982) and
Ref. 8 (1984) ] sets in under the conditions of strong trans-
formation of polarization. The main features of this are ex-
amined in Ref. 51 for zinc blende crystals, taking into ac-
count the spatial dispersion of nonlinearity (Sec. 4). It is
shown that a linear polarization at entry to the medium
tends to become circular, and the sign of the latter depends
on the orientation of the initial polarization relative to the
symmetry axes of the crystal and on the relationships
between the components of the nonlinear susceptibility ten-
sor. A small change in the direction of the polarization vec-
tor in the region of unstable nonlinear eigenpolarization pro-
duces a large change in polarization at exit, i.e., from right- to
left-handed circularly polarized waves. Nonlinear eigenpo-
larizations can be found in a general form in the case of self-
interaction, without specifying the nature of the nonlinearity
(it is sufficient to assume that |£>"' | < |Dl \ where D' and Dnl

are, respectively, the linear and nonlinear parts of the elec-
tric polarization of the medium. If we confine our attention
to the analysis of the propagation of transverse waves in cu-
bic crystals and in birefringent media along the optic axis,
the condition that must be satisfied by the nonlinear eigen-
polarization takes the form of the following expression:44^16

where D n± = D? + iD ;' and E ± =EX± iEy. The nonlin-
ear induction Z)nl is calculated from the field E in the unper-
turbed (linear) problem, i.e., with linear absorption and gy-
rotropy. The solutions for the electric field components that
satisfy the above relation (we note that complex numbers are
being equated) correspond to polarization states that do not
experience intensity-dependent changes against the back-
ground of natural gyrotropy. Of course, the medium must be
nongyrotropic if we seek linearly polarized eigenwaves.

Dykman and Tarasov53 (1982), Balashenkov and Koz-
lov54 (1984), and Yumoto and Otsuka55 (1985) used an
analysis of phase trajectories to show that, for certain rela-
tionships between the components of the nonlinear suscepti-
bility tensor, the polarization ellipse oscillates in space
around the symmetry axes of the nondissipative cubic crys-
tal. Sala58 (1984) has given a clear formulation of the non-
linear-optics polarization problem for the Stokes vector,6'
having reduced the analysis to the solution of a set of coupled
nonlinear equations. Gregori and Wabnitz59 (1986) and, in-
dependently, Tratnikand Sipe [see Ref. 60 (1986) and Refs.
61 and 62 (1987) ] then found a profound analogy between
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the equations for the Stokes vector in the polarization prob-
lem and the Euler equation for the angular momentum of a
rigid body rotating around a fixed point, and the propeller-
airplane problem.'<b) It would appear that the set of coupled
Euler equations for the Stokes vector is the most elegant and
universal form of the relations of nonlinear polarization op-
tics of nondissipative systems. The nonlinearity consists of
the fact that the "precession frequency," i.e., the spatial peri-
od of polarization oscillations, is a function of the magnitude
of the "processing vector," i.e., of the intensity of light. It
may be expected that, when this description is generalized to
systems with absorption, it will lead to equations analogous
to the equations of motion of a rigid body with one fixed
point and friction. Even a small amount of friction can then
result in loss of stability and the appearance of low-frequen-
cy components in the spectrum (the so-called secular insta-
bility; see, for example, Ref. 64).

We now turn to the consideration of cubic crystals. Fol-
lowing the paper by Gregori and Wabnitz,59 we shall write
the equation for the Stokes vector of a wave propagating in
the (001) direction in a cubic crystal in the form

where

Onl = . v i 3 ) in
0xI 1 1 3(0, Ax'3>

The variables can be separated in the nondissipative
case, and the evolution of S{ = Ex \2 + Ey\

2 can be de-
scribed by the Duffing equation without damping and the
right-hand side given by

We thus have an interesting space-time analogy, name-
ly, the variation of polarization parameters with sample
thickness is analogous to the oscillations of a load suspended
from a nonlinear (non-Hookeian) spring. The nondissipa-
tive Duffing equation can be solved exactly in terms of ellip-
tic Jacobi functions, i.e., whatever the parameters of the
problem, the polarization does not exhibit a chaotic vari-
ation with increasing thickness. Tratnik and Sipe [see Ref.
60 (1986) and 61 (1987) ] have examined the general form
of the equations for the Stokes vector in media with and
without a center of inversion along the directions of twofold,
threefold, fourfold, and fivefold (or higher) rotation sym-
metry axes. The case of the cubic crystal corresponds to a
fourfold rotation axis. It is found that all nondissipative me-
dia have at least two integrals of motion, namely, the intensi-
ty of light and a more complicated integral that introduces
the intensity into the free energy of the system. Actually, this
means that, even in the most general case, the Euler equa-
tions for the three components of the Stokes vector are inte-
grable, and there are no chaotic solutions of the polarization
self-interaction problem.

A distribution of polarization parameters along the
beam with a continuous spectrum of spatial frequencies (po-
larization chaos) arises in anisotropic cubic crystals when a
more complicated model is analyzed. Yumoto and Otsuka55

(1985) and Gregori and Wabnitz59 (1986) have examined
the counter propagation of two beams of equal frequency in a
cubic crystal (two nonlinear coupled Euler equations for the

Stokes parameters) and have determined the nonlinear ei-
genpolarizations of the steady-state problem. Depending on
the initial polarization parameters of the waves entering the
crystal from opposite directions, and depending on the ratios
of the components of the cubic nonlinear susceptibility ten-
sor of the medium, there are two solutions for the intensity
ratio of these waves that determine the nonlinear eigenpolar-
izations. However, for an arbitrary intensity ratio and posi-
tive anisotropy of nonlinear refraction, waves polarized
along the bisectors between the fourfold symmetry axes are
always nonlinear eigenwaves. Two counter-propagating cir-
cularly polarized waves of the same or opposite chirality are
also found to retain their polarization for any ratio of the
components of the nonlinear susceptibility tensor. In all oth-
er cases, in which the polarizations or beam intensities are
different, the attainment of threshold excitation in the medi-
um is accompanied by the onset of polarization chaos in
space (analogous to the temporal development of the oscilla-
tions of two coupled nonlinear oscillators). Tratnik and Sipe
[see Ref. 60 (1986), Ref. 62 (1987), and Ref. 63 (1988)]
have shown, however, that it is only in the case of propaga-
tion (direct or counter) along the symmetry axes different
from Cn (n = 1,2,4) that there is the necessary number of
integrals of motion sufficient for the complete integration of
the equations for the Stokes vector. In other words, like any
other dynamic chaos, polarization chaos is a consequence of
an "excess of freedom" during the counter-propagation of
rays in cubic crystals. A symmetric analysis of polarization
bistability in its topological context has also been performed
by Dykman65 (1986). The random distribution of polariza-
tion within a cubic crystal during the interaction of two
counter-propagating waves is a new form of deterministic
instability in conservative systems, referred to by the authors
of Ref. 55 as "frustrated": a small change in the intensity of
polarization of one of the rays at entry to the crystal is ac-
companied by an unpredictable and very rapid change in
polarization at exit from the crystal.

Counter propagation can be produced by reflection
from an external mirror or a mirror deposited on the face of
the crystal. It is precisely this case that is particularly impor-
tant in practice (when it is combined with a Fabry-Perot
resonator containing the nonlinear crystal). Otsuka and Yu-
moto66'67 (1986) have examined this configuration and indi-
cated the conditions for the onset of spatial polarization tur-
bulence in the optical region (Fig. 8).

