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Wediscuss the scale and chiral anomalies in quantum chromodynamics and their implications for
the theory of hadrons. In the first part the physical meaning of the anomaly is demonstrated. To
this end the simplest gauge model is considered—two-dimensional Schwinger model. In this
modelitis extremely easy to explain what properties of the theory are responsible for the quantum
anomaly and the physical nature of the phenomenon is elucidated. The second part is devoted to
derivation of the anomaly relations within QCD. The subtle question of the multiloop corrections
is discussed. The third part presents applications. Starting from the chiral and scale anomalies we
obtain low-energy theorems which lead, in turn, to predictions for observable processes. In
particular, a proof based on first principles is given of the existence of massless pions, the
amplitudes are calculated for the conversion of gluon operators into pions which can be measured
experimentally. Other practical problems are also considered, the solution of which turns out to

be possible due to anomalies.

INTRODUCTION

In this review we will discuss quantum anomalies and
the consequences stemming from them for the theory of had-
rons.

The term ‘““quantum anomalies™ in field theory has a
concrete narrow meaning. Let us consider an action possess-
ing certain invariance at the classical level. If this invariance
can not be preserved at the quantum level, i.e., taking ac-
count of the quantum corrections, such a phenomenon is
called a ““quantum anomaly.”

The first encounter of the theorists with quantum
anomalies occurred long before the QCD era (the famous
7°—2y puzzle, see, e.g., the review in Ref. 1). After the
triumph of the gauge theories—the Glashow-Weinberg-Sa-
lam model in 1972 and QCD in 1973—the status of the prob-
lem drastically changed: from a relatively local issue it
turned into an important and universal theoretical construc-
tion occupying one of the central places in modern theory.

There are two types of anomalies; let us call them inter-
nal and external. In the first case the symmetry we deal with
is the gauge symmetry—the gauge invariance of the classical
action is violated at the quantum level. In other words, when
quantum corrections—"loops”-are taken into account, the
current with which gauge bosons interact ceases to be con-
served.

External anomalies also result in current non-conserva-
tion. In this case, however, the anomalous current is not
connected with the gauge bosons and corresponds to *“‘exter-
nal” global symmetries of the classical action.

The presence of internal anomalies is usually consid-
ered to be a disaster for the theory. Such theories can not be
consistently quantized, they are non-renormalizable and
self-contradictory. (Let us note, though, a series of recent
articles? presenting an attempt to circumvent the problems.
We will not deal with these articles since the development
here is far from completion.) The standard strategy consists
of canceling all internal anomalies by means of a special
choice of the fields in the original Lagrangian. For instance,
in the Glashow-Weinberg-Salam model the internal triangle
anomaly cancels provided that the quarks and leptons from
the given generation possess quite definite values of the hy-
percharge—namely, the standard values—and all the
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quarks and leptons in the generation take part in the cancel-
lation. The requirement of the absence of internal anomalies
imposes contraints on the structure of the gauge models. The
constraints can serve (and do serve) as a guideline in model-
building. Suffice it to recall that within the superstring ap-
proach, the present-day candidate for the “theory of every-
thing,”” the cancellation of the internal anomalies leaves only
two possible options for the gauge group, SU;, and E4 X E,.*

We will not dwell on these issues. Both topics—quanti-
zation of the theories with internal anomalies and cancella-
tion of the internal anomalies in the course of model-build-
ing—call for a special discussion.

In this review we will concentrate on external anoma-
lies. The main purpose is to explain the physical meaning of
the phenomenon in the most simple and transparent form
and to demonstrate the wide-ranging consequences for the
theory of hadrons stemming from the existence of two anom-
aliesin QCD : the chiral anomaly and the scale anomaly. The
attention which will be paid to pedagogical aspects and spe-
cial emphasis on practical applications—both these are
points that distinguish the discussion below from numerous
excellent recent reviews on anomalies available in the litera-
ture. In particular, I would like to mention the review paper
of Ref. 4 where technical and mathematical details are fully
discussed. One can also find there a detailed list of refer-
ences. '

I begin with the simplest known example: two-dimen-
sional quantum electrodynamics (QED). The example is
very instructive and nicely illustrates the answers to such
questions as

—What properties of the theory are responsible for the
occurrence of the quantum anomalies?

—What is the physical nature of the phenomenon?
The crucial importance of the following two points will be
clearly seen: (i) the presence of an infinite number of degrees
of freedom in field theory and the necessity of introducing an
ultraviolet cut-off; (ii) the clash between two classical sym-
metries in which only one will turn out to be a “victor” at the
quantum level; the one which gains the victory will be pre-
served at a price of sacrificing the second, less “fortunate”
symmetry. It is this latter symmetry that is the quantum
anomaly.

The second part of the review is devoted to chiral and
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conformal anomalies in QCD. Here I present different deri-
vations of the anomalies and discuss some subtle points
which are usually skipped in the literature.

Finally, the third part is devoted to the low-energy theo-
rems following from the anomalous relations and to applica-
tions in hadron physics. I will show here how one can use the
anomalies for predicting such nontrivial quantities as, for
instance, the gluon-ion conversion amplitudes.

1.CHIRAL ANOMALY IN THE SCHWINGER MODEL
1.1.Schwinger model on a circle
Two-dimensional QED with the massless Dirac fer-

mion seems to be the simplest gauge model. The Lagrangian
is

1 - A
$=—4—C§F,WFW+¢;D¢, (L.1)
where F,, is the photon field strength tensor
Fuv‘——auAv_avAw (12)

e, is the gauge coupling constant having the dimension of
mass for D = 2. Moreover, D, is the covariant derivative

iDp=iau+Au1 (13)
and ¥ is the two-component spinor field.
Gamma matrices can be chosen in the following way:

¥° = 0,, y! = ioy, Y* = 05 (in Minkowski space),
! = 01, ¥ = 0,,9® = 0, (in Euclidean space).

(1.4)

Correspondingly, the spinor
YL = ( “(J)l )
will be called left-handed (#° ¢y = ¥ ), while the spinor

;0
¢R = ( ¢2 )
will be called right-handed (° ¥ = — ¢&).

In spite of the considerable simplification compared to
the four-dimensional QED, the dynamics of the model (1.1)
is still too complicated for our purposes. Indeed, the set of
asymptotic states in this model drastically differs from the
fields in the Lagrangian. In the two-dimensional theory the
photon, as is well-known, has no transverse degrees of free-
dom and essentially reduces to the Coulomb interaction.
The latter, however, grows linearly with the distance. The
linear growth of the Coulomb potential results in the con-
finement of the charged fermions in the Schwinger model
irrespectively of the value of the coupling constant e,. The
model (1.1) was even used as a prototype for describing the
color confinement in QCD (see, e.g., Ref. 5).

In order to simplify the situation further let us do the
following. Consider the system described by the Lagrangian
(1.1) in a finite spatial domain of length L. If ¢,L is small,
e.L <1, the Coulomb interaction never becomes strong and
one can actually treat it as a small perturbation. In particu-
lar, in the first approximation its effect can be neglected alto-
gether.

We impose periodic boundary conditions on the field
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A,, and antiperiodic ones on #. Thus, the problem to be con-
sidered below is the Schwinger model on the circle. Notice
that the antiperiodic boundary conditions are imposed on
the fermion field for convenience only. As will be seen, any
other boundary condition—periodic, for instance—would
do as well; nothing would be changed except minor technical
details.
Thus,

(1.5)

Eq. (1.5) implies that the fields 4 and ¥ can be expand-
ed in the Fourier modes, exp[/kx2m/L] for the bosons and
exp{i[k + (1/2)]x-27/L} for the fermions. Now, let us re-
call the fact that the Lagrangian (1.1) is invariant under the
local gauge transformations:

p—peie= D, 4, — A, +d,a(x, t). (1.6)
It is quite evident that all modes for the field 4, except the
zero mode (i.e., kK = 0) can be “gauged away.” Indeed, the
term of the type a(¢)exp(ikx) in 4, is gauged away with the
aid of the gauge function a (x,t) = — (ik) ~'a(t)exp(ikx).
The latter is periodic on the circle, as it should be, and does
not violate the conditions (1.5).

Thus, in the most general case we can treat 4, as an x-
independent constant.

This is not the end of the story, however, since the possi-
bilities provided by gauge invariance are not exhausted yet.
There exists another class of admissible gauge transforma-
tions with the gauge function which is not periodic in x,

2n

oA = ——nNnzx,

A (1.7)

wherenisaninteger (n = + 1, 4 2,... ). In spite of the non-
periodicity, such a choice of the gauge function is also com-
patible with the conditions (1.5). This fact is readily verifia-
ble: since da/x = const and da/dt = 0 the periodicity for 4,
is not violated; the analogous assertion is also valid for the
phase factor exp(ia)—the difference of phases at the end-
points of the intervale xe[ — L /2, L /2] is equal to 27n.
As aresult, we arrive at the conclusion that the variable
A, (recall that in the sense of x-dependence A4, is a constant)
should not be considered in the whole interval ( — o0,o).
The points 4,4 + 27w/L, A, 4+ 4m/L, etc. are gauge equiva-
lent and must be identified. The variable 4, is an indepen-
dent variable only in the interval [0,27/L); going beyond
these limits we find ourselves in the gauge image of the origi-
nal interval. Following the commonly accepted terminology
we may say that 4, lives on the circle of length 27/L.
Moreover, the gauge invariance of the theory is closely
interrelated with the conservation law for the electric
charge. Indeed, the Lagrangian (1.1) with finite L admits

multiplication of the fermion field by a constant phase,
| ety Pt gremie,

Using the standard line of reasoning one easily derives from
this phase invariance the conservation of the electric current

ju :E‘Vulr- O (t) == Ov
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where Q = § dx j,(x,t). (The vanishing of the current diver-
gence stems also directly from the equations of motion.) We
note that the classical Lagrangian (1.1) is invariant under
one more rotation, the global axial transformation

-y IOV sy Te iV
e AL P

which multiplies the left- and right-handed fermions by the
opposite phases (¥° = o0;). If the axial charge of the left-
handed fermion Q5 = + 1, for the right-handed fermion
Qs = — 1. At the classical level the axial current

Jus = EYMY&U’

is conserved justin the same way as the electromagnetic one.
The conservation of Q and Qs is equivalent to the conserva-
tion of the number of the left-handed and right-handed fer-
mions separately. The fact is quite obvious for any Born
graph. Indeed, in all such graphs the fermion lines are con-
tinuous, the photon emission does not change their chirality,
and the number of ingoing fermion legs is equal to that of the
outgoing legs. In the exact answer, however, only the sum of
the chiral charges is conserved, only one out of two classical
symmetries survives the quantization of the theory.

As will be seen below, the characteristic excitation fre-
quencies for 4, are of order e while those associated with the
fermionic degrees of freedom are of order L ~', Since eL € 1
the variable 4, is adiabatic with respect to the fermionic de-
grees of freedom. In the next section we will analyze in more
detail the fermion sector assuming temporarily that 4, is a
fixed (time-independent) quantity.

1.2. Dirac sea. The vacuum wave function

Following the standard prescription of the adiabatic ap-
proximation we freeze the photon field 4, and consider it as
“external.” In the accepted gauge the 4, component reduces
to a constant. As for 4, we can put 4,~0 (the fact that 4, is
actually non-vanishing results in negligible corrections).

The difference between these two components lies in the
fact that the fluctuations of 4, are small, while this is not the
case for 4,. The wave function is not localized in 4, in the
vicinity of 4, = 0. It is just this phenomenon—delocalization
of the 4, wave function and the possibility of penetration to
large values of 4,—that will lead to observable manifesta-
tions of the chiral anomaly. The z = 0 component of the
photon field is responsible for the Coulomb interaction
between the charges; the corresponding effect is of order
eL €1 and does not show up in the leading approximation to
which we will limit ourselves .n the present section.

