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This review is devoted to spin glasses, i.e., disordered magnets with randomly distributed ferro-
and antiferromagnetic exchange interactions. Extensive experimental data and the theory
developed for a simple model with an infinite exchange interaction range show that, as the
temperature is reduced, the competition between different types of disorder leads to a nonergodic
(or quasi-nonergodic) state in spin glasses. The fundamentals of the statistical mechanics of
nonergodic systems are established. The review also examines the connection between the
problem of spin glasses and those of combinatorial optimization, as well as the use of spin-glass
models in biology. Attempts to construct a theory of real spin glasses with a distance-dependent
exchange interactions are discussed.
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1. INTRODUCTION

Spin glasses are disordered magnets in which the ex-
change interaction energy varies randomly in magnitude
and in sign. In contrast to ordinary magnets, as the tempera-
ture is reduced, long-range magnetic order does not arise in
such systems with competing interactions. On the other
hand, the slow gradual freezing of spins does not occur ei-
ther. Below a certain experimentally well-known tempera-
ture, the magnet assumes a new state that has no analogs
among ordered systems. The characteristic property of this
state is its exceedingly slow relaxation. In any case, typical
times for establishing equilibrium exceed 104-105 s. Phe-
nomena associated with the irreversibility of statistical prop-
erties are observed at the same time.

Since the exchange interaction energy is very dependent
on the disposition of magnetic and nonmagnetic atoms, most
materials that can be classified as disordered magnets are
spin glasses. An enormous number of spin glasses is now
known. They include metals, dielectrics, semiconductors,
dilute alloys (i.e., alloys with a low concentration of magnet-
ic atoms) and concentrated alloys and crystalline and amor-

phous materials (see below for further details, and also the
review articles in Refs. 1-4). Similar phenomena are ob-
served in other systems (both magnetic and nonmagnetic),
in which there are competing interactions. They include die-
lectrics containing dopants with electric dipole moments,5

mixtures of ferro- and antiferroelectrics,6'8 dipolar mag-
nets,9 and disordered superconductors with Josephson junc-
tions.10'11

The first attempt to construct a theory of spin glasses
was made by Edwards and Anderson12 who assumed that a
reduction in temperature was accompanied by a transition to
a state with a random molecular-field distribution that
uniquely determined the orientation of each spin. The quan-
tity (q = (Sr)

2
T) plays the role of the order parameter in

this theory (Sr is the spin vector at the point r, the angle
brackets represent thermodynamic averaging, and the bar
represents averaging over the positions of the magnetic
atoms). The Edward-Anderson theory explains the break on
the temperature dependence of susceptibility, first reported
by Cannella and Mydosh,13 but cannot explain the phenom-
ena of irreversibility and long-term relaxation. A need there-
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fore arose for a consistent theory, free from any a priori as-
sumptions about the nature of the ground state.

A theory of this kind has been constructed for a model
with an infinite interaction range (the interaction energy is a
random quantity that does not depend on the separation
between the spins). This theory plays the same role for spin
glasses as the molecular-field theory for magnetically or-
dered media.

The properties of spin glass that could be described by
the infinite-range model turned out to be unexpected and
unlike much that had been encountered in solid state physics
before. A reduction in temperature was found to be accom-
panied in this model by a phase transition from the paramag-
netic or magnetically ordered state to a phase that could be
called nonergodic. The ground state of this phase is degener-
ate, i.e., there is an infinite number of sets of spin orienta-
tions that correspond to the same energy in the macroscopic
limit. These sets differ by the overturning of an infinite num-
ber of spins, so that the barriers between different realiza-
tions of the ground state are also infinite, i.e., averaging over
time and over the ensemble must in general lead to different
results. The properties of this type of nonergodic state are
described not by one, but by an infinite number of order
parameters, i.e., a function.

The degeneracy of the ground state is due to the fact
that, in a magnet with competing exchange interactions,
there are unavoidable frustrations (unsatisfied couplings),
i.e., pairs of spins whose interaction energy is not a mini-
mum. The ground state of the system has a complex and
unusual hierarchical structure that is probably typical of all
random systems in which imposed couplings cannot be satis-
fied simultaneously. It is therefore not surprising that the
ideas employed in molecular-field theories and the results
obtained thereby have been useful in biology, the theory of
combinatorial optimization, and so on.14

The molecular-field theory provides a good qualitative
decription of the static properties of real spin glasses, but the
magnitude of the lowest critical dimension which, as usual in
the theory of phase transitions, governs the validity of the
infinite-range model for real media, remains an open ques-
tion.

Studies of spin glasses have been advancing rapidly irt
the last 10-12 years. Up to 20% of all the papers given at
international conferences on magnetism have been devoted
to topics that are in some way related to spin glasses. Al-
though the theory of real glasses with finite interaction range
has not been constructed, so that the spin glass problem is
still far from being solved, a picture has now emerged of the
spin glass as a fundamentally new physical state.

The number of papers devoted to spin glasses is enor-
mous. It will not be our aim in this review to cover all ques-
tions relating to this problem. Our task will be to elucidate
the basic experimental results and new theoretical ideas,
especially the foundations of the theoretical description of
nonergodic states of random systems.

The review is constructed as follows. Section 2 presents
the basic experimental properties that characterize spin
glasses as a special class of magnetic materials. In Sees. 3-6,
9, and 11 we formulate the infinite-range model, proposed by
Sherrington and Kirkpatrick for Ising spin glasses, and con-
sider the properties of the nonergodic state that arises in this
model. We also show how the methods developed by study-

ing this model can be used to investigate optimization prob-
lems in biology. Readers interested in general problems in
statistical physics and in applications that are not directly
related to the physics of disordered systems may confine
their attention to these sections.

In Sees. 7 and 8, the Sherrington-Kirkpatrick model is
generalized to more complicated systems such as vector spin
glasses and disordered antiferromagnets, and the results ob-
tained in this way are used to interpret the statistical proper-
ties of disordered magnets.

Finally, Sec. 10 is devoted to attempts to extend the
theory beyond the infinite-range model. In particular, heu-
ristic models of the spin glass based on numerical simula-
tions are discussed. The question of a phase transition to the
spin glass state is discussed.

Because of lack of space, we shall not consider many
interesting objects that are closely related to spin glasses, but
having special properties. They include magnets with ran-
dom anisotropy or random field. These topics in the physics
of disordered systems deserve a separate review.

2. BASIC EXPERIMENTAL RESULTS

2.1 Statistical properties. Even very simple magnetic
measurements show that spin glasses have unusual proper-
ties. It is found that, below a certain definite temperature Tg,
the magnetic susceptibility of a specimen depends on its pre-
history: cooling in a magnetic field and application of the
field after cooling down to temperatures below T% lead to
different values of the magnetic moment (Fig. la). The iso-
thermal magnetization MZFC obtained by cooling in zero
field is irreversible, but the thermostatic magnetization M FC

(cooling in a field) is reversible. As a rule, the thermostatic
susceptibility is almost independent of temperature below
Tg. The susceptibility is found to be irreversible in all spin
glasses, and is one of the principal and simplest criteria for
identifying the transition of a system to the spin glass state.
The temperature Tg is then considered to be the correspond-
ing transition temperature.

In an external magnetic field, the susceptibility remains
irreversible, but the irreversibility begins at lower tempera-
tures (Fig. Ib), and fields of the order of a few hundred
gauss shift Tg by an amount of the order of a degree.

It is clear from Fig. la that the linear susceptibility has a
discontinuity at T= Tg. It was suggested16'17 in 1977 that
the nonlinear susceptibility should diverge when the transi-
tion to the spin glass takes place. Soon after, a strong in-
crease in the nonlinear susceptibility for 7"-» Tg was indeed
found18 when the nonlinear response was measured at the
third harmonic of the alternating magnetic field. A rapid
increase in nonlinear susceptibility Xni = X~ (M/H) was
subsequently discovered in many spin glasses.'9"29 Figure 2
shows the temperature dependence of nonlinear susceptibili-
ties;^,^, (n — 1,2,3), i.e., the coefficients in the expansion
of magnetization in powers of H, in the case of manganese
aluminosilicate containing 15% at. of manganese.22

Measurements of the field and temperature dependence
of the nonlinear susceptibility are usually analyzed in terms
of the scaling formula of the type

Xnl
(2.1)
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FIG. 1. Magnetization as a function of temperature in AgMn alloys
(2.6 at.% of Mn; Ref. 15). a—Cooling in zero magnetic field
(l_2-3-*4-.5) and in a field of 6 G (5-.4-6-.4-5); b—mag-
netization as a function of temperature in different magnetic fields
( inG) : 80 ( 1 ) , 130 (2), 260 ( 3 ) , 340 ( 4 ) , 500 (5); TK, TM , TR are
the temperatures corresponding to the onset of irreversibility, the
maximum M, and the departure from Curie's law, respectively.

At first sight, the resulting values of the indices are not uni-
versal and vary from medium to medium. Many workers
have suggested30-3' that the difference between the indices
may be explained by random anisotropy that gives rise to a
transition (crossover) from Ising to Heisenberg critical be-
havior as the magnetic field increases.32

The characteristic feature of spin glasses is the linear
temperature dependence of magnetic specific heat CM for
T<^ Tg, and the smooth maximum of specific heat at tem-
peratures just above TB (Refs. 33-36). Fogle et a/.35 have
reported singularities in the derivatives dC M /d Tand d2C M /
d7"2, which they ascribe to a transition to a spin glass.

2.2. Dynamic effects. Already very early work in this
field showed that the real part of the susceptibility of spin
glasses had an unexpectedly strong frequency depen-
dence.1'3 Even at frequencies of the order of, or less than, 1
Hz, the maximum of the susceptibility JZFC shifts toward
higher temperature with increasing at, and broadens (see
Fig. 3a) ,37 Frequency dispersion of%' (a>) is accompanied by
the absorption of power, so that the imaginary part^" (co) of
the susceptibility (Fig. 3b) is nonzero in spin glasses. The
rapid increase in^-" with decreasing temperature (the knee
on the x" ( T ) curve) is usually found to begin at tempera-
tures corresponding to the maximum of %' ( T ) . The function
X" (ca) varies slowly with frequency. Even at the lowest fre-
quencies (~10~2 Hz) at which these measurements were
performed, x" ((o) was found to be nonzero.37"39

lf%" (co) is almost independent of frequency at low fre-
quencies, and the fluctuation-dissipation theorem is satis-
fied, the magnetic noise intensity becomes

(2.2)

i.e., l//noise should be observed. This is indeed the case in
some spin glasses.39"42 Figure 4 shows the results39 for
Eu0.4Sr06S. Direct measurements and calculations of
X" (co) from the noise intensity, using the fluctuation-dissi-
pation theorem, are in good agreement. The application of a
weak magnetic field produces a very large change in noise
intensity. A field on only 0.3 G results in an increase in the
steady value of the noise intensity by a factor of 10 (Ref. 41).
We note, finally, that according to Ref. 41, the noise spec-
trum measured in a field applied in the case T>T&, and also
the magnetization, are independent of the time of observa-
tions.

The susceptibilities^-" (a) and j'(«) are related by the
following empirical formula37'43"45:

(2.3)

FIG. 2. Temperature dependence of the coefficients^,,, , , in amor-
phous manganese alumosilicate containing 15 at.% of Mn (Ref.
22). 1—n = 1, 2—n = 2, 3—n = 3.

22

FIG. 3. The susceptibility x(co) = x'(a>) + ix" (co) of amorphous
metallic spin glass Fe(),,Ni(1 B5 )75PlfiB6Al., as a function of tem-
perature at different frequencies.'7 Curves 1-11 correspond to the
following frequencies: /= co/2ir) (Hz) =0.51 ( / ) , 1,7 ( 2 ) , 5,1
(3), 17 ( 4 ) , 56 (5), 170 (6), 510 (7), 1.7-10' ( 8 ) , 5 . l - l t f ( 9 ) ,
17-10'(/0) and 51-10'(//); ^FC is the static susceptibility mea-
sured in zero magnetic field.