The first experimental studies of frustrated polarization
instability were performed by Zheludev et a/.68'69 (1983),
Dovchenko70 (1984), and Dovchenko et a/.71 (1984), who
investigated the polarization self-interaction of picosecond
pulses in a Fabry-Perot resonator. The time to traverse the
resonator was 20 ps and the pulse length was 40 ps, so that
this case was closer to that of two counter-propagating
beams, i.e., a beam incident on a crystal and a beam reflected
from the back mirror of the resonator (Fig. 9).

A detailed analysis of quasistationary polarization
states in an optical ring resonator containing a cubic crystal
with nonzero nonlinear anisotropy has been carried out by
Dykman and Tarasov72'73 (1984) for nonlinear mechanisms
relying on the saturation of absorption by impurity centers
and on two-photon absorption. Nonlinear eigenpolariza-
tions, their stability, type of bifurcation curves, and condi-
tions of spontaneous polarization symmetry breaking were
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FIG. 8. Spatial polarization instability in a cubic crystal for two counter-
propagating waves:66'67 a—arrangement for observing frustrated polar-
ization instability, using reflection from the mirror M; b—distribution of
polarization along the x axis in the crystal; 0, and 62 are angles of rotation
of the polarization of forward and backward waves, respectively, under
the conditions of spatial polarization chaos (stationary problem).

investigated for the dissipative (Im A^(3V0) and reactive
(Re Aj(3V 0) mechanisms of optical nonlinearity. The me-
dium chosen for the observation of optical polarization bi-
stability was a KC1 crystal containing color centers FA (Li),

100 Q, mJ/cm2

FIG. 9. Experimental data on frustrated polarization instability in cubic
crystals.49-70-7' The diagram shows the integrated degree of polarization
Qi/Qn (ratio of the energies of orthogonal and parallel polarization com-
ponents in the pulse) as a function of the energy density Q in the pump
pulse after the interaction between the picosecond light pulse and the
Fabry-Perot resonator consisting of a gallium arsenide crystal with mir-
rors deposited on the (001 > faces (r = 80%), for different input polariza-
tions (resonator baseline d = 900(tm). Curve 1 corresponds to the initial
orientation of polarization along the 0 = ir/4 direction, which is the non-
linear eigenpolarization. The extinction coefficient in this case is about
3 X 1CT4 and is independent of intensity. It is determined by the quality of
the polarizing prisms. Curve 2 corresponds to 0 = ir/8. We note the non-
monotonic increase in depolarization as a function of the pump intensity.

for which optical bistability due to the "slow" nonlinearity
of the color centers could be observed for very low levels of
optical interaction (~ 1 mW), and the corresponding time
constants were of the order of tens of seconds. Yumoto and
Otsuka have suggested that a possible candidate for the ob-
servation of frustrated polarization instability is the KTN
crystal (KTa^Nb! _ X O 3 ) , which has a nonlinear anistropy
amounting to A^(3)~ 10~13 cgs (Ref. 74). Polarization tur-
bulence can probably be observed in this case for intensities
of the order of 4 GW/cm2. The nonlinear anisotropy has
now been measured for a number of cubic crystals. The an-
isotropic part of the tensor %(3} has its maximum value near
the one-photon absorption resonance of gallium arsenide
(A^<3)~10~6-10~7

 Cgs), for which a giant self-induced
change in polarization has been recorded with a rate con-
stant exceeding 10 000 deg/cm (Refs. 75 and 76), and the
frustrated polarization instability can probably be observed
for intensities of the order of 10 MW/cm2.

Earlier in this Section, we discussed the spatial distribu-
tion of light-wave polarization in an anisotropic nonlinear
medium, i.e., we were interested in spatial polarization insta-
bility. Akhmanov et a/.77 (1982) have predicted that it
should be possible to observe temporal polarization instabil-
ity in cubic crystals. This question has been analyzed by Zhe-
ludev et a/.8 (1984) and by Akhmanov and Zheludev49

(1986). The conditions for the observation of spatial and
temporal polarization instabilities are different. While the
first can arise in a system for a sufficiently high degree of
nonlinear transformation of polarization of light (high radi-
ation intensity or large crystal length) in the presence of
feedback (resonator) or counter-propagating waves, the in-
stability considered in Ref. 77 can be observed locally with-
out feedback or cavity resonator (intrinsic polarization in-
stability) for each individual molecule of the medium.
However, the important point here is that the cubic nonlin-
earity of molecular oscillators must be large enough. For
example, the origin of polarization instability becomes clear
if we consider the model in which orthogonal noninteracting
nonlinear oscillators are excited by different orthogonal po-
larization components (model of a cubic crystal).71 This
shows that hysteresis in the level of excitation of each of the
orthogonal oscillators generates a hysteresis in the absorp-
tion of orthogonal components of the light field and, conse-
quently, a polarization hysteresis. Numerical simulation of
the behavior of a nonlinear oscillator and of a set of coupled
oscillators in an external force field is known to lead to chao-
tic solutions, i.e., temporal polarization chaos should arise in
a cubic crystal. The condition for the observation of this
phenomenon is | j(3) | | E2 \ ~ 1. When the density of nonlin-
ear centers in the crystal host is low, the polarization insta-
bility can have a small amplitude because, in this case, it is
due to a local mechanism, and the resultant effect is propor-
tional to the density of nonlinear centers.

In our opinion, polarization instability in cubic crystals
is particularly important from the practical point of view
because it provides a basis for the development of devices for
the control of light by light, with polarization data encoding.
The simplicity of the system and the availability of the tech-
nology for highly nonlinear semiconducting cubic crystals
such as silicon, germanium, gallium arsenide, and the triple
solution mercury-cadmium-tellurium opens up new avenues
in different spectral ranges.
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4. POLARIZATION INSTABILITY IN MEDIA WITH NONLINEAR
GYROTROPY

There is undoubted interest, especially in nonlinear op-
tics of biological objects and the spectroscopy of excitons in
solids, in investigations into the polarization instability asso-
ciated with nonlinear gyrotropy, i.e., the spatial dispersion
of nonlinearity. The simplest manifestation of nonlinear gy-
rotropy is the dependence of the optical activity of an iso-
tropic medium on intensity" (1967). Kovrighin et a/.43'44

(1981) have shown that the spatial dispersion of nonlinear-
ity, introduced into the phenomenological description via
the tensor/", = y$lmEjEkVmE,, can lead to the self-induced
rotation of polarization even in nongyrotropic crystals, for
example, crystals with 43m symmetry. A more detailed
analysis of nonlinear gyrotropy has been carried out by Zhe-
ludev45 (1981) and by Zheludev and Petrenko46'47 (1984).
When the polarization interaction is weak, changes in polar-
ization due to the nonlinear anisotropy (Ay3)) and the non-
linear gyrotropy (y(3)) are additive.