In the two-dimensional electrodynamics the Dirac
equation determining the fermion energy levels has the form

[i%#—cs(ia—i—;l,)]xp:& (1.8)

Forthe & th stationary state ¢y ~exp( — (E, )9, (x),and the
energy of the k th state is

By = —03 (i 5= —A,) 1 (2)- (1.9)

Furthermore, the eigenfunctions are proportional to

in~esp[i(ktg) SEe] k=0 kL2200,
{1.10)
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The extra term (1/2) (27/L)x in the exponent ensures the
antiperiodic boundary conditions, see Eq. (1.5). As aresult,
we conclude that the energy of the k th level for the left-
handed fermions (the definition is given following Eq.
(1.4))is

/ Ly 2
Enyy=(k+5) 5+ 46 (1.11a)
while for the right-handed fermions
Eyg=— (k%) —4, (1.11b)

The energy level structure dependence on A4, is displayed in
Fig. 1. The dashed lines show the behavior of £, , and the
solid lines E,r,. At A, =0 the energy levels for the left-
handed and right-handed fermions are degenerate.

If 4, increases, the degeneracy is lifted and the levels are
split. At the point 4, = 277/L the structure of the energy
levels is precisely the same as for 4, = O; the degeneracy
takes place again. The identity of the points 4, =0 and
A,=27/L is the remnant of the gauge invariance of the
original theory (see the discussion above).

We note that the identity is achieved in a nontrivial way:
in passing from 4, = 0 to 4, = 27/L a restructuring of the
fermion levels takes place. All left-handed levels are shifted
upwards by one interval while all right-handed levels are
shifted downwards by the same one interval. This phenome-
non, the restructuring of the fermion levels, lies at the basis
of the chiral anomaly in the model at hand, as will become
clear shortly.

Let us proceed now from the one-particle Dirac equa-
tion to field theory. The first task is the construction of the
ground state, the vacuum. To this end, following the well-
known Dirac prescription, we fill up all levels lying in the
Dirac sea, leaving all positive-energy levels empty. The fol-
lowing notations will be used below for filled and empty lev-
els with a given k:

im0 &Y, 10 g ).

respectively. The subscript L(R) indicates that we are deal-
ing with left-handed (right-handed) fermions.
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Recall that A, is a slowly varying adiabatic variable; the
corresponding quantum mechanics will be considered later.
At first, the value of 4, is fixed in the vicinity of zero, 4, =0.
Then the fermion wave function of the vacuum, as seen from
Fig. 1, reduces to

“Fferm-vac=( _ ]Iz l 1L~ k)) (h=0 ;ﬂz IOLv k>)
<( i g 1 10 B).
k=0,1,2.... R==—1, 2. ...
(1.12)

The Dirac sea, or all negative-energy levels, are completely
filled.

Now, let A, increase adiabatically from O up to 2#/L.
The same figure shows that at 4, = 277/L the wave function
(1.12) describes the state which, from the standpoint of the
normally filled Dirac sea, contains one left-handed particle
and one right-handed hole (small circles on Fig. 1).

Do the quantum numbers of the fermion sector change
in the process of the transition from 4, =0to 4, = 2#/L?
Answering this question in the most naive manner we would
say that the appearance of the particle and a hole does not
change the electric charge since the electric charges of the
particle and the hole are obviously opposite. In other words,
the electromagnetic current is conserved.

On the other hand, the axial charges of the left-handed
particle and the right-handed hole are the same (Q;=1)
and, hence, in the transition at hand

AQy = 2. (1.13)
Eq. (1.13) can be rewritten as follows:

AQs == A4,
Dividing by At, the transition time, we get

Qs=L 4,. (1.14)

which implies, in turn, that the conserved quantity has the
form

{ {fn—=4,) de. (1.15)

The current corresponding to the charge (1.15) is, obvious-
ly,

~

f . 1 P
Jus =Jps— T su\'A\'v Uu]us = 0’

PR 1 P
du]u.ﬁ = T ’u\‘duA\'v

(1.16)

where £, is the antisymmetric tensor, £,, = — £,, = 1. The
second equality in (1.16) represents the famous axial anom-
aly in the Schwinger model. We succeeded in deriving it by
the “hand-waving” arguments, by inspecting the picture of
motion of the fermion levels in the external field 4,(¢). It
turns out that in this language the chiral anomaly presents
an extremely simple and widely known phenomenon: the
crossing of the zero point in the energy scale by this or that
level (or by a group of levels). The presence of the infinite
number of levels and the Dirac “multiparticle” interpreta-
tion, according to which the emergence of the filled level
from the sea means the appearance of the particle while the
submergence of the empty level into the sea is equivalent to
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production of a hole, are the most essential elements of the
whole construction. With the finite number of levels, when
there is no place for such an interpretation, there can be no
quantum anomaly.

I would like also to draw the reader’s attention to a
somewhat different (although intimately related with the
previous) aspect of the picture. The fermion levels move par-
allel to each other through the bulk of the Dirac sea. There-
fore, the disappearance of the levels beyond the zero-energy
mark occurs simultaneously with the disappearance of their
““copies” beyond the ultraviolet cutoff, which is always im-
plicitly present in the field theory (below we will introduce it
explicitly ). Because of this fact the heuristic derivation of
the anomaly given in this section and a more standard treat-
ment based on the ultraviolet regularization are actually the
same. Often it turns out more convenient to trace just the
crossing of the ultraviolet cutoff by the levels from the Dirac
sea; and beyond the toy models, in the real theories like
QCD, the latter approach becomes an absolute necessity, not
a question of convenience, due to the notorious “infrared
slavery.” The connection between the ultraviolet and in-
frared interpretations of the anomaly is discussed in more
detail is subsecs. 1.3, 1.5. The interested reader is referred to
the original work** where all subtle points are exhaustively
analyzed.

1.3. Ultraviolet regularization

In spite of the transparent character of this heuristic
derivation almost every one of the “evident” points above
can be questioned by the careful reader. Inded, why is the
wave function (1.12) the appropriate choice? In what sense
is the energy of this state minimal taking into account the
fact that, according to (1.11),

and the sum is ill-defined (the series is divergent)?

Moreover, it is usually asserted that the quantum
anomalies are due to the necessity of the ultraviolet regular-
ization of the theory. If so, why speak of the Dirac sea and
the crossing of the zero energy point by the fermion levels?

Surprising though it is, all these questions are connect-
ed with each other. Probably, it will be most convenient to
start with the last one.

Now I will explain that although the ultraviolet regu-
larization was not even mentioned thus far, actually, it is the
key element; more than that, the derivation sketched above
tacitly assumes quite a specific regularization.

The fermion levels stretch in the energy scale up to in-
definitely large energies (more exactly, |E | ). The wave func-
tion (1.12) describing the fermion sector at 4, ~ 0 contains,
in particular, the direct product of the infinitely large num-
ber of the filled states |1 g ,k ), |1, ,k ) with negative energy. It
is clear that such an object—the infinite product—is ill-de-
fined, and one can not do without some kind of regulariza-
tion in calculating physical quantities. The contribution cor-
responding to large energies (momenta) should be somehow
cut off.

At first sight, it seems that it would be sufficient simply
to throw away the terms with |k | > |k |nax (|Kmax 18 @ fixed
number independent of 4,). This is a regularization, of
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course, but, clearly enough, the recipe will inevitably lead to
a violation of gauge invariance and electric charge non-con-
servation. Indeed, in gauge theories the momentum p always
appears only in the combination (p + 4), and any gauge
invariant cut off should respect this property. In other
words, we have the right to limit p + A4, not p (or, what is the
same, k).

In order to preserve the gauge invariance it is possible
and convenient to use the regularization called in the litera-
ture the Schwinger, or ¢ splitting. The regularization will
provide a more solid mathematical basis to the heuristic der-
ivation presented above.

Instead of the original currents

Ju =0 (8 2) 0 (1 1), Jus = 2) yavsd (4 2) (117)
we introduce the regularized objects
_ A\"+.E
=ty 2 +e) yup (2, 2) exp ( —i \ A, d.’L‘) ,
N (1.18)
_ xts
IS =t o) pvs (4 Dexp (—i | 4,da).

It is implied that £—-0 in the final answer for the physical

quantities. At the intermediate stages, however, all compu-

tations are performed with fixed . The exponential factor in

(1.18) ensures the gauge invariance of the “split” currents.

Without this factor multiplying #(#,x) by an x-dependent

phase, (f,x) —exp(i” (x))¥(2,x), yields

ll“; (t, x--e) (2, 2) —

> exp (— i (0= &) + i (D) 1T (1 &+ ) gt )

(1.19)

The gauge transformation of 4, (4,—~A4, — da/dx) com-

pensates for the phase factor in Eq. (1.19).

Now there is no difficulty to calculate the electric and
axial charges of the state (1.12) “scientifically.”If

Q= il pda, Q= \ j5F @, 0da,  (1.20)

then for the vacuum wave function we, evidently, get

Q:QL"FQR’ QsZQL—QR’ (1.21)

()L:Zexp{—ia[(l;%—é—)-——:}l—;:li]}, (1.22)
C R

QR:Ze\p{—;a[(A’—-—%)-ﬁ-r 4,-|} (1.23)

Inthe limit € — O both charges, @; and Q,turninto the sum
of units—each unit represents one filled level from the Dirac
sea. Egs. (1.22) and (1.23) once again demonstrate the
gauge invariance of the accepted regularization. Indeed, the
cut-off suppresses the states with |p, + 4,|>e~". If it were
not for the phase factor in Eq. (1.18) the suppressing func-
tion would not contain the desired combination, p + 4.

We hasten to add here that although superficially Eqs.
(1.22), (1.23) do not differ from each other, actually they
do not coincide because the summation runs over different
values of k,k ‘. Just what the particular values are is easy to
establish from Fig. 1 (see also Eq. (1.12)).

Let |4,| <#/L. Then in the “left-handed” sea the filled
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leyels have k= — 1, — 2,.... In the right-handed” sea the
filled levels correspond to k = 0,1,2,... . Thus, if |4,| <#/L
we have

- %0

o 3 ool (i d) £ a]),
h=—1t

(‘1.24)

M8

n= 3 oo (1) 244}

k

Performing the summation and expanding in € we arrive at

| L
(OL)va: = m)——’—?{ A, +0(9),

1 L
(Or)vac = oD 3w A0 (g).

(1.25)

We pause here and summarize the results. Egs. (1.25)
show that under our choice of the vacuum wave function
W e the charge of the vacuum vanishes,
Q= Q, + Qr = 0; there is no time dependence, the charge
is conserved. The axial charge consists of two terms: the first
term represents an infinitely large constant, and the second
one gives a linear 4, dependence. In the transition
(4,=~0)— (4,=2nm/L) the axial charge changes by two
units.

These conclusions are not new for us. We have found
just the same from the illustrative picture described above in
which the electric and axial charges of the Dirac sea are
determined intuitively. Now we learned how to sum up the
infinite series of units, =, 1, the charges of the “left-handed”
and “‘right-handed” seas, by virtue of the well-defined proce-
dure which automatically cuts off the levels with
i+ 4|zl

The procedure suggests an alternative language for de-
scribing the axial charge nonconservation in the transition
(4,=0)—-(A,=27/L). Previously we thought that the
nonconservation is due to the level crossing of the zero-ener-
gy point. It is equally correct to say—as we see now—that
the nonconservation is explained by the following: one right-
handed level from the sea leaves the “fiducial domain™ via
the lower boundary (the cutoff — ¢~ ') and one new left-
handed level appears in the sea through the same boundary
(Fig. 1). Both phenomena, though—the crossing of the zero
energy point and the departure (arrival) of the levels via the
ultraviolet cut off—occur simultaneously and represent, ac-
tually, two different faces of one and the same anomaly,
which admits both the infrared and ultraviolet interpreta-
tions. The connection between the ultraviolet and infrared
aspects of the quantum anomaly lies at the basis of the so
called 't Hooft consistency conditions, to be discussed in Sec.
2.4.

One last remark concerning the axial charge. Instead of
Eq. (1.18) one could regularize the axial charge in a differ-
ent way,sothatd, j, s = 0and AQ; = 0. (A nice exercise for
the reader!) Under such a regularization, however, the
expression for the axial current would not be gauge invar-
iant. Specifically, the conserved axial current, apart from
Eq. (1.18), includes an extra term ( — 1/m)e, A, (cf. Eq.
(1.16)). As has been already mentioned there is no regular-
ization ensuring simultaneously the gauge invariance and
conservation of j,, 5.
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1.4. Thetavacuum

Now we leave the issue of charges and proceed to calcu-
lation of the fermion-sea energy, the problem which could
not be solved at the naive level, without regularization. For-
tunately, we already have all the necessary elements.