141 Sov. Phys. Usp. 32 (2), February 1989 I. Ya. Korenblit and E. F. Shender 141



m

10'

10'
10'

FIG. 4. Magnetic noise in Eu0 4 Sr0<,SM. Tg = 1.53K; r(#) = 1,42
( / ) , T= 1.82 (2) and 1.42 (J) without the sample.

which can be obtained by assuming the spin glass has a wide
spectrum of relaxation times.43'46

Using the Kramers-Kronig theorem, and assuming that
X" (co) = const, we find that the real part of the susceptibil-
ity isx'(<») ~m &• This means that the nonequilibrium sus-
ceptibility is a logarithmic function of time. This was ob-
served47'48 in spin glasses starting in 1974. When a magnetic
field is applied to a sample that has been cooled in zero field
down to T<Tg, the magnetization at first increase abruptly
(in a microscopic time) and then grows gradually, ap-
proaching the equilibrium value in accordance with the
logarithmic law (or a power-type law with a small expo-
nent) over time intervals of the order of a few hours or days.
Conversely, if the sample has been cooled in a field down to
T<Tg, the removal of the field is accompanied by an initial
abrupt fall in magentization, followed by a gradual reduc-
tion, but the magnetization remains finite even after time
fxl05s(Fig. 5).49

Like the irreversibility of static susceptibility, these dy-
namic properties of spin glasses show that they have a wide
spectrum of relaxation times, which extends to macroscopic
times t~ 105s and, possibly, even further, since there does
not appear to be an upper limit for the relaxation time.

10* t.s

FIG. 5. Thermostatic magnetization of the alloy CuMn(5 at.%
Mn). 7"/rg =0.96 (a) , 0.89 (b) and 0.75 (c). Te = 28 K.

0,02

0.0!

10 10'
t.S

10*

FIG. 6. Residual magnetization of AgMn( (2.6) at.% Mn) at differ-
ent temperatures50 as a function of time. T/Tt =0.771 ( /) , 0.856
( 2 ) , 0.897 (J) and 0.996 (4). The curves were calculated from
(2.4).

Low-frequency absorption and the irreversibility of
static susceptibility suggest that the ground state of spin
glasses is degenerate or quasidegenerate for T<Tg. The en-
ergy minima ("valleys") corresponding to different sets of
spin orientations are separated by macroscopic barriers, so
that relaxation occurs over macroscopically long times.

It is clear from Fig. 5 that, strictly speaking, the depen-
dence of residual magnetization MTRM on time is not loga-
rithmic. It has been shown50'51 that the time dependence of
MTRM is better described by the so-called stretched expo-
nential (Kohlrausch's law)

A/TRM = C (o -" (1 - n)-i], (2.4)

where Cand ca0 are constants and n is a function of tempera-
ture (Fig. 6).50

Slow relaxation processes described by Kohlrausch's
law are observed in many disordered systems, including or-
dinary glasses.52'53

Of course, relaxation in accordance with Kohlrausch's
law can be explained by suitably choosing the spectrum of
relaxation times and by assuming that different relaxation
processes occur simultaneously and independently, so that

M (t)=\W (T) . (2.5)

where W(T) is the relaxation-time distribution function.
To explain Kohlrausch's law, Palma et a/.54 have put

forward the hierarchical relaxation model which assumes a
series (rather than parallel) relaxation of the different de-

20 40 BO 100 t,s

FIG. 7. Magnetization of CuMn (4 at.% Mn) cooled in zero mag-
netic field." The cooling time (in minutes) prior to the application
of the magnetic field is indicated against each curve. T=23 K,
T, = 26 K.
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grees of freedom: in order to include the higher-level degrees
of freedom in the relaxation process, it is essential that the
lower-level degrees of freedom have relaxed already. We
shall see later that the hierarchical structure of degrees of
freedom arises naturally in the simple model of a spin glass.

2.3 "Aging" of spin glasses. The reversibility of static
susceptibility, measured by cooling in a field, suggests that
the state produced in this way is the equilibrium state. This
was indeed believed to be so until 1983 when it was shown55

that the relaxation of magnetization after the field is re-
moved depends on the time ?w spent by the system in the
magnetic field at a given temperature T< rg (Fig. 7), al-
though the magnetization does not depend on time prior to
the removal of the field.55-"

The dependence of the rate of relaxation on the cooling
time rw can be observed up to rw ~ 105s (Ref. 58). It follows
that long-term processes that lead to equilibrium, but do not
affect magnetization, occur in the state produced by cooling
in a field.51

Similar memory effects are also observed in the state
produced by cooling in zero field37'55'56'59'61: the establish-
ment of equilibrium magnetization after the field is turned
on in the case ofT<Ts depends on the cooling time prior to
the application of the field.

The dynamical properties of the system for t < fw and
t > tw are somewhat different. Different modifications of
(2.4) have been proposed in the literature,58'56'49 and take
into account the effect of the aging process on dynamics. An
interesting relation was noted in Ref. 57 between the loga-
rithmic time derivative of the thermostatic SR and isother-
mal S, susceptibilities:

-5,, (T) = S, (T), i«*w,
(2.6)

_ Sn (T) = kS, (T), *> «w,

where k is time-independent and greter than unity.
The effect of waiting time on the dynamics is very clear-

ly seen when the noise spectrum is investigated.41 The fre-
quency range in which the noise intensity is ~o>~' depends
on the waiting time. When ?w > 70 h, the noise spectrum is a
steady-state one and proportional to ca~} in the frequency
range between 2 X 1CT4 and 10"2 Hz.

2.4 Spin glass and magnetic long-range order. It has
frequently been shown experimentally that the transition to
a spin glass as temperature is reduced is possible not only
from the paramagnetic state, but also from the magnetically-
ordered ferro-or antiferromagnetic state. This type of transi-
tion is often referred to as recurrent. Nonergodicity mani-
fests itself, as usual, in dynamic experiments, and in the
irreversibility of static susceptibility.62"86 Such transitions
are illustrated in Fig. 8 which shows the phase diagrams for
the solid solutions Eu, _ A S r x S and FexMg, _ _ VC12. The
question as to whether or not long-range order continues in
the nonergodic state is a more complicated one. For reasons
that will be discussed later, this question is still difficult to
answer in the case of the transition from the ferromagnetic
state. Satisfactory results have so far been obtained for the
dilute Ising antiferromagnet Fe, _xMgxQ2. The tempera-
ture dependence of susceptibility is shown in Fig. 9 for
Fe0 55 Mg0 45 C12. The susceptibility maximum occurs at the
Neel temperature, and the transition to the nonergodic state
occurs at the temperature at which the frequency dispersion

r,K

15

JO

T,K

20

FIG. 8. Phase diagrams of disordered solutions Eu^Sr, X S (a)'1'
and Fe<Mg, XC12 (b)M. P—paramagnetic phase; F, AF—ferro-
and antiferromagnetic phases, respectively; SG—spin glass.

appears. At the same time, the intensity of Bragg-
scattered neutrons, which is proportional to the magnetiza-
tion of the sublattices, smoothly increases with decreasing
temperature in the nonergodic phase, without any apparent
singularity at T= Tg (Ref. 71), i.e., long-range antiferro-
magnetic order persists below Tg.

The susceptibility ̂ '(«) falls sharply near 7"g (Fig. 10)
during the recurrent transition from the ferromagnetic
state.85 This is the basis for assuming that the magnetization
vanishes during the transition to the spin glass. A similar
conclusion has been reported by several workers who mea-
sured the saturation magnetization, the intensity of Bragg-
scattered neutrons, and the spin-wave stiffness coefficient
(see Refs. 64, 72, 73, 74, and 87-91, and also the references
cited in Refs. 1 and 3). However, more and more evidence
has been accumulating in recent years in support of the con-
clusion that the magnetic moment persists during the transi-
tion to the spin glass. These data have been obtained as a
result of different microscopic measurements, magnetic neu-
tron-diffraction studies, and Mossbauer experi-
ments.80,81,75-78,92-97 It has recently been reported 80,81,93,98

that the fall in susceptibility x' f°r T< Tg is related to the
sharp increase in the anisotropy energy and coercive force,
and does not necessarily indicate that the magnetization has
vanished.

X. arb. units

! . . ,
^' °~1

0-°V' • -3
1.0

2 -

T.K

FIG. 9. Temperature dependence of the real part of the susceptibil-
ity of the solution FeMg,, ,„ „, Cl, at the frequencies I I Hz ( 1 ) , 345
Hz (2) and 2785 Hz (3).'Tv =~7.5 K, Ts =3.0 (Ref. 71) .
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FIG. 10. Real and imaginary parts, %' and x", of the linear magnetic
susceptibility of the alloys FeMNi25Cr|,,(a) and Fe40Ni40Mn20 (b) .
The maxima of %" correspond to the temperatures 7*c and 7"g.

Significant information on the change of state of a sys-
tem during the transition to the spin-glass state is provided
by Mossbauer experiments indicating that the freezing of
spin components at right angles to the magnetization begins
at T = TB. This is clearly seen in the temperature depen-
dence of magnetization and the hyperfine field (Fig. 11).
The two curves coincide above Tg, but the magnetization is
lower at the lower temperatures at which the freezing of the
transverse spin components begins.

3. INFINITE-RANGE MODEL

The simplest model that can be used to demonstrate the
onset of nonergodicity in spin glasses is the infinite-range
model proposed by Sherrington and Kirkpatrick.99"100 They
assume that the energy associated with the exchange interac-
tions between the spins Jfj is independent of the separation
between them, and that the quantities Jtj are distributed in
accordance with the Gaussian law

2.T-
(3.1)

where N is the number of spins in the system and J0/N> 0
and //A"72 are, respectively, the mean value and the vari-
ance of the interaction energy. They are defined so that the
total energy of the system is proportional to N as N-* oo.

We begin by considering an Ising magnet with the
Hamiltonian"

i. i i

where a,• = ± 1 and H is the external field. Its free energy is
given by

F^-TlnZ, Z-Spexp(--^-) ,

where the bar represents configurational averaging with the
Gaussian distribution function (3.1).

An exact evaluation of the free energy involving first the
thermodynamic averaging over the system with given distri-
butions of exchange integrals, and then averaging over their
distribution, cannot be carried out. The free energy is in fact
evaluated by the so-called replica method in which the con-
figurational averaging is carried out first. With this in view,
we note that (3.3) can be written in the form

F= ~T lim[(Z"-:
n-»o (3.4)

When n is an integer, Z" is the partition function of n inde-
pendent systems (replicas) with the same distribution of ex-
change integrals:

(3.5)

The function Z" is readily averaged over the distributions
(3.1). The free energy can then be obtained by analytically
continuing Z" from integral n and then passing to the limit
as « —0. This is a crucial point in the method of replicas
because the analytic properties of Z" as a function of « are
not well-known. This high price has to be paid to ensure that
the problem of the thermodynamics of the disordered system
can be reduced to a problem with an effective Hamiltonian.

Integration of Z" over all Jljt using the distribution
functions given by (3.1), eventually yields

(3.3) (3.6)

200 T,K

FIG. 11. Mean hyperfine field (H) in iron (full points) and the saturation
magnetization M (open circles) of the amorphous alloy
(Fe0.7(,5 Mn0 j , , ) „ P|(,B6A1," as functions of temperature.
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in which we have neglected terms that vanish in the thermo-
dynamic limit.

To reduce this problem to a single-site problem, we use
the integral transformation

<^2 = -=- exp —
— oo

and tranform (3.6) so that

Ay. (3.7)

a|3

(3.8)
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-lnSpexp(-jr

(3.9)

As N^ oo, the integrals in (3.8) can be evaluated by the
saddle-point method. At the stationary point, we have

6«p==^.<0a0p)> a^jA)1'2^), (3.10)

where (...) denotes averaging with the effective Hamiltonian

p; ( 3 - l 1 }

in which

. o / a 6 \ —J- A (3 12")

After taking the trace of %feS, we must pass to the limit as

Expressions (3.10)-(3.12) constitute a self-consistent
set of equations which, in general, has many solutions. The
simplest solution, for which the quantities m" and qali do
not depend on the replica indices (the replica symmetric
solution) was investigated in Refs. 99 and 100:

= m, = 9-

A further transformation such as (3.7) can then be used to
reduce the equation to the self-consistent form

ysr -th-^-d,, (3.13)

and the free energy is given by

/ = — = T1 N 4r-

(3.14)

It is clear from (3.13) that m is the mean magnetization, and
the averaging is carried out over the distribution of molecu-
lar fields, which is found to be Gaussian in this model. It is
also clear from (3.13) that the parameter q, first introduced
by Edwards and Anderson, '2 can be interpreted as the aver-
age taken over all sites of the square of magnetization at a
site:

,\

?=4-!>•>*; (3.15)-

where (...}T represents thermodynamic averaging for a giv-
en relaxation. When H = J0 = 0, the magnetization m given
by ( 3. 1 3 ) is zero at all temperatures. The parameter q is zero
for T> T, = J, and differs from zero for T< T, . It is thus

<= e

clear that the replica-symmetric solution leads to a phase
transition to the state with q ̂  0. It then follows from (3.13)
that the susceptibility obeys the paramagnetic Curie law
X ' , and that a break occurs at the transition point. The

These two facts are in qualitative agreement with experi-
mental data.

