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The adiabatic approximation is used in the physics of atomic collisions to calculate the
parameters of inelastic (nonadiabatic) transitions between electronic states of colliding atoms
(excitation, charge transfer, ionization) when, on the one hand, the motion of nuclei can be
treated classically and, on the other, their relative velocities are low. The problem then reduces to
solution of the secular Schriédinger equation for electrons with a Hamiltonian dependent on the
internuclear distance and varying slowly with time. The review presents an asymptotic theory of
nonadiabatic transitions between bound states as well as from bound states to a continuous
spectrum without any limitations on the nature of the electron Hamiltonian of the kind
encountered in exactly soluble models, except that a low value of the relative velocity of the nuclei
isassumed. In addition to a general theory, the review deals with the various mechanisms of one-
electron nonadiabatic transitions in the specific case of the simplest three-particle quasimolecular
system (two nuclei and an electron). The concluding section deals with some modifications of the
adiabatic approximation necessary for matching to the physical boundary conditions and

calculation of the isotopic effects.

I.INTRODUCTION

The adiabatic approximation’ is one of the most widely
used in physics and it involves approximate separation of the
“fast” and “‘slow” motion of a dynamic system. Historically
it dates back to the adiabatic principle of Ehrenfest' which
has served as the basis (at least indirectly) of the Bohr-
Sommerfeld quantization conditions in the old Bohr theory.
The development of quantum mechanics was followed im-
mediately by the adiabatic approximation, initially used by
Born and Oppenheimer? for the approximate separation of
the electronic, vibrational, and rotational degrees of freedom
in molecules, where the adiabaticity is associated with the
small value of the ratio of the electron and nuclear masses,
and then by Born and Fock® to solve the secular (time-de-
pendent) Schrédinger equation with a Hamiltonian varying
slowly with time.

There have been several monographs and reviews on
the adiabatic approximation and particularly on its applica-
tions to the physics of atomic collisions*® where it is used in
calculations dealing with the processes of excitation, charge
transfer, and ionization in the course of slow collisions of
atoms when the motion of the nuclei can be regarded as clas-
sical. The variant of the adiabatic approximation used in the
theory of collisions is a further development of the approach
of Born and Fock.’ Initially the following exactly soluble
models were considered: two-level models of Landau and
Zener,>'% of Rosen, Zener, and Demkov, '"*2and of Nikitin
for transitions between bound electronic states, and the
model of Demkov and Osherov’*~'® for transitions from a
bound state to a continuous spectrum (ionization). These
models made it possible not only to calculate the parameters
of a large number of specific physically important processes,
but also to discover the basis for a more general asymptotic
approach in which they are used as standard problems. The
high degree of universality of the asymptotic approach is due
to the fact that the set of standard problems is wider than the
set of exactly soluble models on which a number of general
restrictions (such as unitarity) is imposed. On the other
hand, a standard problem is simply required to show a given
behavior in small regions near certain special points.
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An asymptotic theory formulated initially for two-level
nonadiabatic transitions'’?° has since been extended to tran-
sitions involving a large number of levels?"?? and transitions
terminating in a continuous spectrum.?* The restrictions on
the electron Hamiltonian of the kind needed in exactly solu-
ble models are not required in this asymptotic theory and use
is made simply of a low relative velocity of the nuclei. This
helps to understand better the nature of nonadiabatic transi-
tions and makes it possible to calculate the parameters of the
processes in those cases when the model approaches are un-
suitable. There is as yet no sufficiently comprehensive and
systematic account of the asymptotic theory of nonadiabatic
transitions. Usually attention is concentrated on the two-
level approximation, on analysis of exactly soluble models,
and on semiphenomenological methods in calculations deal-
ing with specific physical processes, whereas the general
asymptotic theory which provides a more complete and logi-
cally self-consistent picture has been ignored. The purpose
of the present review is to fill as much as possible this gap
using the recently obtained results. The review is designed
for a knowledgeable reader. It should be regarded as a sup-
plement to the well-known monograph of Nikitin and
Umanskif® so that some of the topics already discussed in
detail in Ref. 8 will be omitted and citations will be given
only of those papers which relate directly to the content of
the present review. We shall use the terminology adopted in
the theory of atomic collisions, but the general theory dis-
cussed in the next three sections applies equally well to the
physics of plasmas and gases, as well as to the physics of
solids, wave propagation, mesoatomic physics, etc.

General formulatlon of the problem

In the case of classical motion of nuclei the transitions
between electronic states of colliding atoms are described by
the secular Schrédinger equation®

HB)$(r, =i 2ED (1.1)

where r is a set of electron coordinates; Z(R) is the electron
Hamiltonian of a diatomic quasimolecule, which depends on
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time only via the internuclear distance R = R(vt) (v is the
initial relative velocity of the nuclei), assumed to be a known
function of time. The most general form of the adiabatic
approximation is an asymptotic expansion of the solution of
Eq. (1.1) in terms of a small parameter v. In this approxima-
tion the electronic wave function #(r,#) is sought in the form
of an expansion
1
P )= &5 () @p(r, Ryexp(—i | £, (R@e)) ar)
P

(1.2)
in terms of the eigenfunctions of the instantaneous electron
Hamiltonian

H (R) ¢p (ry R) = E, (R) ¢p (v, R),

which depend on R as a parameter occurring in the Hamilto-
nian. The eigenvalues E, (R) are called in a number of differ-
ent ways in the physics of atomic collisions: molecular po-
tential curves, adiabatic terms, or simply terms or levels; for
brevity, we shall use only the last names. In the representa-
tion of Eq. (1.2) the adiabatic approximation reduces to cal-
culation of the main terms in the asymptotic expressions for
the expansions g, (¢) in the limit v— 0. Selection of the ex-
pansion ¢(r,t) in terms of the adiabatic basis @, (r,R) is
accounted for by the fact that, according to the Born—-Fock
theorem,”® the population of the adiabatic states does not
change during a collision in the limit u—»O[gp (t) = const],
i.e., the functions ¢, (r,R) are the “correct wave functions of
the zeroth order approximation” in this limit.

The boundary conditions are formulated in the adiaba-
tic representation as follows. In the limit R - «, the terms
E,(R) reduce to energy levels of isolated atoms at rest,
whereas @, (r,R) reduce to the corresponding atomic wave
functions ¢ ;. Consequently, if we ignore the momentum
transfer effect,”’ the population of the atomic states @ (*
before and after a collision is identical with g (1= + «)
and the probability of a transition from an initial atomic
state @ (' to a final state @ (' is

Ppyg = lim [ g, (¢) | 2
{—+00
on condition that

ltim gp () = 8pq. (1.3)
The probability of a transition depends on the impact param-
eter p, which specifies the trajectory of the nuclei R(#); hav-
ing integrated with respect to p, we obtain the inelastic tran-
sition cross section
Opq =27 g Ppq(p) p dp,
0

(1.4)

which is the most important characteristic of a collision pro-
cess.

The range of collision energies in which the adiabatic
approximation is valid depends strongly on the actual pro-
cess under consideration. It is limited from below by the
condition of validity of the classical approach for the de-
scription of the motion of nuclei, whereas the upper limit is
set by the condition of validity of an asymptotic expansion in
terms of small values of v. There is no sufficiently rigorous
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but general quantitative criterion of the validity of asympto-
tic expansions. Usually the main term of the expansion gives
a satisfactory result even in the region where the first correc-
tion begins to exceed it (in this case the first correction
should be dropped, because it is known to cause deteriora-
tion of the results). In the case of the adiabatic approxima-
tion this means that we can extrapolate it toward higher val-
ues of v right up to those at which the transition probability
P,, becomes comparable with unity, i.e., to the maximum of
the cross section defined by Eq. (1.4).

A general feature of the asymptotic theory of nonadia-
batic transitions is that use is made not so much of the terms
for real internuclear distances as of some local characteris-
tics in the complex plane of R. Naturally, during collisions
the real transitions occur for real values of R and the charac-
teristics of the terms with complex values of R appear as a
result of an approximate (asymptotic) solution of the dy-
namic problem represented by Eq. (1.1).* These terms con-
centrate all the information necessary for an asymptotic cal-
culation and in each case they are readily linked to
physically clear features of the adiabatic basis on the real
axis of R, which lead to transitions. For example, in calculat-
ing the probability of a transition between two terms we have
to know only the position of the common complex branching
point R, and the difference between these terms on a line
joining R, to thereal R axis. In this case the branching point
appears always on the real R axis as a maximum of the ma-
trix element of the interaction between adiabatic states.

2. ANALYTIC PROPERTIES OF TERMS AND ADIABATIC
WAVE FUNCTIONS

In the theory of nonadiabatic transitions the property of
analyticity of the Hamiltonian with respect to R is of funda-
mental importance, because it provides the basis for the use
of asymptotic methods. This is a natural property. In the
theory of atomic collisions it follows from the analyticity,
with respect to R, of the Coulomb interaction of electrons
with nuclei. It follows from the analyticity of the Hamilto-
nian H(R) that all the terms £, (R) of a given symmetry are
branches of sheets of the same analytic function E(R),
which is specified over the whole complex plane of R. This
can be illustrated by considering the example of the approxi-
mation postulating a finite number of states in which the
Hamiltonian is a finite matrix and its eigenvalues £, (R) are
found by equating to zero the determinant

A (E, R)=det (H (R) — EI),

where I is a unit matrix. Since A (E,R) is an analytic function
of E and R, the solution of the transcendental equation
A(E,R) =0 can only be, as is known from the theory of
functions of the complex variable, one analytic function
E(R) which naturally has many sheets also in the approxi-
mation of V states, i.e., in the case of the matrix H(R) of size
N XN, there are N branches of £, (R) (p = 1,2,...,N). This
property of the terms will be demonstrated more clearly in
the fifth section by considering the example of the terms of
the problem of two Coulomb centers.

In the asympototic approach the nonadiabatic transi-
tions are associated with singular points of the terms in the
complex plane of R. There are two types of singularities:
complex-conjugate pairs of branching points in the quasi-
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crossing region,” which match the terms of the system to a
single analytic function, and branching points at the bound-
ary of the complex spectrum, where the term acquires a fi-
nite width and the state becomes quasistationary. Singulari-
ties of the first type give rise to transitions between bound
states, whereas those of the second type induce transitions
from a bound state to a continuous spectrum (ionization).

2.1. Level quasicrossing region

At low velocities v the nonadiabatic transitions between
terms (levels) occur in the regions of their closest approach.
According to the theorem of Neumann and Wigner,** the
exact crossing of two levels or terms of the same symmetry
for real values of R is an exception, so that the most frequent
case is that of a quasicrossing shown in Fig. 1. A quasicross-
ing of twolevels E, (R) and E, (R) reflects their exact cross-
ing at complex-conjugate points R and R *, which are locat-
ed near the real axis of R. Degeneracy of the terms at the
points R, and R * has an important special feature. Away
from the real axis of R the Hamiltonian is no longer self-
adjoint because the parameter R occurring in it is complex,
so that when two eigenvalues are identical [E,(R.)

= E,(R.)=E,_] it is reduced not to the diagonal form but
to the Jordan form?

H(R)= (g% 5).
The values of E, (R) and E, (R) in the vicinity of the point
R, can be found using perturbation theory in terms of a
small parameter AR = R — R_. Inthe most natural case of a
perturbation linear with respect to AR

U U
U (R)=AR (U: U::) (U;;=const),

in the first approximation the terms are

E,, (R) = E, = (U AR)'?, (2.1)

i.e., instead of the usual linear dependence on a small param-
eter AR, we now have a square-root dependence. This is a
consequence of the fact that the Hamiltonian H(R.) is no
longer self-adjoint. The square-root branching point com-
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FIG. 1. Quasicrossing of terms (energy levels). The dashed line shows the
linearized diabatic terms.
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bines the two terms into a single analytic function, so that
when the point R, is gone around once, the sign in front of
the radical in Eq. (2.1) is reversed and the terms transform
into one another. Obviously, the same property is exhibited
also by the corresponding adiabatic wave functions.

Another special feature of the Jordan form is that it has
just one eigenvector,” i.e., on approach to the point R, we
have not only E, - E,, but also ¢, —¢@,. At first sight this
looks paradoxical, since the wave functions satisfy the orth-
onormalization condition®

{outr, Yot BN dr={ o r, Ryot(r, R dr=1,
(2.2)

{ (v, B3, R dr=0, (2.3)

which is continued analytically to the complex plane of R
and, in particular, to the point R_. It is at this point that the
wave functions ¢, are identical and so should be the inte-
grals in Eqs. (2.2) and (2.3). This apparent contradiction

can be explained as follows.'® We shall introduce adiabatic
wave functions normalized by the condition

%o (T, R)—»-A(;)-e(—;—:—:—)-i—# for r— oo,

{lamprar=1, r=2, u=(—28, ()
The functions y, (r,R) are bounded for all values of R (this

is the property important at this moment) and differ from
the functions @, (r,R) only by the normalization factor

®p (v, R) =Cp (R) % (r, R). (2.4)
At the point R. we indeed have

X (T, Ro) = %5 (1, Re). (2.5)
Moreover, the following relationship is obeyed:

{1 r RO w3 r, RO dr =0, (2.6)

so that the normalization factors C,(R) occurring in the
condition (2.2) become infinite. Consequently, the adiaba-
tic wave function @, (r,R) represents a product of a bounded
function X, (r,R) and a normalization factor C,(R), which
is singular at the point R, (Fig. 2). Under orthonormaliza-
tion conditions this singularity of C, (R) is superimposed on
the zero of the matrix element of Eq. (2.6), and this gives rise
to an indeterminacy which can be avoided by different pro-
cedures under normalization and orthonormalization con-
ditions, so that unity is obtained in Eq. (2.2) and zero in Eq.
(2.3).