The fermion part of the Hamiltonian (cf. Eq. (1.8))

H=—"(t, 1)03(1}—(%—‘—11) Y (¢, z)

reduces after the ¢ splitting to

HR® — (1, 1+s)03(i %-—A‘) (L, x)

exp(—i

4

.41d.z). (1.26)

Bl

This formula implies, in turn, the following regularized ex-
pressions for the energies of the “left-handed” and “right-
handed” seas:

E = h_Z;l Enw) exp (—ieEn),
- (1.27)
Ex= hgo Eyrexp (ieEym),

where the energies of the individual levels E,, | g, are given
in Eq. (1.11) and the summation runs over all the negative
energy levels. The concrete values of the summation indices
in Eq. (1.27) correspond to |4,| < w/L. Expressions (1.27)
have an absolutely obvious meaning: in the limit £—0 they
simply reduce to the sum of the energies of all filled fermion
levels from the Dirac sea. The additional exponential factors
guarantee the convergence of the sums.

Furthermore we notice that £, and E i can be obtained
by differentiating the expressions (1.24) for Q , with re-
spect to £. The latter—the geometrical progression—are
trivially summable. Expanding in £ we get

, L 2
B =B +Eg=5- (41— 75) +0(e)

+ (aconstant independent of 4,).

(1.28)

Two remarks are in order here. First, it is instructive to
check that the Born—-Oppenheimer approximation, accepted
from the very beginning, is indeed justified. In other words,
let us verify that the dynamics of the variable 4, is slow in the
scale characteristic of the fermion sector.

The effective Lagrangian determining the quantum me-
chanics of 4, is
L
2el

: L .
£ =g A= o A2 (1.29)
This is the ordinary harmonic oscillator with the wave

function of the ground state

i L 1/4 La:
¥, (Ai)—_—(m) exp —m) (1.30)
and the level splitting
o5 =—2r. (1.31)

The characteristic frequencies in the fermion sector are
Oserey ~L 7. Hence, @ 4 /@¢rm ~ Ley <1, q.e.d.
The second remark concerns the structure of the total
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vacuum wave function. We have convinced ourselves that

¥oac = Wierm.vac o (44) (1.32)
is the eigenstate of the Hamiltonian of the Schwinger model
on the circle in the Born-Oppenheimer approximation. The
wave function (1.32) is quite satisfactory from the point of
view of the “small” gauge transformations, i.e., those con-
tinuously deformable to the trivial (unit) transformation
(more exactly, Eq. (1.32) refers to the specific gauge in
which the gauge degrees of freedom associated with 4, are
eliminated and 4, is independent of x). This wave function,
however, is not invariant under the “large” gauge transfor-
mations 4, -4, + 2n/L)k, k=0+1,=2,....

The essence of the situation becomes clear if we return
to Fig. 1. When 4, performs small and slow oscillations in
the vicinity of zero, the Dirac sea is filled in such a way as is
shownin Eq. (1.12). But 4, can oscilfate as well in the vicini-
ty of the gauge equivalent point 4, = 2#/L. In this case, if
we do not restructure the fermion sector and leave it just as in
Eq. (1.12), then the configuration of Eq. (1.12) is obviously
not the vacuum—it corresponds to one particle plus one
hole. The assertion is confirmed, in particular, by the plot
showing the Dirac sea energy as a function of 4, (Fig. 2). In
order to get the configuration with the lower energy it is
necessary to fill the fermion levels as follows

Iooww I

h=-2, -3, ... =-1,0. 1,

[ g, &)

(the empty levels are not shown explicitly, cf. Eq. (1.12)).

Thus, the Hilbert space is naturally split into distinct
sectors corresponding to different structure of the fermion
sea. The wave function of the ground state in the nth sector
has the form

qr"=(h_nl | 1y, k)) (k—H | 15, k)) ‘Fo(Ai—%ﬂ—n)

(n=0,x£1,£2,...)

The organization of the fermion sea is correlated with the
position of the “center of oscillation” of 4,. It is quite evi-
dent that ¥, and W, are strictly orthogonal to each other

due to the fermion factors if n#n’.

Is it possible to construct a vacuum wave function in-
variant under the “large” gauge transformations
A, —A, + (27/L)k (with the simultaneous renumbering of
the fermion levels)? The answer is yes. Moreover, such a
wave function is not unique. It depends on a new hidden
parameter 6 which is often called in the literature the vacu-
um angle. Consider the linear combination

Yorne = E gin8y, (1.34)

\/ / \ l v/

_l Y 1 5
N7 /A C I\ Fmfl N 4n/L ) Ag
UV s N /N s

N N N N

n=-7 r=0 p=7 =

[
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This linear combination is also an eigenfunction of the Ham-
iltonian with the lowest energy, just in the same way as ¥, .
But unlike ¥, the “large” gauge transformations leave ¥, ,.
essentially intact. More exactly, under 4,—4, + (2n/L)
the wave function (1.34) is multiplied by exp (i#). This over-
all phase of the wave function is unobservable; all physical
quantities resulting from averaging over the #-vacuum are
invariant under the gauge transformations.

' Summarizing, we have now become acquainted with
one more notion, the vacuum angle 6, the 8-vacuum, which
is absolutely transparent in the Schwinger model on the cir-
cle and has a direct analog in QCD. Notice that the presence
of the vacuum angle 8 in the wave function is imitated in the
Lagrangian language by adding the so called topological
density to the Lagrangian (1.1). In the Schwinger model the
topological density is

0

2n BHV

Fry=2 s 4, (1.35)

BYTR

ALy =

The corresponding extra term in the action is the integral of
the total derivative: it does not affect the equations of motion
and gives a vanishing contribution for any topologically tri-
vial configuration A(x,t). The topological density A%,
shows up only if

\ (A4 (2, t = +00) — A (2, t = — 00)) dz = 21k
(kl=1,2...).

The topological properties are mentioned here not by
chance. It is very instructive to discuss the topological aspect
of the theoretical construction under consideration, the
more so because in this point as well there is a direct parallel
with QCD.

The model at hand possesses the U(1) gauge invar-
iance. An element of the U(1) group, as is well known, can
be written as exp(ia). Using the gauge freedom one can re-
duce the fields 4, (x,t) or /(x,?) ata given moment of time to
a standard form by choosing an appropriate gauge function
a(x). (For instance, the standard form of 4, is 4, = const.)

Moreover, under our boundary conditions the variable
x represents the circle of length L and, consequently, we deal
here with the (continuous) mappings of the circle into the
gauge group U(1). The set of the mappings can be divided in
classes. The mathematical formula expressing the fact that
the mappings are decomposed into classes is

a, (U(1)=2. (1.36)

The meaning of Eq. (1.36) is very simple. Inside each class
all mappings, by definition, can be reduced to each other by
continuous deformations. On the other hand, no continuous
deformations transform mappings from one class into those
belonging to another class.

When the mappings of the circle on U(1) are consid-
ered, the difference between the classes is especially trans-
parent. Actually, in this case the circle is mapped on another
circle because exp(ia) topologically is nothing other than
the circle (Fig. 3). Assume that we started from a certain
point, went around the circle g once and returned to the
starting point. In doing so we simultaneously went around
thecircle . 0, + 1, = 2, etc., times. (Minus corresponds to
circulation in the opposite direction.) The number of cir-
cuits around the circle b defines the class of the mapping. Itis
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quite clear that all mappings with a given number of circuits
are continuously deformable into each other. On the con-
trary, different numbers of circuits guarantee that contin-
uous deformation is impossible. The letter Z in Eq. (1.36)
denotes the set of integers and shows that the set of different
mapping classes is isomorphic to the set of integers; each
class is characterized by an integer having the meaning of the
number of circuits. The mappings corresponding to zero cir-
cuit number are called topologically trivial, the others are
topologically nontrivial.

This information is sufficient to establish the existence
of the vacuum sectorslabeledbyn (n =0, + 1, + 2,... ) for
which (4,,),,. «d,a,,, without any explicit construction
like (1.33); (a,, belongs to the a#th class). The necessity of
introducing the vacuum angle & also stems from this infor-
mation.

Finally, the last issue to be discussed in connection with
the Schwinger model. Sometimes the question is raised as to
why the vacuum wave function can not be chosen in the form
(1.33) with fixed #. The gauge invariance under the *‘small”
(topologically trivial) transformations is preserved which
automatically implies electric charge conservation. What is
lost is only the invariance under the “large” (topologically
nontrivial) transformations; it seems that there is nothing
bad in that. Then, why is it absolutely necessary to pass to
Yoo = 5,670, 2

The point is that ¥, taken as the vacuum wave function
violates clusterization—one of the basic properties in field
theory which can be traced back to causality and unitarity of
the theory. The following is understood by clusterization:
the vacuum expectation value of the T product of several
local operators must be reducible to the sum over intermedi-
ate states including the vacuum intermediate state plus exci-
tations over the given vacuum. Violation of clusterization
can be demonstrated explicitly. Consider the two-point
function

A1) =¥, | T{O* (1) (0) | Y., (1.37)

where

O @)=\ ¥ (. ) (1+y5) \ (x, 1) dz.

The operator & changes the axial charge of the state by two
units (adds a particle and a hole to the Dirac sea), 7 * re-
turns it back, and, as a result, .27 (¢) #0. Moreover, if 1 — «
in the euclidean domain .« (¢) —const. (For a concrete cal-
culation see, e.g., Ref. 6 based on the bozonization method.
In this work the limit L — oo is considered but all relevant
expressions can be readily rewritten for finite L.) The fact
that .7 (¢) tends to a nonvanishing constant at  —» « means,
according to clusterization, that the operators (1 + °)¢
acquire a nonvanishing vacuum expectation value.

On the other hand, if |vac)=|¥,) then
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(¥(1 4+ ¥°)¥) =0 for a trivial reason. Indeed, the operator
¥(1 + ¥°)¢ acting on ¥, produces an electron and a hole,
and the corresponding state is, obviously, orthogonal to V.

The clusterization property is restored if from ¥, one
passes to the 8-vacuum ( 1.34). In this case there emerges the
non-zero nondiagonal expectation value

(Whar 1§ (1 £ v5) § | W) oo Lte-" e, (1.38)

If the line of reasoning appealing to the necessity of
clusterization will seem too academic to the reader, it might
be instructive to consider another argument, somewhat con-
nected, by the way, with Eq. (1.37) and the subsequent dis-
cussion). Let us ask the question: what will happen if instead
of the massless Schwinger model we will consider the model
with a small mass, i.e., introduce an extra mass term
A%, = — myy in the Lagrangian (1.1)? Naturally, all
physical quantities obtained in the massless model will be
shifted. It is equally natural to require, however, the shifts to
be small for small m, so that there would be no change in the
limit m — 0. Otherwise, we would encounter an unstable situ-
ation while we would like to have the mass term as a small
perturbation.

But in the presence of degenerate states (and the states
¥, with different n are degenerate) any perturbation is po-
tentially dangerous and can lead to large effects. Just such a
disaster occurs, in particular, if A.Z,,, acting on the vacu-
um, yields “another vacuum.” In other words, if the opera-
tor A.¥,, is nondiagonal.

If we prescribe the states like ¥, to be the vacuum then
A.Z,, will by no means be diagonal as it follows from the
discussion after Eq. (1.37). This we cannot accept. On the
other hand, the mass term is certainly diagonalized in the
basis of the wave functions (1.34),

(qfﬂ’vau I -f\im iI \Fﬂv.'x('f =0,

1.5. Two faces of the anomaly

In conclusion, let us discuss the connection between the
picture presented above and the more standard derivation of
the chiral anomaly in the Schwinger model. We have already
emphasized the double nature of the anomaly which shows
up as the infrared effect in the current and the ultraviolet
effect in the divergence of the current. The line of reasoning
accepted thus far puts more emphasis on the infrared aspect
of the problem—the finite “box” served as a natural infrared
regularization. The same result for d,j,.s as in Eq. (1.16)
could be obtained with no reference to the infrared regular-
ization.