We note the important diiference between the nonlinear
rotation of the plane of polarization of light due to nonlinear
anisotropy and that due to nonlinear gyrotropy. Rotation of
the plane of polarization due to the nonzero anisotropic
components of the imaginary part of the tensor j<3) is /"-even,
i.e., its symmetry is analogous to that of Faraday rotation:
the small nonlinear angle of rotation is doubled in each for-
ward and return transit. The effect due to the spatial disper-
sion of nonlinearity is /"-even and is analogous to the rotation
observed in sugar solutions, i.e., it is cancelled on the return
path. Spatially dispersive rotation is nondissipative (reac-
tive), i.e., 7"-invariant, and occurs under thermodynamical-
ly reversible conditions. The nonlinear rotation of polariza-
tion due to the anisotropy of the cubic crystal is dissipative
and irreversible, i.e., 7"-noninvariant.8)

The inclusion of spatial dispersion of nonlinearity can
lead (e.g., in crystals with zinc blende symmetry) to a
change in the nonlinear eigenpolarizations when the direc-
tion of propagation of light is reversed.

Nonlinear gyrotropy is well defined in media with
strongly nonlocal nonlinear response. The parameter repre-
senting the spatial dispersion, which determines the scale of
nonlocality, can be taken to be the ratio of the characteristic
microscopic dimension in the medium (S), e.g., the crystal
lattice parameter in the nonresonant case, to the wavelength.
The corresponding susceptibility has been estimated48 as be-
ing y{3'~5xw. This is why effects due to the spatial disper-
sion of nonlinearity, and the polarization instability asso-
ciated with them, may be significant in the first instance in
cholesteric liquid crystals near the point of phase transition
to the isotropic state (S/A ~ 10~'), chiral biological macro-
molecules (S/A ~ 10~ ' ) , and in the neighborhood of exciton
and biexciton absorption resonances in semiconductors (S/
A~lQ-2-2xlO~2).

There is only a small number of publications on the
effects of nonlinear gyrotropy on polarization instability.
Makarov et a/.83 (1986) and Makarov and Matveeva84

(1988) have examined an isotropic nonlinear gyrotropic
medium (in which rotatory power is a function of intensity)
in an optical ring resonator. Allowance for spatial dispersion
of the nonlinearity produces a considerable change in the
polarization instability as compared with the case of nongy-
rotropic nonlinear media,31>32 which is particularly well de-

fined for a linearly polarized exciting radiation: hard sponta-
neous polarization symmetry breaking, which is typical for
nongyrotropic right-left symmetric nonlinear media in the
resonator, is now removed and "softened" by the chiral non-
linear optical interaction, i.e., the emerging radiation is ellip-
tically polarized even for low intensities. For high intensities
(above the threshold for spontaneous symmetry breaking in
nongryrotropic systems), the dependence of the intensity
and polarization parameters of the emerging radiation on
the pump level is very well defined, i.e., nonlinear gyrotropy
gives rise to new closed branches of the polarization-intensi-
ty curve, the stability region is shifted, and self-oscillations
appear.

Akhmanov et a/.77 ( 1982) have calculated the nonlin-
ear susceptibility of an ensemble of randomly oriented mir-
ror-nonsymmetric molecules with the same chirality sign on
the assumption that each of the molecules can be described
by the nonlinear Kuhn model, i.e., a set of orthogonal inter-
acting oscillators in the field of the electromagnetic wave:

'

'

CXy2

The method of slowly varying amplitudes can then be used
to derive an implicit constitutive equation for the isotropic
gyrotropic medium, which takes into account the cubic non-
linearity of the molecular oscillators:

p = x(i>E - iT tkPJ + R (2 (PP*) P + (PP) P*)
- ;r2 (P (A: [PP*]) + [kP] (PP*)),

and this allows many-valued solutions for the response of the
medium. It has been shown that the specific gyrotropy and
circular dichroism of this system are non-single-valued func-
tions of the light intensity, i.e., for low intensities
( E ~x •% 1), there is the usual nonlinear optical activity,
but polarization multistability arises for intensities
E 2^<31 ~ 1 and, for linearly polarized incident light, the sign

of the resulting gyrotropy can be the same as or opposite to
the sign of natural optical activity, depending on the prehis-
tory and the intensity of light (Fig. 10).

It has been suggested that optical polarization bista-
bility could be observed in gyrotropic crystals against the
background of amplitude bistability due to increasing ab-
sorption,85 and this looks very realistic. In a medium in
which the absorption coefficient is a rapidly varying func-
tion of temperature, e.g., in semiconducting materials near
the fundamental or exciton absorption edge, an increase in
the intensity of light propagating through the crystal leads to
an increase in its temperature because of the dissipation of
part of the light energy. The rise in temperature is accompa-
nied by an increase in absorption which, in turn, produces
further dissipation of light energy. The positive feedback
loop is thus closed, and hysteresis becomes possible on the
pump-transmitted intensity plane (see, for example, Ref. 86
for further details). When the bistability due to increasing
absorption in gyrotropic media is observed, amplitude bista-
bility must, of course, be accompanied by polarization insta-
bility because of the temperature dependence of gyrotropy.
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FIG. 10. Local polarization instability in a nonlinear gyrotropic liquid:77

a—specific gyrotropy dd /dz of an ensemble of randomly oriented chiral
molecules; EGA—natural gyrotropy; the slope of the line AB that touches
the graph at the point|£|2 = 0 is proportional to the nonlinear optical
activity constant; arrows show transitions between stable branches; multi-
valued solutions constitute the polarization multistability; b—nonlinear
Kuhn model of an optically active molecule; it is assumed that the oscilla-
tors representing the molecules and the elastic coupling between them are
nonlinear.

At this point, we note an important property of thermal ef-
fects: when continuously operating lasers are used, the
threshold for the observation of optical bistability does not
depend on the power density in the light beam, and is a func-
tion of only its total power because the rate of change of
temperature in the hot-spot increases with decreasing diam-
eter of the beam at approximately the same rate as the in-
crease in the density of liberated power.85 This actually
means that the amplitude-polarization thermal bistability
can be observed at arbitrarily low power densities (as long as
the light-spot diameter is much smaller than the diameter of
the crystal). In some materials, for example, ZnP2 (Ref.
85), the nonlinear gyrotropy due to the thermal mechanism
is found to reach the gigantic value of 2000 deg • cm ~' • W ~'.
Optical polarization chaos can probably be observed in a
two-beam scheme, using a time-modulated pump and a non-
linear gyrotropic medium (Ref. 87).

It is now appropriate to mention that, in recent years,
considerable research effort has been devoted in stereo-
chemistry to spontaneous symmetry breaking in weak right-
left asymmetric interactions (e.g., optical interactions). For
some ranges of the external interction parameters (e.g., inci-
dent intensity), the stable state of the isotropic medium (a
mixture of chiral molecules) is asymmetric: there is an ex-
cess of one of the mirror isomers. Outside these regions, the
symmetric state, i.e., the so-called racemate (a mixture of
equal amounts of right and left elements) is the only stable
one.

The sensitivity of the racemic state to chiral interac-
tions is exceedingly high. Kondepudi and Nelson88 (1986)
have discussed the possibility of using spontaneous symme-
try breaking for the detection of parity violation in the weak
interaction between the electron and the nucleus, which lifts
the energy degeneracy of molecular levels of right-left
isomers and produces an energy level splitting A£. The
chiral selectivity is predicted to be b.E/kT~ 10" 17-10~ ".