The singularity of C,(R) at the points R, and R *
Creates a singularity in all the matrix elements (apart from
the normalization elements) and this gives rise to a consider-
able increase for real values of R in the quasicrossing region
(this behavior is illustrated qualitatively by curve A in Fig.
2). In particular, this explains a bell-shaped profile of the
matrix element of the nonadiabatic coupling (see, for exam-
ple, Fig. 6¢c below), which characterizes the interaction of
adiabatic states and can be written in two equivalent forms®:

__ (opl(dH/(dR) |9,

Wppe (R) = <(Ppl 'd%:,‘l (Pp.>__ET,T(H)——Ep—(—IT' (2.7)
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FIG. 2. Singularities of the normalization coefficient C(R) in the complex
R plane.

Therefore, we have a logic chain: @ branching point R,
common for a pair of terms E, (R) and E, (R) = a singular-
ity of normalization factors C, (R) at R = R =pa peak in
the interaction w,, (R) in the quasicrossing region R ~Re R,
=> intensive transitions between states ¢ (r,R) and ¢, (r,R)
in this region; such a chain links the branching points of the
terms with nonadiabatic transitions and demonstrates more
clearly that calculation of the probability of a transition on
the asymptotic theory reduces to an analysis of the terms in
the complex plane of R, i.e., to finding the point R_ and the
difference between the terms on a line connecting R to the
real axis R [see Eq. (3.8)].

We shall illustrate the properties of the adiabatic basis
discussed above by considering the Demkov-Osherov mod-
el'® which is sufficiently general, because it contains an arbi-
trary number of states and nontrivial free parameters. The
Hamiltonian of the Demkov-Osherov model represents a
matrix of arbitrary size N X N and is given by'®?®

aR hy hy hy ...
by A O 0
HABE)=, o 2 0 ... ]

.........

where a, h;, and A, are real constants (i = 1,2,....N — 1).

The terms in this model can be found from the secular equa-
tion

N-1

aR—E,— 2

i=1

"
1M —E,

=0, (2.8)

and the corresponding eigenvectors ¢, have components (i
is the number of the component)

. Py ,
q>§,,°’=cp» ¢§>')=CP'E’;':XT (i0) (2.9)
with a normalization factor
N-1
"y h% -1/2
=1+ Z:(T‘{:W] . (2.10)
1= L

Differentiating Eq. (2.8) with respect to R and comparing
the results with Eq. (2.10), we can write C, in a different
form:
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1 dEL(R) )1/2

Co = (o —4r (2.11)

After substitution of Eq. (2.9) with the normalization factor
(2.11) into Eq. (2.7), we obtain an explicit expression for
the matrix element of the nonadiabatic relationship ex-
pressed in terms of the parameters of the problem:

1 ( dEp (R) dE,. (R) )1/2

wor (B) = w5, ® R dR

(2.12)

These simple and exact (for the model in question) expres-
sions yield directly all the above-mentioned general analytic
properties of the adiabatic basis in the quasicrossing region.
In fact, at a branching point R, shared by a pair of terms £,
(R) and E, (R) the components (2.9) of the corresponding
adiabatic wave functions ¢, and ¢, are clearly identical be-
cause of the equality E,(R.) = E,(R,), i.e., “degeneracy”
of the wave functions of Eq. (2.5) occurs. Using Eq. (2.1),
we find directly from Eqs. (2.11) and (2.12) that the norma-
lization coefficients C| , become infinite at the point R, and
the matrix element of the nonadiabatic coupling between the
states has a first-order pole at this point: w;,(R)= (R
— R.) ' The matrix elements containing only one state of
this pair also have a singularity at R = R_, but this singular-
ity is much weaker:

wpp (R) = (R — R) ™M (p =1, 2, p’ #1,2).

2.2. Region of merging of a level with a continuous spectrum

The region near the boundary of a continuous spectrum
is important not only from the point of view of a qualitative
investigation of analytic properties of the terms, but also for
practical reasons because it is here that the ionization of a
quasimolecule occurs in the adiabatic limit v — 0. If a change
in the internuclear distance shifts a term to a continuous
spectrum, a bound state is converted into a quasistationary
or a virtual state”’ and we then face the problem of classifica-
tion and calculation of the widths of energy levels. We shall
consider this task within the framework of perturbation the-
ory in which an unperturbed Hamiltonian H, = H(R,) cor-
responds to a distance R, where the term in question crosses
the boundary of a continuous spectrum [E,(R,) = 0] and
the role of a perturbation is played by the difference

U=H(R)—H (R) =~ H' (R;) (R—R,),

dH (R)

B (R)= aR  Jr-R,"

The conventional variants of perturbation theory are unsuit-
able at the boundary of a continuous spectrum because right
from the beginning we have to allow for an infinite number of
states in the continuum. Another specific feature of this
problem is that we encounter three qualitatively different
situations, depending on the type of interaction at large dis-
tances r (short-range, Coulomb repulsion, Coulomb attrac-
tion).

We shall first consider the case when there is no long-
range Coulomb interaction in H(R). As shown in Ref. 27,
under these conditions the process of low-energy scattering
is similar to the scattering by spherical centers and then an
orbital quantum number / can be assigned to a state at the
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boundary of a continuous spectrum. This makes it possible
to use the results of perturbation theory for the spherically
symmetric case, based on the S-matrix formalism,?® to deal
with a nonspherical overall potential. In this formalism the
eigenvalues of the Hamiltonian correspond to zeros of the
Jost function f; (k) in the complex plane of the wave number
k = (2E)'/%, The Jost function depends also on R as a pa-
rameter, but the conditions of the problem ensure that it
vanishes for R = R, at the point k£ = 0. A modified version
of perturbation theory is constructed as an approximate so-
lution of a transcendental equation

ke, B) =0 (2.13)

at low values of AR = R — R,. This is done as follows: we
expand the left-hand side of Eq. (2.13) in the vicinity of
R = R, and k = 0 as a double Taylor series:

oo

1 .sthpt s 0% (k, R)
2 AR'k* =0, =07
8, t=0 st fl fl ok aR*

k=0, R=Rq '
(2.14)

The familiar representation of the Jost function®
fi (k) = A(k) + k**'B(k), where A(k) and B(k) are
even functions of k, shows that /3 = 0 for odd s and s < 2.
Consequently, the solution of Eq. (2.14) in the form of a
series in powers of AR acquires a structure dependent on /:
1 oo
k(R)= 2‘ a; AR/ 4 22 B,ARI2, (2.15)
i= =2

which contains powers of AR with exponents which are inte-
gers of half-integers. The coefficients @; and B of the expan-
sion can be expressed, after substitution of Eq. (2.15) into
Eq. (2.14), in terms of derivatives /' and the problem re-
duces to derivation of explicit expressions for £} in terms of
the wave function of the unperturbed state. This is done us-
ing integral representations of the Jost function.’® In the fi-
nal expansion of E, (R) = } k>(R) the coefficients up to the
/th order are identical with the coefficients in an ordinary
perturbation theory series, but they are followed by terms of
order AR'* /2, which for a suitable sign of AR become
imaginary and give the width of an energy level. If / #0, the
principal terms of the expansion of the real part of the energy
and width T, (R) = 2ImE,(R) of a level are given by*®

Re E, (R) = AAR,

T, (R) = a} (2AAR) /2, (2.16)

here and in Eq. (2.18) we have
A ={@,(Ro)|H'(Ry)|@,(R,)) and a, is a coefficient in the
asymptotic form of the unperturbed wave function
(t=r/r):

@p (v, Ry) = (21 — Yag 'Y, (1) (1 + O (rY),
@2l—NHt =1 for I =0. (2.17)

In the case of the s states (/ = 0) the expansion E,(R) con-

tains only integral powers of AR and differs from the usual

expansion already in the first approximation’:
: AR \2

Ep(R=—2 (=) (2.18)

We can see from Eq. (2.18) that in this case the term does
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FIG. 3. Different types of behavior of terms (energy levels) in the vicinity
of the boundary of a continuous spectrum.

not cross the boundary of a continuous spectrum but simply
touches it. Further evolution of an s level in the k plane
occurs as follows.*® Passing the point K =0 at R = R,, it
moves downward along the imaginary axis of k, correspond-
ing to virtual states. As a rule, another virtual s level rises
toward the descending level and they merge at some value
R =R,,, and then they diverge in opposite directions at
right-angles to the imaginary axis of & (see Fig. 9 below,
which describes the problem of the long-range Coulomb
forces, but it does give only a qualitatively correct picture of
the nature of the shift of the s levels in the & plane in the case
of the short-range potentials). A subsequent increase in

'|AR | causes a level to intersect the bisector in the lower

quadrant of the & plane and the level then emerges in the
region of positive energies (i.e., it is converted from virtual
into quasistationary) and it immediately has a finite width
(Fig. 3a).

The nature of the dependence on / described by Eq.
(2.16), T, (R) « AR'* '"2, is explained by the fact that a
centrifugal barrier preventing the ionization of a particle
grows on increase in / and, consequently, the width of a level
decreases. It is in fact a centrifugal barrier with a penetrabi-
lity which approaches zero in the limit £ -0 that ensures the
stability of a state and determines the width of a level at the
moment when it reaches the continuous spectrum. There-
fore, an s state which does not have a centrifugal barrier is
not converted into a quasistationary state immediately after
passing through the point R, but becomes virtual. The dif-
ference in the behavior of the terms (levels) in the region of
merging with the continuous spectrum in the two cases / =0
and / #0 is illustrated in Figs. 3a and 3b.

In the Coulomb repulsion problems the situation is fun-
damentally different from that just discussed because in the
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range of large values of r, which dominates the contribution
to the width of a level in the range 0 < E<1, a centrifugal
barrier can be ignored against the background of a more
slowly falling Coulomb interaction, but in the first approxi-
mation the level width is independent of /. Bearing in mind
the power-law smallness of the width of Eq. (2.16) in terms
of AR, we can see that in the presence of a Coulomb barrier
the level width tends to zero for R — R, faster than any pow-
erof AR, i.e., exponentially. We shall consider the quantita-
tive side of the problem following Refs. 31 and 32 by assum-
ing a Hamiltonian of sufficiently general nature:

1 1
H(R) = ——2—-A+—-|r—_-_—ﬁ-|——|—V(r).
In the vicinity of the boundary of a continuous spectrum
where the wave function is strongly delocalized the short-
range potential ¥(r) can be replaced by a zero-range poten-
tial. Then, the wave function @, (r,R) can be expressed in
terms of the Coulomb Green’s function and the terms
E, (R) are found from a transcendental equation 26

a=2T (V)[(‘Ii‘—"*‘%) M_y, 12 ('2—5—) W_v, 12 (—L;i)

~My e (YW 2 ()] (2.19)
where v=( —2E)~ "% I'(v) is the gamma function;
M_, (x)and W_, . arethe Whittaker functions; @ isa
parameter characterizing the potential v(r) {the quantity
€ = — a?/2 represents the binding energy in an isolated po-
tential ¥(r)]. In the vicinity of the point r, where a term
merges with a continuous spectrum, this first-approxima-
tion solution of Eq. (2.19) is**

Re E,(R) = AAR,

_ hme? (I3 (0)—I%(0) _ 2 1/2
T (=" (o h e“‘p[ 7 (ar) ]

(2.20)

where A has the same meaningasin Eq. (2.16);/,(x) and K,
(x) are Bessel functions with an imaginary argument, which
originate from an asymptotic expansion of Whittaker’s func-
tions for v— o (£-0)and o = 2(2&,»'/2 At high values of »,.
Eq. (2.20) simplifies to*'*?

AR
ReE, (R)= —35-, (221)
T, (R) —2"12R-3/2 exp[4 (2Ry)2—nR, ( -——Kzi)l/z].

In agreement with the above qualitative discussion, the level
width in Egs. (2.20) and (2.21) is exponentially small in the
limit AR — 0. In fact, this means that decay of a level does not
begin immediately when it merges with the continuous spec-
trum. Equating to zero the argument of the exponential
function in Eq. (2.21), we can estimate AR at which the
width of a level becomes significant: AR 4 =R,. It follows
from this estimate that even when a level merges with the
continuous spectrum for very high values of R, (whichis the
usual case), the decay of a level can be expected realistically
only intherange R~ R, — AR.; =~ | and the ionization cross
section should not exceed the gas-kinetic value.