The parameter q is nonzero in a magnetic field at any
temperature, and the phase transition does not occur in the
replica-symmetric model.

However, Sherrington and Kirkpatrick originally
showed that the entropy of the replica-symmetric solution
becomes negative at low temperatures, and this has stimulat-
ed studies of the stability of the replica-symmetric solution
with respect to fluctuations that break the replica symme-
try.101 De Almeida and Thouless101 have investigated the
eigenvalues of the stability matrix

M = lim (3.16)

and found that one of the eigenvalues changes sign at the
temperature given by

dz, (3.17)

where m and q must be found from (3.13). Above this tem-
perature, Tg, the replica-symmetric point of origin of the
curve of steepest descent corresponds to an actual extremum
of the functional <t>, whereas below this temperature we have
a saddle point. All this means that the replica symmetry is
broken at the temperature T'= Tg (J0, Hn), and a new state
appears.

The change in the sign of the eigenvalue of the stability
matrix is due to a singularity in the generalized susceptibility
X(2] — xJ (Ref. 102), where the local susceptibility is given
by

3

When H = J(} = 0, it follows from (3.17) that Tg = J,
i.e., the replica-symmetric solution is stable only in the para-
magnetic phase, when q = 0. The magnetic field does not
destroy the transition and only reduces Tg. The solution of
(3.17) and (3.13) yields

(3.19)

(3.20)

nonlinear susceptibility diverges at this point:

The phase diagram on the T, H plane, determined by
(3.17), is shown in Fig. 12. The solid curve is the so-called
Almeida-Thouless line and corresponds to the solution of
(3.17). The broken curve represents the transition to the
spin glass in the Heisenberg magnet (Gabay-Toulouse line),
which will be discussed in Sec. 8. The reduction in Tg with
increasing magnetic field has been observed in all "pure"
(Jn<J) spin glasses. The experimental dat shown in Fig. 1
constitute an example of this. The precise form of the reduc-
tion in Tg is a more complicated problem, and will be dis-
cussed in Sec. 8.

In the replica method, we first average over {Jtj} and
then pass to the effective Hamiltonian without random vari-
ables. It is possible to evaluate the free energy for a given
distribution of {Jtj} by averaging over the disorder at the
end. Thouless, Anderson, and Palma"" (TAP) have
summed the leading terms in l/N in the high-temperature
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FIG. 12. The T, H phase diagram of a spin glass in the infinite-range
model.

distribution and obtained the following expression for the
free energy for J0 = H0 = 0:

where above the transition

(3.21)

/ t= — -T- r In ( 1 =j-} -\~ nonsingular terms. (3.22)

The TV-independent term in the free energy diverges at the
transition point. Below the transition point, the extensive
part ofF has the form

+4- 2 [(1 + m,) In (1 + m,) + (1 - m,) In (1 - mt)]

(3.23)

The equations for the mean spin on site m: are obtained by
finding the stationary condition for F over all the m,:

(3.24)

The effective field

(3.25)

acting on the spins differs from the usual expression in the
molecular-field approximation by the presence of the second
term. In an ordered magnet, J\ ~N ~2, so that the second
term in the effective field is ~N~l, and can be discarded,
whereas for spin glasses, the two terms are generally of the
same order, and do not vanish as N~> oo. Thus, the molecu-
lar-field theory does not reduce in the case of spin glasses to
the replacement of one of the spins with its averge value, and
correlation effects are always significant. This means that, in
the paramagnetic phase, the specific heat is always different
from zero.

The expressions given by (3.24) are the well-known
Bethe equations. The second term in the effective field is the
Onsager reaction term that describes the reduction in the
moment at site j due to the reaction of the spin cr,. In fact,
the field acting at site j due to the spin <7, is Jtjm,, and the
reduction in the moment at sitey due to this field is XjJy mi •
Since the local susceptibility is ̂  = 1 — m], we thus arrive
at the expression given by (3.25).

Above Tt = J, the free energy (3.22) becomes identical
with that obtained by the replica method in Refs. 99 and 100.

It has not been possible to solve (3.24) below Tg, but it
has been shown104"106 that, below Tg, there are many solu-
tions of (3.24) that give the same free energy/0. The number
of these solutions is exponentially large, i.e., it is proportion-
al to exp[a(T)N], where a(T) is a numerical coefficient
that is equal to 0.2 at T= 0 and is proportional to Tg — T)6

as T-» Tg. Their statistical weights are different because the
extensive part of the free energy is a random quantity on the
set of solutions. We shall see later that the entropy per spin
must therefore vanish as T-> 0.

4. PARISI ORDER PARAMETER

We have seen that the replica-symmetric solution is in-
valid below the Almeida-Thouless temperature. The state of
the system must be described by a set of quantities q"13 rather
than the single parameter q. Parisi107 was the first to put
forward an internally consistent theory with a broken rep-
lica symmetry. This theory is heuristic in the sense that
neither the method used to parametrize the matrix qap nor
the procedure employed in the analytic continuation of this
n X n matrix to n = 0 are forced by some general principles.
Parisi's theory is mathematically somewhat complicated
and unusual, and we shall present it in the next Section.
However, we begin with Parisi's physical interpretationl08 of
the order parameter found by him in Ref. 107.

Parisi's idea is that the order parameter of a spin glass
must contain information on the infinite degeneracy of the
ground state. Each state, which we shall label with the index
a, is determined by the set of occupation numbers
m" = (0?)T, where /' is the site number. Let

(4.1)

which characterizes the overlap between different states. It
is clear that qaa = 1/-/V2, (m?)2 is identical with the Ed-
wards-Anderson parameter. When T = 0, the quantity
N(l — q"0) is twice the number of spins that must be turned
over in a transition from state a to state P.

The random quantity q"p is described by the distribu-
tion function

W(q)= (4.2)

where Pa is the statistical weight of the state a. The proba-
bility that q"e assumes a value not exceeding q is

t
y.ln\= \ W (n'\ .In'. (4-3)

The in verse function q (x), 0<^< 1 is the Parisi order param-
eter of a spin glass. By definition, q(x) increases monotoni-
cally with increasing x. If the ground state is not degenerate,
q"^ has the single value qaa, so that q(x) = const. If, on the
other hand, the state is infinitely degenerate, the dependence
of q(x) on the argument becomes significant on all intervals.
The dependence of q(x) on x is thus signaled by the fact that
the system has passed to a phase with a significantly degener-
ate ground state.

The function q(x) is directly related to the susceptibil-
ity of the pure spin glass J0 = 0

(4.4)
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Because the exchange integrals JtJ in (4.4) are symmetrical-
ly distributed, only terms with / =j are nonzero, so that

Subsequent calculations depend on whether or not we as-
sume that the system is in one of the energy minima (or, as is
often said, in one of the valleys) and cannot go over into the
other minima, or whether we take the thermodynamic aver-
age in the usual way over all the states. The first method of
averaging is equivalent to averaging over time. The defini-
tion of q ( x ) given above shows that, in the case of averaging
over the states of one valley, we have

so that the corresponding susceptibility is

On the other hand, if we take the Gibbs average, we have

-JT 2 <°;>t = 4-22 P^mfmf

= \ W(q)qAq = \ g { x ) A x ,
o

and the equilibrium susceptibility is
i

(4.7)

The susceptibilities given by (4.6) and (4.7) are found to be
different when q ( x ) depends on x.

5. THE PARIS! ANSATZ

Solution near the transition point. In the limit as n -> 0,
it follows101 from (3.9)-(3.12) that the free energy for
Ja = 0 is given by

/» { -^ lim -Lf-J-

(5.1)

Near Ts , the exponential can be expanded in powers of qa/3

so that

/= -T lim (

c c , p

(5.2)
where £ = ( Tg - T)/Tg and Tg = /.

Generally speaking, not all the terms of the order of q
are written out in ( 5.2) . Terms of the order of £ 2q2 have also
been omitted. However, it is readily verified that the break-
ing of replica symmetry is due to the terms of the order of q*
that have been retained in (5.2), and that the discarded
terms cancel out,102 at least in the second order in e. In ac-
cordance with the Parisi parametrization, the matrices q are
determined by k + 1 real numbers q: (i = Q,...,k) and k inte-
gers m, ( /= !,...,£) such that m,/m!+ , is an integer and
m(} = 1, mk+ , = n. Thus, forw = 8, k = 2, m, = 2, m2 = 4,
the matrix q takes the form

0 ?i 9i

9i 0 la

9i 9o °

9z

9i <li

0 9o

9o 0

(5.3)

Because of this structure, each element q, is found
mi+ | = m, times in a row (column). Hence, for example,

a>p

k
V
i=0

(5.4)

According to Parisi, the procedure for going to the limit as
n —0 is that the set of integers m, is replaced with the set of
quantities /n, ( /= !,...,&) lying within the interval (0,1),
where

mk 0. (5.5)

The index k is then allowed to tend to infinity, and the quan-
ity mi becomes a continuous variable on (0,1 ). We will de-
note it by x. The result for the sum in (5.4) is

i
lim — 2 (9ap)2 = - \ q"(x)
n-° "

(5.6)

The other terms in the free energy can be written down in a
similar way, and the final result is

i
/ = -1- 7- max [ \ ( E(?- (x) + -i- r/1 (x) - -f t,* (x) ) dx

-JT-\<1 (x) da:] . ( 5.7 )

By varying (5.7) with respect to the function q ( x ) , we ob-
tain the following equation for this function:

- - 5 ' > ( . r ) = I (q (x) -q — - , (5.8)

q = q (x) Ax.

Differentiating this equation twice with respect to x, we ob-
tain

q' (x) (2q (x) - x) = 0.

The nontrivial solution of (5.9) has the form

q (x) = q (0) = -§!-, 0<.r<.r0,

(5.9)

(5.10)

Substituting this in (5.8), and in the equation obtained by
differentiating (5.8) with respect to x, we find that

.r0=l(i-j5-) , j-, = 2e (1 -f e). (5.11)

The function ^(x) is plotted in Fig. 13.
The shift of the transition temperature that is due to the

magnetic field is determined by the condition x0 = xl and is
found to be e(H) = (37/2/4/2)1/3. We see that the shift ob-
tained in the Parisi theory is the same as that obtained in the
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0 x

FIG. 13. The Paris! function q ( x ) in an external magnetic field.

The dot represents differentiation with respect to x and the
prime with respect to y.

Variation of the function of (6.1), taking (6.2) and
(6.3) into account, is conveniently performed by adding to
/ in (6.1) the term / (which is equal to zero)'10:

analysis of the stability of the replica-symmetric solution
[see (3.19)].

From (5.7) we readily obtain the expression for the sus-
ceptibility given by (4.7), i.e., the first moments of the func-
tions q (x) introduced in the valley model and those based on
the replica-asymmetric Parisi ansatz are the same. Parisi has
shown108 that all the moments of these functions are equal,
thus confirming the validity of the physical interpretation of
the Parisi solution.

Substituting the expression for q(x) given by (5.10)
into (4.7), we find that

(5.12)xeq = -r i- T -r
It is important to note that ^eq is independent of £ in this
approximation. We shall see later that, in zero magnetic
fields, Xeq is independent of temperature throughout the re-
gion below the transition point. It is clear from (5.12) that
the nonlinear susceptibility diverges at the transition point

Since q~£, the free energy is /(£) — /(O)-r1 and
hence, the transition to the spin glass is a third-order transi-
tion.