A conventional treatment of the issue deals directly
with d, j, - Then we need to bother only about the ultravio-
let regularization, and, in particular, the theory can be con-
sidered in the infinite space since the finiteness of L does not
affect the result coming from the short distances.

The method of the ultraviolet regularization commonly
used is due to Pauli and Villars. In the model at hand it
reduces to the following. In addition to the original massless
fermions in the Lagrangian, heavy regulator fermions are
introduced with the mass M, (M,;— ) and the opposite
metric. The latter means that each loop of the regulator fer-
mions is supplied by an extra minus sign relatively to the
normal fermion loop. The interaction of the regulator fer-
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mions with the photons is assumed to be just the same as for
the original fermions, and the only difference is the mass.
Then the role of the Pauli-Villars fermions in the low-energy
processes (E €M,) is the introduction of the ultraviolet cut-
off in the formally divergent integrals corresponding to the
fermion loops. Such a regularization procedure, clearly, au-
tomatically guarantees the gauge invariance and the electro-
magnetic current conservation.

In the model regularized according to Pauli and Villars
the axial current has the form

Fus = Pruvsy + Rvvs R, (1.39)
where R is the fermion regulator. In calculating the current
divergence one can now use the naive equations of motion.
Then

Dyius = 2MRysR.

The divergence is non-vanishing (the axial current is not
conserved!), but, as was expected, d,j,s contains only the
regulator anomalous term.

The last step is contracting the regulator fields in the
loop in order to convert M,— R¥sR into the “normal” light
fields in limit M,— . The relevant diagrams are displayed
in Fig. 4 where the solid line denotes the standard heavy
fermion propagator (py — M,) ~"'. The graph 4a does not
depend on the external field. The corresponding contribu-
tion to d,ji,s represents a number which can be set equal to
zero. The graph 4¢, with two photon legs, and all others
having more legs die off in the limit M, — oc. The only sur-
viving graph is that of Fig. 4b. Calculation of this diagram is
trivial, and yields

2iM,RysR — ’:T EuyOpdy-

As a result, we reproduce the anomalous relation
d,jus = (1/m)g,,d,4, obtained previously by a different
method.

2. ANOMALIES INQUANTUM CHROMODYNAMICS
2.1.Classical symmetries

Before proceeding to quantum anomalies in QCD let us
first list the symmetries of the classical action. We will as-
sume that the theory contains n; massless quarks and tempo-
rarily forget about heavy quarks which are not essential in
the given context. In the actual situation n;y =2 (¢ = u,d) or
n; = 3(qg = u,d,s). The corrections due to the small u-, d-, s-
quark masses can (and will) be considered separately where
necessary.

In the limit m, = O—in the literature it is often referred
to as the chiral limit—the classical QCD action is

7 Y >
Qﬁ + ARt A+
2iMp Vs 2iMy V5 Zl'Mg Vs
a 6 B
FIG. 4.
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¢ P 1 a ~ R LT
§= \ &£ (z) diz, £ = vy GivGav + E (¢.iDqy, + griDyg),
g

(2.1)

[y

QL.R=7(1iY5)Q

where g is the quark field and G, is the gluon field strength
tensor. The action S is invariant under the following global
transformations:

(i) Rotations of quarks of different flavors,

u'\
q—Ug, q=(d),

S

where Uis a 3 by 3 matrix, an arbitrary element of the SU(3)
group. Since the left-handed and right-handed quarks enter
the Lagrangian (2.1) as separate terms independent chiral
transformations are allowed,

a.—~Uq,, gr—U'gg,

where U and U’ are generally speaking different SU(3) ma-
trices. Thus, the QCD Lagrangian actually possesses SU(3)
L XSU(3)g symmetry called the chiral flavor invariance.

Sometimes it turns out to be more convenient to form
linear combinations from the generators of the SU(3),
X SU(3) g so as to pass from the chiral rotations to the vec-
tor and axial transformations. In other words it is equally
correct to say that the symmetry group of the classical action
(2.1)isSU(3)y XSU(3) 4.

(ii) The phase U(1) transformations of two types:

(2.2)
(2.3)

— eia' (o —> elo
L L R R

gL =g, gg— gre~ it

The physical meaning of Eqs. (2.2) and (2.3) is obvious: any
Born diagram conserves the number of the left-handed and
right-handed fermions separately.

(iii) The scale transformations, i.e., dilatations of the
coordinates with the simultaneous rescaling of the quark
and gluon fields in accordance with their normal dimension,

A (2)—> 24, (hx), q(z)—> A¥2%g(rz). (2.4)

The scale invariance obviously stems from the fact that the
classical action (2.1) contains no dimensionful constants.
This invariance is a part of a larger conformal group. Unfor-
tunately, discussion of the conformal symmetry is beyond
the scope of the present review.

At the quantum level the fate of the above symmetries is
different. The currents generating the SU(3), XSU(3),
transformations are conserved even with the ultraviolet reg-
ularization switched on. They are anomaly-free.” The vector
SU(3) symmetry corresponding to the current

]E\Z]ﬁLJ—]ﬁR ([1:1, --')8)1
is realized linearly. As far as the axial SU(3) subgroup

Y3 . .a
JuAa=JuL— JuR,

is concerned here the spontaneous breaking of the symmetry
takes place, and the given SU(3) subgroup is realized non-
linearly, with participation of the octet of the massless Gold-
stone bosons (7,7,K). Further discussion of the SU(3),
and its spontaneous breaking is given in Sec. 2.4.
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a

Moreover, the vector U(1) invariance g—ge'® also
stays a valid anomaly-free symmetry at the quantum level.
This symmetry is responsible for the fact that the quark
number is constant in any QCD process.

Finally, the current generating the axial U(1) transfor-
mations and the dilatation current are not conserved at the
quantum level due to the anomalies. Below we dwell on this
issue.

2.2. The axial and scale (dilatation) anomalies

As was explained above, the concrete form of the anom-
alous relations can be established without going beyond per-
turbation theory provided an appropriate ultraviolet regu-
larization is chosen. We begin this subsection by a warning
referring to a subtle point which causes a lot of confusion in
the current literature. Two languages are used for descrip-
tion of the same anomalous relations, and many authors do
not even realize the distinction between the languages.

Within the first approach one establishes an operator
relation, say, between the divergence of the axial current and
GZ,C;’”, (see Eq. (2.9)). Both the axial current j,, and the
product

~

1 a n
Guv = 5 eWVPIG L. Gog

G 2

[TRY
are treated within this procedure as Heisenberg operators of
the quantum field theory: j,, as the quark operator,
G..,G,, asthe gluon one. In order to convert the operator
relations into the observable amplitudes it is necessary to
make one more step: calculate, according to the general’
rules, the matrix elements of the operators figuring in the
right-hand and left-hand sides of the anomalous equality.
(The words “observable amplitudes™ are used here meta-
phorically. In the present section we will speak only about
quark and gluon scattering amplitudes while in reality, of
course, only hadronic amplitudes are observable. The same
remark refers to the expression “matrix elements.”)

Within the second approach one operates directly with
the matrix elements. More exactly, usually one fixes an ex-
ternal (or background) gluonic field and determines d,,j,
in this field in some way. In the absence of an external field
d.J.a = 0. The fact of existence of the anomaly implies that
S.Jua #0and d,,j, 4 (x) is locally expressible in terms of the
external field at the same point, G,,, (x). The analysis of the
anomaly in the Schwinger model (Sec. 1) has been underta-
ken just in their vein.

Although the same letters are used in both cases—per-
haps, the confusion is due to this tradition—it is quite evi-
dent that the Heisenberg operator at the point x and the
expression for the background field at the same point are by
no means identical objects. Certainly, in the leading order

<Guv5uv> = (GquNuv)exti (Gquuv> = (Gquuv)extv (25)

where (...) denotes in the case at hand averaging over the
external gluon field while the subscript “ext”” marks the ex-
ternal field. In the next-to-leading order, however, the right-
hand side of Eq. (2.5) acquires a, corrections, generally
speaking. Therefore if the anomalies are discussed beyond
the leading order it is absolutely necessary to specify what
particular relations are considered: the operator relations or
those for the matrix elements. Only in the one-loop approxi-
mation both versions superficially coincide.
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In order to derive the low-energy theorems applicable
to physical hadronic processes (see Sec. 3) we will need the
quantum anomalies in operator form. In the remainder of
the paper the term ““anomaly” will mean the operator anom-
alous relation.

Let us proceed now to calculations and begin with the
axial anomaly since it is simpler in the technical sense and a
close example has been already analyzed in the Schwinger
model.

The current generating the axial U(1) transformation
is

= X qvavsg (2.6)
g=u, d, s
Differentiating naively and invoking the equation of motion
D g=0weget

auju.A = Er[ (?]Dvﬁq - E‘YﬁDq) = 0’

The lesson obtained in the Schwinger model teaches us, how-
ever, that this is not the whole story and conservation of the
axial current will evaporate after switching on the ultraviolet
regularization. In the Schwinger model on the circle
(eL < 1) we deal with the weak coupling regime and, there-
fore, can choose any of the alternative lines of reasoning
based either on the infrared or on the ultraviolet approaches.
In QCD it is rather meaningless to speak about the infrared
behavior of quarks. To make the calculation of the anomaly
reliable we must avoid infrared formulations and invoke
only the Green’s functions at short distances. As a result, we
are forced to shift the emphasis from the analysis of the cur-
rent j,, and concentrate directly ond,,j, .

Using one of the variants of the ultraviolet regulariza-
tion, the well-tried £-splitting, we write

xi—E
Jun= 2\ 4z ) s (EXp \ i84,(y) dy) g(z—e), (2.7)
q

xX—£

Then the problem reduces to evaluating the quark loop in the
background gluon field. Using the equations of motion and
expanding the exponential in the braces up to terms of the
first order in £, we get

Ouina = {g(r+e)[—igd (x+2) v
q

— psigA (2 — &) + igvuvsEaGus ()] g (z—e)}.

The third term in the square brackets contains the gluon
field strength tensor and results from differentiation of the
exponential factor. For convenience we have imposed the
Fock-Schwinger gauge condition y, 4 ;, (») = Oon the exter-
nal field (see the review paper of Ref. 7). (This gauge condi-
tion is not obligatory, of course.) In this gauge 4, (y) = 1/
2y,G,, (0) + ... As usual, 4, = 1/2t°4, where t“ are
the color Gell-Mann matrices.

Contracting the quark lines in the loop we arrive at the
following expression

oquA
= —ign;T Reolor+1orentz {— 2i8,Goy (0) YuysS (x—¢, x+¢)

2 ~ 1
= — ny £ G5, (0) Gl (0) 22— T RiorentsVuVs¥e¥s

n

12 (GaGan)esss (2.8)
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Here S(y,x) is the massless quark propagator in the back-
ground field. The expression for this propagator as a series in
the background field in the Fock-Schwinger gauge in known
(Ref. 7). The terms vanishing in the limit £ —» 0 are neglected
in Eq. (2.8). Notice that the quarks propagate only at very
short distances ~£-0.

Eq. (2.8) gives the answer for the axial anomaly in the
one-loop approximation

. ngo. ~
ap]uA — 4fnS G;ﬂG aaﬂ’

~os 1 (2.9)
G = g2te0G,.

This result is readily reproducible within the Pauli-Villars
regularization (an exercise for the reader). Higher orders in
a, will be discussed in Sec. 2.3.

We now proceed to the dilatation anomaly. First of all it
is instructive to check that the scale transformation is gener-
ated by the current

(2.10)

ij = xue;ws
where 8, is the QCD energy-momentum tensor (symmet-
ric and conserved):

euv = GﬁuG%a

1 a a1 -
+T gquaﬁGaB e % E [(7 ('\’_uDv i ‘YvDu) q
q
- q—(vu")v +' Y‘vDu) q}'

The corresponding charge can be represented as

(2.11)

D=\ jp&c=tH+D, D=1 zi6,ad%, (2.12)

where H is the Hamiltonian and

(D, pil=ip:

1D, expipatl= — (zip) expip,at (i=1, 2, 3).
Let & (x) be an arbitrary colorless operator. Then

[D, O (z)l=t[H, O ()] +ID, O (z)]

— —it -0 (@) +1D, 0 @). (2.13)

Moreover, the commutator [f),ﬁ (x)] contains two terms,
the first one corresponding to rescaling of x; and the second
one to rescaling of the operator & . Indeed,

1D, 0 (1. sY=1D, "0, 0)e ™
=1B, "0 (1, 0) e~ + 6770 (1, 0) (D, e
e D, O 0) e P = _izi0,0 (1, o)
+e? (B, 0 (1, 0y e (214

It is easy to understand that the commutator [D, (1,0)]
should be proportional to # (¢,0) and, hence,

(D, O @)= —i (e 0 (1) +dO (1)), (2.15)
dax’ /
where d is a dimensionless number determined by a particu-
lar form of the operator &.
Only the general properties of the quantum field theory
have been used thus far. The numerical value of the coeffi-
cient d depends on the specific structure of the theory. In
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QCD d is equal to the normal dimension of the operator 7.
(For instance, if & (x) = .%(x) where . is the Lagran-
gian, d = 4).

