
In this report we will address only a few central ques-
tions; a more complete discussion of the problem is available
in Refs. 3, 4.

Foundations. In the theory developed in Refs. 1 and 5,
the order parameter is a scalar function * = r)e"f (one then
speaks of S-pairing and a two-component order parameter).
Generally, one cannot exclude the existence of HTSC with
more complicated order parameters.6'7 Although a general
theory that accommodates such cases is of interest, here we
shall consider S-pairing only. Accordingly, our fundamental
free energy equation5 has the form:
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A scientific session of the Division of General Physics and
Astronomy of the USSR Academy of Sciences was held on
September 21, 1988, at the S. I. Vavilov Institute of Physics
Problems of the USSR Academy of Sciences. The following
reports were presented at the session:
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A. A. Stratonnikov. Macroscopic theory of defect-free and
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A brief summary of the second report is presented be-
low.

L. N. Bulaevskii, V. L. Ginzburg, A. A. Sobyanin, and
A. A. Stratonnikov. Macroscopic theory of defect-free and
defective superconductors with a small coherence length.
When the coherence length £ of "ordinary" superconduc-
tors with critical temperature Tc < 25 K, known prior to
1986, is extrapolated to zero temperature, |"(0) =|,, is signif-
icantly larger than the characteristic interatomic or intere-
lectronic spacing c?~10~8-10~7 cm. Consequently, the
critical region near Tc where fluctuations are significant
turns out to be small. For this reason, mean-field theories
and, concretely, the macroscopic Ginzburg-Landau (GL)
or ^-theory of superconductivity apply practically every-
where near Tc.' On the other hand, in the high-temperature
superconductors (HTSC) discovered in 1986, the coherence
length £0 is small and the ratio £o/d cannot, in general, be
taken as large. Thus, in addition to the most pressing current
theoretical problem of elucidating the physical nature and
mechanism of HTSC there exists a completely independent
problem of developing a macroscopic theory of supercon-
ductivity that takes into account fluctuation effects and is
valid in the critical region.

The smallness of £„ leads to another distinguishing fea-
ture of HTSC: their physical properties are anomalously
strongly influenced by various boundaries (including the
metal-vacuum interface) and sample defects, including
twins, grains, dislocations, and even individual "point" de-
fects (impurities, interstitial atoms, etc.). Certainly defects
also affect the properties of "ordinary" superconductors,
but there the influence of defects is generally averaged out
(since the mean separation between defects is L <|"0) or has
an effect very close to Tc (for example, in the case of a metal-
vacuum interface at / = \T — Tc \/Tc S (d /£())

2—seeRef.
2). In HTSC, on the other hand, the conditions Z.<Jo and
(d /£„)2 < 1 are often violated, making it impossible to ignore
boundary and defect effects or to treat them as averaged
quantities.

Finally, nearly all HTSC of which we are aware are
characterized by a fairly strong anisotropy of critical mag-
netic fields and other parameters. These anisotropies should,
of course, be included in the development of a microscopic
theory.

d)

where B = V X A is the magnetic induction vector; Fn is the
free energy of the normal state; a = at;t=(T—Tc )/Tc is
the relative separation from Tc; 2m? = {2m*,2m*,2m*}
are the principal values of the effective mass tensor for super-
conducting electron pairs (of charge 2e). Clearly, if
m* = m* = m* we are dealing with the ^-theory of an iso-
tropic superconductor.' Further, in (1 ) a and b are some
positive constant; H is the Planck constant and c is the speed
of light. Finally, in equation (1) and other expressions be-
low, the coordinate axes are taken to lie along the major
crystal symmetry directions, and the recurring subscript
/ = {x,y,z} indicates summation over the axes.

The equilibrium (most probable) value ¥ = *,, corre-
sponds to the minimum of F, which is found by solving the
equations:

(2)

(3)

(4)

. T, 4lt .r o tB = —J,

where j is the superconducting current density (the normal
current density is taken to be zero).