In the physics of atomic collisions these variants of
merging of a term or level with the continuous spectrum
occur when negative ions become ionized (by detachment of
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an electron): Eqgs. (2.16) and (2.18) describe the behavior
of the terms in the reactions A" +B " —-A + B~ +e,
whereas Egs. (2.20) and (2.21) describe the reactions
A~ +B7 - A 4+ B~ + e. Obviously, in the former case an
electron which emerges is subject to the short-range poten-
tial of a neutral quasimolecule (AB) ~, whereas in the latter
case it is in a Coulomb field of a negatively charged quasimo-
lecule (AB) ~ . From the point of view of applications the
process of  ionization of a neutral atom,
A +B—~A" + B+ e, is more important. In this case, and
also when one or both atoms A and B are replaced with
positive ions, the electron Hamiltonian (e) includes the
Coulomb attraction at large distances r. Consequently, in
addition to a continuous spectrum there is also an infinite
number of bound Rydberg states with an infinitesimally
small binding energy. The presence of a Rydberg series of
terms prevents the merging of the initial term with the con-
tinuous spectrum. This is a consequence of the Neumann-
Wigner theorem, which forbids actual crossing of levels or
terms. However, we can have a situation shown in Fig. 3¢
where the initial term is strongly shifted toward a contin-
uous spectrum and creates an infinite chain of quasicross-
ings, which becomes denser at the boundary of the contin-
uous spectrum. Consecutive passing through all such
quasicrossings results in ionization. This ionization mecha-
nism was first used in Ref. 33 to calculate the energy spec-
trum of electrons in terms of the Demkov—Qsherov model.
The problem of the possibility of existence of infinite quasi-
crossing chains in real quasimolecular systems has not yet
been settled, because they have not yet been finally estab-
lished in dealing with the problem of two Coulomb centers.**
The effect is known as “superpromotion” and will be dis-
cussed in Sec. 5.1.

3.NONADIABATIC TRANSITIONS BETWEEN BOUND
STATES

Nonadiabatic transitions between terms are described
by a system of Born—-Fock equations which is obtained from
the secular Schrodinger equation (1.1) after expansion of
the wave function ¢(r,?) in terms of an adiabatic basis {ex-
pansion (1.2) ] and is given by

T

dgp (1) ’ " gt
=2 wppr(Mexp (4§ AB,, (v) av) g0 (u),
"
3.1
where

T =uvt, AEpp (1) = E, (1) — E, (1),
Wppe (1) = <q7p (7) Pp (T)>

is a matrix element of the nonadiabatic coupling. The vari-
able 7 is introduced so as to separate clearly a small param-
eter vin the system of dynamic equations (3.1). It represents
the internuclear coordinate and will be used later instead of
the internuclear distance to which it is related functionally
by R(7)<—7(R). Differentiation with respect to 7in a matrix
element w,, can be reduced to differentiation with respect to
R and an angle ¢, which sets the orientation of the internu-
clear axis to the collision plane:

Wppe (T) =%<CPP|T]% i (Pp’>+’%;:<¢1’|'d—i' ICPP'> :

(3.2)

d
dv
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Such a separation of w,, into radial and rotational parts is
usually employed in specific numerical calculations, but
there is no need to do this in an asymptotic approach and
both types of coupling will be allowed for simultaneously in
the results given below:

In the adiabatic limit the transitions between terms are
not frequent and they are localized, as already mentioned, in
the region of the closest approach (quasicrossing). The
technique for asymptotic calculation of the probability of a
transition from a term E,(7) to other terms E , (1) partici-
pating in a given quasicrossing can be described briefly as
follows.® In the limit v — O the solution of the system of equa-
tions (3.1) has the following asymptotic form (accurate to
within a preexponential factor) in the complex plane of :

<

£99 (1) exp(—;—-g BBy (v)dv') (3.3)
which is valid everywhere except for a small region §} around
a complex branching point 7, = 7(R_ ). Inside 2 we have to
separate and solve exactly a simplified standard system of
equations allowing correctly for the nature of a singularity at
the point 7_. The amplitude of the transition probability is
obtained by matching, at the boundary of the region 2, the
solution of the standard system to the asymptote given by
Eq. (3.3) and satisfying the initial conditions of Eq. (1.3).
This procedure is analogous to matching of a semiclassical
wave function to the right and left of a turning point with the
aid of the Airy function.?*

3.1. Generalized Landau-Zener transitions

A theory of two-level Landau-Zener transitions is
usually discussed in detail in the literature and such transi-
tions are most frequent in applications. However, this theory
is invalid in the case of some processes. They include, for
example, transitions occurring in the case of short internu-
clear distances between terms which are degenerate in the
limit of a united atom (R = 0). Simultaneous crossing of
more than two terms appears in multicenter (polyatomic)
systems for certain special configurations of the centers. The
general problem, in which there is no limit on the number of
states or on the nature of their interaction in the quasicross-
ing region, was solved in Ref. 21.

Following Ref. 21, we shall consider nonadiabatic tran-
sitions involving simultaneous quasicrossing of a group of ¥
terms or levels, which is related to the exact crossing in the
complex plane of 7 at the point 7. First of all, we shall sepa-
rate the standard system of equations in the region { near
the singularity 7.. At the point 7. the eigenvalues of the
Hamiltonian are N-fold degenerate and the Hamiltonian can
be reduced, because of its nonself-adjoint nature (Im 7,
#0), to a Jordan form of ¥ X N size:

Ec 1 0 0 .
0 E. 1 O .
H(t) = 0 0 E. t .

Near the point 7, the Hamiltonian can be represented in the
first approximation by

H (v) = H (to) + AvU, (3.4)
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where A7 =717 — 7., 5>0, and U is an N X N matrix with
constant matrix elements U;. It is assumed that U,, #0.
This condition corresponds to the general case, so that it
should not be regarded as a limitation.®* The terms of the
Hamiltonian (3.4) obtained in the first order of perturbation
theory based on a small parameter A are

E, (1) = Eo + (AT yy)/Netino/N (p =1, 2, ..., N).
(3.5)

In the same approximation a matrix element for the non-
adiabatic coupling reduces to
- (=P P
Wop' (V) = SN AT sim (p—p F/NT*

After substitution of the approximate expressions for E,(7)
and w,,, in Eq. (3.1), we obtain a system of equations

(3.6)

is exp [{exp [2ir (p’ —1)/N] —exp [2in (p—1)/N]} 8]
2(NF#sin((p—p) n/N]

d ~
ﬁ—dFG=MG, Mpp=01

Mpp =

which is the standard system in the vicinity  of the point 7.
In Eq. (3.6) the quantity 7 is replaced by a more convenient
variable

= — L (14 ) Unterey N 2imn

and instead of the functions g, we have introduced
Tc

G,=(—1)Pexp ( —% S Ep(7) dr’) Ep-

Re 1,

(3.7)

The size of the region Q where the standard system (3.6)
differs little from the Born-Fock system of equations (3.1)
is determined by the validity of the approximation (3.5) for
the energy terms (levels) and is obviously independent of v,
because at the boundary of ) the values of ¢ tend to infinity
for v— 0 and the solution of the standard system of equations
here reaches its asymptotic form which is described func-
tionally by Eq. (3.3). This makes it possible to relate the
values of g;*" to the right and left of the quasicrossing region
and to calculate the transition probability amplitude. In the
adiabatic approximation this amplitude splits into an expo-
nential function, which is trivial and is already separated in
Eq. (3.7), and a preexponential factor, which is the Stokes
constant of the standard problem. Calculation of the Stokes
constants is not always possible for a system of two equa-
tions, but in the case of the system (3.6) this can be done for
any values of ¥ and of the parameter s representing the type
of interaction of terms in the guasicrossing region.?' The
final expression for the transition probability amplitude is

A = gin [rs/(N + 5)]

P9~ 5in ("IN +9)] e “pel”, (3.8)
where
Te
qu=‘Im S AE 4 (%) dv
ReTe

is the Massey parameter. It is interesting to point out that in
the case of the most natural multilevel quasicrossings, when
the perturbation in Eq. (3.4) is linear in A7 (s = 1), the
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preexponential factor in Eq. (3.8) is independent of & and
equal to unity.

3.2. Rotational transitions in close collisions

Nonadiabatic transitions in the case of close atomic
collisions between quasimolecular states, which are degener-
ate in the united atom limit (R = 0), are of special interest
from the theoretical point of view, because they represent an
example of transitions which are not of the Landau—Zener
type. We shall consider these transitions in the problem of
two Coulomb centers Z,eZ, with the Hamiltonian de-
scribed by Eq. (5.1). For low valuesof R = |R, — R,| (R; is
the radius vector of the ith Coulomb center), in the first
approximation the terms of this problem are*®

Enim (R) = —Tz,lz,—+v[3m2—l(l+1)1 R?, (3.9)

where
_ 22,2,2°
Y= nd(1+1) 21 —1) 2AA+-1) 2+ 3) *

Z=2Z, +Z,,and (n,],m) are spherical quantum numbers
of the united atom. In this approximation the adiabatic wave
functions are expressed in terms of hydrogenic wave func-
tions of the united atom
1 - - _
L) (r, R)= T/?Fm (M) [Yim (PR) = (— )™ Ty, _m (rR)]
(3.10)

in a system of coordinates with its origin at the center of the
charges

Rec= (Z\R, + Z,R;) 271,

where the z axis is directed along the internuclear distance
and the x axis is perpendicular to the collision plane. The
functions described by Eq. (3.10) have a definite parity
( + ) relative to the change in the sign of x (the symmetry is
exact) and these functions depend on 7 only via an angle
#(7), which determines the orientation of the internuclear
axis. As a result the nonadiabatic interaction of Eq. (3.2)
reduces to a rotational interaction of states with identical
quantum numbers n and / and with the parity®’

d 1 d¢
<<P%’zm | el

+(@—m) I+ m+ D28, mys}
(3.11)

whereas the Born—-Fock system of equations splits into inde-
pendent systems of N =/ equations for odd states and
N =1 + 1 equations for even states.

The explicit time dependence can be found and analytic
properties of the adiabatic wave functions of the Hamilto-
nian can be determined by introducing a fixed system of co-
ordinates with the x’ axis directed opposite to the flux of the
incoming particles Z, and with the z' axis perpendicular to
the collision plane. The adiabatic functions of Eq. (3.10) can
be expressed in terms of spherical functions in a fixed coordi-
nate system using the Wigner d functions:

1
i =77 ) 2 [dhm (5) = (— " d e (5-) ]

X Vi (B, ") et oo, (3.12)
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(P'rflm’> ZT rtE {[(l -+ m) (l_ m 1)]1/2 6m', m— ll

Since rotational transitions occur within the subspace of
states with fixed values of n and /, instead of the exact Hamil-
tonian (5.1) we shall consider a simpler *“‘equivalent” opera-
tor which has the eigenvalues of Eq. (3.9) and the eigenfunc-
tions of Eq. (3.10) in this half-space:

H,, (r)=hI+ 3yR2I2
=hd 42 yRE (et L T+ 1T, 4 Pe-2i0), (3.13)

where h = — Z?/2n* — yI(I1 + 1)R % I'is a unit operator; /,
is the projection of the angular momentum onto the internu-
clear axis; /, =1, + il, are the operators representing an
increase and reduction in the azimuthal quantum number in
a coordinate system at rest. In Egs. (3.12) and (3.13) the
time dependence appears explicitly in the form of powers of
the exponential function exp(i¢). We shall consider specifi-
cally the approximation of a rectilinear transit characterized
by R?=p? +v’t? and tan ¢ = p/vt, where p is the impact
parameter. We then have

AE i, nime (1) = 37 (m? —m'2) R? =3y (m? — m'?) (p* 4 %),

(3.14)
do _ p __ P
T RT T e—mpto (315
exi®=cos¢ +isin¢= vt ip (3.16)

—mp + oiE

Equation (3.14) describes a quasicrossing of a group of
parabolic levels with the minimum splitting

AEmm =3y (m*— m’Z) pz

at 7 = 0. The exact crossing of the levels occurs at complex
points 7. = + ip, where R = 0. It follows from Eq. (3.15)
that, in accordance with the general theory, a matrix element
of the nonadiabatic coupling described by Eq. (3.11) has a
first-order pole at the point 7. A divergence of the exponen-
tial function (3.16) at points 7, creates a divergence of the
terms in the wave function (3.12); the most singular of these
is of the order of R ~~ * ' and exhibits the same dependence
on the electron coordinates for all the interacting states. The
Hamiltonian of Eq. (3.13) at the point r_ is

Z2 ~
o 1 — 3wl

Heq(T= —_-t:ip):-. 5

and, as can be demonstrated readily, can be reduced to the
Jordan form in the basis of spherical functions Y,,, (¢ ',¢ ).
Therefore, although the levels of the problem cross exactly
for a real internuclear distance R = 0 and a quasicrossing
appears for kinematic reasons as a result of a change from R
to 7(R), we nevertheless still have all the properties dis-
cussed in the first part of Sec. 2.