Eq. (2.15) expresses in a mathematical language the
change of the units of mass and length. This explains the
origin of the name, the scale transformations.

Notice that the reservation about the colorless structure
of the operator # is not superfluous. For the colored opera-
tors, say, gor 4 ;,, the commutator with D, as is seen from the
direct computation, does not reduce to the form (2.15). The
reader should not be puzzled by this fact. The complication
is due to gauge fixing, and additional terms can be eliminated
by an appropriate gauge transformations.

Using the classical equations of motion we get

0 jyp=Ou=10 (2.16)
(cf. Eq. (2.11)). Classically the trace of the energy-momen-
tum tensor vanishes provided that m, = 0. At the quantum
level 8,,,, is no more traceless, and the trace 6/, is given by the
dilatation (scale) anomaly.

The fact that the scale invariance (2.4) is lost in loops is
obvious. Indeed, the invariance (2.4) takes place because
there are no dimensional parameters in the classical action
(2.1). Already in one loop, however, such a parameter inevi-
tably appears in the effective action, the ultraviolet cut-off
M,

The M, dependence of the effective action is known be-
forehand. It is very convenient to use this information, seem-
ingly, the shortest way to calculate ;. In the one-loop ap-
proximation the effective action can be written somewhat
symbolically as

1t v/ 1 b ,
Setr =~ | (5 — 7 In Mok ) (GaGiese i+ .,

(2.17)

where b = (11N./3) — (2N,/3) is the first coefficient in
the Gell-Mann-Low function and the dots stand for the fer-
mion terms. We temporarily rescaled the gluon field, g4 — 4,
so that the coupling constant figures only as an overall factor
in front of G 2.

The variation of the effective action under the transfor-
mation (2.4) is

8Suy = — (_3% bGi ) In 2, (2.18)
implying that
0" jup = g bG*. (2.19)

Returning to the standard normalization of the gluon field
we finally get

5% GiyGly + O (a2).

W
Ou= 8

(2.20)

2.3. Multiloop corrections

Although in practical applications it is quite sufficient
to limit oneself to the one-loop expressions for the anomalies
(2.9), (2.20) the question of the higher-order corrections,
even though it is academic, still deserves a brief discussion.

Till recently it was generally believed that the question
was totally solved. Namely, the axial anomaly, by the Adler-
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Bardeen theorem,® is purely one-loop (i.e., there are no cor-
rections to Eq. (2.9)) while the scale anomaly contains the
complete QCD /3 function in the right-hand side,

dag (1)
dlap ~°

B las(n) =

In other words, ( — b, /87) in Eq. (2.20) is substituted by
Bla,)/4a, if higher order corrections are taken into ac-
count.’

Later it became clear, however, that the situation is far
from being so simple and calls for additional study.'? Sur-
prising though it is the flaw in the standard arguments has
been first revealed not within QCD but in a more complex
model, supersymmetric Yang-Mills gauge theory. The mini-
mal model of such a type includes gluons and gluinos, Ma-
jorana fermions in the adjoint representation of the color
group. The axial current j, , (the so-called R current) and
the energy-momentum tensor ¢, in supersymmetric theo-
ries appear in one supermultiplet'' and, consequently, the
coefficients in the chiral and dilatation anomalies can not be
different—one-loop for 3 j,» and multiloop for 6.

Being unable to discuss here the multiloop corrections
in detail I note only that the generally accepted treatment is
based on the confusion mentioned in the beginning of Sub-
sec. 2.2. The standard derivation of the Adler-Bardeen
theorem seems to be valid only provided that the axial anom-
aly is interpreted as an operator equality. At the same time
the relation

eﬁ: blas (GuGiv)ex:

o (2.21)

holds only for the matrix elements (cf. the derivation pre-
sented at the end of Subsec. 2.2).

It is quite natural to try to reduce both anomalies to a
unified form, preferably to the operator form. The &j,,, is
completely specified by the one-loop approximation (2.9),
at least, within a certain ultraviolet regularization.'> As far
as 04, is concerned, in this case at the moment we, strictly
speaking, do not know even the two-loop coefficient in front
of the operator G .., to say nothing about higher order cor-
rections. Calculations existing in the literature should be
reanalyzed anew in order to separate the genuinely ultravio-
let contributions from those containing an infrared part; the
latter should be interpreted as a matrix element.

The remainder of the subsection elucidates this asser-
tion and in principle can be omitted by the reader with no
detriment to the subsequent material.

Calculating the effective action is beyond any doubt the
most convenient method for determination of the scale
anomaly. The term “effective action’ is applied to two some-
what different objects. The first object is the sum of all vacu-
um loops in the given external field. The functional I" ob-
tained in this way and depending on the external field is often
called the effective action, although another name would be
more exact: the generator of the one-particle irreducible
(1PI) vertices. The other object is the effective action a la
Wilson,'? Sy, (), which differs from T in the respect that
S w takes into account only the contribution of the loop mo-
mentap > u and excludes the infrared domain p S u. While T’
represents a c-number functional of the external field, Sy, is
the quantum-field operator; it can be considered as the origi-
nal action with respect to the low-frequency fluctuations
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with the wavelengths su. The functional I' results from tak-
ing the matrix element of exp(iSy, ()).

The standard line of reasoning which leads to Eq.
(2.21) is based on the analysis of I'. Just this functional
defines the effective coupling constant g*(u),

1 1
I'= I TEW (Giv)est + - - -

and differentiating g (i) with respect to In g yields the com-
plete B function. If, instead, we would like to get 8, in oper-
ator form it is necessary to work with Sy, not I'. In other
words, in calculating the two-loop vacuum graphs in the
external field one should carefully separate—and discard—
possible infrared contributions.

In QCD this has not been done yet. The question
whether the higher order coefficients in the operator scale
anomaly do or do not coincide with the higher order coeffi-
cients in the # function remains open. But in a simpler mod-
el, scalar electrodynamics, it is definitely proven'® that such
a coincidence does not take place. Indeed, in the scalar QED
(cf. Eq. (2.25))

e e
+32 (1= %) n ] FuFu+ ZDe*Dys}
(2.22)

where a = €’/4m, F,,, is the photon field tensor, @ is the
complex scalar massless field and Z is its renormalization
constant

Sw (W)=

Z=1—(1+5) 2 mi.

0 (2.23)
Here M, is the ultraviolet cut off and ¢ is the gauge param-
eter in the photon propagator (D,,, = e*[ —g,,, + (ék, k,/
k) 1/7k).

Eq. (2.22) demonstrates that the two-loop contribution
in the operator F. does not coincide with that in the B
function (#'” = 1/7). More than that, it is not even gauge
invariant!

The explicit gauge invariance is recovered after pro-
ceeding from Sy, to I, i.e., after calculating the photon ma-
trix element of S'y, . Formally the operator f d‘xD# ¢*D,p
vanishes in virtue of the equations of motion. One can con-
vince oneself, however,'? that in the external photon field

(Dyp*Dyg) = 4—;2 F3, (2.24)
because of the infrared contribution.

Combining Egs. (2.22)-(2.24) we arrive at
M,

"—;- lll—r)Fﬁvd‘J:+.,.]

(2.25)
(cf. Eq. (2.22)). The two-loop coefficient in front of F,, in
I" corresponds, as it should, to the two-loop coefficient in the
B function.
2.4. Anomalies and external currents

If in addition to ““pure” QCD one introduces the inter-
action of quarks with photons or with other “external” cur-
rents then, apart from the axial and scale anomalies (2.9),
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(2.20), new anomalies appear and, moreover, some new
terms appear in the old anomalous relations for *j,, and
8% For simplicity let us consider only the photons leaving
aside the possibility of other external currents.

Consider one of the flavor-octet axial currents

@ = w5t — dvuvsd (2.26)
with the 7° quantum numbers. It is quite clear that in pure
QCD Jd*a) =0 (see Subsec. 2.2). With the photons
switched on, however, the divergence of ai is non-vanishing.
From Fig. 5 it is easy to understand that

0uail: '%‘}vc (03—0?1) anFlwv (2.27)
where N. =3 is the number of colors and Q, =2/3,
Q4 = — 1/3 are the u-, d-quark electric charges. The prod-
uct F#VF#V inthe right-hand side of Eq. (2.27) is an operator
with respect to the photons. If we were interested in the am-
plitude of the transition into two photons with the momenta

k", k'? and polarization vectors £'”, ¢ we would have

FF — (=9 FOFO,  F{— kD) —k0el).

The expression (2.27) has far-reaching consequences.
Let us ask the question: “what is the amplitude of the transi-
tion of the current ai —just the current itself, not
6”‘(1; —into two real photons?”’ In order to find the answer
one should first of all carry out a kinematical analysis, i.e.,
write down all kinematical structures for the amplitude
a;, -2y with theadditional conditions k "? = k *? = 0, plus
gauge invariance with respect to both photons, plus Eq.
(2.27). Omitting the details of this simple exercise we give
the answer:

— 0 28N (Q3— QB ek e ke
(2.28)

+ aterm transfers to g,

(0] ay|2y)=

where g =k + £ 2.

The most striking point is the presence of the pole factor
q,./¢" in the right-hand side of Eq. (2.28).'*"* It is worth
emphasizing that Eq. (2.28) is the exact result of QCD valid,
in particular, in the limit ¢° — 0. Technically, the singularity
in a;, at ¢° -0 is the consequence of the massless quark prop-
agation in the triangle graph of Fig. 5. In the color confining
theory, however, it is absolutely meaningless to speak about
quarks as physics 1 degrees of freedom in the spectrum.
Then, how can one understand the singularity of the ampli-
tude (O|a;,|2y) in physical terms?

Only one explanation is possible. The physical spec-
trum should include massless colorless composite particles
coupled both to photons and a;,. The corresponding contri-

e
2
u,d
v
FIG. 5.
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B=(p,n, ZtN,292.59

FIG. 6.

bution should saturate the matrix element (0|af‘ |29), or,
more exactly, its singular part.

Thus, starting from massless quarks and assuming col-
or confinement we succeeded in proving the existence of
massless hadrons. The proof is based on the requirement of
matching the singular contributions in af, at the level of
quarks and at the level of hadrons. This elegant idea belongs
to G. 't Hooft'® and is called the ’t Hooft consistency condi-
tion.

Let us try to find out what particular hadrons are mass-
less”. In principle, there are two alternative variants, both
leading to the pole singularity in a;,:

(i) massless baryons;

(ii) massless pion.

Consider first the scenario (i) My = 0. In the theory
with u, d, s quarks the spin 1/2 baryons form the well-known
octet

1]

B = (p, n, 2%, A, 3¢, E-, E9), (2.29)
The scenario (i)—a very important point—implies that
both, the vector and axial SU(3) symmetries are realized
linearly* and, hence, the baryon-photon coupling constants
and the constants (B |a,, |B ) at zero momentum transfer are
fixed (for instance, (£*|a, |2*) = 2-2—7/# ¥s2). Calculating
the triangle diagram of Fig. 6 (more exactly, its pole part)
we find that the baryon octet does not contribute to the pole
in af, due to the cancellations: the proton is canceled by =~
and 2~ by =*. The other baryons from (2.29) decouple
from the photon. The immediate conclusion is: scenario (i)
is not compatible with the anomalous relation (2.27).
Thus, we are forced to conclude that it is scenario (ii)
that is actually realized, and the massless hadron saturating
Eq. (2.28) is the pion. The 't Hooft consistency condition
then appears trivial (Fig. 7) and requires only a certain rela-
tion between the 7°— a;, amplitude and the 7°— 2y coupling
constant. The corresponding result has been known for a
long time. It is nothing other than the famous PCAC predic-
tion for A (7" —2y) in terms of f,, the 7 - uv coupling con-
stant ({0|a, |7") =2if,q, where g, is the pion momen-

7
~{{§A,4/n0->27)
FIG. 7.
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tum; for an excellent review of PCAC and a representative
list of references see Ref. 18).