The boundary conditions on equations (2) - (4) are that
all components of the induction vector B are continuous at
the superconductor boundary and another boundary condi-
tion on ty. Usually, at the superconductor-vacuum (dielec-
tric) boundary, with B = 0 for simplicity, this last condition
is taken as

aw
dn . = 0, (5)

whereas at the superconductor-normal metal boundary one
assumes a more general condition

-3
dxi

= V (6)

where n, are the components of the unit normal to the super-

277 Sov. Phys. Usp. 32 (3), March 1989 0038-5670/89/030277-03S01.80 © 1989 American Institute of Physics 277



conductor boundary and A; have the same dimensionality as
length and are often labeled the extrapolation length param-
eters.

In HTSC boundary conditions similar to (6) probably
should be applied at the vacuum boundary, as well as at the
boundaries of all flat, linear, and point defects, in the same
way as in the theory of superfluid" and other second-order
phase transitions9-"' where, generally, \/£0~g0/d~\.

Generalization to the limiting case of strong anisotropy.
For very anisotropic (layered) superconductors the contin-
uous medium approximation is invalid in the z direction per-
pendicular to the layers. In this case the free energy func-
tional (1) is replaced by the differential-difference
functional"'12

(7)

Here the radius vector p lies in the (x,y) plane of the layers;./'
is the layer number; / = {x,y}; and the dimensionless posi-
tive constant r characterizes the "strength" of the Josephson
interaction between the order parameters %-(/o) in neigh-
boring layers.

When r> |f | the functional (7) reduces to the three-
dimensional isotropic functional (1), whereas the /•-•O limit
corresponds to purely two-dimensional superconductivity.
In HTSC based on the yttrium and lanthanum group the
experimental value is r ~ 1, hence near Tc they can be treated
as ordinary three-dimensional superconductors.

Thermal fluctuations. A rigorous method of studying
thermal fluctuations, which underpins the modern fluctu-
ation theory of second-order phase transitions, consists of
employing the free energy functional (1) or (7) as an effec-
tive Hamiltonian which determines the probability'3

exp { - -Jjr (F (V (r)] - F [V. (r)])} (8)

of finding the system in a state described by a given function
*(r) which differs from the equilibrium (most probable)
state function *,, (r).

An approximate treatment, which has yielded good re-
sults near the superfluid A -transition in 4He (see Ref. 14),
accounts for thermal fluctuations by introducing the tem-
perture dependence of the coefficients into the free energy
functional (1). Thus, in the region of small (Gaussian) fluc-
tuations we have:3'15

a •

b- (9)

'I, 0

whereas in the region of large (critical) fluctuations we
have:3'14

I to / ' l^wconst- (10)

Moreover, since the coefficients a and b go to zero as /->0 in
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the critical region, equation ( 1 ) should be modified by an
additional term ( l/3)g|*|6 with a positive constant g.

In the equations (9) the quantity f 0 determines the
width of the large fluctuation region and is related to the
jump in the heat capacity ACp at T = Tc and the mean co-
herence length I;, = 0* ) "3 by the expression3

( ID

The quantity t a can also be determined directly by measur-
ing the amplitude C,r of the first (Gaussian) fluctuation
correction Cfl = C^ /\t | l / 2 to the heat capacity at t> 0 and

(12)

Concretely, the data in Ref. 16 indicate that in
YBa2Cu3O7 _ x single crystals the parameter ta ~ 10~\ i.e.
the width of the critical region is only of the order of 0.1 K.
Nonetheless the contribution of fluctuation effects in Cp is
quite significant, reaching 10% of ACP at | T - TL. \ ~ 10 K
and -30% a.t\T-Tc ~ 1 K.

The most striking result of the fluctuation theory is that
in the fluctuation region the ratio K of the magnetic field
penetration depth 8 to the coherence length £ should become
smaller as T— Tc and, consequently, sufficiently close to TK

a type II superconductor should turn into a type I supercon-
ductor. Unfortunately, in the known HTSC the initial value
of x far from Tc is large and the effect is probably impossible
to observe experimentally.