6. THE EQUATIONS OF STATE OF A SPIN GLASS AT
ARBITRARY TEMPERATURE. LOW-TEMPERATURE
PROPERTIES

The general scheme for studying the properties of a spin
glass well away from its phase transition point is the same as
for E < 1 : first, the Parisi ansatz is substituted into the free
energy (5.1), and then, by going to the limit as n -» 0, the free
energy is expressed in terms of q ( x ) . Second, the equation
for the function q(x) is obtained by varying the free energy
functional.

An elegant method of deriving the functional / has
been put forward by Duplantier. l09 We shall not go into the
mathematical derivation and reproduce only the final result:

where q>(x, y) is a solution of

subject to the boundary condition

(6.2)

(6.3)

(6.4)

where P(x, y) are the undetermined Lagrange multipliers.
By varying the functional /+/with respect <p(x, y) and
<p(Q,y), we obtain the equation for the function P ( x , y ) :

with the boundary condition

P (0, y) = (2^ (O))-'/* exp [ - (%J7q
H£} ] . (6.6)

By varying / + / with respect to<7(;e) and using (6.5), we
obtain the relation between q(x) and <p(x, y ) and P(x, y):

q (x) = - * = (x, y) P (x. y) Ay, (6.7)

where we have introduced the notation m (x, y) = <p' (x, y)
which will be convenient later. In the paramagnetic phase, in
which gp is independent of x, (6.3) shows that the function
m( y) is equal to th ( y / T ) , i.e., it is the spin magnetization
in the field y.

Equations (6.2) and (6.5) and the boundary condi-
tioins (6.3) and (6.6) enable us, at least in principle, to find
q(x) and the free energy at any temperature. The complete
set of equations of this type was first given in Refs. 111-113.
It is clear from (6.7) that P(x, y) can be interpreted as the
distribution function of molecular fields y for valleys whose
overlap does not exceed q ( x ) .

Taking into account the fact that the free energy is time-
independent, we obtain the following simple form for the
mean magnetic moment:

« i=—J jT = ~J~ \ m (0- y) P (0: y) Ay. (6.8)

In the paramagnetic phase, (6.7) and (6.8) become the
equation of state (3.13), obtained in the replica-symmetric
approximation.

Differentiating (6.7) with respect tox, and using (6.5)
and (6.2), we obtain the following important relation that is
valid throughout the nonergodic phase:

1 = ( P (x, y) (<p" (x, y ) ) - Ay.
t)

(6.9)

When T= Tt, so that P(x, y ) and cp(x, y ) are independent
of x, the relation given by (6.9) becomes identical with the
equation for the Almeida-Thouless line given by (3.17).

The physical interpretation of (6.9), which is referred
to as the marginality condition, will be discussed below.

Equations (6.2)-(6.6) can be solved analytically, but
only near Tg, in which case the results are the same as in the
last Section. However, the marginality relation (6.9) can be
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used to examine some of the general properties of spin
glasses at low temperatures.

Since the functional / + / is time-independent, we ob-
tain the following expression for the entropy from (6.1) and
(6.4):

472

+ \ P ( L , j ) [ l n ( 2 c h -f )--f

Taking (6.9) at x = 1, we have

(6.10)

) cli ' -=- dy. (6.11)

The main contribution to this integral is provided by y'&T,
so that (6.11) is satisfied for T->0 only if

yT) 7"1 >
T-O

const.

From (6.7) we then find that, as T^>Q, we have
1 - q( 1) ~ T\ and it then follows from (6.7) that S~ T2

(Ref. 110). The Parisi theory is thus seen to be free from the
contradiction encountered in replica-symmetric theory,
namely, that at zero temperature, the entropy per spin of the
spin glass is zero in the Parisi theory.

Differentiating (6.8) with respect H, and recalling that
the function m(0, y) is odd, we find that

, ~ 1 ini \ P (0. >/) ( ( " ( 0 . in (6.12)

However, q(Q) -»0 as H^O, so that, according to (6.6),

lim P (0, y) = J6 (y).

Hence

Xeq = (6.13)

On the other hand, the marginality condition, taken at the
point x = 0, shows that <p " (0,0) = J '. We thus find that,
throughout the spin-glass phase, the equilibrium susceptibil-
ity is J ~l, and is independent of temperature.

Experiment shows that the susceptibility xfc obtained
by cooling in a field is usually almost independent of tem-
perature (see Fig. 1). Since the susceptibility is also reversi-
ble, and independent of the waiting time, one might think
that, despite the aging effects, Xrc K in many ways similar to
the equilibrium susceptibility.

We thus see that the Parisi solutioin leads to reasonable
physical results. However, the question arises as to whether
the saddle point that corresponds to the Parisi parametriza-
tion is stable or not. This was investigated in Refs. 114-116
and it was shown that the eigenvalues of the corresponding
matrix were nonnegative, and one of them was zero at all
temperatures. This means that the Parisi solution is margin-
ally stable. The vanishing of one of the eigenvalues is assured
by (6.9), which therefore means that the excitation spec-
trum of the spin glass has a gapless mode.' '7 This mode ex-
ists because the ground state of the spin glass is degenerate.

The Parisi scheme also allows a more complex parame-
trization than that described above.'IK The free energy func-
tional then contains an additional arbitrary function A(JC),
which means that we can choose an arbitrary gauge in (6.2),
(6.5), and (6.7). The function A(x) was first introduced by
Sompolinsky"9'12" who developed the dynamic theory of

spin glasses. The Sompolinsky theory is based on the as-
sumption that the spin glass is characterized by an infinite
set of relaxation times tx, 0<x<l. In the thermodynamic
limit, all the times tx tend to infinity, so that tx, /tx -> 0 if
x>x'. From this point of view, the function q ( x ) is defined
as the correlator ( a , ( Q ' ) c r i ( t x ) ) and is a measure of the cor-
relation that remains at time tx. The function q(x) is there-
fore a monotonically increasing function of x. The function
A(x) is related to the local susceptibility measured at fre-
quency tax=t~l. In particular, A(0) = T(^eq -^ncq),
i.e., it is a measure of the irreversible response of the system.
The Sompolinsky functional for the free energy becomes
identical with the Parisi functional when we take the gauge
A = — ( J/T)xq. Physical results are, of course, all inde-
pendent of the gauge.

7. VECTOR SPIN GLASS

The infinite-range model can be naturally generalized
to a magnet with the Heisenberg exchange interaction. The
Hamiltonian then takes the form

S,-S,)-/>2(S5)2- 2(H,S,). (7.1)
' , J i i

where S is the classical spin, whose length is conveniently
taken to be V3~, and D is the single-ion magnetic anisotropy
energy. Generally speaking, both the direction of magnetic
anisotropy axis in disordered magnets and the magnitude of
the energy can fluctuate in space. The effect of the random
anisotropy on the properties of spin glass will be discussed at
the end of this Section. The exchange interaction energies
J:j will be distributed, as before, in accordance with the nor-
mal law (3.1).

The vector spin glass differs from the Ising and replica-
symmetric approximations in that it is described by a num-
ber of parameters. In additioin to the Edwards-Anderson
parameter, which in this case is the tensor

?MV = < S V > T > C T = x, y, z),

there is also the so-called quadrupole parameter

<?wv = «S( 1SV>T>C;

(7.2)

(7.3)

where { ... )c represents the configurational average. Final-
ly, the magnetization m= {{S)T)C arises when Ja>J.

When the magnetic field lies along the anisotropy axis,
the tensors qflv and Q^. are diagonal and have two unequal
components, namely, the longitudinal and the transverse.
The condition S 2 = 3 relates Q ^ and Q± , so that the magnet
is described by the three parameter q\\ ,qL and
X= (Q\\ — l)/2 when /,, = 0. They are determined from
the self-consistent set of equations given by (7.2) and (7.3),
in which the thermodynamic average is evaluated for the
effective Hamiltonian

St ' e f f=- ,-aS 4-651,

where

(7.4)

(7.5)
b=-.l-r--(q^-q +3X)-D7'-t. (7.6)

a'nd the configurational average is taken over the normal
distribution of the random fields t (kef. 121). We note that
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the effective anisotropy is different from the crystallograph-
ic anisotropy. The additional term is due to disorder in the
system, and is nonzero only in glasses that have a special axis
or plane. In isotropic glasses (D = 0) we have
X = 0,^ = <7(| in the absence of the magnetic field, and then
6 = 0.

7.1 Isotropic magnet, D = 0. When the magnetic field is
H = 0, equations (7.2) and (7.3) have the nontrivial solu-
tion q^ =q\\ 7^0 for T< Ts = /.

The parameter q\\ is nonzero at all temperatures in an
external magnetic field. Analysis of (7.4)-(7.6) leads to the
conclusion'2' that a third order phase transition'22 occurs in
the system, i.e., a nonzero component q± occurs on the line
defined by

(7.7)

when H<^J. Analysis of the stability of the replica-symmet-
ric solution123"126 has shown that nonergodicity arises at the
same temperature, i.e, the parameters q\\ and qL become
functional of x. Near Tg(H), and when
JH2$>(Tg(0) - Tg(/0)3 the parameter q]{ is a slowly-
varying function of x, and q\\ (1) — qK (0) ~e2. At the same
time, ̂  (x) varies with x in roughly the same way as q(x) in
the Ising model in zero magnetic field: #(0) = 0, qL (1) ~£.
If on the other hand JH2~(Tg (0) - Tg ( H ) ) * , i.e., near
the Almeida-Thouless line, both q^ and q\\ (x*) depend sig-
nificantly '26 on x. Because of the weak dependence of q\\ on x
near the line denned by (7.7), which is called the Gabay-
Toulouse line, this irreversibility of longitudinal susceptibil-
ity has not yet been observed, but it becomes appreciable at
lower temperatures near the Almeida-Thouless line. It is im-
portant to emphasize that, strictly speaking, no phase transi-
tion occurs in the vector spin glass on the Almeida-Thouless
line, and that this line provides only a conventional separa-
tion between the temperature region in which nonergodicity
in the longitudinal direction is small and the region in which
it becomes significant. The phase transition occurs on the
Gabay-Toulouse line. However, even on this line, only the
transverse susceptibility should exhibit appreciable irrevers-
ibility.

7.2 Anisotropic glasSfJ) ^0. The longitudinal and trans-
verse spin components are frozen at different temperatures
in the anisotropic glass, and the temperature at which the
transition to the "longitudinal" or "transverse" glass takes
place obviously depends on the magnitude and sign of D. The
phase diagram on the T, D plane is shown in Fig. 14 (Refs.
127-128). Two phase transitions occur in the system for
D + > D > D when the temperature is reduced: q^ (qL) ap-
pears first and is followed by qL ( q \ \ ) .

Strictly speaking, replica-symmetric equations are val-
id only up to the temperature of the first-order transition.
Since only q\\ (q±) arises, the system undergoes a transition
to the nonergodic state and, in order to understand what
happens at lower temperatures, we have to use the Parisi
ansatz and introduce the functions q^± ( x ) . Olderfield and
Sherrington'29 consider that the second transition occurs in
the nonergodic state as well. They have also investigated the
phase diagrams for J0 > J for which long range thermody-
namic order occurs in the system.

A detailed experimental study of the phase diagram of
anisotropic spin glasses is reported in Refs. 130 and 131. In

J}/J'

FIG. 14. The T,D diagram of a spin glass with uniaxial anisotropy. P—
paramagnetic phase (q^=qL=Q), L—longitudinal spin glass
(0,1 7^0, ?j =0), T— transverse glass (qB =0, q^O), L + T— mixed
phase (?„ 7^0, q, ̂ 0). D + = 0.327, D ~ = - 0.20J.

highly anisotropic alloys with an easy axis, the spin-glass
properties are observed only for the longitudinal susceptibil-
ity, whereas in anisotropic alloys with an easy plane, they
appear in the transverse susceptibility. In slightly anisotrop-
ic alloys, two successive transitions are observed131 as the
temperature is reduced, which is in agreement with the
phase diagram of Fig. 14.