The existence of the massless pion coupled to the axial
current @, means the spontaneous breaking of the axial
SU(3)4 symmetry, or more exactly, the non-linear Gold-
stone realization of the SU(3), .

Summarizing, the analysis of the anomalies in QCD
with the external currents allows one to get important addi-
tional information. In particular, we are able to get such a
profound result as the spontaneous breaking of the flavor
SU(3). group and the presence of the octet of the Gold-
stone mesons in QCD.

A brief digression of historical nature is in order here.
The Goldstone nature of the 7, 7, K mesons has been ex-
ploited in hadronic physics long before the QCD era. The
soft pion technique created in the sixties on the basis of the
hypothesis of approximate chiral invariance of strong inter-
actions (in those days that was a brilliant hypothesis indeed )
generated a series of elegant predictions in low-energy pion
physics. The Goldberger-Treiman and Adler-Weisberger re-
lations (see, e.g., Ref. 18) seem to be the most typical. The
consequences of PCAC proved to be extremely useful in di-
verse applications. The agreement of the PCAC predictions
with the data served as conclusive evidence in favor of the
approximate chiral invariance of strong interactions. The
latter, in turn, was the key argument used by the fathers of
QCD" in order to introduce the vector coupling of gluons
with quarks. Somewhat later the same ideas enabled one to
determine the masses of the current u, d, s quarks®® and fix
the quark condensate.

Returning to the anomalies we recall that the introduc-
tion of photons (and other “‘external” currents) apart from
creating the new anomalies modifies the old ones in &, ,
and 6% adding some new terms there. We postpone the dis-
cussion of the corresponding effects till Subsec. 3.3.

3.LOW-ENERGY QCD THEOREMS. APPLICATIONS TO
HADRON PHYSICS

Low-energy theorems in field theory have been invent-
ed almost as long ago as field theory itself. Suffice it to recall
the Low theorems®' for the photon bremsstrahlung in the
low-frequency limit.

As a rule, the low-energy theorems represent relations
among amplitudes, or #-point Green’s functions with differ-
ent number of legs (particles). The relations between the
amplitudes emerge as a reflection of some symmetry, exact
or anomalous, existing in the theory. For instance, the Low
theorems mentioned above are the consequence of gauge in-
variance of electromagnetic interactions.

The search for symmetries and constraints they impose
on the observable quantities is of special importance in the
theory of hadrons. The low-energy theorems, or the Ward
identities stemming from the symmetry properties of the
theory-and independent of the unknown details of the con-
finement mechanism yield information on physical pro-
cesses inaccessible by other existing methods. In purely
theoretical aspect they serve as a reference point, a basis for
further theoretical constructions.

Apart from the classical PCAC theorems® in QCD
there emerge additional predictions both for the Goldstone
meson emission and for some other processes. The first pre-
dictions were obtained shortly after the invention of QCD
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(e.g., Ref. 22). The systematic analysis of the subject dates
back to Refs. 23-26. Many applications based on relations
(2.9), (2.20) have been worked out recently. Some of them
will be discussed below.

The most nontrivial results refer to the amplitudes de-
scribing the conversion of gluons into hadrons and photons
at large distances. The information obtained in this way sup-
plements our understanding of the hadron structure and
that of the QCD vacuum.

This section is devoted to derivation of the basic low-
energy theorems specific to QCD. Their virtues will be dem-
onstrated in a few instructive examples.

3.1. The scale Ward identities

If m, 4, = 0the only mass parameter of the theory that
appears at the quantum level, is

b= M e 872080, (3.1)
where as usual M, is the ultraviolet cutoff and g, is the corre-
sponding coupling constant, g, = g(M,). Eq. (3.1) isaman-
ifestation of the anomaly in the trace of the energy-momen-
tum tensor,

0 (2) = 6l (2) = — 22 GG, (3.2)
derived in Sec. 2 (see Eq. (2.20)).

The classical scale invariance of the action, being lost in
loops, still does not vanish without a trace (both, in the di-
rect and mathematical meanings of these words). The rem-
nant of this symmetry is a set of the low-energy theorems of
the type

lim i { 9% dz (T{O (@), 6 (O)]comectea= —dn (@), (3.3)
q—b

where & is an arbitrary local operator built from gluons
and/or u,d,s quarks, d, is its normal dimension. Actually,
Eq. (3.3) is valid up to & (m,, ) terms which are implied but
will not be written out explicitly except in cases where it is
necessary. To make the expressions more concise the sub-
script “connected” will be omitted in what follows.

A few important concrete examples are

iS(T{U(z)U(O)}) dz=—4 (o) (3.4)

and

i {(T{G@ @), o) de~—3G0. (3.5)
Relations between different Green’s functions involving
o(x) exist not only for the vanishing external momenta.
More exactly, it is not necessary to have all external mo-
menta equal to zero. Those which appear in “foreign” opera-
tors £ can be arbitrary.”’

The derivations of these formulae are all of one type,
and we will consider the simplest case, Eq. (3.3). First, res-
cale the gluon field,

Gy = gGyv-

Then the g, dependence in the Lagrangian, reduces to
— (1/4g3)G?, and consequently

i {(T{O (), O de= — g5 O (3.6)
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The fact that the only mass parameter of the theory is given
by Eq. (3.1) implies

(O) = const- (M e~872/be8)%n, (3.7)
Differentiating Eq. (3.7) we arrive at Eq. (3.3).

The simple derivation sketched above actually should
be supplemented by some regularization since in most cases
(&) is divergent in perturbation theory (a rare exception is
the operator gq in the chiral limit m, —0). Ref. 23 shows
that a careful regularization procedure involving a sufficient
number of regulator fields does not alter our conclusions.

Let us proceed now to phenomenological consequences
of the scale Ward identities.

In a world with no light quarks the lightest (and, hence,
stable) particle would be scalar gluonium, o,. Study of its
properties and, in particular, scattering amplitudes would be
an important direction in “‘experimental” physics.

It is highly probable that the o, mass is small compared
to the characteristic scale in this channel (~20 GeV?).2?
From this point of view the situation resembles that with
pions in the real world, m? €1 GeV?, Of course, the small-
ness of m; is parametrical while the suppression of m}
seems to be of a numerical character. In spite of this fact one
can formulate the following problem: construct the low-en-
ergy (effective) Lagrangian describing the interaction of o,
and realizing the scale Ward identities (3.3)—(3.5) in the
same way that the pion chiral Lagrangian realizes the chiral
Ward identities at the tree level.

The solution has been given in Ref. 27 (more complicat-
ed cases including electromagnetism are considered in Ref.
28). The very fact that the solution can be found is far from
being trivial and crucially depends on the sign of the vacuum
energy: the solution is stable only provided that €,,. <0.

Thus, our task is to find an effective theory for the field
o(x) [see Eq. (3.2)] in which 8/ = o. Recalling that 8, is
connected with dilatations it is quite natural to call ¢(x) the
dilaton field. We note that the normal dimension of o(x) is
equal to four. Therefore, if the kinetic term in the Lagran-
gian is

L vin = const.(9,0)207%2, (3.8)
then the integral § d*x.¥,,, is scale-invariant and, hence,
-Z \in does not contribute to &,. We can concentrate on the
potential term ., (o) and choose it so as to ensure the
desired equality 84 = o.

The variation of ¢ under the scale transformation
x-x(1+¢)iso—0o(l — 4¢). The corresponding variation
of the action

Aue fd“x L l0) = f (4,Yr,(,t — 40 %i:—") d*x, (3.9)
according to the general rules is equal to — § d*x6% (x).

As a result we get

53 0L
4Jm,—4a—§}"~= —o, (3.10)
The solution of this simple equation is
L e =%a(lna+const). (3.11)

The constants figuring in Eq. (3.8), (3.11) can be expressed
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in terms of the mass of ¢, and the vacuum energy, m and
E.ac» Tespectively. It is convenient to redefine the field
o =4¢,,. exp y; then the final answer for the effective La-
grangian takes the form®

D %(@x)ze‘” Fewlx—1 e (3.12)
Recall that £, <0 (Fig. 8).

Thus far we have actually used only the information
coded in Eq. (3.4) and other analogous Ward identities. The
theorems (3.3) determine the form of any local colorless op-
erator ¢ (in pure gluodynamics) in terms of a single con-
stant,

O = (O)vac exp (5= %) (3.13)

In particular,
0 = (Oyac) €% = 4€yqc€%.

One of the consequences of Eq. (3.13) is
(0,0, = (O (0.

The factorization property will not seem surprising if one
recalls that the solution for the effective scalar field theory
constructed in this section is valid in the tree approximation,
i.e., in the leading order in 1/N.. At N, — « the vacuum
expectation values of the colorless operators do indeed fac-
torize. It is instructive to check that the Lagrangian (3.12)
satisfies the general requirements of the multicolor
QCD29'3()5

7 O =5 M + s (9 e

2 m?

— 8
- 3! il'fvacll/2 4 +’

i S
Loy =

where we have changed the normalization of the field x
(x— X) in order to ensure the standard normalization of the
kinetic term and expanded the exponentials. Since m ~ N °
and ¢,,. ~ N the behavior of the interaction vertices is in
full accord with the general rules: the cubic constant a¥ ',
the quartic constant a¥N .~ 2, etc.

The Lagrangian (3.12) exhaustively describes the in-
teraction of the scalar gluonium at energies ~m,, . Unfortu-
nately, for obvious reasons, we can not undertake a direct
experimental test of the consequences stemming from Eq.
(3.12).

The best we can get is a very rough indirect estimate
which simultaneously shows the possible size of the effects
induced by the light quarks. Assume that relations analo-
gous to (3.13) are valid not only in pure gluodynamics but in
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the theory with quarks as well, both for gluon and quark
operators. Given these hypotheses—and this automatically
excludes the scalar quarkonium contribution and o,-o,
mixing—we readily find the nucleon matrix element of
uu + dd. At the tree level

(N [T+ dd | Ny = (wu+ddy- 2(N | 1| N)

N |6 N
— (uuddy = 3 g——ﬁ—l——)
:—(11\1+dd) 4‘ Yy, (3.14)
where Wy is the nucleon wave function, (N|g%[N)

=my ¥y ¥y and (64%) = 4¢,,.. Ontheother hand, the ma-

trix element (N|uu + dd|N) is more or less known empiri-
cally, and amounts roughiy to 3%, ¥ . The theoretical esti-
mate (3.14) yields ~1.8W Wy provided the standard
values of the quark and gluon condensates are substituted.
We note that the signs of the empirical and theoretical esti-
mates coincide while the absolute values differ by a factor
~2. We conclude that the results for the scalar gluonium
obtained in pure gluodynamics are valid in the real world up
toa factor of 2. On the other hand, the effect due to switching
on the light quarks is of order unity.

3.2.Correlation functions of the topological density

The operator

K= GG Ly

232 (3.15)

can be naturally called the density of the topological charge
(cf. Eq. (1.35)). If CP invariance is not violated it is evident
that (X ) = 0. Of physical interest are the correlation func-
tions of K with other CP-odd quantities.

Below we will show that®®

i( (T{K (z), K (0)}) dz = Ay, (3.16)
z\<T{ Zd m,q (z) ivsq (@), }>dxf — %A, (3.17)
-
where
Ap— -+ fa mn_—(”’:'"i"‘”gd)z 0 (my). (3.18)

For simplicity it is assumed that there are only two light
quarks, uand d. Let us draw the reader’s attention to the fact
that the two-point function (3.16) vanishes for massless
quarks. That is why in this subsection, unlike the previous
ones, we do not put m, = 0.

Eq. (3.18) is trivially generalizable to the case of three
light quarks.