The interaction between a mixture of chiral molecules
and light can be described by a three-level energy scheme, in
which the uppermost level is the excited state that is identi-
cal for all the molecules and the two other levels correspond
to the two mirror isomers89'90 (Avetisov and Anikin, 1985;

compare this with the A-system13). Since the detection of
stable proportions of the right and left molecules in the mix-
ture, and the investigation of the kinetics of the break-up of
the racemic state, can also be performed optically, e.g., by
measuring the natural gyrotropy or the circular dichroism of
the medium, the above stereochemical effect in spontaneous
chiral symmetry breaking is directly relevant to the question
of polarization instability that we are discussing, and can be
described in terms of nonlinear susceptibilities.

The stability of the racemic state under the influence of
incident radiation is a question that involves the very basis of
organic life, and is related to the problem of the chiral purity
of the biological world.

The first publication has appeared91 on the preferential
photodestruction of the right-handed component of the
racemate of an aromatic amino acid under the influence of
linearly polarized light.

5. DEPOLARIZATION OF RADIATION IN TWO-PHOTON
ABSORPTION

The instability of linearly polarized light in an isotropic
medium with two-photon absorption was probably first dis-
cussed by Ritze and Bandilla92 (1980), who analyzed the
steady-state interaction between light and an ensemble of
atoms in the case of transitions between levels with the same
total angular momentum J = 0 (the <t>-system; see Fig. 11).
The single-mode picture cannot account for two-photon ab-
sorption. Analysis shows that linearly polarized radiation
interacting with the atomic system acquires an orthogonal
component due to the nonclassical interference between or-
thogonally polarized modes with the same frequency and
direction, which are absorbed in pairs between the same
atomic levels. The quantum effects discussed by Ritze and
Bandilla play a significant role in media with strong two-
photon absorption. It is well known that "giant" two-photon
absorption is observed in cuprous chloride crystals during
the photoproduction of the bound states of two free excitons
(biexcitons; see, for example, the review by Haug and Kling-

f-O

FIG. 11. The <t>-system. The selection rules for two-photon transitions
between levels with the same total angular momentum J = 0, used in the
analysis of problems on the insufficiency of the single-mode picture of
two-photon absorption92 and spontaneous polarization symmetry break-
ing in two-photon absorption. If the quantization axis lies along the light
beam, two-photon excitation of the upper level can occur along two chan-
nels via the degenerate levels with / = 1, and opposite values of the quan-
tum number M, corresponding to the operator for the z component of the
magnetic moment. Interaction between light and the 4>-system produces
the depolarized radiation component. If the quantization axis is parallel to
the initial polarization, the two-photon transitions occur via the M = 0
levels, and there is no depolarized component.
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FIG. 12. Polarization instability in CuCl in the case of two-photon ab-
sorption. The figure shows the results of the simulation experiment97 on
the degree of depolarization A (z) = (I+ — I_)/(/_,_ + /_ ) and the nor-
malized light intensity I(z)/ls as functions of the crystal thickness z for
intensity 7(0) = 100/s (solid lines) and 7(0) = 0.97S (dashed lines).
The radiation wavelength lies near the biexciton absorption resonance,
and the threshold intensity for spontaneous polarization symmetry break-
ing is 7S = 0.25 MW/cm2. When the crystal thickness is 4fj.m, the radi-
ation corresponding to the intensity above the threshold transforms from
linearly polarized to circularly polarized. The initial ellipticity of light is
A(0)~10-\

shirn93 (1981). The symmetry properties observed in two-
photon transitions in cuprous chloride are analogous to
those shown in Fig. 11 (Ref. 94,1975). It is found that, when
the dependence on the exciton and biexciton energy levels
and the selection rules for two-photon transitions is taken
into account for biexcitons excited in crystals similar to cu-
prous chloride during the propagation of linearly polarized
light under the conditions of strong nonlinear absorption,
this leads to hard spontaneous polarization symmetrybreak-
ing [see Cho and Itoh95 (1984), Inoue96 (1986), and Kranz
and Haug97 (1986) ]. As a consequence of the renormaliza-
tion (shift) and population of exciton and biexciton states
when a certain intensity threshold 7, is reached, two types of
solutions of the dispersion relation for the wave vector k are
found to arise, namely, klef, = kright (I) (unstable) and
k]eft 7^kright (II) stable, i.e., small fluctuations in the linear
polarization of incident light produce elliptically polarized
radiation at exit from the crystal. Kranz and Haug97 (1986)
estimate that the threshold pump power density is 7, = 0.25
MW/cm2 (fey— 2.81 eV). When the sample thickness is a
few microns, and the initial ellipticity amounts to a fraction
of a percent, the threshold intensity 7S must be exceeded by a
factor of 10-100 to ensure that a practically complete trans-
formation of the polarization of emerging radiation into one
of the circular components can be observed (Fig. 12).

A number of the nonlinear-optics polarization experi-
ments with cuprous chloride can be explained, at least par-
tially, in terms of the phenomenon of spontaneous symmetry
breaking in two-photon biexciton absorption. Zhdanov etal.
(1980) have investigated the nonlinear optical activity (po-
larization self-interaction of linearly polarized light) in sin-

gle-crystal films of cuprous chloride produced by evapora-
tion in vacuum of recrystallized material of extreme purity
onto the (001) cleavage plane of rock salt. The high quality
of these single-crystal films, essential for experiments on
NOA, was confirmed by electron diffraction studies. The
measurements were performed in the intensity range 3-10
MW/cm2 at the wavelength of 386 mm, using films 3-35^m
thick (Fig. 13). The giant two-photon absorption was ob-
served, but NOA was not measured because the polarization
of the radiation leaving the crystal within this intensity
range was not at all linear, i.e., the transmission coefficient of
the polarizer GP2 was practically independent of its orienta-
tion, whereas the extinction coefficient of the polarizer/sam-
ple/analyzer system at 0.532 fj,m wavelength (well away
from the two-photon resonance) was 10~3. We are inclined
to look upon these data as a manifestation of spontaneous
polarization symmetry breaking. Analogous results at heli-
um temperatures were obtained by M. Kuwata (private
communication, 1988). Intensity-dependent depolarization
in cuprous chloride was also investigated by Itoh and Ka-
hotno99'100 (1985 and 1982, respectively) and by Kuwata
and Nagasawa101 (1987) (see also the discussion given in
Ref. 98 of Ref. 100).

6. POLARIZATION INSTABILITY IN ISOTROPIC MEDIA:
ROTATION OF THE POLARIZATION ELLIPSE AND
INTERACTION BETWEEN TWO BEAMS

The rotation of the polarization ellipse of a powerful
light wave (Refs. 7 and 102, 1964 and 1965, respectively) is
the most common and widely investigated polarization phe-
nomenon in nonlinear optics. The effect is possible in media
of any symmetry, e.g., in isotropic media. By analyzing a
model nonlinear medium consisting of chaotically oriented
nonchiral nonlinear molecules91 Akhmanov et a/.77 (1982)
showed that, when the light-wave intensity reached
\E 2~(xm)~' the self-rotation of the polarization ellipse
ceased to be stable, and a local (for each individual mole-
cule) hysteresis of the polarization response became possi-
ble. The effect occurs when the incident radiation is ellipti-
cally polarized. Actually, the polarization is unstable and
may be randomized for intensities for which the nonlinear
increment to the refractive index becomes comparable with
the linear component. This condition is often difficult to sat-
isfy because the necessary beam power density lies above the
optical breakdown threshold.