Rotational transitions between the states with / = 1 (o-
7 transitions) were considered in the adiabatic approxima-
tion in Refs. 19 and 20. In this case there is one odd state
which does not participate in the transitions and two even
states, and the amplitude of the transition probability
between these states is given by Eq. (3.8) with ¥ =2 and
s = 2. The value s = 2 is obtained by comparing Egs. (3.14)
and (3.5) in the vicinity of the point 7. The preexponential
factor in Eq. (3.8) amounts to V2 for these transitions and
the cross section is twice as large as that obtained by the
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formal application of the Landau—Zener model with the
same Massey parameter as before.

If [>2 for even states and />3 for odd states, the two-
level approximation becomes invalid. On the other hand, in
view of the specific tridiagonal structure of the Hamiltonian
(3.13) in the Y,,, (<} ',@ ') basis, the matrix element Uy, in
Eq. (3.4) vanishes so that strictly speaking it is not possible
to use the result obtained in the general theory and given by
Eq. (3.8). However, because of a large set of standard sys-
tems of the type described by Eq. (3.6), we can select that
system which is closest to the situation under consideration.
In the case of N-level rotational transitions (N =17 + | for
evenstatesand N =/ for odd states) the closest is the system
with s = N. This ensures the correct, linear in A7, behavior
of the splitting of the terms in the vicinity of the point 7, and
is approximated optimally by the matrix elements of the
nonadiabatic coupling of Eq. (3.11). Substituting s = ¥ in
Eq. (3.8), we find that the amplitude of the probability of
rotational transitions is

1 o‘Amm'/".

sin (/2N) ~

Amm? =

(3.17)

In the case of three-level o—7~6 transitions this result is rig-
orous.?? At high values of / the preexponential factor is ap-
proximately equal to 2V /7 and it affects strongly the magni-
tude of the cross section. For example, if / = 4, it increases
the cross section by an order of magnitude.

Figure 4 shows, by way of example, the results of a cal-
culation for the case of the charge transfer reaction C¢+
+ H(1s) > C** (n’) + H . This reaction is due to a Lan-
dau-Zener transition between the terms 5go and 4fo when
R =8 a.u., and also because of rotational transitions over
short internuclear distances within multiplets (n =4,/ = 3)
and (n = 5,/ = 4). Figure 4 shows the charge-transfer cross
sections for the C** state with the principal quantum
numbers n’ = 4 or 5, calculated in the adiabatic approxima-
tion ignoring the rotational transitions in question®® and al-
lowing for them in accordance with Eq. (3.17).%* It is clear
from this figure that the rotational transitions make a con-
siderable contribution to the charge-transfer cross section
and inclusion of these transitions within the adiabatic ap-
proximation framework ensures good agreement both with

o, 10716 cm?

L i
70 v, 107 cm/s 20

FIG. 4. Dependences of the charge transfer cross section on the collision
velocity for the C°+ + H(1s) - C** (#') + H *. The continuous curves
represent the adiabatic approximation allowing for rotational transi-
tions,*® the chain lines give the adiabatic approximation ignoring rota-
tional transitions,*® the dashed lines give the numerical calculations car-
ried out by the tight-binding method,*' and the black dots are the
experimental values.*®
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the experimental results* and with the currently most accu-
rate numerical calculations by the strong coupling method
in the basis of 33 states.*'

We shall conclude this section with a brief analysis of
two more cases, which have been discussed in detail in the
literature, but require some additional explanations in the
context of the general theory discussed here.

3.3. Quasiresonant charge transfer

A process of quasiresonant charge transfer A + B+
~A™* + B, characterized by a small splitting of the energy
levels of the initial and final atomic states, represents a spe-
cial situation. In calculations dealing with charge transfer
characterized by a small resonance defect we can use the
exactly soluble two-level Rosen-Zener—-Demkov model'"'2
in which the splitting of the levels is

AE(R) = (8* + u® (R)'?, (3.18)

where § is the splitting of the levels in the limit R — o (reso-
nance defect) and the function #(R) = a exp( — SR) mod-
els the exchange interaction. Nonadiabatic transitions occur
for §=|u(R)|. In the region of these transitions the splitting
of the levels given by Eq. (3.18) is in the form of an infinite
equidistant chain of complex branching points

Rf=Rpxin(j—¢)bt (=1,2, ...)

with the same real part R, =5 ~'In(6 'a) for all the
points. The probability of transition in the Rosen-Zener-
Demkov model is'?

P exp (—A/v) ZZ (_1)7’ e-in, (3.19)
=t

2ch (A/v)

where A = 76/2f3 is the product (j-A) identical with the
Massey parameter of a branching point R;. The probability
series given by Eq. (3.19) is identical, with a precision which
is exponential in terms of v ~ ', with the probability of a Lan-
dau~-Zener transition because of a branching point R, clos-
est to the real axis of R and the difference from Eq. (3.8) is
obviously associated with the fact that the Rosen—Zener—
Demkov model has a more distant branching point R; with
J>2. The question then arises: is an infinite regular chain of
branching points R; a specific feature of the exactly soluble
model or does it indeed exist for real quasimolecular levels
discussed in the case of quasiresonant charge transfer? The
relevant procedure was applied in Ref. 39 to levels in the
problem of two Coulomb centers with very similar charges.
The results revealed regular chains of branching points of
the relevant type (see Fig. 6b below), confirming the phys-
ical justification for the application of the Rosen—Zener-
Demkov model in calculations relating to quasiresonant
charge transfer.

3.4. Transitions duetolevel crossing

An exact crossing of levels for real values of 7, usually
occurs for states of different symmetry. If 7_ is real, the
Hamiltonian H(r, ) is self-adjoint, so that it is reduced not to
the Jordan form but to the diagonal one. Adiabatic wave
functions at the point 7. are then linearly independent and
do not have a singularity, like the matrix elements for the
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nonadiabatic coupling. This makes it possible to calculate
the transition probability employing the adiabatic version of
perturbation theory.® This adiabatic version is based on the
assumption of smallness of the changes in the populations of
the levels in the course of a collision; the solutions g, (7) for
the right-hand side of the Born—Fock equations [Eq. (3.1) ]
are replaced with the initial values of Eq. (1.3) and then the
solution is obtained in a trivial manner:

+oo

qu:‘[li]o]: gp ()= S Wpq (T) €XP (% § AE L4 (T') d’t')

—o0

1/2

The integral with respect'to 7 can be calculated in the limit
v— 0 by the stationary phase method so that the probability
of a transition from the initial level E,(7) to other levels
participating in a given crossing is described by:*’

-1
)
=T,

which is valid for an arbitrary number of levels which cross
at the point 7. The adiabatic version of perturbation theory
cannot be applied to quasicrossings because in this case the
change in the solutions g, (7) in the vicinity of the complex
stationary phase point 7, is not small and, moreover, the
solutions and the matrix elements of the nonadiabatic cou-
pling have a singularity at this point.

dAE
qu:2nv lwpq (TC)IZ ('—T

4_NONADIABATIC TRANSITIONS FROMA BOUNDSTATETO
A CONTINUOUS SPECTRUM

In dealing with ionization processes the theoretical task
is to calculate the ionization cross sections and the energy
distributions of the emitted electrons. The process of detach-
ment of an electron, i.e., ionization of a negative ion, can be
described quite simply in the adiabatic approximation. This
process is associated with the evolution of a quasimolecule in
respect of the level which merges with a continuous spec-
trum at some value of the internuclear distance R, (see Figs.
3a and 3b). After such merging the level in practice decays
completely at low values of ¢, i.e., the ionization probability
is unity if in the process of a collision the point R, is reached
and the probability is zero in the opposite case. Obviously,
the ionization cross section calculated in the approximation
of rectilinear transit in accordance with Eq. (1.4) is indepen-
dent of the velocity v in this approximation and its value is
given by o = 7R ;. This expression can be refined allowing
mainly for curved paths of the nuclei.*

The process of ionization of neutral atoms and positive
ions is associated with a more subtle “‘superpromotion” ef-
fect (Fig. 3c) which is difficult to reveal in a general picture
of real quasimolecular levels. In this case the ionization
probability is equal to the product of the probabilities of
Landau--Zener transitions via a sequence of quasicrossings
which becomes denser at the boundary of a continuous spec-
trum:

P (p) = g2, (4.1)

where

a0

Alp)y= S Ap, p+ir(p)
p=q

is the total Massey parameter of a transition from a level
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drt.

E,(R) tothecontinuousspectrumandA4,, , , is the Massey
parameter for a single quasicrossing. It follows from Eq.
(4.1) that the cross section for such a ‘“‘subbarrier’ ioniza-
tion process tends exponentially to zero in the limit v — O (see
Fig. 11a below).

The task of calculation of the energy distribution of the
emitted electrons is more difficult. This was tackled first us-
ing the adiabatic version of perturbation theory for subbar-
rier transitions to a continuous spectrum*® and also within
the framework of exactly soluble models, among which the
most general is the Demkov—Osherov model.'*'* The range
of validity has been extended by proposing a number of semi-
phenomenological generalizations of the model results.***°
A consistent asymptotic approach to the calculation of tran-
sitions to a continuous spectrum, which is not subject to the
limitations on the nature of the Hamiltonian, is proposed in
Ref. 23.

4.1. Adiabatic approximation for the ionization process

Inclusion in the adiabatic approximation of transitions
to a continuous spectrum requires a radical review of the
formalism employed earlier. In this case the selection of the
basis for expansion of a nonstationary wave function ¢ (r,)
is no longer a trivial task. In the standard total basis of adia-
batic functions in discrete and continuous spectra the secu-
lar Schrodinger equation of Eq. (1.1) reduces to the Born—
Fock integrodifferential system. The shortcoming of this
system of equations is that when one of the levels merges
with a continuous spectrum, the system loses the corre-
sponding equation and becomes meaningless. This short-
coming can be avoided if we select as the basis a set of wave
functions of bound, quasistationary, and virtual states of an
instantaneous Hamiltonian. Such a basis is purely discrete
and complete in the sense of the Mittag-Leffler expansion.**
However, fundamental difficulties are then encountered be-
cause of the breakdown of unitarity in the dynamic system of
equations. Both bases are unsatisfactory also from the point
of view of physics, because they ignore the delay of a nonsta-
tionary wave function relative to the eigenstates of the in-
stantaneous Hamiltonian. This delay occurs because a wave
packet of emitted electrons escaping to infinity in the limit
{— oo is causally related to the nature of the Hamiltonian not
at a given moment of time but at the moment at which the
ionization has taken place. When dealing with transitions
between bound states the delay is unimportant because of the
localization of a nonstationary wave function at the nuclei.
This explains why the following expansion of a nonstation-
ary wave function is selected in Ref. 23:

v, =" S 20 (E) §p (r, E)e-iEtQE, (4.2)

p L

where 7 is replaced with E in the adiabatic functions ¢, with
the aid of the functions r,(E) which are inverse to E, (7);
the integration contour L has simply to satisfy the condition
of vanishing of the integrand at its ends. Integration with
respect to the energy in Eq. (4.2) makes it possible to allow
in a natural manner, as shown below, for the delay of a wave
packet of electrons formed as a result of ionization.

The secular Schrodinger equation of Eq. (1.1) assumes
the following form (7 = v¢) after substitution of the expan-
sion of Eq. (4.2):
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[ 7 @B, E)e B 0y, B)em B dE=0.
g (4.3)

This equation does not include the whole Hamiltonian but
only its time-dependent part ¥ (r,7). Multiplying Eq. (4.3)
by (iet) and integrating with respect to time, we obtain

NV (r, 1)) gp(e) @p (r, €)
P

=2 {7 Ve etmopr etmdv,  (44)
P L

which can be used to find the functions gP(E) and is an
analog of the Born—-Fock system of equations { we have here
v=(E—¢€)/vand 7 (r,v) is a Fourier transform of the
time-dependent interaction V(r,7)]. The asymptotic forms
of the solutions of this equation with respect to v, corre-
sponding to the initial condition (1.3), are'”
_E
gp(E)=exp (L (0@ de), p=q,
E
=uvnp (E) exp(lT S 9 () de) s PF

4.5)

where 8(E) and 7, (E) are the final functions in the limit
v—0. The structure of the asymptotes in Eq. (4.5) is such
that in the first and second approximation the states with
p#4q make no contribution to the nonstationary wave func-
tion and the solution g, (E) obtained in this approximation

is?*

E
dt,

8B =N ()" exp (5§ w(erde)

L]
EQ

(4.6)

so that the nonstationary wave function of Eq. (4.2) can be
described by the following expression which is accurate to
within corrections linear in v:

vir, =N § (=) ogtr, B)
L

E
X exp (Lv S T, (8) ds——iEt) dE; 4.7)

00
Eq

here, N is the
=lim,, __E, (7).