The starting point for the derivation is the anomalous
relation for a;,, the SU(2) analog of the current j,, intro-
duced in Eq. (2.6):

B,a% = 2 (myuipsu + madivsd) + 4K,

_ Z (3.19)
ap = uVu Vst + Ay, vsd.
It is convenient to introduce the following auxiliary two-

point functions

T (9) =1 § €7 (T {a, (2), a3 (O))) dz, 520

~

m(q) =i | (T {ah (2), K (O))) da.
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The fact that there are no physical massless states coupled to
a,-implies

Tty (@) > 0, @, (@) >0 mpr ¢—0,  (3.21)
(m_ 0 since the u-, d-quark masses are taken into account
explicitly).

Integrating by parts and using Eq. (3.19) we reduce
9.9.7,, and g, 7, to the T'products of the divergences plus
a contact term coming from the equal-time commutator

[§(x)ysg(x),a](0)16(x0):
0= (%LQVnuv)q=0 = (4 (muﬁu 4+ my Hd))
+16(K, K} 16( 3 m.jivg, K)
g=u

+4{ Z qui\’sqv S. mq;’:%q}, (3.22)
g=u, d q=u,d
0=(gut)omo =4 (K, K} +2{ I mcdiveg, K},

The braces here stand for {..}- (isdxT{...}), cf. Eq.
(3.16).

Invoking the well-known PCAC relation (m, + my)
(Qu +dd) = — f2m? and eliminating the “superfluous”
correlator from Eq. (3.22) we arrive at

16{K, K} = —2fZm% 4-0 (m}, 4)
+4¢ 2
d

g=u,

mgivsg, & M,givsg)- (3.23)
g=u, d

The T preduct in the right-hand side is superficially
proportional to m ; while only terms linear in m, are to be
kept in the accepted approximation. Such terms appear,
however, due to the intermediate states with m* ~m, 4. It is
important that there is only one such state-pion-with the
quark content @u,dd. As is known,®’ the singlet state
~ (iu + dd) does not become massless in the chiral limit
because of the gluon anomaly in the singlet axial current.

Taking into account that the pion residue is fixed by
PCAC,

fum?;

V2 (my+mq)

(0 wiysu | 7% = —(0 | divsd | 7% = . (324)
and substituting Eq. (3.24) in Eq. (3.23) we immediately
get the theorem quoted above (see Eq. (3.16)-(3.18)). We
note that in the particular case m, = my Eq. (3.18) hasbeen
first obtained in Ref. 22 in another context.

Itis in order to make here two remarks. First of all, it is
worth emphasizing the connection between the theorem
(3.16)-(3.18) and the U(1) problem. If thc mass of the
singlet pseudoscalar meson were vanishing in the chiral lim-
it, as one would expect naively, the pseudoscalar singlet
should be included in Eq. (3.23) along with the pion and this
would completely kill —2fZm? in the right-hand side.
Then {K,K?} would vanish, at least in the linear in mgy ap-
proximation. Thus, the effect is of the qualitative character:

valid U(1)-symmetry —/ S (T {K (2), K (0)}) d*z = 0,
no U(1)-symmetry —i \ (T{K (), K (0)} d*z 0. (3.25)

The second remark concerns the three quark general-
ization of the theorem. Repeating the derivation with the s
quark included one can easily convince oneself that the only
change is the expression for Ay, namely,
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3
B s = —— i (md + m3)
mymgmmg
X ot g Fme) (muma -+ mus F mgme)

. (3.26)

In the limit m,/m, 4 > 1 Eq. (3.26) reduces to (3.18). (The
PCAC relation m2/m? = [3(m, + mq)]/(4m,) is helpful
in verifying the latter assertion.)

The application of the low energy theorem (3.16)
which immediately comes to mind is the calculation of the
mass of the so-called phantom axion.?>*® The details of this
construction are irrelevant for us here. It is only important
that the phantom axion is a pseudoscalar particle with zero
classical mass and an effective interaction of the type

(@) gz a ~a
L= m a (z) Guv (%) G uv (),

(3.27)
where @, is a large parameter of dimension of mass and a(x)
is the axion field. The axion mass is generated at the quan-
tum level due to the fact that the correlation function (3.16)
is not zero. Combining Egs. (3.27), (3.16), (3.18) we easily
get

1/2 _ famg

T Ay

_ 1 , 4dmymg 1/2
m“‘(zwol* | 8x1) (rnu+'na)’]

(3.28)

3.3.Conversion of gluons into pions and photons

Any QCD expert unfamiliar with the low-energy theo-
rems would say that the matrix elements such as

(0] %621 2m), (01,62 | 2y), (0]a,GG |2y)  (3.29)

can not be reliably calculated in the present-day theory since
they are determined by large distance dynamics. The last
part of this assertion is true, of course, and still, surprising
though it is, the gluon conversion amplitudes (3.29) are un-
ambiguously calculable in the limit of small momenta of the
final particles. For instance,

(0] =52 GGy 17 (p) 7 (P) ) = (Py -+ PoV + O (Y.
(3.30)

The proof is based on the consideration of the matrix
element (7* (p,)7~ (p,)|6,.|0) where 8,, is the complete
regularized energy-momentum tensor in QCD. The most
general expression for (7" 776, |0) is

(A (py) 7 (po) | 8y | 0y = Aryry, 4 Bougy +Cgyy,  (3.31)

where r = p, — p,, g = p, + p,, and 4, B, C are some scalar
functions of the four-momenta. For soft pions, however,
these functions reduce to constants fixed by the following
requirements (in the chiral limit):

(i) symmetry and conservation of &, ;

(ii) normalization condition (7*(p)|f,. |7~ (p))
=2p,p.;

(iii) neutrality of 8, with respect to the axial charge,
[6..(x),Q5] =0
The points (i) and (ii) are obvious by themselves. The point
(iii) is slightly less trivial. Recall, however, that in the chiral
limit the axial charge Q" is a conserved operator and,

hence,

[Qs, 80 (x)] = 10,0, (x) = 0.
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The vanishing of the commutator [6,,,Q " ] can be also
checked directly since explicit expression for 8, and Q ;" in
terms of the fundamental fields are known.

It is convenient to rewrite the condition (iii) in the fol-
lowing equivalent form:

B') (n*n~|0,,0)— 0, validp, orp,—0.

The equivalence of (iii) and (iii’) becomes clear if one takes
into  account that (7 *716,,00), o =i, (7"
[ v ’Q5+ ] |0>
Combining (i), (ii), and (iii") we arrive at the follow-
ing result
(a0, 0y = rurv —

1 1
—2‘un\/+ quguvv (332)

(@arnm 0, 0)=q¢% (3.33)

Using the scale anomaly (2.20) we reproduce the theorem
(3.30).”

The left-hand side of Eq. (3.30) is proportional to «,
while the right-hand side does not contain such a factor. This
“disbalance” holds for the conversion of gluons into photons
as well (seebelow) and results in far-reaching consequences.

Without any connection with hadron physics it is worth
noting that the ideas presented above have been exploited in
Ref. 33 treating the propagation of Goldstone bosons in the
gravitational background. Eq. (3.33) actually means that
the corresponding equation does not contain the term pro-
portional to the scalar curvature, the so called £ term.

If the pion matrix element (3.29) measures the cou-
pling of gluons (in the 0* channel) with the “real” quarks,
the photon amplitudes probe the virtual quark loops since
there is no direct photon-gluon interaction. Below we will
show that

(O] GasGs | v (k) v (k) ) = = N (09 FISFR, (3.34)
where F\) = k[0 e — k(" .

Eq. (3.34) is valid in the chiral limit and, moreover,
assumes that the momentum transfer (k, + k,)? is small
compared to the characteristic hadron scale ~1 GeV.

The proof of this relation is very simple. In order to
derive the theorem, Eq. (3.34), multiply the amplitude

0} Eq 5%?5‘1 | (k) v (ko))

by g, =(k, + k,), and let g—0. On the other hand, since
there are no massless particles in the singlet channel even in
the limit m, = 0, we must get zero. On the other hand, the
explicit computation of the divergence of the axial current
yields

o2 GGy — No = FNFR S 03,

ny
q

(3.35)

where both the gluon and photon parts of the chiral anomaly
are taken into account.
The low-energy theorem for the matrix element

is very peculiar and interesting. For a detailed discussion see
Ref. 48.
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Concluding the subsection we give without any details
the expressions for the conversion of the operator GG into 7
and 77'54 36

(0] 5 enlin| =)= ') Tia Ty e (3.36)
<O| 3ot Ge, Ga Tl>=]//%fﬂm$1- .

3.4. Correlation function of “mixed’” currents

An interesting low-energy theorem has been obtained in
Ref. 46. It refers to the correlation function of the currents

T = gqt (1) 1,68, (2) 1247 (@),

where ¢ ¢ stands for the Gell-Mann matrices, 7 is the flavor
index, q¢' = v, ¢* =d, ¢* = s (itis assumed that i #J; for coin-
ciding 7, j one should keep only the flavor-non-singlet part).
The current Jf{ is rather unusual, it contains both the quark
and gluon fields.

The result of Ref. 46 can be summarized as follows:

(x), JZ O

=L e 2 awrq) @t + Pvsta’) ).

g=u, d, s

N, =i \ dsz(T{J]

The left-hand side in this equality is a two-point function at
zero momentum transfer while the right-hand side is the
vacuum expectation value of a local operator. If one leaves
the chiral limit and switches on the quark mass, there arise
O(m;) corrections on the right-hand side.

The derivation of this relation conceptually does not
differ from that for other relations of this kind. The starting
observation*® is the fact that the current J/ reduces to the
divergence of an operator resembling the quark piece of the
energy-momentum tensor (but flavor-non-singlet): Name-
ly,

iJ 1]
Jy =048
where
o= gy D’

Moreover, the authors of Ref. 46 analyze the two-point func-
tion { T{0, (x), J . (0)}). After differentiating it with re-
specttox they get, in the limit of zero momentum transfer on
the one hand, zero (there are no massless particles in this
channel) and, on the other hand, the correlation function of
interest plus the equal-time commutator [67,, J ! ] plus the
Schwinger term. Computing the commutator and the
Schwinger term they arrive at the theorem quoted above.
The theorem can be (and has been) used for describing deep
inelastic lepton-hadron scattering and for predicting the
masses of hybrid mesons within the QCD sum rules.

In the following sections we will discuss further some
situations in which the low-energy theorems help to solve
concrete problems of hadron physics.

3.5. Effective coupling of the Higgs boson with nucleons and
pions

Ifalight Higgs boson H (with mass & 1 GeV) existed in
nature—and this, generally speaking, is not ruled out—its
production cross section and decay properties would be
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largely determined by the HNN and Hrm constants. Even if
there is no such boson calculation of these constants, it is a
wonderful exercise which will bring pleasure to any theorist.

Thus, consider the Higgs boson H whose interaction
with quarks is as follows:

1 —
Lipe= ———,THZ m.,qq. (3.37)
q

where 7 = (G V2 )~ '/? is the vacuum expectation value in
the Glashow-Weinberg-Salam standard model. We will
treat 77, however, as an independent parameter.

The first question we address is: “What is the form of
the HNN vertex at small momentum transfers?”’ The answer
has been given in Ref. 37.

Since nucleons are basically built from u and d quarks it
is tempting to say that the dominant rolein (3.37) belongs to
the terms m_4u + my dd. Recall, however, that the masses
of the current u and d quarks—and it specifically is the cur-
rent quarks that enter Eq. (3.37)—are very small. If one
parametrizes the HNN vertexas ( — A /9 YHNN, where Aisa
constant of dimension of mass, then naively

(Mg = 2m, — mg =~ 15 MeV for a proton, (3.38)
and this is quite negligible. In what follows we assume that
m, =myg =0.