Effect of boundaries and defects. In the boundary condi-
tion (6), which remains valid in the critical region, the sign
of parameter A is undetermined and, in principle, can be
either positive or negative. The latter case is particularly in-
teresting, as it leads to the appearance of superconductivity
first at some temperature T',. > Tc in a narrow boundary lay-
er (or in a small region surrounding a defect) with a charac-
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FIG. 1. Temperature dependence of the superconducting component in
the heat capacity of the "Argonne" YBa:Co,O7 v crystal"' in zero exter-
nal magnetic field. 1—theoretical dependence4 neglecting fluctuation ef-
fects with the following parameters: ACP = 14 mJ/cm'K;/,/£„, = 100;
A/I',,v = — 5. 2—same calculation including thermal fluctuations with
ga = 9 A. 3—experimental data."'
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FIG. 2. Temperature dependence of the superconducting component in
the heat capacity of the "Illinois" crystal: 1—H = 0; 2—H = 30 kOe.
Solid curves are computed theoretically4 using AC,, = 42 mJ/cm'K;
in = 8 A; L /£,„ = 87; £„, /£ Oz = 8; A/if,,., = - 5. Dashed regions indi-
cate extrapolation of calculated curves to temperature regions where ex-
act calculations are difficult. 3—experimental data."01

teristic thickness g(t'J=g0x\t'c ~"2, where t'c = \T'c
— TC\/TC. As the temperature is lowered the super-

conducting layer expands until, at T< Tc the entire crystal
becomes superconducting.

The appearance of this "local" superconductivity has
been observed near the twin boundaries in many "ordinary"
superconductors.17 Thus the effect is quite likely in HTSC,
where the twinning-planes (TP) are generally very numer-
ous. This conclusion is supported by a large number of ex-
perimental facts,18"20 particularly the data of the heat capac-
ity in YBa2Cu3O7_JC "single crystals" reported in Ref. 16,
21 and analyzed in detail in Ref. 4. In Figs. 1 and 2 we com-
pare the calculated results of Ref. 4 (based on expressions
(l)-(6), including Gaussian fluctuation effects) with ex-
perimental data16'21 for external magnetic intensities of zero
and 30 kOe.

The good agreement of calculated and experimental
curves corroborates the initial assumption that supercon-
ductivity is somewhat enhanced near TP. Also, a compari-
son with experimental data16'2' makes it possible to compute
all superconductor parameters that enter into (1) and evalu-
ate the values of the extrapolation length A and the mean
twin separation L. The results of these calculations are as
follows (mc is the free electron mass): A~ —• 75 A,
Z.= 1500 A, |0 = 8±0.5 A, £0x ~£0y = 15 + 3 A,
£ o z = 2 ± 0 . 5 A, a =1.2-10~ '4 erg, b = 4.0-10'^
erg-cm3, mx ~my ~ (10-14)me, mz ~ (250-1500)me.

In obtaining the last four quantities we have neglected
the possible weak anisotropy of effective mass in the plane of
the Cu-O layers and normalized the order parameter with
respect to the concentration of superconducting pairs at zero
temperature «s (0) = a/b = 3-1021 cm~\ corresponding to
approximately half a pair per unit cell. Clearly this choice of
ty normalization is arbitrary and does not effect the physical
results of the theory.

Conclusions. We have discussed several features of the
macroscopic theory of HTSC and demonstrated its validity

by considering the experimental measurements on the criti-
cal heat capacity anomaly in YBa2Cu3O7 _ x crystals. The
macroscopic theory is insensitive to the concrete microscop-
ic superconductivity mechanism and is, therefore, simpler
and more reliable in this regard than a microscopic theory.
At the same time a number of unresolved questions still re-
mains in the macroscopic theory of HTSC. One such ques-
tion is related to the possibility of more complex supercon-
ducting phases in some HTSC, which may be described by
vector or tensor order parameters analogous to the super-
fluid 3He phase. The description of such phases'1'7 differs in
some respects from the above macroscopic description of
"scalar" superconductivity.

Another very important question concerns the recently
suggested possibility22 that the classical methods of account-
ing for fluctuations—based on expression (8)—which have
successfully described all other second-order phase transi-
tions may prove inapplicable in the case of superconductors
with a strongly retarded electron-phonon interaction.

The clarification of these questions and, more impor-
tantly, the verification of the various predictions of the mac-
roscopic theory are of great interest and await further ex-
perimental and theoretical research.
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