The functions 7, (E) and ¢, (r,E) in Eq. (4.7) repre-
sent an analytic continuation throughout the complex plane
of £ and carry information not only on the state ¢, , but also
on all the adiabatic states linked to this state by the branch-
ing points of Eq. (2.1), i.e., it carries information on all the
states of a given symmetry. The limiting values of the level
energies E * are real branching points of the integrand in Eq.
(4.7). If we specify the rule for going around these points, we
automatically specify the initial state. For example, if the
integration contour L( — o, + ) goes around above all
the branching points (except E ;) and below the point in
question (Fig. 5), then in the limit f— — oo this contour can
be shifted to the upper half-plane (contour L ' in Fig. 5) and
the integral can be calculated by the saddle-point method.
The saddle point E is found from the condition

normalization factor and E7
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FIG. 5. Contours of integration with respect to E in an expression for a
nonstationary wave function given by Eq. (4.7).
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T (E) —vt =0

and it tends to £ in the limit - — . Consequently, the
initial state for the solution of Eq. (4.7) selected in this way
is

Y (r, t) = N (2mw)12 @, (r, EY) e'iE’Tt,

and hence the normalization factor is N = (27v) ~ '/~

In the case of a nonstationary wave function of Eq.
(4.7) adelay occurs in a natural manner for high values of r
where in the limit 1— + o there is a wave packet of the
emitted electrons. In this case the large parameters in the
integrand are r, v ', and ¢, and in calculation of the integral
with respect to E by the saddle-point method the saddle
point E is found from the equation

r QE)y V2 4 (1, (E) — vt)v! = 0, (4.8)

in which the first term is taken from an asymptote for the
adiabatic wave function ¢, «exp[i(2E)'*r]. Interpreta-
tionof Eq. (4.8) is quite clear. It shows that a wave packet is
formed from electrons that are created at a moment
= 7, ( E)/vat afinite distance 7~ 1, when an adiallatic state
@, (r,E) is characterized by a momentum k = (2E)'/* and
as a result of free propagation with this momentum the pack-
et travels to a distance r = k(¢ — t). Therefore, at a moment
¢t the wave packet in question depends on the adiabatic state
and on the nature of the Hamiltonian at the moment ¢ of
detachment of an electron with a momentum k.

4.2. Energy spectrum of electrons

The energy distribution of electrons formed as a result
of ionization is obtained from Eq. (4.7) as follows. An inte-
gral with respect to £ in Eq. (4.7) is divided into two parts:
the first in the interval — « < £ <0 and the second in the
interval 0 < E < oo. The first integral corresponds to that
part of a nonstationary wave function which is localized near
the nuclei and this follows from the exponential fall of the
adiabatic wave function @, (r,E) away from the nuclei in
this range of energies. In the limit /- oo this integral can be
calculated exactly by the saddle-point method and it is equal
to the sum of the contributions of the saddle points £ cor-
responding to occupied atomic states. The probability of
g—p transitions obtained in this way is identical with the
Landau-Zener probability and, therefore, this approach in-
cludes, as a special case, nonadiabatic transitions between
bound states. The second integral
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X exp (17 7, (e) ds—iEt)] dE

ngu s |

(4.9)

represents in the limit - o« a wave packet (w.p.) of free
electrons formed as a result of ionization. The adiabatic
wave function in this integral describes a particle traveling to
infinity with a momentum & = (2E) '/ and this function can
be written in the form

@q (r, E) = Cq (E)xq (r, E), (4.10)
where y, (r,E) is an adiabatic wave function normalized to
the & function on the energy scale E [see also Eq. (2.4)].
Substituting Eq. (4.10) into Eq. (4.9), we obtain ¢, , (r,?)
in the form of an expansion in terms of the normalized func-
tions of the continuous spectrum y, (r,E), and this leads
directly to the following expression for the probability den-
sity of the electron energy distribution:
Py(E) = o %cg(E) eXp(—i S T,(e) de) | (4.11)

v
Eq

We can see from Eq. (4.11) that in calculating the ener-
gy spectrum we need to know the function 7, (E), which is
the inverseof £, () in the case when E > 0. In discussing the
ionization process it is more usual to employ directly the
function E_ (7), which specifies the position and width of a
quasistationary state as it merges with a continuous spec-
trum. Generally speaking, the two functions carry equiva-
lent information about the system. However, the energy
spectrum is not governed by the values of £ (7) with real 7,
but by the values of 7, (E) for real E>0."" Since Im 7,
(E)#0 when E> 0, the two functionally related sets {E,7}
are different. The functions 7,(E) describe the situation
more satisfactorily than do £, (7). For example, in the case
of real values of 7, the latter do not contain information on a
continuous spectrum of virtual states of the system, where
the energy is negative. In addition to 7, (E), the distribution
described by Eq. (4.11) includes also a factor C } (E) which
represents the density of states. This is not a complication of
fundamental importance, because both functions 7(E) and
C(E) are found from the same spectral problem. In the case
of short-range potentials the functions R(E) [which are
used to describe 7(E) for given paths of the nuclei] and
C(E) have low-energy asymptotes®>¥;
if / =0, then
R (E) = R, + iEV* (V2M), C®(E) = 8aE,
if 1 0, then
R(E)=Ry+ [ E + 4 a 2B) wm | a1,

C2(E)=2na} (2E)+/D,

where A and a, are constants defined in Egs. (2.16) and
(2.17). The simple approximate expressions are very useful
in practical calculations, since the spectrum of electrons cor-

responding to low values of v is concentrated at low energies.
Among systems with the Coulomb long-range interaction
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the most detailed investigations have been made in the case
of two Coulomb centers. This problem of two centers will be
discussed in the next section, where we shall give both ap-
proximate expressions for the quantities governing the elec-
tron spectrum [Egs. (5.7) and (5.8) ] and the results of ex-
act numerical calculation (see Figs. 9 and 10 below).

An example illustrating the application of this theory is
shown in Fig. 11b, which gives the differential (in respect of
the energy) ionization cross sections o'(E) for the
He + H* ~He™ 4+ H™* + e reaction taken from Ref. 47.
This ionization process occurs simultaneously in three chan-
nels (mechanisms of which will be discussed in the next sec-
tion) and for each channel there is a certain range of energies
E where a given mechanism predominates. A calculation of
the cross section o’ (E) was made using Eq. (1.4) with
P(E;p) of Eq. (4.11) in the rectilinear transit approxima-
tion. The functions C(E) and R(E) were taken from the
solution of the problem of two Coulomb centers with effec-
tive charges for the appropriate one-electron molecular orbi-
tals. It is clear from Fig. 11b that the total theoretical cross
section is in good agreement with the experimental results
(the experimentally observed oscillations in the region of 40
eV are related to the autoionization resonances of helium).

The asymptote of Eq. (4.7) breaks down in the vicinity
of extremal points E, of the term E, (R), where 7, (E)
~7,+ const-(E — E,)"'* and the preexponential function
in Eq. (4.7) becomes infinite. Here, we can separate and
solve a standard equation which in this case is the Airy equa-
tion. Consequently, the uniform asymptote g, (E), which is
valid in the vicinity of E,,, can be expressed in terms of the
Airy function Ai(x) and is of the form™

¢ 2 drg1/2 ;3 1/6
LB = () (30r®)

xexp(—p (ED) Al ({50®)7)

where
. E
h(E)=— S 7, (e) de.
Ep

Away from the point £, the Airy function generally reduces
to a superposition of two exponential asymptotes of the
(4.6) type. This may give rise to oscillations in the energy
spectrum, reflecting interference of electrons emitted as a
result of approach and repulsion of nuclei. Similar oscilla-
tions, first discussed in a model approach,** have recently
been observed experimentally.*® In addition to extremal
points E,, the asymptote of Eq. (4.7) breaks down in the
vicinity of the limiting points E ), where 7,(E) becomes
infinite. In principle, the behavior of g, (E) in a small region
of size £ surrounding a point £ ;* can be obtained by compar-
ing the known behavior, in the limit - — «, of a nonsta-
tionary wave function

t

¥ (r, )~ gq(r, EQ)exp (—i | B @) ar')

with the representation given by Eq. (4.2). However, there
is no need for this refinement, because in an analysis of a
nonstationary wave function after a collision it is sufficient
to consider large but finite internuclear distances for which,
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on the one hand, there are no longer any transitions, and, on
the other, the saddle points corresponding to populations of
the term E_(7) do not fall within the region ¢, the size of
which tends to zero in the limit v - 0.

5.LEVELS IN THE PROBLEM OF TWO COULOMB CENTERS

In the asymptotic theory adopted above the energy lev-
els (terms) are assumed to be known and the problem of
merging of these terms with the continuous spectrum and
the reasons for quasicrossing are not discussed. We shall
consider these reasons now in the specific case of two Cou-
lomb centers as a problem of the same fundamental impor-
tance in the theory of atomic collisions as the problem of the
hydrogen atom is in atomic physics. The levels and matrix
elements of the nonadiabatic coupling are usually discussed
by investigating their behavior for real values of R. Such
information is sufficient in numerical integration of dynamic
tight-binding equations in the adiabatic representation.
However, in the asymptotic approach the probabilities of
inelastic transitions are expressed in terms of the character-
istics of the levels in the complex plane of R and one should
rather speak of positions of branching points and of the gen-
eral analytic structure of the levels. This is the approach
which will be adopted here to deal with the problem of two
Coulomb centers and an electron (Z,eZ,). A study of this
system for real values of R has in the past led to the discour-
aging conclusion (see, for example, Ref. 36) that in the sym-
metric case Z, = Z, there should be no quasicrossing what-
ever, i.e, in such quasimolecules as H," the inelastic
transitions cannot be described by the adiabatic approxima-
tion (apart from rotational transitions in the case of close
collisions discussed in Sec. 3). Then only a direct numerical
calculation of levels in the complex plane of R for the sym-
metric case gives a series of branching points, which can be
regarded as a new type of quasicrossing called ‘‘latent” qua-
sicrossing.”**** Such quasicrossings explain not only the
transitions between bound states, but also for the ionization
process for which there has been no well-grounded mecha-
nism in the one-electron approximation.

The nonsecular Schriodinger equation for two Coulomb
centers

1 z z
(—TA— |r—lnl| h |r__2n,| )%=Eq(R)% (5.1)

admits, as is known, separation of variables in prolate spher-
oidal coordinates (r; = [r — R;|):

_ r1+Te —T1—rs — t z
E=—2gt, n=—%x"+., ¢=arctg,
1<t <o, —IKKt, 0o <2,

Substitution of the wave function
¢q () =& — 1) (1 — )I"V2 FE)D(n) '™

in Eq. (5.1) yields the following equations for the functions
F(&) and ©(7) (Ref. 36):

d2F (§)
dgz( +[ - §2—1 + (E2—1)2 ]F(E) ’

42 n—>2 1—m
dng_n) ‘*‘[ P+ in—n’ T —n)E ]CD('q)=0, (5:3)

(5.2)

where p=(—2E)'R/2 a=(Z,+2Z)R b=(Z,
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— Z,)R; A isthe separation constant. In the classification of
levels it is usual to employ spherical quantum numbers
Q = (n,l,m) of a compound hydrogenic atom with energy
levels that reduce to terms in the problem of two Coulomb
centers in the limit R - 0. They are related to the number of
zeros (k, ¢, and m) of the wave function in terms of the
variables £, 7, and ¢ (Ref. 36): n=k+qg+m+1,
! = g + m. In the case of / and m we shall employ also the
spectroscopic notation: / =s,p,d,... instead of /=0,1,2,...
and m = o,7,0,... instead of m = 0,1,2,... .
In the problem of two centers there are two nontrivial
parameters which are the internuclear distance
= |R, — R,| and the ratio of the nuclear charges Z, /Z,.
We shall consider first the symmetric problem Z, = Z,. In
this case the states are of specific parity relative to inversion
in the system of coordinates with the origin in the middle of
the internuclei axis and are divided into even (g states) and
odd (u states). Clearly, the terms with different values of m
or different parity do not have common branching points,
since the exact symmetry of a state cannot change as a result
of continuous variation of R. Figure 6a shows the branching
points of the terms 1so, (#=1,/=0,m =0) and 2po,
(n=2,/=1,m =0) of a molecular H," ion obtained as a
result of direct numerical calculations.***° It is clear from
this figure that all the branching points can be regarded as
belonging to S and T series.

~

ImR /
196 -546,
oL (156 -5g )/
(2p6—4t6)
a /
S (156-3d6)¢
/
S. /
5.6 05p5
ReR
ImA /18- 5g6) /756‘2,06)\
l [156-2p6hk,
(2p6- 4f6) ‘> -
b sk /7;5 ~2psjeg 7 7
/7.;&-3;15), /
/ [156-2p6)
S, tA
5.5 .Sp6 |
5 % FeR
Wntm n't'm
a,2¢
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[o]
1 I}
0 ‘ 70 R
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FIG. 6. Branching points of the terms lsgand 2pofor Z, = Z, =1 (a)
and Z, = 1, Z, = 1.001 (b), and the matrix elements of the nonadiabatic
coupling for the H,' molecularion (c¢). In Figs. 6a and 6b the expressions
in parentheses give the quantum numbers of the terms associated with a
given branching point. The black trianglesin Fig. 6b identify approximate
positions of the branching points of the P series calculated in the Rosen—
Zener-Demkov model.

E. A. Solov'ev 240




£(R)

0.6

2p6

FIG. 7. The surface Re E(R) (a) and a system of adiabatic
(continuous curves) and diabatic (dashed curves) terms (b)
in the S series region of the H,' ion. A rectangular box
marked by a chain line represents the front cut of the energy
surface in Fig. 7a.