Kaplan4 (1983) and Kaplan and Law104 (1985) have
examined the spatial instability of polarization in the static
problem of two counter-propagating waves in an isotropic
medium with Kerr and strictional nonlinearity. When the
counter-propagating waves are linearly polarized, and the
two polarizations are orthogonal or parallel to one another,

PM-1

FIG. 13. Block diagram illustrating the experiment on the polarization self-interaction in cuprous chloride. The source of radiation is a liquid-nitrogen
cooled SRS oscillator with /lt. = 386.6 nm, pumped by the third harmonic of the Nd1 *: YAG laser; A.,, =355 nm; GP-1 and GP-2 are Glan prisms.
Polarization measurements are performed with the photomultipliers PM-1 and PM-2, and the epitaxial single-crystal film of cuprous chloride on sodium
chloride substrate was cooled in the nitrogen crystal K.
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or the waves are circularly polarized with the same or oppo-
site circular polarization, the polarization parameters of the
waves do not change during the propagation process, i.e., we
have matched pairs of nonlinear eigenpolarizations (in the
isotropic nonlinear medium, the nonlinear eigenpolariza-
tions of a progressive wave are circular and linear). Sala5X

(1984) has shown that, in addition, there are two initial el-
liptic polarization states for which the propagation of the
wave in the presence of another strong elliptically polarized
wave is not accompanied by a change in the polarization
ellipses, which experience pure rotation. In the remaining
cases, the interaction between counter-propagating waves
[see Wabnitz and Gregori105 (1986) and Kaplan4 (1983) ]
leads to periodic, multistable, and chaotic spatial distribu-
tions of polarization in each beam [see also Mater106 (1984)
and Daino et al.107 (1985) ]. A fundamental step in the in-
vestigation of polarization instabilities was taken by Gaeta,
Boyd, Ackerhalt and Milonni5 (see Gauthier et al.'60). They
showed that, in an isotropic medium with finite nonlinear
response time constants, the "frozen" static spatial polariza-
tion distributions that arise as a result of the interaction
between counter-propagating waves with time-independent
initial intensity cease to be temporally stable. In particular,
two important special cases can be defined for the interac-
tions between two waves with the same linear polarization,
which, as indicated above, constitute a pair of nonlinear ei-
genpolarizations of the stationary problem (equivalently to
the case of an infinitely "fast" nonlinearity). If the nonlinear

0,4 O.S 1,2 1.6 2.0 2,4 f>

60 ct/L

FIG. 14. Spontaneous symmetry breaking during the interaction between
two counter-propagating equally linearly polarized waves in an isotropic
medium with a finite nonlinear response time constant r. When the com-
bined intensity of the interacting waves is above the threshold value
R = ( \ E j \ 2 + \Eh

 2)^i,!,L~1.6, the polarization of each of the waves
begins to rotate in the direction determined by the fluctuation "seed". The
angle of rotation is shown as a function of R. When the intensity threshold
is substantially exceeded, the distribution of polarization within the body
of the sample becomes chaotic. In the case of the fast nonlinear response
T < L /c (L is the length of the sample), chaos arises only under asymmet-
ric excitation. The polarization components of one of the waves (Ef) are
shown in the figure for R = 6 as functions of time (based on Ref. 5).

response time constant T is close to the time Ln/c taken by
light to traverse the nonlinear crystal of length L, the tempo-
ral chaotization of polarization occurs for any intensity ratio
of the counter-propagating waves. This temporal chaotiza-
tion of polarization is accompanied by an effective transfer
of energy to the polarization component perpendicular to
the original polarization, and back. The temporal instability
has a threshold and develops as the spontaneous symmetry
breaking process (Fig. 14). When the nonlinearity time con-
stant is r^Ln/c, the temporal polarization instability devel-
ops only for asymmetric excitation for which the intensities
of the counter-propagating waves are initially unequal.

The significance of the results is broader than the specif-
ic manifestation that we have discussed.5 It would appear
that in many cases of a finite nonlinearity time constant that
is commensurate with the time taken by light to cross the
nonlinear sample, the temporal polarization instability that
is similar to the "McCall instability" in nonlinear systems
which has two characteristic relaxation times,12 can appear
in the system.

Tratnik and Sipe109 (1987) have introduced the idea of
the polarization soliton when they considered the case of
counter-propagating pulses with arbitrary distribution of in-
tensity and polarization in a nondissipative isotropic medi-
um with cubic nonlinearity of the strictional type. They not-
ed a class of solutions for which the interaction between the
counter-propagating pulses reduced to the rotation of the
polarization distribution as a whole. They found the condi-
tions that had to be satisfied by the "pulse area" for two
important cases, i.e., when the interaction led to the rotation
of the entire polarization distribution by 2ir (i.e., the pulses
are restored and we have "polarization transparency") and
when the polarization switched to the orthogonal direction
(this case is important for the development of devices for
controlling light by light).

The phrase polarization domain was introduced by Zak-
harov and Mikhailov110 (1987) in relation to the interaction
between counter-propagating waves in isotropic media and
in media with a fourfold symmetry axis. The polarization
domain is understood to be a region with a stable polariza-
tion state. The polarization-switching region constitutes the
domain walls, and it was shown that the rate of displacement
and the size of the domain walls depended on the amplitudes
and frequencies of the interacting waves.

Xuan et a/.1" (1983) have observed the polarization
instability of elliptically polarized picosecond pulses (wave-
length 0.532 /im) in nitrobenzene, CS2, and a number of
other liquids for intensities of 100-2000 MW/cm2, but be-
low the threshold for stimulated Raman scattering. One of
the possible mechanisms for the polarization instability can,
in our view, be the interaction between the elliptically polar-
ized pump wave and the counter-propagating waves reflect-
ed from the walls of the chamber, i.e., the chaotic polariza-
tion distribution that is produced in this case within the
liquid in the "time overlap" zone of the incident and reflect-
ed waves should be very sensitive to small changes in the
pump-beam intensity, even when the polarization param-
eters integrated over the pulse are measured.

Leaving on one side fiber lightguides, in which self-ro-
tation of the polarization ellipse is difficult to investigate
because of growth and strain birefringence (Sec. 7), we note
that the most convenient model object for the investigation
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of the interaction between elliptically polarized beams is
provided by liquid crystals in which threshold polarization
effects can be observed at low levels of optical interaction. 158

7. POLARIZATION INSTABILITY IN BIREFRINGENT MEDIA

From the practical point of view, the weakly birefrin-
gent fiber lightguide is an important object in which nonlin-
ear-optics polarization effects can be investigated. Birefrin-
gence in fiber lightguides may be random, due to fabrication
imperfections or strains produced during assembly in a par-
ticular device, but it can also be introduced deliberately, e.g.,
to preserve the polarization of radiation. The question of
polarization instability in birefringent media was purely aca-
demic only three or four years ago. Sala58 (1984) was the
first to draw attention to the "trigger" behavior of the polar-
ization of light in a birefringent crystal. Winful"2'1 13 (1985)
and (1986), respectively, Wabnitz et a/."4-"5 (1986), and
Romania/."6 (1986) have formulated the criteria for, and
the basic manifestations of, polarization instability in this
system. The dependence of the refractive index on the wave
intensity leads to a loss of stability along the "fast" birefrin-
gence axis ( Fig. 15). The effect has a threshold ( hard spon-
taneous polarization symmetry breaking), i.e., when the in-
tensity threshold has been reached, a slight change in the
linear polarization parallel to the "fast" birefringence axis
leads to large changes in the polarization parameters at exit
from the anisotropic medium. The threshold intensity can be
estimated from the formula

where n and n-, are the linear and nonlinear refractive in-
dices, respectively, and An is the birefringence of the medi-
um. We note that the above condition for Is actually shows
that the instability arises for intensities that produce a non-
linear change in the refraction of In2 of the order of the linear
birefringence An. Consequently, the effect is significant in
media with small birefringence (large natural birefringence
will "stabilize" the eigenwaves).