Rather paradoxically, the HNN coupling is determined
essentially by the Higgs interaction with heavy quarks, i.e.,
those whose mass m, 2 My /2. Since there are no such
quarks inside the nucleon (more exactly, their admixture is
supposed to be small) the heavy quarks show up only in
virtual loups, thus inducing the effective Lagrangian of the
gluon-boson interaction (Fig. 9). The form of this Lagran-
gian is fixed either by a direct computation of the diagram
givenin Fig. 9 or, equivalently, by differentiating the known
loop of Fig. 10 with respect to m, (for details see Ref. 38).
We have

1 1 o
Lot = o Hnq - GG,

(3.39)
where ng, is the number of heavy quarks. Thus, the problem
is reduced to the calculation of the matrix element
(N|(a,/m)G?*|N ) at zero momentum transfer. To perform
the calculation we invoke the anomalous relation of the type
(2.20). If heavy quarks are present in the theory but we are
interested in low-energy processes

O = — %o: GGy + 0 (mg)-

Let us draw the reader’s attention to the fact that at m, - o
heavy quarks decouple, and the coefficient in the Gell-
Mann-Low function is determined only by gluons and three

FIG. 9.
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FIG. 10.

massless quarks (the constant b in Eq. (2.20) is replaced by
9), in full accord with the decoupling theorem of Ref. 39.

On the other hand, from the definition of the energy-
momentum tensor we, evidently, get

(N |6, | Ny = my PPy (3.40)
The nucleon mass results from averaging the purely gluonic
operator G*(!) over the nucleon state. Combining Eqgs.
(3.40) and (3.39) we find that for every heavy quark

KQ——m,\ -+ 70 MeV (3.41)
a factor of ~ 5 larger than (4),4.

The same ideas are applicable in the problem of the
Higgs-boson-pion interaction.*’ Just as in the nucleon case
the direct interaction with the light quarks can be neglected,
and the induced vertex (3.39) plays the dominant role.

The conversion of gluons into a pair of Goldstone me-
sons (w77, KK) is described by Eq. (3.30). Accounting
for the fact that in the H—»7" 7~ decay ( p, + p,)’ = M},
Egs. (3.30) and (3.39) imply

AMH— a+a") =

2
111 29 ap,. (3.42)

This striking result demonstrates that for a 1 GeV Higgs the
transition into 7+ 7~ + 7°7” is the dominant decay mode, a
fact discovered quite recently.*® Previously theorists be-
lieved that such a Higgs particle, if it exists, should predomi-
nantly decay into z#*x~ or KK. For three heavy flavors
(c,b,t) Eq. (3.42) yields
FTHe>mn) 1 M

TH—->pW) = 27 pf

ik

~10. (3.43)

A detailed discussion including analysis of possible cor-
rections to Eq. (3.42) is given in Ref. 48.

Leaving aside for a while the main topic it is worth not-
ing that the same Ref. 40 suggests an elegant general method
for calculating the bremsstrahlung of soft Higgs bosons in
any process with the light quarks and/or gluons. Indeed, for
the vanishing Higgs boson momentum the H field in Eq.
(3.39) reduces to a constant, and this Lagrangian, being
added to the original QCD Lagrangian

1
y()co= - GawGﬁvv

simply changes the coupling constant a,. What is the effec-
tive shift in @, ? The simplest way to answer this question lies
in the rescaling of the fields which has been already used in
deriving Eq. (3.4). In terms of G,

1 /1 H ™
Lacot Lo = % (?‘_7 12n2 ) Gy Guve
This implies
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H ai
6aS=WnQ3—;‘ (344)
Therefore, if the a, dependence of the amplitude of some
“basic” process a— b is known one can immediately deter-
mine the amplitude of the “daughter” process a—b + soft

H. Namely,
ng ay 8

A(D*b +SOle) = T?}FEA(‘I»I))

(3.45)

(It is worth emphasizing once more that real heavy quarks
should not participate in the “basic” process; otherwise the
gluon mechanism considered here will be overshadowed by
the direct coupling HQQ.)

For the perturbative part of the amplitude associated
with the hard gluons 4 (@ — b) ~a*, and according to (3.45)
the Higgs boson bremsstrahlung is suppressed by an extra
power of a,. The soft Higgs bosons are shaken off much
more efficiently if the transition ¢ — b is generated by non-
perturbative effects. Indeed, in this case 4(a—b) ~ Adcp
~exp( — 27d /ba,) (cf. Eq. (3.7)). Then the amplitude of
the soft Higgs bremsstrahlung is

Ala—b+H), o =d 2 nqutd (a—b). (3.46)

3.6. The pion spectrumin thedecays ¢'—»J/Vmm, v »ynw

The qualitative experimental situation in these decays is
as follows. It is known that the pions are emitted predomi-
nantly in the S wave. The contribution of the D-wave pions
does not exceed a few percent in the total decay rate. Besides
that, the effective amplitude

Aerr (67) ::[éi_ql_;_@'&)_i]uz = [(S-wave)® + ( D-wave)’]"?
(3.47)
is well approximated by a linear dependence of the type

Aegy = C (¢* —9). (3.48)

(The bar in Eq. (3.47) denotes averaging over the pion
phase space, C and § in Eq. (3.48) are numerical constants,
g=p +p).

The questions addressed to the theory are:

—Why is the relative contribution of the D wave so
small?

—Could one have predicted the linear law (3.48)
beforehand?

—What does the theory say about C and &?

The starting point of the theoretical analysis is the so
called multipole expansion*'~**, which reflects the fact that
we are dealing here with a two-step process. At the first step
the gluons are emitted by the heavy quarks (quasi) locally®
and at the second step conversion of gluons into pions at
large distances occurs. As a result, the amplitude factorizes:

A (038, — ndS, 4+ )

=(Aip) (0|« E°E® | i) + higher multiple, (3.49)

where E“ is the chromoelectric field and the coefficient
{ A, ) contains information only about heavy quarkonium.
One can find it using a model or phenomenologically, as is
done in Ref. 24 where ( 4,/ );,, is extracted from ¢’ -3/

Now we are interested not in the heavy quarkonium
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structure but in the gluon dynamics at large distances.
Therefore, we will treat ( 4, ) as a given number and will
concentrate on the pion matrix element. Since our aim is
pedagogical we will work in the chiral limit, m> = 0.

A trivial but important observation is

a EE? = 55 (E°E® 4 H°H®)

4 O (B HOHY) = 0,85 + 2 0

2

o (3.50)

where H* is the chromomagnetic field and 8 &, is the 00 com-

ponent of the gluon part of the energy-momentum tensor.
Using the theorem (2.20) we get

(e | BT | 0) = 2% g2 (tan |ty () 05 () | O).
(3.51)

In the right-hand side we had to indicate the normalization
point of the operator a, 8 &, since it is not renormalization-
group-invariant; u is of order of the inverse quarkonium ra-
dius.

Repeating almost literally the arguments leading to
Eqgs. (3.32), (3.33) one can easily convince oneself that
@ (p) ™ (p2) 185 10V = p% (1) (5 rurv— 3 0uts)

/

(357 W) s (352)
where p€ is the gluon share of the pion momentum which is
more or less known empirically, p®( 1t ~1 GeV) =0.4.

At this stage it is convenient to rewrite the '~ J/dmr
amplitude (for definiteness we will speak about this decay)
in the Lorentz-invariant form:

—{4t)

AW > Thpt) = R (e

X (25 q2m i (o | oty (1) 65y (1) [ 0) ),

P =P (y) (3.53)

In the ¢ rest frame Eq. (3.53) reduces to Eq. (3.49).
Omitting a number of simple-arithmetical operations,
we quote the final answer?”® for the amplitude:

A = J/pntn) = — {Ayr)(eata)
([

JDZ

3 1 Fp P
+x [rﬁrv -3 (QB%_‘ngﬂv)] . } )

(3.54)
= o o (W) 0% ()-

The term in the first square brackets represents a pure S
wave, while that in the second square brackets represents the
D wave. (This is clearly seen in the 7+ 7~ center of mass
system.) Some nonessential O(a, ) corrections to the S wave
amplitude are omitted in Eq. (3.54).

Thus, the ¢’ — J /¢ amplitude is completely specified.
Our theoretical prediction (3.54) possesses the following
properties:

(i) The D wave contribution in 4., (see Eq. (3.47))
relatively to that of the S wave is equal to »*/5. Although
numerically 5 is rather uncertain—the normalization point
4 1s rather low and constitutes several hundred MeV for ¢
and about 1 GeV for y—still a very strong suppression of the
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D wave is undeniable. Indeed, if a, (4) ~0.7, pS(u) ~0.4,
then

Kyr ~ 0,15—0,2 (3.55)

and %2/5~ 1072, This fact implies that the gluons *“like” to
convert into the quark states in the 0™ channel but are reluc-
tant to do thatin the 2* channel where the mixing parameter
is smal, ~a, /.

(ii) Neglecting now the D wave, which is perfectly jus-
tified, we can write down the amplitude as follows:

A~ Jpam) = — (Agp) (ehee) -+ 2 12— (AM)?];
(3.56)

where AM = M, — M,,,. This result nicely reproduces the
empirical linear ¢° dependence (3.48). The intercept in ¢° in
Eq. (3.56) liesin the vicinity of 0.1 GeV?if x = 0.2 (B exp 18
also approximately equal to 0.1 GeV?).

Inspired by this success in the charmonium family we
can attempt to find the pion spectrum intercept 8y for
Y’ — Y. The accuracy of both the multipole and . expan-
sions is expected to be much better here because of the
smaller size of Y. The u dependence of p$—is known to be
very weak and the main change is due to a falling off of a, by
a factor of two. Moreover, (AM), =~ (AM), and hence the
theory predicts that »y ~0.5 %, and 8y ~0.5§,.

This prediction probing rather subtle aspects of QCD
has been confirmed experimentally.

4. CONCLUSIONS

In this paper I have given a pedagogical review of the
anomalies and their role in quantum chromodynamics. I had
no intention to discuss numerous new developments of the
issue, growing up rapidly especially in connection with
string theory. My task was to explain the simple physical
meaning of the phenomenon and to destroy a mysterious
attitude to the subject that emerged partially due to the suc-
cessful and deep mathematization. I wanted also to consider
possible applications in hadron physics. Actually all basic
applications worked out in the literature are presented here
except a single topic, namely, the so-called U(1) problem
(the 7' problem; for some marginal remarks see Sec. 3.2).
The interested reader is referred to the excellent reviews of
Refs. 44 and 47.

""To be published as a chapter in the volume **Vacuum structure and QCD
sum rules.”

?'Let us emphasize that the assertion about the absence of anomalies in the
flavor-octet current jiy, ji;4 refers to pure quantum chromodynamics.
Including the photons which interact with the quarks according to the
standard rules results in the photon anomaly in j]‘,A. Further details are
given in Sec. 2.4.

“The arguments given below simplify the actual situation leaving aside
some subtleties. In particular, in discussing the “‘baryon” scenario we
consider only the baryon octet (2.29). Thus, it is tacitly assumed that
baryons with other quantum numbers, e.g., J* = 1/27, do not contrib-
ute to the pole part of the amplitude (0|}, |2y). Actually, it is rather
difficult to prove that the combined contribution of all other baryons can
not be equal to (2.28)—it turns out necessary to invoke additional as-
sumptions (see in this connection Refs. 16, 17). Therefore although the
main line of reasoning demonstrating the spontaneous breaking of the
SU(3), symmetry is reproduced correctly I would not like to give the
impression that the derivation of the spontaneous chiral symmetry
breaking is completely trivial and stems almost from nothing.

*In QCD one can rigorously show that the spontaneous breaking of the
vector SU(3), symmetry is impossible.'”
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S'Relations stemming from ‘‘pure” PCAC are not discussed here. The
corresponding low-energy results however, are widely used as intermedi-
ate building blocks. In particular, Subsec. 3.2 contains, in essence, the
derivation of the old Glashow-Weinberg result that relates the correla-
tion function of two pseudoscalar quark densities at zero momentum to
the vacuum expectation value (gq).

®The canonical energy-momentum tensor stemming from Eq. (3.12) has
the trace which does not coincide with (3.9). The reason is that the
expression for the energy-momentum tensor of the scalar field is not
unique. In order to reproduce the condition 6,, = ¢ an extra term
should be added to the canonical energy-momentum tensor, namely,
{ - (86,,./3m*) (Og,,.. — 8,0, )expy}. This extra term is symmetric
and is conserved by itself.

7Eq. (3.30) is found in Ref. 24 without explicit derivation. The derivation
proving the absence of ambiguities in the picnic energy-momentum ten-
sor is worked out in Ref. 25.
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than 1 Fermi, the characteristic distance for conventional old hadrons.
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