5.1.S series of latent quasicrossings. Superpromotionofa
diabatic level

The series S,,, consists of an infinite set of branching
points R, linking pairwise the terms E,,,, (R) and E, _ ,,
(R) consecutively for all values of n»/+ 1. The points in
this series are localized in a small region € of the R plane (on
the scale of Fig. 6 they merge) and have a limiting point

R, = lim R,.
o0
In the vicinity of the region € (but not inside it) the energy
surface is in the form of a corkscrew with a pitch decreasing
in proportion to n = * (part of the corkscrew is shown in Fig.
7afor the S, series). If in a given S series we assign a quasi-
crossing to each branching point and then replace such qua-
sicrossings with the exact crossings, we obtain a system of
what are known as the diabatic terms, which represent qual-
itatively possible directions of nonadiabatic transitions (Fig.
7b). Itis clear from Fig. 7b that all the diabatic terms, except
forone (W,,, ), rise monotonically. The diabatic term W, is
identical, at high values of R, with the lowest adiabatic term
of a given series and then on reduction in R it bends steeply
upward and joins a continuous spectrum at R¢ =Re R .

d e

' @ oz
@ | .

Q) -

This behavior is known as “superpromotion” (see also Fig.
3c). The possibility of evolution of a system represented by
the diabatic term W, is what accounts for the process of
ionization in the adiabatic approximation.****

The appearance of aseries S, of latent quasicrossings is
associated with the modification of the electron wave func-
tion in the vicinity of the point Rs, so that it changes from the
one-center geometry of a united atom to the two-center ge-
ometry of a quasimolecule (Figs. 8a and 8b). An approxi-
mate analysis of the problem of two centers based on this
representation yields a simple and fairly accurate analytic
expression for the limiting point which sets the position of

the S series™’:

Rz (14 £y

wifmt)[2 (14+5) =g m+02]"} (54
The complex quantity R _ is of major practical importance.
Its real part determines the range of the impact parameters
for which we can expect nonadiabatic transitions involving
S,.. latent quasicrossings, whereas the imaginary part gives
the Massey parameter of the same transitions. Since the

FIG. 8. Qualilative representation of the regions of classically
allowed molion of an electron (shown shaded) in the following
ranges of the internuclear distance: a) O<R<R; b) Ry
<R<R;;c)R <R<R.;d) R, <R<R;;e) R, <R< .

e

Ry An Ay
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terms run almost parallel from the real axis R to the singu-
larity R _ (Ref. 34), the Massey parameter in Eq. (4.1) can
be approximated quite accurately by

Ap.psr = OEp pyy Im R,

where 8E, , , , is the splitting of the corresponding pair of
terms on the real axis when R = Rg =Re R .

The presence of the S,,, series can also be used to inter-
pret the limits of validity of the compound atom approxima-
tion given by Eq. (3.9). The expansion postulated in this
approximation is used widely in applications, but initially it
has not been clear why in some cases it describes satisfactori-
ly the real behavior of the terms (energy levels) at fairly
large distances, whereas in other cases its range of validity is
exceptionally narrow. As is known, this range of validity is
governed by the distance to the nearest singularity. In the
united atom approximation these singularities are in fact the
S series and for them the distance to |R | depends strongly
on/ [in accordance with Eq. (5.4) ], so that in the case of the
H," molecular ion it amounts to 17 a.u. for the h state
(! =5) and is only 0.5 a.u. for the s state. Another manifes-
tation of the S series is the presence of a minimum in the case
of the terms with / > y/3m , when these series are quite close to
the real axis of R. Figure 7a illustrates the formation of a
minimum of the terms 3po and 4po under the influence of
such a series, which makes the energy surface screw-like and
displaces downward the terms in the interval 0 < R <2R .

5.2.T series of latent quasicrossings. Boundary of the
quasimolecularregion

Figure 6a shows not only the S series but also a series of
branching points in the region of Re R =5 a.u. Merging of
the branching points of the 1so, and 2po, terms into one
series is related to the exponential degeneracy of these terms
in the limit R — «. In the symmetric case (Z, = Z,) all the
terms split into such (g,u) pairs for which the g state be-
comes a sum in the limit R — 0 and the u state becomes a
difference between the hydrogenic states of isolated atoms
(Z,e) and (Z,e), which have the same set of quantum
numbers [#,n,m]. The quantum numbers of the united
atom introduced above are related to the latter by

1
q=2n, — 5 [(=1)"—1],

n=qg+n;-+~m-+1 (gstates),

g=2n, + 5 [(— "+ 1],

n=q+n;+m-+1 (ustates).

Calculations reported in Ref. 49 indicate that for each pair
there is a series of branching points T, ,, ,, shared with high-
er terms. These series are described by approximate relation-
ships illustrated in Fig. 6a. All the points of a given series are
located on a straight line which is almost perpendicular to
the real axis of R and they are separated by steps
AR=2min_/Z (n, =n, +n, +m+ 1 is the principal
quantum number of an isolated atom Z,e). The branching
points for the g and u terms alternate and they link states of
the same parity with identical values of /m and of the quasira-
dial quantum number £.
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The appearance of the T, , , series is due to the shift of
a pair of the (g,u) terms to the top of the barrier in the
effective potential of the quasiangular equation (5.3). The
value of the internuclear distance R, at which an energy
level reaches the top of the barrier is given by the position of
the T series on the real axis of R, so that we can obtain esti-
mates using an expression

Rr = 8n.Z 1 (2n, + m + 1), (5.5)

which is obtained in an approximation of high values of R.
The presence of the T series reflects, as in the case of the S
series, a qualitative modification of the adiabatic states: if
R <R, an electron moves in a shared potential well of two
centers and its wave function is essentially quasimolecular
(Fig. 8b). If R > R, the ranges of classically allowed mo-
tion of an electron near its nucleus are separated from one
another by a barrier and in this case the wave function can be
represented approximately by a superposition (symmetric
or antisymmetric) of the wave functions of two isolated
atoms Z, e and Z,e (Fig. 8c). Therefore, Ry is the limit of
the essentially quasimolecular region on the side of high val-
ues of R. On the other hand, R is the limit of validity of
asymptotic expansions for energy levels expressed in terms
of the reciprocals of R.

5.3. P series of latent quasicrossings. Rosen-Zener-Demkov
interaction

IfZ, #Z,, wefind that the exact (g,u) symmetry is lost
and additiona! series of branching points appear. Figure 6b
shows the branching points of the terms 1so and 2pe in the
case when Z, =1 and Z, = 1.001. In addition to the S,
S,,, and Ty, series, we now have a new series of branching
points (Pyy ) in the region where R = 10 a.u. It is related to
the Rosen—-Zener-Demkov interaction and it has been al-
ready discussed qualitatively in Sec. 3 in connection with
quasiresonant charge transfer. Such series match pairs of
terms given in the preceding subsection when dealing with
the T series. However, in the present case these pairs are no
longer degenerate in the limit R - o, but have a resonance
defect

§= (21— Z%) (2nL)

and correspond in this limit to parabolic hydrogenic states
localized at different nuclei. The branching points of the
P, ... series can be found approximately by equating to zero
the radicand in Eq. (3.18) if the exchange interaction w(R)
is described by the asymptotic expression valid in the limit
R — « for the problem of two centers with identical nuclear
charges™":

 2QR/ne)"™ MM exp [ — neo — (R/1w0)]
w (R) - n3 nyl (g4 m)! :

The results of such a calculation are represented by triangles
in Fig. 6b and we can see from this figure that they agree well
with the exact values.

The series labeled P are related to breakdown of the
approximate (g,u) symmetry. To the left of this series
(R <R,) we can ignore the resonance defect compared with
the exchange interaction so that the situation is close to the
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symmetric case when Z, = Z,, i.e., the adiabatic wave func-
tions have an approximate (g,u) symmetry (Fig. 8¢). To the
right of the series (R >R, ) the dominant influence comes
from the resonance defect while the approximate symmetry
disappears and the state is localized at one of the nuclei ( Fig.
8d). Inthelimit Z, - Z, the P series shift along the real half-
axis of R to infinity and the (g,u) symmetry becomes exact.

When the difference between the charges increases, the
S and T series are initially unaffected, but the P series shifts
as a whole to the left and at some value AZ=2, - Z, it
merges with the T series. This results in disappearance of a
series of branching points characteristic of the Rosen-
Zener-Demkov model and the model itself is no longer val-
id. For example,*” in the case of a pair of the 1so and 2po
terms this occurs for Z, = | and Z, = 1.07. It is worth not-
ing the fact that the Rosen—-Zener-Demkov coupling disap-
pears when the resonance defect 6 is very small, amounting
to just 1/7th of the distance to the next multiplet.

5.4.1solated Landau-Zener quasicrossings

In addition to the above-mentioned series of branching
points, the problem of two centers is characterized by isolat-
ed pairs of conjugate branching points R, and R * in the case
when Z, #Z, and R> R, (or R> R, when the T and P
series merge); these isolated branching points are associated
with the usual quasicrossings between adiabatic states locat-
ed at different nuclei and are characterized by parabolic
quantum numbers: n, n,, m for the Z, nucleus and n;, n;,
m’ for the Z, nucleus; here, n, =n}, n,#n;, m = m'.
These quasicrossings have long been known and are widely
used in calculations dealing with specific processes.*® The
minimum separation between the terms AE ., is then deter-
mined by a subbarrier exchange interaction so that quasi-
crossings are narrow and well defined (Fig. 1) and the Mas-
sey parameter can be calculated using the Landau-Zener
approximation®>:

A=nAELn (4AF)t, (5.6)
where AF = |F, — F\| is the difference between the slopes of
the corresponding diabatic terms at the point R, = Re R...
InEq. (5.6) wecanreplace AE_,, and AFby their asympto-
tic values corresponding to high values of R. The asymptotic
expressions for AE,_;, have been obtained by semiclassi-
cal’*> and quantum®*** approaches. They all ensure the
same precision of the order of 10%. The most compact
expression is of the form*™

ny+n,+m+1
\E AEq (4p1) "2 "™ exp (—2pp)

™R Tl md (g - m)! (g m)1 )1 /2

where

p1=% (—2E)V* Ry, ni=n]+n;+m 4L

The values of E,, R, and AF are usually obtained from an
expansion of terms in reciprocal powers of R (Refs. 52-55):

_ (Z—2Zy? _ 2(2,—2y)
E 2 (ny—n3)? = (Zainl )y —(Zi/n)®
A _ ZZ_ZI
AF— _-Ri— .

The passage through an isolated quasicrossing is also
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accompanied by a qualitative change in the adiabatic states.
For example, if R < R|, a state is localized at the Z, nucleus
(Fig. 8d), whereas for R > R, this adiabatic state is now
located at the Z, nucleus (Fig. 8¢) and vice versa.

Thus, the nonadiabatic transitions occur whenever a
change in the internuclear distance causes a qualitative
modification of the adiabatic state, i.e., when the topology of
the range of classically allowed motion of electrons is modi-
fied. One may gain an impression that the S, T, and P series
of branching points play no role in the theory of nonadiaba-
tic transitions, because they are not manifested prominently
in the behavior of the energy terms corresponding to real
values of R. This is not true. According to the general
asymptotic theory, any branching point is related to the
transition probability of Eq. (3.8), which naturally can de-
crease on increase in the distance of a branching point from
the real axis of R. The range of a strong interaction of adiaba-
tic states may not be manifested in the pattern of terms corre-
sponding to real values of R (as is true of terms in the Rosen—
Zener-Demkov model). A more illuminating object is rep-
resented by the matrix elements of the nonadiabatic cou-
pling wy,, (R). Figure 6¢c shows the matrix elements w,,.
(R) obtained in Ref. 56 for the H,” molecular ion. It is clear
from this figure that they have clear maxima at the points
where the S and T series are located (compare with Fig. 6a),
although such regions are not distinguished in any particular
case in the behavior of the terms themselves (Fig. 7b).

Latent quasicrossings are wide and are characterized by
relatively large values of the Massey parameter A. Transi-
tions due to these quasicrossings become noticeable when
the collision velocity v is sufficiently high. This raises the
problem of the limits of validity of the adiabatic approxima-
tion. There is no rigorous quantitative criterion, but the ex-
perience in using the adiabatic approximation makes it pos-
sible to hope that this is justified up to the maximum of the
cross section of a given transition, i.e., v < A.

5.5. Quasistationary and virtual states

Antibonding (quasistationary and virtual ) states in the
problem of two Coulomb centers have not been investigated
until recently. This has been primarily due to the absence of
an obvious effective barrier in the quasiradial equation (5.2)
because quasistationary states are usually associated with
the presence of a barrier. However, in calculations of the
parameters of the ionization process in the adiabatic approx-
imation the question of existence of such states appears una-
voidably because the function R(E) in the range £>0 is
associated with these states; calculation of this function re-
duces to calculation of the function 7(E) governing the ener-
gy spectrum of electrons [Eq. (4.11)}. The results of such
investigations are also of general theoretical interest since,
because of the long-range Coulomb interaction, we cannot
use the general ideas from the S-matrix theory and the situa-
tion is unclear even in the qualitative sense.