In our view, the most interesting objects for the obser-
vation of spontaneous polarization symmetry breaking in
the form of the loss of stability along the "fast" birefringence
axis are crystals with an "isotropic point," i.e., crystals for
which the curves representing the frequency dependence of

the refractive index for O and E waves are found to cross.
Many of the materials employed in nonlinear optics ZnO,
ZnS, CdSe, SnO2, MgF2, A12O3, AgGaS2, and CdS have an
"isotropic point" in the transparency region. When CdS is
employed at room temperature, the "isotropic" wavelength
is 522 nm, and the dispersion of birefringence is

TI= -^-^ 3,4- 10-5 cm.1 dv

We can hypothesize that the threshold for the observation of
spontaneous symmetry breaking can be reduced as much as
desired by approaching the isotropic point as closely as nec-
essary in frequency. Assuming that the most important limi-
tation is the spectral width Av of the laser radiation, we ob-
tain the following realistic estimate:

which, for a spectrum with a width of 100 MHz
(Av~3-10~3 cm"1), gives Is =80 kW/cm2. (Data on
nonlinear refraction in CdS were taken from Ref. 117.)

Trillo et a/."8 (1987) have observed the polarization
instability in single-mode fiber lightguides with a core diam-
eter of 4.5 fim and a length of 53 cm. The spatial period of
beats determined by the natural birefringence of the fiber
was 90% of its length. The light-wave power necessary for
bifurcation was of the order of 100 W (Fig. 3 ). The fact that
hard spontaneous polarization symmetry breaking can be
observed in a medium with weak birefringence does not
mean (as in any other case) that spatial polarization chaos
becomes possible: the number of integrals of motion is insuf-
ficient in this case for the complete integrability of the equa-
tions.

An interesting situation arises when birefringence and
gyrotropy are combined. Gyrotropy can arise in a fiber light-
guide as a result of helical strain, e.g., when the fiber is
coiled, or when it is wound on a-Vod or twisted. It has been
shown experimentally that gyrotropy of up to some hun-
dreds of radians per meter of the fiber is equivalent"9 in
magnitude to helical deformation.10

Matera and Wabnitz120 (1986) have shown that the
variation in the polarization parameters of a powerful light
wave in a system of this kind is exceedingly complicated. For
example, the evolution of the component 53 of the Stokes

-n/2 -rr/2

FIG. 15. Spatial instability of polarization in birefringent crystals: phase trajectories for the polarization parameters of radiation propagating in a
birefringent crystal.'l4 The Stokes parameter S}/S0 is shown along the vertical axis (S,,/Sn = 1 for right circularly polarized wave and S}/S0 = — 1 for
left circularly polarized wave; S,/S<> = 0 for linearly polarized light), and the angle d = arctg(Et/Es ), is plotted along the horizontal axis and defines
the orientation of the principal axis of the polarization ellipse relative to the slow birefringence axis, a—"Linear optics"; | E \2 < A«/«^-'3); polarizations
parallel to the fast and slow axes are at the centers of the phase trajectory; b—"nonlinear optics"; |£|2> An/«^'31; the polarization ellipse oscillates
around the direction of the slow birefringence axis; the fast axis transforms into a saddle, and the polarization along this axis becomes unstable.
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FIG. 16. Polarization instability in a weakly birefringent and gyrotropic
medium.120 The ratio of the components of the Stokes vector of the elec-
tromagnetic wave, S3/S0, at exit from the fiber lightguide is shown as a
function of the light intensity \E \2. The incident polarization is linear; a—
lightguide without torsion; when E 2 = |£S|2~A«/^I3); spontaneous po-
larization symmetry breaking is observed; b—weak helical deformation
(one complete twist per 200 beat lengths) and polarization bistability
with soft excitation of right circular polarization is observed; c—highly
twisted fiber; helical strain—one twist per beat length L = 2-n-A /An.

vector was reduced to an equation similar to the equation of
motion of a unit mass in a central potential described by a
fourth-degree polynomial. It is well known that finite trajec-
tories are not closed in polynomial potentials (see, for exam-
ple, Ref. 1), i.e., the variation in the polarization parameters
is spatially nonperiodic. The question therefore is: what are
the consequences of gyrotropy in hard spontaneous polar-
ization symmetry breaking in birefringent media? It is found
that even slight torsion of the fiber lightguide leads to the
"softening" of the bifurcation curve, i.e., at exit from the
medium, and as the intensity increases, the polarization pa-
rameters rapidly reach "circular" values (Fig. 16; cf. chiral
selectivity in stereochemistry, discussed in Sec. 3). The sta-
bilization of polarization states by torsion in fiber light-
guides with linear, nonlinear, and random coupling between
polarization modes was investigated by Vatarescu121

(1987).
We note that the equations describing the twisted,

slightly birefringent, fiber lightguide are analogous to the set
of relations between the polarization parameters and the in-
tensity of a light wave in a birefringent crystal with chiral
coupling between the O and E modes near the isotropic point
at which the frequency dispersion curves for the ordinary
and extraordinary refractive indices are found to cross.122 In
crystals, the strong frequency and temperature dependence
of birefringence ensures that the spectrum of possible non-
linear-optics effects is much richer, i.e., the spectral-polar-
ization instability and the temperature instability due to the
self-heating of the crystal by the laser radiation (by analogy
with the effect discussed in Sec. 3) become possible.

The nonlinear optics of birefringent fiber lightguides
with a periodic modulation of the refractive index has been
discussed by Wabnitz123 (1987), Mecozzi et a/.124 (1987),
and Caglioti et a/.125 (1987). Polarization chaos is possible
in these systems in a number of cases. A chaotic distribution
appears when the intensity approaches its threshold for
spontaneous symmetry breaking. By analogy with the non-
linear oscillator, we can show that periodic modulation of
birefringence is analogous to a periodic external force that
stimulates the oscillator to chaotic motion. Polarization
switching in a periodically twisted fiber lightguide has been
observed,126 using a tunable picosecond dye laser. A signifi-
cant effect was achieved for a peak power of about 1 kW.