7.3 Effect of random anisotropy. Both exchange and an-
isotropy are random in disordered magnets. Fluctuations in
the internal electric field acting on d and / electrons lead to
fluctuations in the single-ion anisotropy energy and in the
direction of the anisotropy axis. The interaction between the
spins can also be anisotropic. In dielectric spin glasses, ran-
dom anisotropy is due, in the first instance, to the dipole or
pseudodipole interaction between local magnetic moments.
In semiconductors containing magnetic impurities, pseudo-
dipole anisotropy occurs because the spectrum of electron
and hole states is formed under the influence of a strong spin-
orbit interaction with the lattice.132 In a metallic spin glass,
the Dzyaloshinsky-Moriya anisotropy plays the dominant
role. Its origin was explained by Pert and Levy' -"•'34 in terms
of the influence of the spin-orbit interaction between elec-
trons and nonmagnetic impurities on the indirect RKKY
exchange interaction between local spins. The anisotropic
addition to the RKKY exchange energy between spins SA

and SB, due to the nonmagnetic impurity at a point C, is
proportional to

(7.8)R,\cRscRAC ,-j

where RAB, RAC> RBC are the sides of the triangle formed by
the magnetic and nonmagnetic atoms. The corresponding
formula has been derivedl35 for the case of a high concentra-
tion of nonmagnetic impurities for which the mean free path
of electrons is of the order of, or less than, the mean separa-
tion between the magnetic impurities.

The energy of the system is found to increase when the
spins which, in equilibrium, are oriented in accordance with
the distribution of exchange energy and the random anisot-
ropy energy, are uniformly turned over. Since relaxation to a
new position of equilibrium in a spin glass occurs quite slow-
ly, the corresponding anisotropy energy can be measured by
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examining its effect on the width and shape of the hysteresis
loop, the position of the electron spin resonance, and the
data obtained in torsion experiments.136'138 The anisotropy
energy of metallic glasses is found to increase sharply when
nonmagnetic impurities with high spin-orbit coupling con-
stant are added to them. This confirms the validity of the
idea of Pert and Levy about the Dzyaloshinsky-Moriya
(DM) random anisotropy mechanism.

Random anisotropy mixes the longitudinal and trans-
verse spin components, and therefore has a significant effect
on the phase diagram of spin glasses.32'139 In the infinite-
range model, the DM interaction is simulated by the follow-
ing term in the Hamiltonian:

where the mean value of the tensor D ff is zero and the vari-
ance is D 2/N. When the external magnetic field is not too
strong,12 i.e., (H /T)2/* <^D/T<^ 1, the random anisotropy
mixes the longitudinal and transverse spin components so
that the transition is almost of the Ising type and occurs on
the Almeida-Thouless line. In a strong field, for which (///•
T)5/2&D/T, transverse freezing on the Gabay-Toulouse
line takes place. Finally, (H /T)5'2 <£ /T<$(H /T)2/} de-
fines the intermediate region in which the shape of the phase
boundary is neither the Almeida-Thouless nor the Gabay-
Toulouse line.

7.4 Experimental study of the H, T diagram. The work
of Almeida and Thouless'01 and of Gabay and Toulouse121

led to a large number of experiments in with the H, T dia-
gram of spin glasses was investigated. As already noted, a
reduction in the transition temperature in an external mag-
netic field was observed for all "pure" spin glasses. The tem-
perature corresponding to the susceptibility maximum, and
the temperature at which irreversibility begins, do not coin-
cide in the magnetic field, and it is therefore unclear which of
them is to be identified with Tg (//) (see, for example, the
analysis given in Ref. 15). In most experiments, the tem-
perature Tg (H), determined in a particular way, is found to
vary in accordance with the law £~H2/3, which should be
valid for Ising spin glasses, but not Heisenberg spin glasses.
There is also a small number of papers in which the Gabay-
Toulouse line was observed for vector spin glasses. U"J40~'42

It is possible that this was due to the influence of random
anisotropy. When the magnetic field is small in comparison
with the random anisotropy then, as noted in Sec. 7.3, the
glass is Ising-like. However, in glasses exhibiting weak an-
isotropy, in which the transition occurs on the Gabay-Tou-
louse line, the Almeida-Thouless dependence may be ob-
served because of the strong nonergodicity of the
longitudinal spin components, which begins precisely on the
Almeida»Thouless line. We note in this connection that the
derivative of the magnetic part of the specific heat of CuMn
has an anomaly on the Gabay-Toulouse line.35 This line has
also been observed in the course of measurements of the
transverse magnetic susceptibility.143

To conclude this section, we note that quantum fluctu-
ations in spin glasses contribute to the free energy and do not
vanish at T = 0 even in the infinite-range model. However,
these fluctuations do not affect the shape of the phase dia-
gram.146-147

FIG. 15. Phase diagram of a disordered Ising magnet with Ju = J0/N. The
nonergodic region is shown shaded. The vertical line separates the /„ < J
region in which m = 0 from the J0>J region in which m ̂  0.

8. NONERGODIC MAGNETICALLY-ORDERED SYSTEMS

It is clear from the Sherrington-Kirkpatrick equations
given by (3.13) that the spontaneous magnetization is zero
in the absence of the magnetic field if JQ < J. When JQ > J,
ferromagnetic order becomes possible. The corresponding
phase diagram is shown in Fig. 15 for the Ising magnet. The
replica-symmetric phase of the frustrated ferromagnet de-
scribed by the equations of state (3.13) lies between the
T= /o line and the Almeida-Thouless line. Replica symme-
try is broken on the Almeida-Thouless line, and the entire
shaded region has the properties of a spin glass. We note that
7g does not vanish for any JQ. When •/„>./, the temperature
Tg is exponentially small and is given by (3.20) in which H
must be replaced with JQ.

Since the suceptibility does not become infinite on the
Almeida-Thouless line, the magnetization does not vanish in
the transition from the frustrated ferromagnet to the noner-
godic state. The phase in which the ordinary magnetic order
parameter and the Parisi function coexist is often referred to
as mixed. The mixed phase in which m =£0 will be referred to
as a ferroglass.

As already noted, the equilibrium susceptibility of a
pure spin glass with m = 0 is independent of T. It follows
that temperature phase transition from the ferromagnetic to
the mixed phase is impossible, i.e., the boundary between the
"pure" spin glass and the mixed phase is a vertical line121

(Fig. 15). It follows that, whatever the relationship between
the parameters, the magnetization of the mixed phase is non-
zero right down to T = 0.

As already noted, the existence of the mixed phase was
demonstrated experimentally for the frustrated antiferro-
magnet. The rich phase diagram of an antiferromagnet in an
external field, in which a first or second order transition can
occur, depending on the relationship between the param-
eters, can in principle be used to investigate the effects of
frustration and nonergodicity on different phase transitions
and on multicritical points or, conversely, to examine the
influence of a change in long-range order on the transition to
the spin glass. In the media that we have considered so far
(pure spin glass and ferroglass), the magnetic field reduces
monotonically the size of the temperature range in which the
nonergodic phase exists. In antiferromagnetic spin glasses,
in which the field suppresses both the long-range order and
nonergodicity, a more complex field dependence may be ex-
pected.

A natural generalization148 of the Sherrington-Kirk-
patrick model to nonergodic antiferromagnets involves the
assumption that the spins api are assumed to be distributed
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over two sublattices/> =1,2, and in the Ising exchange Ham-
iltonian of the system

(8.1)
P; t, i

the energies of intra- and inter-sublattice interaction Vtj and
JtJ are distributed normally with mean values F0//Vand /</

TV and variances FA^'^and JN ~ l / 2 where N is the number
of spins in the sublattice.

The set of equations for the sublattice magnetizations
ml 2 and the Edwards- Anderson parameters q ^ 2 , which de-
scribes the system above TB is'49

m1 > 2=:<th £-,,,},,
Ei2 = H~ Jm

(8.2)

and the equation for the Almeida-Thouless temperature is

(T* - F2 <ch-* £,>c) (T\-1'2 <ch-* £2>c)

— /i<clri£'1),(ch-4£,>c = 0. (8-3)

Configurational averaging over the random fields z is per-
formed as in (3.13) with the Gaussian distribution function.
In the ergodic state, the free energy is

- . [(1 - q,r- - (1 - ?,)2] - - (In (4 ch £, • eh

(8.4)

In the absence of the field, for F0 = 0, the phase diagram in
terms of the coordinates T( J2 + F 2 )~ l / 2 ,
JH(J2+ F 2 ) ~ ' / 2 is identical with that shown in Fig. 15 in
which long-range order is not ferromagnetic but antiferro-
magnetic. However, the disordered antiferromagnet does
not at all behave like a ferromagnet in the external field.

In the ordered antiferromagnet, the line corresponding
to second order phase transitions on the T, H plane is known
to transform at the tricritical point ( whose position depends
on the ratio of J0 and F0) to the line corresponding to first
order transitions. To begin with, let us suppose that F0 and F
are small, so that the intra-sublattice interaction can be ne-
glected and antiferromagnetic order arises only via the sec-
ond order transition.

Analysis of (8.3) then shows that, in this case, and
whatever the actual relationships between the parameters,
the typical effect is an increase in the temperature of transi-
tion to the mixed phase with increasing field. This is most
simply seen in the weakly frustrated antiferromagnet with-

out the intrasublattice interaction. According to (8.3), we
have in this case

T* = /* {clr'-E, (z))c (clr4 (8.5)

When the external field does not overcompensate the molec-
ular field, so that H — JHmt2 >/, the temperature T% is
described by analogy with (3.20) by the formula

+ (H-J0m.,)-\}. (8.6)

In the magnetically ordered phase (//<«/„), in which
mt — — m2 = 1, the temperature Tg (H) decreases with in-
creasing field, and on the boundary of the region
\H — J0ml21 >/we have

(8.7)

(8'8)

g « „ ) a exp - - • .

When H>J0, we have m , = m2 = 1 and

Even when H — JH^>J, the transition point given by
(8.8) can be exponentially greater when Tg for H <J0 [see
(8. 7 ) ] . This means that, when H — J0 ~J, so that the order
parameter vanishes rapidly, the temperature T& increases
exponentially with increasing field.

The increase in Tg with increasing field is due to the
reduction in the resultant field on one of the sublattices and,
correspondingly, to the increase in local susceptibility.
When the degree of disorder is low, the increase in Tg (H)
occurs in a narrow interval of field values A//S/ near
H~J(i, but this interval expands with increasing degree of
frustration. It is clear from Fig. 16a that, when J(>/J= 1.7,
which corresponds to a fully realistic situation, we have
TN (0)/Tg (0) = 9.4, and 7"g increases monotonically with
increasing fields.

After crossing the TN (H) line, the temperature Tf (H)
falls with increasing field in accordance with the Almeida-
Thouless formula (3.17). At the triple point (Ta,H0), at
which the line representing the second order phase transi-
tion crosses the T& (H) curve, the latter exhibits a break. The
ratio Tg (HH)/T% (0) increases with the decreasing J/J0. It
follows from (8.3) that fluctuations in the intra-sublattice
exchange F can only expand the range of fields for which
7^ (H) increases with H, and enhance this rise (we are as-
suming that F0//(, is small, so that neither the metamagnetic
transition nor the tricritical point are present).

If the mean intra-sublattice exchange is not too small,
the Tg (H) line crosses not the TN (H) line, as in Fig. 16a,

FIG. 16. Phase diagram of a disordered Ising antiferromagnet in
a magnetic field. The thick curve shows the second order transi-
tion. The nonergodic regions are shown shaded, a— Vn = V= 0.
The dashed line shows the slope of the 7"N (H} curve in the non-
ergodic phase; b— F(, = 1.25; /, = 0.25. V2 = J2^ 0.36. The
tricritical point can be clearly seen. Dot-dash line—loss of sta-
bility by the paramagnetic (1) and antiferromagnetic (2)
phases; dashed lines—possible behavior of the phase transition
lines below 7^ (H).
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but the first order phase transition line. The phase diagram
always has the form shown in Fig. 16b (Refs. 150 and 151).
Its main feature is that, over the segment AB, the magnetic
transition is accompanied by an abrupt appearance (disap-
pearance) of the spin glass order parameter q(x), i.e., we
have a second order phase transition to the nonergodic state.
On the remainder of the curve bounding the nonergodic
state, we have the usual third order transition to the spin
glass.