The antibonding terms were discovered in the problem
of two centers and investigated in a study reported in Ref, 57.
The following numerical calculation method was used to
find these terms. Initially, a branching point R, which at
this stage is common with the as yet unknown antibonding
term £, (R), is being sought on a discrete term £, (R).
Then, going around this branching point results in a transi-
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FIG. 9. Paths of the poles of the § matrix in the complex plane of the wave

number & for antibonding states 2po, 3do, 4fo, and 5go of the H,'
molecular ion. The values in the parentheses give the internuclear dis-
tance.

tion to a sheet corresponding to the antibonding term [see
the discussion of Eq. (2.1)] and on return to the real axis of
R, we calculate the antibonding term E,, (R) for real values
of R. Classification of antibonding terms is governed by the
method of finding them: they are assigned spherical quan-
tum numbers of the discrete term, with which they share a
branching point R, and they are identified by a bar above the
quantum numbers: (nlm).

From the point of view of investigation of the ionization
process it would be of interest to consider those antibonding
terms which adjoin the series S, resulting from “‘superpro-
motion” of the diabatic term W,,, to acontinuous spectrum.
Figure 9 shows the results of a numerical calculation of such
antibonding terms for the H,* molecular ion in the form of a
standard pattern of S-matrix poles in the complex plane of
the wave number k£ = (2E)'’?. They share the branching
point R, with the lowest, in the given S, series, discrete
term E, ,,, (R) (n, =1 + 1). Moreover, they have a second
branching point which coincides with the limiting point R
of the S series [Eq. (5.4) ]. The positions of the poles depend
on the internuclear distance and when R is varied, they shift
along a path resembling a hyperbola with its vertex on the
imaginary axis of & at a point

ky~iZ (1+5) 7.

A qualitative feature of this situation is that the sym-
metric poles merge for k&, 0. In the case of the short-range
potential such a situation is possible only for the s states,
whereas for / 70 the poles always merge at the point k =0
(Ref. 30). Such a deviation from the known behavior is due
to the fact that the S matrix has a strongly singular point at
k = 0 (associated with the Rydberg increase in the density of
states) from which an isolated pole may split off as the pa-
rameters of the Hamiltonian are varied. In the limit R — O the
poles are displaced to infinity and eventually all the poles
disappear from the lower half-plane of &, as expected for the
one-center Coulomb potential.**

As pointed out already in Sec. 4, in calculations of the
energy spectrum of electrons we need not the antibonding
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terms E, (R) themselves, but the functions R , (E)

which are inverse to them in the range E>0. Figure 10
shows, by way of example, the results of rigorous calculation
of the real and imaginary parts of R(E) and also the densi-
ties of states C *(E) for several ionization channels W,,, of
the molecular ion H *. In the semiclassical approximation
the following explicit analytic expressions®® are obtained for
these quantities.'?’

Engim (B) = {1+ 4 )* ~ZR—L (m+ 1y

+i(m41) [8 (l+%)2—GZH_IZ—9(m+1)2:|”2} ,
(5.7)
Cf,oz,,.(E)=2n(%)—1exp{2i[6—|—v(1—lnv)]}, (5.8)

where

E * 2
5= lim[g (e ,'r%)"‘ dE—e(E— 1) — 2 In 2E |
31
1

=i ()

_ a a? Ao\ 12 R
b= —gmt (gt tit) " e=Ep g

Although these expressions are obtained in the approxima-
tion of large values of /, we can see from Fig. 10 that they
agree satisfactorily with the results of a rigorous calculation
evenfor / = | inthe most important range of low values of E.

At high values of / the poles of the S matrix are located
near the real axis of k¥ (see Fig. 9) and, consequently, they
correspond to quasistationary states. In this problem the
quasistationary states are not subbarrier resonances, but are
associated with the capture of a classical particle by an un-
stable equilibrium state on the internuclear axis, which oc-
curs for m = 0 when the separation constant A(R) passes
through the value a=ZR (Ref. 58). In this case the scatter-
ing occurs so that the path of a particle approaches asymp-
totically the internuclear axis and reaches this axis in the
limit z— o after an infinite number of oscillations of the
quasiangular variable 7. Such paths, resulting in the capture
of a particle, have been discussed for the problem of two
centers in celestial mechanics back in the last century.

An example of a practical application of the results ob-
tained in the present section is a calculation of the energy
spectrum of electrons formed as a result of ionization of heli-
um by protons, demonstrated in Fig. 11b. This figure had
already been discussed at the end of the preceding section as
an illustration of an asymptotic theory of transitions to a
continuous spectrum. Here, we shall consider the mechanics
of this process. In the approximation of one-electron orbitals
the energy of the ground state of helium represents the limit
of the 1so term of the (HeH) * quasimolecule in the limit
R — . Nonadiabatic transitions from this term are possible
only as a result of latent quasicrossings and, in particular,
the ionization process proceeds as follows*’: as the nuclei
approach, the terms 2po and 3do are populated first via the
T series, which is located at R =~ 2 a.u., and then ionization of
the quasimolecule occurs from the initial 1so term and it
involves three diabatic terms W, W __, and W, , which

SO po?
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FIG. 10. Real (a) and imaginary (b) parts of R(£), and the
density of states (c) for several antibonding states of the H,'

merge with the continuous spectrum. We can see from Fig.
11b that all three ionization channels have to be allowed for
in explaining the experimental results. Figure 11a shows the
total ionization cross section of hydrogen by protons. In this
case the adiabatic basis of the problem Z eZ, discussed
above s exact and the ionization process occurs from equally
populated, in the initial state, terms 1so and 2po via the same
latent quasicrossings as in the ionization of helium by pro-
tons. The cross section is calculated from Egs. (1.4) and
(4.1) using the exact numerical values of the Massey param-
eters.

An analysis of the problem of two centers not only
makes it possible to reveal and understand different types of
latent quasicrossings, but also to obtain approximate expres-
sions'?’ given by Eqs. (5.4) and (5.5) and relating the pa-
rameters of such quasicrossings to the characteristics of the
quasimolecule and to the quantum numbers, which can then
be used to calculate latent quasicrossings for many-electron
quasimolecules in the approximation of one-electron orbi-

molecular ion. The dashed curves give approximate values of
R(E) calculated using the inverted expression (5.7) and
C(FE) calculated from Eq. (5.8). In the case of Re R(E) the
approximate and exact values merge on the scale of the figure
for all values of /.

tals. This applies also to the approximate expressions given
by Eqgs. (5.7) and (5.8) and describing antibonding states.

6.MODIFIED ADIABATIC BASES

Standard adiabatic wave functions are calculated on the
assumption that the nuclei are fixed, so that they are not
matched to physical boundary conditions in the limit R — .
This lack of matching is manifested in different ways de-
pending on whether the motion of nuclei in the full problem
is tackled classically or quantum-mechanically. In the quan-
tum approach these standard adiabatic functions suffer from
the fact that, instead of the reduced mass, they contain sim-
ply the electron mass,'*’ whereas the defect of the classical
approach is that the wave functions then do not contain the
Galilean translation factor associated with the motion of nu-
clei. Consequently, the matrix element of the nonadiabatic
coupling retains a constant component in the limit R - «
(Fig. 6¢), giving rise to undamped transitions between adia-

FIG. 11. a) Dependence of the total ionization cross sec-
tion on the collision energy inthe H+ H' -H' + H'
+ e reaction; the continuous curve is the adiabatic ap-
proximation while the dashed curve is the contribution of
the ionization channel W, and the points are the experi-
mental values.™ b) Differential (with respect to the ener-
gy) ionization cross section reduced to a unit solid angle
forthe He+ H' —He " + H ' + e reaction: 1) contri-
bution of the W, channel; 2) contribution of the W,
channel; 3) contribution of the ¥, channel; the contin-
uous curve is the total cross section in the adiabatic ap-
proximation*’; the dotted curve represents the experi-
mental results.**
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batic states. The problem of removal of these physically
meaningless transitions is most acute in numerical integra-
tion of the tight-binding equations in the adiabatic represen-
tation. When the asymptotic approach described above is
employed, it is assumed implicitly that the problem in ques-
tion has been solved and that there is no need to present the
specific procedure as to how this had been accomplished.

Several methods are now available for constructing
modified adiabatic bases, which are to a greater or lesser
extent matched to the physical boundary conditions for nu-
clei separated by an infinite distance.***’

6.1. Adiabatic basis matched to the boundary conditions in
quantum motion of nuclei

Following Ref. 65, we shall consider the solution of the
problem of the boundary conditions in the adiabatic repre-
sentation taking as an example the quantum three-body
problem (two nuclei A and B and an electron C). For simpli-
city, we shall consider only the case of zero total angular
momentum (J = 0).

The boundary conditions in the three-body problem
can be formulated naturally in terms of the Jacobi functions
which are selected depending on which pair of particles re-
mains in a bound state after removal of the third particle.
Then, in the case of reactions with a redistribution of parti-
cles we have to construct such variables which in asymptotic
regions of the configurational space corresponding to the
reaction channels A 4+ (BC), B 4+ (AC),and C + (AB) re-
duce to the Jacobi coordinates of their own channel (Fig.
12). In the three-body problem considered in the adiabatic
approximation it is usual to assume that the independent
variables are the radius vector R, connecting the nuclei A
and B, and the radius vector

r=x- (6.1)

where r is the radius vector of an electron calculated from
the center of mass of the nuclei.® These variables having the
required property are obtained if in the coordinates R and r'
we replace R with a new variable

R =n12R, (6.2)
where

2
a=1+-"0—, Mt=M3+ M3,

mt = Mg' +(Mx + Mp)™4

M, isthe mass of the ith particle. We can easily show® that in
asymptotic regions of the configurational space the variables
introduced in this way transform to the correct Jacobi co-
ordinates in each channel. When these variables are used,

r's T4

Rg

A+ (BC) C+(AB)
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the Schrodinger equation obtained after separation of the
motion of the center of mass and replacement of the three-
particle wave function F with a function

F = F2-12F

reduces to the form (Ref. 65)'%

01 =
R 2m O

+am V) F =87, (©3)
where V= F,p + Vac + Vye; V; is the potential energy of
the interaction of the i- and jth particles; # is the total energy
of the system of three particles after subtraction of the trans-
lational energy. Equation (6.3) retains all the specific fea-
tures of the initial problem, justifying the adiabatic separa-
tion of variables. In contrast to the standard approach, the
motion of the slow subsystem is described here by a variable
# and a modified Hamiltonian of the fast subsystem is

1 %

Hmod(‘%):—'mWAr"*“V- (6.4)

In accordance with the above properties of the new variables
# and r’ the Hamiltonian of Eq. (6.4) reduces in the limit
R — « to the exact Hamiltonian of an atomic complex in
each reaction channel. We shall demonstrate it by consider-
ing the example of the B + (AC) channel, when the B nu-
cleus moves to infinity and the particles A and C remain in
the bound state. In this limit we have to separate the coeffi-
cient x°/(2m2?) in front of the Laplace operator in Eq.
(6.4) into two factors. The first factor »# ~2 = R ~2, com-
bined with a variable r’ in the Laplace operator, restores the
initial length scale [see Eq. (6.1)] and the remaining factor
gives the correct reduced mass m, of the particles A and C
(Fig. 12):

mn“:m[1 +T’;i7 (rA—- WA:_BWR)Z] !

— (Mg' - M) t=m,.

Rr;’—»w

We then have V-V, . Consequently, the Hamiltonian of
Eq. (6.4) reduces to the exact Hamiltonian of the atomic
complex (AC) so that the modified adiabatic functions @,
(H,,wP, = E,¢,) are matched to the physical boundary
conditions, the matrix elements of the nonadiabatic interac-
tions tend to zero in the limit R — «, and the system of the
tight-binding equations decouples in this limit.

The modified basis {¢, } is characterized, apart from
the correct boundary behavior, by a number of additional
useful properties. The variables 7 and r’ are closely related
to hyperspherical coordinates.®® In these coordinates the

FIG. 12. Jacobi coordinates in the three-body problem. The ra-
dius vectors R, , r,and R, are measured from the center of mass
of a pair of particles (AC), (AB), and (BC), respectively.
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variable 7 acts as a hyperradius and the Hamiltonian of the
fast subsystem (6.4) corresponds to the angular part of the
problem so that its spectrum is purely discrete. The advan-
tages of a purely discrete basis, compared with a mixed one,
are obvious in numerical calculations and this is exactly why
the Sturm expansions are used extensively in atomic physics.
Moreover, the modified basis makes it possible to allow sim-
ply for a logarithmic singularity at the triple collision point
(% = 0).° This singularity is entirely due to the motion
along the hyperradius, so that in the adiabatic separation of
the variables in the coordinates # and r' it does not affect the
adiabatic basis itself, but is reproduced by the wave function
of the slow subsystem already in the one-level approxima-
tion.

Some improvements in the approach described here,
which are important in the case when J 0 and there is de-
generacy in the initial and final states, are discussed in Refs.
66 and 67.