The above hard spontaneous polarization symmetry
breaking in a weakly birefringent medium is a clear example
of spatial instability. Blowef a/.127 (1987) have extended the

formulation of the problem, and being interested in the prop-
agation of solitons in slightly birefringent fibers, they tack-
led the problem from the space-time point of view. The actu-
al analysis was performed by direct numerical solution of a
pair of coupled nonlinear Schroedinger equations. Strong
analogy with the stationary state was found for the case of
soliton propagation. If the length of beats associated with
birefringence is small in comparison with the soliton period,
both soliton modes are stable. For large beat lengths (weak
birefringence), the fast soliton mode is unstable and the en-
ergy transfers to the slow mode during the propagation pro-
cess. We see here the emergence of an important difference
as compared with the stationary case, when the loss of stabil-
ity leads to a change in the phase relations between the eigen-
modes and, as a consequence, to a change in the polarization
states of light at exit from the fiber without a monodirec-
tional energy transfer between the orthogonal components.
This exclusion of monodirectional energy transfer between
the orthogonal modes (when only the linear coupling is tak-
en into account) is due to the existence of an integral of the
motion. In the soliton problem, there is an additional degree
of freedom that decouples the integral of the motion. It arises
when dispersion is taken into account: in the case of weak
birefringence, the energy is monodirectionally "pumped"
into the slower mode. When dispersion is taken into account,
a nearly chaotic transfer of energy is possible under certain
particular conditions between the initial polarization soliton
modes: by observing the pulse amplitude in one of the modes
at different points in the fiber (in a gedanken experiment),
we can see the continuous distributions over the spatial fre-
quencies. (In this connection, see also the paper by Wab-
nitz,128 who shows that, when frequency dispersion is taken
into account, this leads to a loss of polarization stability
along the "slow" birefringence axis of the fiber optical light-
guide, as well.) Vatarescu'29 (1986) has established that en-
ergy transfer between modes is also possible in the stationary
case without frequency dispersion when the nonlinear cou-
pling between the eigenstates is taken into account.

The chaotic behavior of polarization in the case of
counter-propagating waves in a birefringent medium is not
limited by the integrals of the motion. This fact was estab-
lished by Tratnik and Sipe62 (1986). Vatarescu130 (1986)
has noted the possibility of spatially nonperiodic energy
transfer between the two polarization modes in the case of
the counter-propagating light waves in a highly birefringent
optical fiber. Trillo and Wabnitz13' (1987) carried out a nu-
merical simulation and found a chaotic distribution of polar-
ization for two counter-propagating waves. Moreover, chaos
was possible within the limits of one order of magnitude of
intensity near the threshold for spontaneous polarization
symmetry breaking, i.e., for low intensities, intrinsic bire-
fringence will stabilize polarization, thus allowing only reg-
ular beats and, contrariwise, for high intensities, the nonlin-
ear increment on the refractive index is sufficient to give rise
to chaotic motion. Polarization instability in birefringent
lightguides and its practical applications to devices for con-
troling light by light are discussed in Refs. 132-135.

In the case of large birefringence, it is probably impossi-
ble to observe spontaneous polarization symmetry breaking
in the form of a loss of stability along the "fast" birefringence
axes in crystals, but a nonlinear birefringent crystal placed
between polarizing prisms is an interesting optical object.
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FIG. 17. Polarization devices for controlling light by light, based on Wood's filter:136 a—optical arrangement of the filter, P—polarizing prisms, S—
sample of birefringent crystal; b—energy ratio for pulses with orthogonal polarizations at exit from the nonlinear crystal as a function of the intensity of
exciting radiation; crystal length 1.2 mm, pulse length 30 ps, wavelength /10 = 532 nm; there is a clear variation in the ratio of the intensities of orthogonal
components with increasing pump power density (/ = 800 MW/cm1); the departure of the curve from the cos2 [ (/ //„) 4- <Po 1 'aw is due to the nonlinear
absorption of radiation and the averaging of the effect over the packet of picosecond pulses;'" c—optical arrangement of the bistable polarization device
without a resonator and incorporating a birefringent nonlinear crystal; M— mirror, C—Babinet compensator, whose setting selects the state of the
bistable element.136

We recall that, if the optic axis of a birefringent crystal is
perpendicular to the beam, and set at 45° to the polarizer in
front of the crystal and to the analyzer after it, the system is
known as Wood's filter. It is clear that the transmission spec-
trum will be transformed when high-intensity light beams
are employed because crystal refraction is very intensity-
dependent. This question has been examined in detail by Ot-
suka et a/.136 (1985). The transmission of the filter is given
by the simple formula

= cos2

where / is the incident intensity. The modulation of the
transmission coefficient is significant when the intensity be-
comes

where n(
2°\ n\E) are the nonlinear refractive indices for the

O and E modes, respectively. Figure 17 shows the results
obtained by Aleksandrovski! et al.137 ( 1984) on the effect of
incident radiation power on the parameters of Wood's filter.

Otsuka, Yumoto, and Song136 were the first to show
that, when a fraction of the transmitted radiation was re-
flected back into the crystal, it was possible to achieve an
optical polarization-bistable device demonstrating the hys-
teresis states for pump intensities in the region of I0.

The view of the present author is that optic-fiber devices
without resonators, which exploit polarization switching in
weakly birefringent systems, will find actual practical appli-
cations in the near future in communication devices with
polarization data coding. The next step will be the transition
to compact polarization switches, using highly nonlinear
gyrotropic and nongyrotropic crystals with an isotropic
point. The advances achieved in recent years in the technolo-
gy of semiconducting materials will ensure that the composi-
tion of solid solutions can be adjusted by displacing the iso-
tropic point toward the lines of popular laser sources. The
tuning of an optical filter incorporating the CuAlSe2 gyro-
tropic crystal with an isotropic point and the polarization

modulation of radiation at 0.532 /zm have recently been ob-
served by Zheludev, Makovetska, Popov, Semenikhin, and
Tarasenko (1988).

8. SOME REMAINING QUESTIONS AND FUTURE
PERSPECTIVES

We shall now briefly enumerate the questions that have
not been discussed in detail in this review. Zartov, Panajo-
tov, and Peyeva138'139 (1986 and 1987, respectively) have
examined a hybrid metastable optical polarization device in
an electrooptic modulator used in the Fabry-Perot interfer-
ometer with electrooptic feedback, which is controled by the
intensity or polarization of the pump. They have also consid-
ered a multistable polarization device based on an electroop-
tic modulator without a resonator140 (1987). Korpel and
Lohmann141 (1986) have introduced a configuration based
on Fabry-Perot resonators and anisotropic polarization ele-
ments, e.g., full-wave plates. The first experiments on polar-
ization bistability in the Fabry-Perot resonator containing a
birefringent element and a polymeric film with a strong ther-
mal nonlinearity were carried out by Cush and Kirkby142

(1986) [see also Indebetouw143 (1988)].
Zon and Kupershmidt144 (1984) have carried out a

theoretical analysis of bistability in the magnetization of a
gas of free electrons or a semiconducting crystal in the case
of the inverse Faraday effect. Since this bistability can be
probed optically by observing the circular magnetic dichro-
ism or Faraday rotation of a low-intensity probe wave, it is
possible to develop a birefringent optical scheme for record-
ing optical polarization instability.

In our view, the stability of light-wave polarization in
two-beam systems deserves attention. Zheludev, Ruddock,
and Illingworth87 (1987) were the first to investigate experi-
mentally the chaotic response in a solid-state system without
a resonator. The system was based on a semiconducting clus-
ter glass in a two-beam scheme, and exploited the competi-
tion between two nonlinear mechanisms and optical excita-
tion by modulated radiation. Remarkably, the
polarization-sensitive effect of thermally induced birefrin-
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gence was used in this experiment to detect the orthogonal
component of the probe beam. This meant that it was possi-
ble to observe the different regimes of subharmonic and
chaotic response with enhanced contrast, i.w., chaos could
be observed in both amplitude and polarization of light.

An interesting series of investigtions involves the study
of two-beam systems in media with nonlinear gyrotropy.
The starting point here are the investigations of Harris145

(1976), Tinoco146 (1976), Belyi, Serdyukov and Bokut"47

(1975), Golubkov and Makarov148 (1976), and Ananase-
vich, Zheludev, and Dovchenko149 (1986).