It is important to emphasize that, even in the ergodic
state, frustrations can sharply alter the usual phase transi-
tion picture. For example, a complete "spreading" of the
jump by frustrations and the disappearance of the metamag-
netic transition are possible.150'151

Equations (8.2) and (8.3) enable us to construct the
magnetic phase diagram in the ergodic state, and to deter-
mine its stability boundary (the Almeida-Thouless line). To
construct the magnetic phase diagram below T% ( H ) , we
have to use the Parisi equations of state (6.1) - (6.6) for the
spin glass, instead of the Sherrington-Kirkpatrick equa-
tions. These equations were given in Ref. 149 for the antifer-
romagnetic spin glass, and were solved near 7"g. In particu-
lar, the solution shows that the Tg (H) line continues into
the nonergodic phase with a slight break at the triple point
(ro, //0), i.e., as usual, phase transitions are possible in the
nonergodic phase on the field (temperature) axis, and are
accompanied by the evolution (disappearance) of long-
range magnetic order.

The equations obtained in Ref. 149 have been used to
investigate some of the magnetic properties observed below
Tg. It was found that, whatever the relationship between the
parameters, the sublattice magnetization changes smoothly
at T%, without showing a break. We have already noted that
precisely this type of behavior was observed experimental-
ly.71 The reversible magnetic susceptibility does exhibit a
break at Tg, and decreases into the nonergodic phase.

Heisenberg antiferromagnets with easy-axis anisotropy
typically exhibit an initial increase in Tg with increasing
field, applied along the easy axis, and then a reduction in
Tg (H) on the line of first order phase transition (spin flop),
followed by an increase in Tg in the overturned phase.152

A jump in the nonergodic order parameter occurs on
the line representing the first order transition, just as it does
for the metamagnet.

Frustrations not only modify the phase diagram in the
ergodic state, which we have already discussed above, but
they can also modify the usual temperature dependence in an

antiferromagnet. For example, frustrations always lead to
an increase in transverse susceptibility below the Neel point.
The behavior of longitudinal susceptibility is more compli-
cated. Depending on the relationship between Vand J, it can
either increase into the antiferromagnetic phase or, as usual,
it can decrease.150'152'153 The strong increase in Tg with//in
the Ising and Heisenberg antiferromagnetic spin glasses
(sometimes by a factor of several times) has been observed
experimentally68'73'154 (Fig. 17). According to the theory
presented above, the relative increase in Tg (H) becomes
greater as the degree of frustration decreases. An increase in
the transverse susceptibility with decreasing temperature
below Tg was reported in Ref. 69.

9. ULTRAMETRIC TOPOLOGY OF THE SPACE OF STATES.
NON-SELF-AVERAGING OF THE ORDER PARAMETER IN
SPIN GLASSES

Studies of the structure of the infinitely degenerate
ground state, undertaken after the physical significance of
the Parisi order parameter became clear, have shown155 that
the space of states (valleys) in the Parisi solution has certain
very general (and possibly universal) properties for systems
with frustrations and disorder.

The so-called triangle rule was established first. This
states that, if in the space of states, we introduce the distance
between valleys a and /? in accordance with the formula

d(a,p)=-i. 2«-mf)= = 2( ( / ( l ) -^) . (9.1)
i

then all triangles in the space of states are equilateral, i.e.,
d(\,2) = of ( l ,3 ) = d(2,3), or isosceles with the base shorter
than the other two sides, d( 1,2) = d( 1,3) > rf(2,3). The tri-
angle rule was established in Ref. 155 as a result of an analy-
sis of the distribution function P (<?i,<?2><?3) that gives the
probability, averaged over the distribution {/,-,}, of simulta-
neously finding three valleys with overlaps q},q-,, <?,:

,,-fl" (r~l)(n~-)
 a^b I ...

6 (f/.,c — ?1) 6 (9,,,, - ,/,) 6 (</,., —,,,) (9.2)

where Pj is the distribution function for a given realization.
The algebra of Parisi matrices leads to the relation

H, kOe H, kOe

10 20 40
b T,K

FIG. 17. The H, T diagrams for the alloys Fef,5Ni|4Co20 (a) and
FeMNi,,Cr2(1 (b) (Ref. 154).

-|-̂ 7 (P (9|) P (</••) Q (<li — 9") ^ ((7"~~ 7s)

-}- permutations (9.3)

which is actually the triangle rule.
The simplest way of confirming that the triangle rule is

a direct consequence of the method used to parametrize the
matrices q is to verify that it is satisfied for matrices such as
(5.3) even before going to the limit «->0, in the case that n,
k, {mk} are integers.

If follows from the triangle rule that all the valleys can
be distributed over nonoverlapping groups (clusters), each
of which is determined by the maximum separation d
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FIG. 18. Hierarchic structure of the states of a spin glass. Points at the ends
of the branches represent states; the branches represent clusters. The sepa-
ration between two sets is determined by the height of the level (1, 2, or 3)
occuapied by the immediate progenitor.

between valleys (minimum overlap q). Actually, if a valley 7
belongs to two clusters /, ( d ) and I2 (d), its distance from the
two valleys a and (i belonging to clusters /, (d) and I2(d)
does not exceed d: d(y,a)<^d, d(y,/3) <c?. However, accord-
ing to the triangle rule, this means that d (a,/?)<d. Hence,
clusters formed at the same "level of overlap", i.e., with the
same values of d and q, must either coincide or not overlap at
all.

This property leads to the hierarchic structure of the
space of states in a spin glass. We shall use points on a given
horizontal level to represent noncrossing clusters of states
with the same maximum distance d (a,/3) <d (Fig. 18).

Each of the clusters can in turn be subdivided into clus-
ters with d (a,/7) < d' < d. These are represented on a lower
horizontal level, and the procedure can be continued indefi-
nitely in steps as small as desired, right down to clusters with
zero maximum separation d'. Spaces with this hierarchic
structure (Fig. 18) are called ultrametric (a detailed review
of the applications of ultrametry in physics can be found in
Ref. 14).

The strong correlation between valleys, which is typical
for ultrametric space, shows that there should be a specific
correlation between microscopic distributions of magnetiza-
tion in different valleys. This very interesting question was
examined in Ref. 156. Calculations of correlation functions
for magnetizations in different valleys show that, for any
valleys with a common progenitor on the genealogic tree of
Fig. 18, it is possible to subdivide the entire system of TV spins
into a certain number of subsystems in such a way that the
magnetization of each subsystem is the same for all valleys.
On the other hand, if any pair of chosen valleys has the same
immediate progenitor, the magnetizations inside the subsys-
tems have uncorrelated distributions for all valleys. It fol-
lows that the valley overlap (and other analogous averages)
are simply related to subsystem magnetizations. For exam-
ple,

.1/ (9.4)

where M: is the subsystem magentization and c, the relative
number of spins in each of the subsystems. More detailed
information on magnetization distributions also can be
found in Ref. 156.

We now return to the description of a spin glass as a
system of valleys in ultrametric space. To develop this de-
scription, we must elucidate the statistical properties of the
quantities

/>e = «.-'"« (I e'"'")"1, P=r-*. (9.5)

The point is that the free energies of the valleys are equal in
the thermodynamic limit (i.e., the free energies per spin
lim (Fa /N) are equal as (N-> oo), but corrections of order
TV ~ ' to the free energies are random quantities.155''57'158 It
was shown in Refs. 158 and 159 that, if we consider the free
energies of valleys as independent random variables distrib-
uted in accordance with the law

P (/J = p exp p (/„ - /c) 6 (/c - /„

P = P* (9-max).

(9.6)

the free energy and the correlation functions of this set of
independent valleys are the same as the corresponding quan-
tities in the Parisi solutions, where #max is the maximum
value of q ( x ) . The cut off energy/ and the number L of
valleys must be allowed to tend to infinity at the end of the
calculation, letting the density of states of given energy re-
main finite:

limZ,e~9/c = !;. (9.7)

All the results are independent of v.
The ultrametric topology of the space of states and the

distribution function (9.6) provide a complete characteriza-
tion of the space of valleys. The Parisi solution can be repro-
duced159 by assuming this property and without introducing
any further hypotheses.

The exponential increase in the distribution function
(9.6) with increasing/, is an indication of strong fluctu-
ations in the free energy of valleys. The valley distribution
can be transformed into the distribution /(q) of clusters that
unite valleys with q"13 > q. We now introduce the statistical
weights W, and free cluster energies//, given by

w — N P —n , — _ i a — (9.8)

It can be shown155-158 that the distribution function P ( f , )
differs from (9.6) only by the replacement of 0max with q.
We thus see that the distribution function depends on the
parameters of the field, the temperature, and q in a universal
manner via the function p.

From (9.6) we can obtain the statistical-weight distri-
bution f(W,y) averaged over configurations with given y,
which determines the distribution of all the physical quanti-
ties. It is found to be155

where

(9.9)

(9.10)

and T(y) is the gamma function.
Equations (9.5)-(9.10) enable us to establish a clear

picture of the cluster distribution in ultrametric space. The
divergence of the integral Slf(W,y)dW at the lower limit
shows that the total number of clusters for any y^ 1 is infi-
nite because of the large number of clusters with small W.

The function Wf( W,y} determines the probability,
averaged over {//,}, that a randomly chosen valley belongs
to a cluster with statistical weight W. It is clear from (9.9)
that clusters with a small W provide a negligible contribu-
tion to the integral Wf( W,y) i.e., the number of states in
them is small. As_y-> 1, the function Wf( W,y} diverges near
W = 1. Since the sum ^f^V, is equal to unity independently
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of y, this means that one cluster plays the dominant part in
the limit as y -» 1 . This is not an unexpected conclusion be-
cause the limit as y-> 1 corresponds to a transition to the
ergodic state.

Corrections of order N ~ ' to the free energy give rise to
an additional contribution to entropy, which can be ex-
pressed in terms Pa in the usual way:

The average of AS over the configuration is
i;

(9.11)

(9.12)

where /(P) =/(«>,) and>>, = 1 -x(<?m a x) (Ref. 155); </•
is the digamma function. This quantity diverges as 7"-» 0 ( we
recall that the intensive part of entropy, which is proportion-
al to N, tends ot zero as T->Q). In principle, (9.9) can be
used to construct the entropy distribution function.

The strong fluctuations in the free energy of valleys,
determined by (9.6), suggest configurational fluctuations in
the Parisi order parameter. The most convenient to investi-
gate are fluctuations in the function

i
Yj(<l)=^Pj(q')dq' ( 9 .13 )

whose mean i s y ( q ) (the index /indicates that the quantity is
evaluated for a given distribution of exchange integrals).
Since

Yj (q) = S PJJ,Q (<f*- q) = S W\, (9.14)
«, P I

the distribution \\j ( Y) of the quantities Yj (q) can be writ-
ten in the form

(Y) - <6 (Yj - y»c = (6 (I W\-Y))C.
I

(9.15)

For 7 approaching 1, the main contribution to Uj (Y) is
provided by one cluster, just as in the case of/( W,y), and it
then follows from (9.9) that, as Y^ 1,

n, (Y) ~ (i —Y)-v. (9-16)

The most probable value is Y = 1 which, generally speaking,
has nothing in common with the mean ( Y j ( q ) ) c = y (q). It
is clear that, even in the thermodynamic limit N-> oo, the
order parameter of the spin glass is found to be non-self-
averaging. Both the valley overlap distribution function
Pj (q) and the distribution function for P j ( q ) appear at the
transition point. Calculations show'" that, for example, the
variance of Pj (q) is

= ~(P (?,) 6 (?, - ?2) - P (q,) P (q,)). (9.17)

Young, Bray and Moore160 were the first to investigate
the self-averaging of observables. They showed that quanti-
ties such as energy, magnetization, and the Edwards-Ander-
son parameter do not fluctuate in the macroscopic limit, and
that the Gibbs susceptibility is non-self-averaging. The dif-
ferent fluctuation properties of m and % = dm/dh can be
qualitatively explained by the fact that, although the m(h)
curve for each particular realization approaches the line

( m ( h ) ) , . = xh as N increases, its slope at h = 0 is, in gen-
eral, unrelated to % = (xj ) c • However, measurements of
this susceptibility, which fluctuates strongly from sample to
sample, require fields smaller than the characteristic fluctu-
ation scale AA. Fields greater than A/z tend to "smear out"
the fluctuation and restore self-averaging. Since A/I —0 as
#- oo (the authors of Ref. 160 consider that AA ~ N ~ ' / 2 ) , a
realistic experiment demonstrating non-self-averaging in
spin glasses cannot unfortunately be formulated. On the oth-
er hand, a verification of the non-self-averaging of physical
quantities in the Sherrington-Kirkpatrick model and of the
ultrametric distribution should be very important because it
would comprehensively resolve the question as to whether
the extremum of the functional <t>, found by Parisi, yields the
true free energy of spin glasses. Numerical experiments have
therefore been carried out and have produced qualitative
agreement with the Parisi theory, at first for small161 and
later for relatively large162 systems, so that the qualitative
conclusions reached so far can be regarded as reliable.