6.2. Adiabatic basis matched to the boundary conditions in
classical motion of nuclei

In the classical approach the path R(¢) of the nuclei is
assumed to be known a priori and the behavior of an electron
is described by the secular Schrédinger equation in the cen-
ter-of-mass system of two nuclei 4 and B:

(=5 Bet-Vac(r+vaRI)+ Vac (e +vuR)) ) b =i 5,
(6.5)

whete ¥, =RM /(M +My), v, = — RM,/(M,
4+ M,;), R = R/R. The correct limiting states of the prob-
lem described by Eq. (6.5) represent the product of the wave
function of a bound state ¢ ;’(#;) at the jth isolated nucleus
(j = 4 or B) and the Galilean translation factor, which al-

lows for the motion of the nuclei®:

Y (r, ) —— oV (r)) exp[i (vjr,—%-zﬁt-—E;’t)] .

t—~ 00
(6.6)

where r; = r + ¥; R and v, is the velocity of the jth nucleus.
In the usual adiabatic basis its translation factor is missing
and this gives rise to serious computational difficulties in
integration of the tight-binding equations, which is known as
the momentum transfer problem. Several procedures have
been suggested for the solution of this problem (see, for ex-
ample, Refs. 60, 61, and 63). One of them, which we shall
consider here in the approximation of rectilinear paths of the
nuclei, is as follows.®' Instead of r we select a new variable

’ r

'=%0 (6.7)
and represent the wave function in the form
. R ,
Y= R"32exp (z r2R )f(r, 1, (6.8)

where the dot represents the derivative with respect to time.
Thefactor R ~**in Eq. (6.8) ensures that the normalization
is retained and the exponential function acts as a generalized
translation factor that allows for the change in the kinema-
tics on adoption of new coordinates in accordance with Eq.
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(6.7). Substitution of Egs. (6.7) and (6.8) into Eq. (6.5)
and the transition to a rotating reference system with the x’
axis directed along the internuclear axis yields the modified
Schrodinger equation for f(r',f):

afte’s 7)

INIf(r’, T) =1 T ;

~ 1
H= — 5 A+ RW o (R|F +9al)

+ RWpge (RIX 4 vg]) ol + 5 %, (6.9)
where @ = pv (p is the impact parameter and v = const is the
relative velocity of the nuclei), whereas the variable

t
vt

T= S A0 aretg 2

R2(t") ® P
plays the role of time. In terms of the new coordinates the
two potential centers are at rest and there is no momentum
transfer effect. When we go back to the original wave func-
tion, the correct translation factor is obtained automatically
from the exponential factor in Eq. (6.8). In fact, near a jth
center when R — oo we obtain the limiting expression

irzﬂ.‘
exp R
ir;j—y;RI?R ) 1
=exp ex [z(v r~——v2~t)],
2R T p =7l

(6.10)

which is identical with the translation factor in Eq. (6.6).

The use of Eq. (6.9) solves another problem in the
tight-binding method, namely the dependence of the transi-
tion probability on the selected coordinate system when a
finite adiabatic basis is used (see, for example, Ref. 63). We
can readily show that in a modified adiabatic basis @,
(H@, = E,@,) the transition probability is the same irre-
spective of whether it is calculated in the center-of-mass sys-
tem, in the laboratory reference system, or in the reference
system with a center at one of the nuclei, and this is true even
in the two-level approximation. All these reference systems
are distinguished, in terms of the new variables, by a shift
amounting to a constant vector along the x axis. Such a shift
transforms H and @, in a manner similar to the gauge trans-
formation in the magnetic field (see § 111in Ref. 35), which
leaves unaltered the Born-Fock system of equations in the
basis @,.

The transformations described by Eqs. (6.7) and (6.8)
are a direct analog of the transformations (6.1) and (6.2).
Representation of the wave function in the form of Eq. (6.8)
has the same meaning as introduction of a variable & instead
of R in a quantum-mechanical analysis of the behavior of the
nuclei. In both cases the electron part of the problem is cor-
rected by explicit and exact allowance for the motion of the
nuclei in the asymptotic range R — .

6.3.Isotope effects in the adiabatic approximation

One more case requiring modification of the adiabatic
basis appears when we discuss isotope effects. In the case of
diatomic quasimolecules, consisting of different isotopes of
the same chemical element, the exact symmetry breaks down
in the mutual transposition of the nuclei because their
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masses are different (M , #M g ). This gives rise to several
new effects not encountered in the case of symmetric quasi-
molecules. They are associated entirely with the quantum
nature of the motion of the nuclei so that at first sight they
cannot be calculated quite simply in the adiabatic approxi-
mation. A direct numerical calculation of the isotope effects
is far too time-consuming’' because of their smallness which
in turn is due to the smallness of the parameter
8§=M;"'— M, ' characterized by degree of departure
from symmetry (for example, in the case of the HD molecule
we have § = 1.4 10~ *). On the other hand, this smallness
shows that it is natural and necessary to develop approxi-
mate methods for the calculation of the isotope effects. Such
a problem was first discussed in the theory of molecules in
connection with calculations of the dipole moment induced
by the isotopic asymmetry of the nuclei.”>”7* The asymmetry
of the mass of the nuclei then reduces to the symmetry of the
potentials by introduction of special coordinates. In the the-
ory of collisions this approach has been used to calculate
quasiresonant charge transfer between mesic atoms with an
isotopic resonance defect.”

We shall consider introduction of the isotope effects in
the adiabatic approximation by discussing the case of three
charged particles with charges Z, =Z, =Z. = — 1 and
the masses M, , > M- = 1. We shall assume that R,, Ry,
and R,. are the radius vectors of the particles in the laborato-
ry reference system. We shall introduce coordinates of a spe-
cial kind (Ref. 75)'®

R, = (Re+ MR+ MgRgp) (1+ M, + Mp)™,
] i
q = o (/2 + /%) Ro— 5 (B/2Ra+ pY?Ra), (6.11)
Q= (ni/2— p¥*) Rc— (p}/*Rs —p}/*Ry),
wherepy, '=14+M ' ug ' =1+ My '. Afterseparation
of the motion of the center of mass using the variable R, ,

we find that the exact three-particle Hamiltonian has the
following form in terms of these coordinates:

G = — o 1+ (uape) 2l Aq— (1 — (ape)¥2l Aq

_ ud/?Z, _ pE/%2p
g+ (Q/2)] lqa—(Q/2)]
+ (pavp)i/? ZazZp (6.12)

el 2+ Q2+ Y2 —piDHaq) °

If we ignore temporarily the dependence of the internuclear
interaction on q [ represented by the last termin Eq. (6.12)],
we can easily see that the Hamiltonian (6.12) is exactly the
same as the Hamiltonian of an effective three-particle system
composed of a “light particle” with a mass
m* = (uapp) =1 and two “heavy particles” with identi-
calmasses M * = [1 — (uaiy)'?]17'>1; then, qand Q are
the Jacobean coordinates of such an effective system. There-
fore, if M, #My and Z, = Z, = Z, the transformation of
Eq. (6.11) converts the asymmetry of the masses of heavy
particles into the asymmetry of charges: Z<" = uy’Z and
Z" = ul/2Z, 5o that after adiabatic separation of the motion
of the “heavy particles™ using the variable Q, we have the
problem of two Coulomb centers with isotopically different
charges. An allowance for the dependence of the internu-
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clear interaction on q gives rise to an additional asymmetry
in the effective *“light particle’ potential.

The transformation described by Eq. (6.11) greatly
simplifies calculations of the isotope effects because it makes
it possible to reduce the asymmetry of a quasimolecule to the
asymmetry of modified adiabatic states which can then be
allowed for within the framework of perturbation theory us-
ing a small parameter 8. The role of the isotope effects is
particularly large in mesoatomic physics, because the pa-
rameter & is in this case two orders of magnitude greater than
for ordinary quasimolecules since the muon mass is large
(m, = 206m,). The transformation of Eq. (6.11) has been
used”’ to calculate the cross section for the charge transfer
process

dp (n) 4+ t—d + tp (n) (6.13)

from a state with the principal quantum number r = 2. This
transfer reaction plays an important role in the problem of
muon catalysis of nuclear fusion reactions and has been cal-
culated earlier in the two-level quantum approximation for
the motion of the nuclei’ and also employing a semipheno-
menological approach.”” The difference between the masses
of deuterium and tritium gives rise to an isotopic resonance
defect between the initial and final states in Eq. (6.13). The
transformation of Eq. (6.11) converts this defect into a reso-
nance defect of adiabatic terms of the problem of two Cou-
lomb centers with isotopically renormalized charges (in this
case the dependence of the internuclear interaction on q is
ignored, because charge transfer occurs at a large distance of
the order of 30 mesoatomic units and the asymmetry of the
internuclear interaction amounts to 10 ~* of the asymmetry
associated with renormalization of the charges). Conse-
quently, calculation of the cross section of the reaction
{6.13) reduces to calculation of the cross section of an ordi-
nary quasiresonant charge transfer carried out using expres-
sions given in subsections 3 in Secs. 3 and 5. The charge
transfer cross section obtained in this way’®

_ 085 7 2
= Foevy 107 em
agrees for the energy of the incident tritium £, > 1 eV within

5% with the results of Refs. 76 and 77.

7.CONCLUSIONS

The progress in computer techniques has ensured that
theoretical investigations of electron transitions due to colli-
sions between atoms are carried out more and more fre-
quently by numerical integration of the tight-binding equa-
tions tackled by development of files of special programs
designed to automate the calculation of the relevant cross
sections (see, for example, Ref. 78). However, in the slow
collision range, where the transition probabilities are low,
this approach becomes much more difficult to apply because
of the occurrence of physically meaningless transitions asso-
ciated with the incompleteness of the final state of the basis
states. These transitions accumulate in the course of integra-
tion of the tight-binding equations along the internuclear
distance and may distort greatly the true transition probabil-
ity (as discussed at the beginning of the preceding section).
On the other hand, in the asymptotic theory considered here
there are no such problems and this theory can compete
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readily with direct numerical calculations in respect of its
precision and particularly in respect of the time required for
such calculations. Moreover, in problems of the kind en-
countered in calculation of the energy spectrum of electrons
only the adiabatic approximation is at present capable of
ensuring quantitative agreement with the experimental re-
sults (Fig. 11b). It also provides important information on
the reasons for the process in question and on the internu-
clear distances at which it occurs. Extensive use of the adia-
batic approximation has been greatly hindered by the ab-
sence of a general method for finding quasicrossings relating
given initial and final states. In practice only the Landau-
Zener and Rosen-Zener—Demkov transitions have been tak-
en into account and these are due to a subbarrier resonant
interaction of the states localized at different nuclei. This has
given rise to a situation, mentioned already at the beginning
of Sec. 5, when for example in the case of the H," molecule it
has been found that there are no quasicrossings. However,
the recent discovery of the S and T series of latent quasicross-
ings has made it possible to obtain a complete set of inelastic
transitions in the adiabatic approximation framework ap-
plied to the simplest quasimolecule of the Z eZ, system.
Our analysis of the system shows that a universal method
may be possible to calculate latent quasicrossings. As shown
in Ref. 58, in the Z,eZ, problem they appear every time
when an adiabatic state corresponds to an unstable periodic
path in the classical limit. An approach based on an investi-
gation of unstable periodic paths and their monodromic ma-
trices does not require separation of variables and is general-
ly valid.

We can therefore, distinguish three types of one-elec-
tron transitions considered in the adiabatic approximation:
the first are the transitions corresponding to large internu-
clear distances, which are due to a subbarrier resonant inter-
action of states and are characterized by small Massey pa-
rameters (Secs. 5.3 and 5.4); the second represents
transitions in the range of intermediate values of the internu-
clear distance and a large Massey parameter, associated with
the passage of the system through a state corresponding to
an unstable periodic path (Secs. 5.1 and 5.2); the third is in
the form of rotational transitions at short internuclear dis-
tances when the Massey parameter vanishes for head-on
collisions and rises rapidly on increase in the impact param-
eter (Sec. 3.2). Only the transitions of the second type have
not yet been investigated sufficiently thoroughly. However,
at least for the Z, eZ, system, it is now possible to develop a
file of programs for automated calculation of all the electron
transitions in the adiabatic approximation, including those
involved in ionization.

The author is grateful to Yu. S. Gordeev, Yu. N. Dem-
kov, E. E. Nikitin, L. I. Ponomarev, and B. M. Smirnov for
discussing the manuscript and for many valuable comments,
and also to S. Yu. Ovchinnikov for his help in some of the
additional calculations.

""Originating from the Greek adiabatos, meaning impassable.

*'In this review we shall use the atomic system of units e = m_, = fi= 1.

“The momentum transfer effect is associated with the existence of an
additional translational momentum of electrons during the motion of
atoms; in the case of slow collisions this effect is small and its role will be
discussed in Sec. 6.2.
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complex saddle points.
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trum, they can be divided into quasistationary [Re E,(R) > 0] and vir-
tual [Re E, (R) <0].

*The general case in mathematics is a situation which occurs always with
the exception of a set of measure zero in the space of the parameters of
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tion contour L and the final form of the solution will be given later.
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exactly soluble models.*
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