It has not been our aim in this paper to provide a com-
plete review of publications on polarization instability in ac-
tive systems, i.e., in laser amplifiers and oscillators. We have
confined our attention to noting the overall properties of
active and passive systems, namely, the possibility of polar-
ization multistability and oscillatory and stochastic regimes.
Nasyrov150 (1982) has examined the propagation of an elec-
tromagnetic wave in the active medium of a gas laser. He
finds that, in the amplifying medium, the polarization of
radiation tends to the linear state for /->./ + 1 transitions,
and to the circular state for the transition with the conserva-
tion of total angular momentum (•/-»/). The opposite situa-
tion occurs in absorbing media. When counter-propagating
waves interact in the double-transit amplifier, this results in
polarization oscillations with a period equal to the time for
two complete transits of radiation through the active system.
The necessary condition for the observation of the effect is
that the intensity gain must be of the order of a few tens.

Krivoshchekov et al.'5' (1982) have investigated polar-
ization instability in the gas laser. Semiconductor lasers have
been considered by Chan and Liu152 (1987) and by Sapia et
al.1" (1987).

We have ignored the polarization instability of liquid
crystals, i.e., media with exceptionally high optical nonlin-
earities. This question has been reviewed in a recent paper by
Arakelyan154 (1987).

As far as the practical applications of polarization in-
stability and multistability are concerned, we note that, in
polarization devices for controling light by light, the coding
of data (signal) relies on the polarization state of light, i.e.,
on phase modulation. In optics, polarization modulation of-
ten has important advantages as compared with amplitude
modulation. These advantages are, first, the greater contrast
of data signal variation in switching from one stable state to
another; second the analogy with the phase multistabilities''
of a symmetric many-level system for coding and counting,
e.g., 1,0, — 1 (right ellipse, linear polarization, left ellipse);
third, polarization switching does not involve loss of intensi-
ty, which means that it will be possible to develop complex
cascade logic devices that do not require intermediate light
amplifiers [Ref. 155 (1985)].

In the case of local nonlinearity, polarization multista-
bility can be observed, as noted above, for light intensities
Is ~«2r '. The interference gain in intensity is of the order of
QA, /dand arises when the nonlinear medium is placed in the
resonator (d is the resonator length and Q is its Q-factor).
Spatial polarization instability in birefringent media with
feedback and spontaneous polarization symmetry breaking
in the form of loss of stability by "fast" polarization occur
for intensities Is~&nri2~l- An intensity criterion for the
temporal polarization chaos in the interaction between

counter-propagating waves in a medium with a "noninstan-
taneous" nonlinearity is also quite realistic: (/, + I2~n2A /
L) (L is the length of the nonlinear medium). It is therefore
clear that, in many cases, the gain as compared with local
non-linearity can be 104-106, which ensures favorable condi-
tions for the observation of polarization instability in resona-
tor and nonresonator distributed system. This offers a con-
siderable margin as far as the light-beam power is concerned,
when we take into account limitations on the self-focusing
threshold and optical breakdown.

Polarization chaos is often a purely classical effect, sim-
ilar to the chaotic behavior of nonlinear dynamic systems
with several degrees of freedom. At this point, and as part of
our discussion, it is appropriate to introduce Lipkin's view-
point156 (1977), which, in our opinion, is not well founded.
He considers that the existence of unpolarized (solar) light
is one of the arguments in favor of corpuscular theory: "the
existence of unpolarized light already gives an indication of
the quantum nature of light. Unpolarized light cannot be
described as a single simple classical monochromatic wave
or as any linear combination of such waves. Unpolarized
light can be described classically as a series of very rapid
short bursts or pulses of light, each having a different polar-
ization, with no correlation between the polarizations of dif-
ferent pulses. If these pulses and the interval between them
are very short compared to the characteristic working times
of the measuring apparatus, they will be detected as a contin-
uous beam and any polarization measurement will give an
average of the polarizations of the individual pulses." This
definition of unpolarized or partially polarized light can
equally well be looked upon as an intuitive definition of po-
larization chaos (partially polarization-randomized radi-
ation). On the other hand, is there really an obvious physical
difference between these two concepts? Whether the re-
searcher observes a mixture of uncorrelated wave trains of
different polarization or temporal polarization chaos that is
a consequence of the stochastization of the nonlinear re-
sponse of the dynamic system, he is actually concerned at
each instant of time with the electric (or magnetic) field
vector of the wave. In both cases, the recorded parameters
are the intensities, e.g., of the mutually orthogonal field
components between which there is no constant phase differ-
ence in either case. A difference can appear only in quantita-
tive parameters, namely, in the duration and shape of the
corresponding mutual correlation functions for the orthogo-
nal intensity components. Thus, the existence of unpolarized
light cannot, in itself, be a sufficient condition for the de-
monstration of its quantum nature. On the other hand, it has
recently been shown by Kennedy and Wabnitz157 (1988)
that polarization instability in nonlinear system can be the
reason for the formation of "squeezed" (subquantum or
noiseless) states of different polarization components of ra-
diation.

The detailed statistical properties of polarization chaos
constitute an unsolved problem. Here, we must pass from
the analysis of realizations produced by numerical simula-
tion to a search for regular procedures for calculating global
parameters, e.g., one-dimensional and multidimensional
probability distributions for the Stokes parameters, and to a
study of the transition to polarization chaos as a phase tran-
sition.

Even the very earliest papers13 noted the analogy
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between spontaneous polarization symmetry breaking in
atomic transitions and butterfly-type topological singulari-
ties in catastrophe theory. The results of a number of other
investigations are being formulated within the framework of
catastrophe theory. For example, the topological cuspidal-
edge singularity corresponds to the polarization bistability
in a cubic crystal placed in a Fabry-Perot resonantor.

A completely new range of investigations into the polar-
ization instabilities in the plane perpendicular to the beam in
nonlinear optical systems with coherent feedback is emerg-
ing. "'8 The problem here is to examine two-dimensional po-
larization distributions over the cross section of the light
beam, including both highly symmetric polarization struc-
tures and polarization chaos over the cross section of the
beam and (or) in time.

9. CONCLUSION

Studies of polarization multistability, which began in
the early 1980's with two completely dissimilar and indepen-
dent papers (Refs. 13 and 77, 1981 and 1982, respectively)
have now merged into one of the most dynamic branches of
nonlinear optics, which has attracted the attention of at least
twenty major laboratories across the world. Quite unexpect-
edly, it now occupies a central position in many topical areas
of scientific enquiry, ranging from the chiral purity of the
biological world to ultrahigh-speed data transmission, the
theory of dynamic chaos in nonlinear systems, and funda-
mental problems in classical and quantum statistics of light.
Striking analogies are emerging between instability in non-
linear optics and well-known traditional problems in me-
chanics, such as the dynamics of the nonlinear oscillator, the
motion of cosmic objects in the field of mutual attraction, the
stability of helical and longitudinal deformations, and the
dynamics of a propeller-driven airplane and a rigid body
with one fixed point.

Research into polarization instabilities has now
emerged from the phase of theoretical prediction and nu-
merical simulation, and has entered the stage of experimen-
tal investigation, indicating possible serious practical appli-
cations to optical data processing.
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