We note that non-self-averaging of the order parameter
is also found to arise in the so-called random energy mod-
el,163 which in many respects is similar to the Sherrington-
Kirkpatrick model, but is mathematically simpler.

The molecular field theory provides a satifactory de-
scription of many of the statistical properties of spin glasses.
However, a spin glass is then an absolutely nonergodic sys-
tem in which barriers between different states are infinite, so
that the dynamics of the system can be related only to intra-
valley transitions. It was precisely this dynamics that was
essentially investigated in the pioneering work of Sompo-
linsky and Zippelius."9'120 However, experiments have
shown that transitions between valleys do occur and are in-
deed responsible for the wide spectrum of relaxation times
that leads to the specific dynamic properties of spin glasses
(Sec. 1). Attempts have therefore been undertaken to con-
struct a phenomenological theory of the dynamic properties
of spin glasses.164'171 It was assumed that the ulatrametric
structure of metastable states persisted in real glasses with
short-range interaction, but that barriers between different
states were finite. By specifying some particular barrier dis-
tribution or transition probability distribution, and then
solving the kinetic equation for the probability Plt (?) offind-
ing the system in a state a at time /, it was possible to repro-
duce the experimentally observed time dependences, includ-
ing the stretched exponential law.21

10. SPIN GLASSES WITH DISTANCE-DEPENDENT
EXCHANGE INTERACTION

10.1 Spatial dispersion in the Parisi scheme. It is now
reasonably well-established that the Parisi ansatz provides
the correct solution in the infinite-range model. However, it
still remains unclear to what extent the ultrametric structure
of the ground state describes the properties of real spin
glasses in which the exchange interaction energy decreases
with distance in a particular way.

In principle, this question can be resolved by developing
a perturbation theory in which the small parameter is the
reciprocal of the exchange interaction range, and the Parisi
theory is the zero-order approximation. Attempts of this
type were undertaken in Refs. 173-178.

In spin glasses with a short-range interaction, the free
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energy functional assumes the following fc
of (6.1)]:

/ (C> a f i ( r ) )=Jd r [4 l2 '" '-"' ' ^

form176-179 [instead

- In Sp exp ( ± -£- 2 Qaft (r) *a (r) o» (r)) ] ,

(10.1)

where z is the number of neighbors within the interaction
range and the matrix Q*3(T) = ((a0 ( r ) ( /* ( r )> T > c de-
pends on the position coordinate r in the short-range interac-
tion model. In the lowest order in the fluctuations relative to
the Parisi solution

the effective Lagrangian is then found to be

L (#!») = -^. \ dr [ 2 (V#V + 2

(10.2)

where M is the stability matrix (3.16). The Fourier trans-
form on the Green's function for the fluctuations R"0 given
by

Gp ' = (Rv /i-p}, (10.3)

where p is the momentum, is found from the equation

G p ( p * - r M ) = I, (10.4)

i.e., the properties of the Green's function are intimately re-
lated to the properties of the eigenvalues of the stability ma-
trix M. In particular, the existence of the gapless mode is
responsible for the fact the Gp diverges for/?—0.

Altogether, there are seven independent functions
Gf*6, the simplest of them being Gf'a/3 =Gp(x), where x
is determined from the condition qa0 = q(x). This function
exhibits the following behavior for small p and
F — (T — T\/T •— V R ' ' £ *

Gp (x) ~
GP (x) ~

<J5,

»Z

(10.5)

where x}~e is found from the condition q ( x } ) =0(1) .
When *>*,, the Green's function becomes G(p) ~p~2.

The nature of the singularity in Gp for small p is thus
seen to depend on x.

In addition to Gp ( x ) , there are six independent func-
tions that depend on two or three arguments such as x. Their
behavior can be more singular than that of (7.5). The most
singular function behaves177 as p~f*. To find the spin-glass
susceptibility

we must know the behavior of all the Green's functions for
all values of the different arguments because ̂ -so is obtained
from Gal3'rS by summing over the replica indices, i.e., by
integrating with respect to an argument such as x for n -» 0.
However, so far, no-one has succeeded in overcoming the
mathematical difficulties encountered in the execution of
this program. It has only shown175 that the correlator ^SG ,
obtained by averaging over one valley, i.e., for x -> 1, behaves

10.2. Other analytic approaches. An attempt to con-
stuct a renormalization-group scheme for the effective Ham-
iltonian (10.1) was undertaken in Ref. 180.

An effective Hamiltonian, which allows one to reduce
the problem of the phase transition in a spin glass to the
problem of the Anderson localization, has been introduced
in Ref. 181 using an expansion in terms of the reciprocal of
the range of the exchange interaction. As a result the critical
behavior does not admit scaling, and the nonlinear suscepti-
bility lies in a region bounded by two enveloping curves.
However, such behavior is not observed experimentally, the
values of the critical indices characterizing various quanti-
ties differ significantly from those predicted in Ref. 181.

The difficulties encountered in the theory of spin
glasses with a finite interaction range, which have not been
overcome, have stimulated interest in special models, e.g.,
models31 with short-range interaction on the Bethe lat-
tice182"184 and the dilute spin glass model proposed by
Vianna and Bray.186'189 However, the significance of their
results in relation to real spin glasses remains unclear.

10.3. Numerical simulation. Heuristic models. It is
well-known190 that the molecular field theory predicts cor-
rectly the order parameter and the character of the phase
transition if the dimension of space is greater than the so-
called critical dimension dc. Since, as we have already noted,
a consistent analytic theory of spin glasses with short-range
interaction has not as yet been constructed, extensive studies
of spin glasses have been undertaken by numerical simula-
tion.

10.3.1 Ising model. The most extensively investigated
model is the simple Ising magnet with nearest-neighbor in-
teraction in the simple quadratic or cubic lattice with a sym-
metric distribution of exchange interactions. Most of this
work relies on the Monte Carlo method. Because of the slow
of relaxation of spin glasses, exceedingly long computations
are necessary to achieve reliable data. For example, in the
work reported in Ref. 191, six months of machine time on a
specially constructed fast computer were spent in an investi-
gation of the behavior of a spin glass over long intervals of
time.

The problem of phase transitions in two-dimensional
glasses was solved a long time ago. Precise calculations of the
partition function for finite systems with particle number
7V<250 (Ref. 192), calculations of the energy defect,193 and
Monte Carlo computer simulations'94 have shown that
phase transitions do not occur in two-dimensional magnets.
The Edwards-Anderson parameter is zero at all tempera-
tures, an the correlation lengths of the nonlinear susceptibil-
ity associated with the Edwards-Anderson parameter re-
mains finite, although it does increase with decreasing
temperature.

The situation is more complicated in the case of the
three-dimensional glass. Machine simulation was used in
Refs. 192 and 193 as a basis for the conclusion that there are
no phase transitions in the three-dimensional case and
dc = 4. This conclusion was in agreement with the result
obtained by using the high-temperature expansion.195 How-
ever, these results were subsequently reconsidered.

The first powerful arguments in favor of d,. <3 were put
forward by Bray and Moore196'197 and Macmillian198'199

who used the methods proposed in Ref. 192. Let us split the
systems into blocks of size L, and introduce the characteris-

156 Sov. Phys. Usp. 32 (2), February 1989 I. Ya. Korenblit and E. F. Shender 156



tic energy of interaction between blocks /, whose depen-
dence on L is determined by the critical index v:
J ( L ) =JL 1/v. When v > 0, the energy J tends to zero as
L-> oo, i.e., there is no correlation between distant spins in
the system and, hence, there is no phase transition at a finite
temperature. The index v determines in this case the tem-
perature dependence of the correlation length ^:^~(J/TY-
On the other hand, v < 0, a phase transition does occur at a
finite temperature.^

The quantity J ( L ) is equal to the so-called defect ener-
gy which can be calculated on a computer. Let us specify
periodic boundary conditions along all axes except one, for
which we use random boundary conditions.

This means that spin directions in the first and last rows
(d = 2) or the first and last planes (d = 3) are fixed ran-
domly either upward or downward. If we look upon the sam-
ple under investigation as part of an infinite system, the ran-
dom boundary conditions will simulate the coupling of the
finite sample to the remainder of the system. The defect ener-
gy £def is the difference between the energies for the given
boundary conditions and the situation when the orientation
of the spins has been reversed on one of the hypersurfaces
with random boundary conditions.

Calculations show that the distribution of the random
quantity £def very rapidly reaches its asymptotic form with
increasing sample size L, and is probably independent of the
form of the distribution of exchange integrals. All the char-
acteristic parameters of the distribution, namely, its mean,
variance, and so on, then have the same dependence on L.
We can therefore take J ( L ) to be any of these quantities,
e.g. f ^ d e f l -

Calculations have shown that v > 0 for d = 2, i.e., there
is no phase transition in the two-dimensional case for T ^0,
whereas in the three-dimensional case v < 0 and there is a
phase transition. This conclusion is also confirmed by the
high-temperature expansion of the Edwards-Anderson sus-
ceptibility 2(X) JSG • The critical index of this susceptibility for
d = 3 was found to be y = 2.9 + 0.5, which is in good agree-
ment with Monte Carlo calculations.1'" The incorrect result
reported in the former paper on high-temperature expan-
sions was due to the fact that the number of terms in the
series that were analyzed was to small.

The most complete picture of a phase transition in a
spin glass with short-range interaction was reported by
Ogielski'1" who investigated long-term relaxation in large
spin arrays up to 64 X 64 X 64, and concluded that there was
a phase transition in the three-dimensional case. For a non-
zero temperature Tg, the correlation length J" was found to
diverge in accordance with the expression £~ (T — Tg )

 v ,
v = 1.3.For the same temperature, the characteristic relaxa-^
tion time was also found to diverge (see below). However,
the order parameter was zero throughout the low tempera-
ture phase. The correlation length is probably infinite every-
where below Tg, i.e., any temperature T<Tg is critical in the
three-dimensional case, and dc is either equal to or close to 3
(Refs. 201 and 202). Figure 19 shows q ( t ) defined by

(10.6)

It is related to the Edwards-Anderson parameter by

qtt)
9

3-

2 -

10" 10'
•t,MCS

FIG. 19. The function q ( t ) at temperatures T'/T% = 1.30 ( / ) , 1.25 (2),
1.20 ( 3 } , 1.10 ( 4 ) , 1.00 (5), 0.60 (6) and 0.70 (7). Lattice size 32'. The
data are shown together with the corresponding uncertainties. The unit of
time measurement is the Monte Carlo step (MCS).

The nature of the relaxation process is quite different above
and below the transition point Tg = 1.1275 (model in which
the exchange interaction energy between nearest neighbors
in the lattice is + 1). Above Tg, the relaxation is exponen-
tial

'1 (t) = At~ (10.8)

(10.7)

where /? and x are functions of temperature: 0(Tg) = 0.3,
0(T)^l for !T-» oo, whereas at lower temperatures q ( t ) is a
function of a power of t (a> = 0). Despite the fact that the
variation described by (10.8) becomes very slow as the tem-
perature decreases ( x ( T ) <0.05 for T=0.7) the overall
shapen of the curves for all T<Tg shows that q (t -> oo ) =0.
Generalizing (10.8), we can write the expression for q (t) in
the scaling form

q (t) = r*Q (-~). (10.9)

The relaxation time T is then satisfactorily described by the
expression r~(T— Tg)~"' with zv = 7.9±1.0,
z = 6.1 ±0.3.

Attempts have been reported203'204 to establish whether
the ground state of spin glasses with a short-range interac-
tion can be described as a set of valleys in ultrametric space.
However, the size of the samples was too small for reliable
conclusions to be drawn.

Computer simulations have thus shown that the Ising
models has the basic properties observed in spin glass experi-
ments, namely, there is a phase transition, long-term relaxa-
tion occurs below rg, and although q (t) — 0 (for t -» oo ), we
have q =^ 0 below Tg for realistically attainable times.

The results of numerical experiments I96~'yy have led
Fisher and Hughes205 and Bray and Moore2"6 to a heuristic
model of the Ising spin glass, which can be referred to as the
drop model (see also Ref. 207). According to this model,
large-scale excitations with characteristic size L,_whose en-
ergy has been shown to be";6"'w E~J(L)~Ly,
y = — \ ~ ' , can be produced by overturning a large number
of spins in "drops" whose surface area is of the order of ds.
The very significant point is that the index ds, whose mean-
ing is close to fractal dimension, is not related in the trivial
manner d., = d — 1 to the dimension of space, as in the case
of the Ising ferromagnet. In general, d^d — 1 because, be-
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ing a fractal object, the drop can have an anomalously large
surface area.

Let us now consider in such a system a perturbation of
the exchange integrals 8Jtj, with zero mean and variance SJ.
The redistribution of spin orientations on the drop boundary
then leads to the energy gain SJ—L * . This gain is greater
than the excitation energy in the drop E(L) ~U, i.e., when
6= (</s/2) — y>0, the redistribution of spin does indeed
take place. In other words, when 9 > 0, the perturbation SJ
of the exchange integrals leads to a redistribution of the ori-
entations of spins lying at the distance L>L0zz (J/SJ)l/e

from the perturbed exchange couplings. Numerical simula-
tion has shown that, in two-dimensional glasses, y = — 0.3
(Refs. 196 and 197), rfs = 1.6 (Ref. 206), and (9 = 1.1. In
three-dimensional glasses,^ = 0.2 and, since ds>d — 1, we
have 0> 0.8. In the three-dimensional case, when there is a
phase transition for T /O, the spin state is unstable not only
with respect to a perturbation of the exchange integrals, but
also with respect to weak temperature perturbations: a tem-
perature change ST leads to a reorientation of spins at dis-
tances L > (ST)/T~ 1/e. The spin-glass phase in the three-
dimensional case was referred to in Ref. 206 as chaotic; the
spins do not freeze in this phase for any T =£ 0.

A number of phenomena in the relaxation dynamics of
spin glasses is discussed in Ref. 205 on the basis of the drop
model.

10.3.2 Heisenberg spin glass. Since the basic experi-
ments were performed with Heisenberg systems, their nu-
merical simulations are of particular interest. All the nu-
merical simulation data obtained for systems with
nearest-neighbor interaction indicate that dc > 3 in the Hei-
senberg spin glass. M8~212 The authors of Refs. 209 and 210
have calculated the energy defect and have concluded that
dc = 4. The Monte Carlo method was used in Ref. 212 to
calculate the spin glass susceptibility and the autocorrela-
tion function for samples with dimensions of 83, 163, 323 and
a normal distribution of exchange integrals with unit vari-
ance. The mean field theory shows that, in this case, there
should be a transition at T™f = J6/3 = 0.82, whereas the
Bethe-Peierls gives Tfp = 0.52. Numerical simulation in the
range 0.20 < J"<0.80 gives no indication of a phase transi-
tion. The susceptibility and the characteristic relaxation
time T increase with decreasing temperature: ^fSG ~T~Y,
y= 3.4; r~T~"', zv = 5.9, z = 5.1, so that the transition
temperature is most likely to be zero, as in the two-dimen-
sional Ising spin glass. However, in contrast to the two-di-
mensional Ising glass, in which r increases exponential-
ly213"215 as the temperature is reduced, here we see a
power-type increase, i.e., transitions between different states
are not due to overcoming of barriers. At the same time,
q ( t ) falls logarithmically with time.

All these results are in clear conflict with experiment,
which shows that there is serious evidence that the transition
to the spin glass occurs at a finite temperature. This is indi-
cated by the rapid increase in xni

 as T-^ T%, and also by
dynamic properties, i.e., by the dependence of Tg on <y.

For some spin glasses, in particular for CuMn, this
function is known in a very wide range, namely, between
times of the order of 10 "8 s, which are typical for neutron
experiments,2'6 and times of the order of 104 s, which corre-
spond to statistical experiments. It has been shown217 that,

FIG. 20. Fulcher'slaw (a) and the power-type law (b) for the temperature
dependence of the relaxation time of the alloy CuMn (4.6 at.% Mn).

for times in the range 10 s s<r<10 4 s , these data are satis-
factorily described by the scaling relationship r = r0[7Y
(T- To)]rv, where zv= 5.5 (Fig. 20) and T0 is close to
the temperature at which the static susceptibility exhibits a
break. At the same time, Fulcher's law r~exp[£/
(T— TO)] , and the generalized Arrhenius law208

r~exp(E/Tzv ), based on the assumption that infinite bar-
riers arise in the system as T->0, do not describe the mea-
sured function T(r) for reasonable parameter values at all
times.

The advantages of the scaling relationship, as compared
with other possible descriptions, also follow from other ex-
perimental data.219"223

The experimental situation in the case of Heisenberg
magnets is closer to the numerical simulations for three-di-
mensional Ising glasses191 than Heisenberg glasses. This is
well illustrated by Fig. 21 which is taken from Ref. 212. Even
the measured indices are in reasonable agreement with cal-
culations.'9I

A resolution of this contradiction was suggested in
Refs. 210 and 223 in which the special role of random anisot-
ropy in spin glasses was noted. It can ensure that the transi-

0.4 0.5 0.6 0.7 0.8
C

FIG. 21. a—Susceptibility ̂ SG as a function of temperature for the three-
dimensional Ising model with nearest-neighbor interaction, based on nu-
merical simulation; 7"™F—transition temperature in the molecular field
approximation, b—Experimental data from Ref. 21. c—Numerical simu-
lation of the three-dimensional Heisenberg model with nearest-neighbor
interaction.
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tion becomes Ising-like, and the transition temperature in
spin glasses with short-range interaction is then given by

r g ~ / ( -5- ) 1 ' 4 . (10.10)

Spin glasses with the RKKY interaction belong224 to an-
other universality class with dc = 3 (see also Refs. 225).
Random anisotropy in such glasses brings them closer to the
Ising case, so that

J'.,~J ( lu-^-)""2 , (10.11)

which, as in the case of short-range interactions, and realistic
values of the parameter D /J, is not very different from J.

However, this picture is also found to give rise to diffi-
culties. First, Monte Carlo calculations for glasses with the
RKKY interaction show2'' that dc > 3 in these systems. Sec-
ond, as noted in Ref. 212, if (10.10) and (10.11) are valid,
then glasses with a very small degree of anisotropy should
exhibit a transition from the Heisenberg to the Ising type
behavior as the temperature is reduced. However, this is nev-
er observed experimentally.

11. SPIN-GLASS MODELS IN COMBINATORIAL
OPTIMIZATION PROBLEMS AND IN BIOLOGY

The ideas and methods developed in the theory of spin
glasses have had a very considerable influence on problems
in combinatorial optimization which, at first sight, are very
different, but in which frustrations are found to occur in one
form or another.l4-226-230 We refer here to the so-called prob-
lems with exponentially large samples i.e., problems for
which it is probably impossible to construct an algorithm for
a solution in a time that is a power-type function of the num-
ber N of objects in the sample.

In combinatorial optimization problems, we are usually
interested in a set of A'parameters that enable us to obtain an
absolute extremum, whereas in statistical physics we investi-
gate the macroscopic properties of a system. However, appli-
cation of the methods of statistical physics enable us, first, to
provide a reasonable analytic estimate of the quantity for
which the optimum is desired and, second, by introducing in
a natural manner the "cost" function (analog of free energy)
and a parameter analogous to temperature, it is possible to
carry out a Monte Carlo simulation of the cooling of the
system and obtain the distribution of the "microscopic" pa-
rameters for a nearly optimal solution.

As an example, consider the problem of partition of a
plane graph, whose vertices are randomly joined, into two
subsystems with an equal number of vertices, so that the
number of links joining the vertices in different subsystems is
a minimum. Such problems arise, for example, in the design
of complex electronic systems when the number of connec-
tions between blocks has to be minimized.226

Let us assign a variable a, to each vertex /, which can
assume values + 1 depending on to which subsystem the
vertex belongs. Every two vertices will be assumed to be cou-
pled with probability a = p/N, and let us associate with
these couplings an energy J:J = J > 0. It is then readily seen
that the Ising Hamiltonian

vertices belonging to different subsystems2

-3? = - " N (X-i)p + 2C (a). (11.2)

v

and the combinatorial optimization problem reduces to find-
ing the minimum of 3f', subject to the condition that the
total moment must be 2,<r, =0, which ensures that the
number of vertices in the subsystems is equal. Frustrations
occur as a result of competition between the ferromagnetic
interaction JtJ and the condition that the resultant moment
is zero. We note that this model is identical with the dilute
spin glass model.1Hf>

The replica symmetric analysis performed by Fu and
Anderson237 has led to an estimate for C(a), which is better
than that provided by previously known optimization meth-
ods.

Statistical physics models for the classical traveling
salesman problem226'221* the plane graph coloring prob-
lem,221* and so on have been formulated in a similar way.

In addition to the replica-symmetric analysis and com-
puter simulations of the "cooling" of the system, attempts
have been made to investigate the properties of the phase
with broken symmetry.230

Unexpectedly, spin-glass methods have also been found
to be successful in biology, especially as models of associ-
ative memory. 39 These models are based on the idea of
memory as a cooperative property of neural networks. The
Ising variable a, = + 1 can be assigned to the excited and
unexcited states of a neuron /. The neuron potential V( arises
as a result of its interaction with other neurons in the
network, and is equal to

The quantities Jtj characterize the strength of the inter-
action, and can have different signs. Assuming that the neu-
ron excitation threshold U,- is given by

and that the interaction is symmetric, we see that the station-
ary state of the system corresponds to the condition for the
minimum of the Hamiltonian (11.1).

To ensure that the system can memorize patterns and
recognize them associatively, stable configurations must
correlate with patterns to be memorized. This is achieved by
considering interactions of the form

( * ¥ = ; ) ,

where £>• are random variables equal to + 1. The sets {.£'[}
correspond to patterns stored in memory. When the ratio
a = I /N does not exceed the critical value a() = 0.138, the
system has / stationary states, each of which is close to one of
the sets {£','}. If the initial state {&,} is not very different
from some pattern {£ '/}, the result of the dynamic reduction
of energy will be that the system will undergo a transition to
this pattern, which is close to the initial state, i.e., the system
will "recognize" the pattern by association.

(11.1) 12. CONCLUSION

is simply related to the number of couplings C(a) between
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three or more, so that the molecular field theory cannot liter-
ally describe real spin glasses. This has stimulated attempts
to construct a theory of spin glasses that does not start with
the molecular field theory as the zero-order approximation.
Theories have been advanced and developed in which the
spin glass is looked upon as a chaotic phase that is unstable
with respect to small changes in the boundary conditions
and in the temperature, and attempts have continued to find
models in which the replica-symmetric solution is stable
down to T = 0.

However, it must not be assumed that the molecular
field theory has turned out to be useless. Correlations due to
spatial dispersion decay very slowly, so that the order pa-
rameter differs from zero for actually attainable times, and
the molecular field theory provides a good description of the
static properties of spin glasses.

New theoretical searches have run parallel with experi-
ments devoted to comprehensive studies of different proper-
ties of spin glasses. Recent papers have reported studies of
the temperature dependence of the thermostatic and isother-
mal susceptibilities240 for 7"< Tg, the absorption of ultra-
sound in dielectric spin glasses,124 precision measurements
of remanent magnetization and of aging as functions of the
magnetic field,242 new studies of the mixed state in disor-
dered ferro-and antiferromagnets,243'246 analyses of the
phase transition to the spin glass state,247 and so on.248"253

The drop model of the spin glass has been extended254

and the nonergodic state on the Bethe lattice has been inves-
tigated.255

New publications have appeared on the optimization
problem, using the replica method.256"261 The literature is
undoubtedly continuing to expand.

"We are using a system of units in which the Bohr magneton is,uB = 1 and
the temperature is expressed in energy units.

2'Ginzburg's work is close in spirit to these investigations.
"See Ref. 185 on the properties of the Bethe lattice.
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