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A phenomenon of nonlinear physics is studied in this review: the formation of characteristic,
time-independent, solitary states—autosolitons (AS)—in different physical, chemical, and
biological systems. The physics of As in some types of systems—systems with "positive" and
"negative" thermal diffusion, uniformly generated "combustion material," and local self
production of matter—is explained for the example of semiconductor and gas plasma, where AS
consist of a region of carriers with high temperature and lew (or high) density. The conditions for
the formation of As in the form of strongly nonequilibrium regions in systems departing slightly
from thermodynamic equilibrium are discussed; examples of systems in which this phenomenon
is realized are presented. The systems are classified with respect to the physics and types of AS
formed in them. A theory describing AS from a unified viewpoint based on a mathematical
analogy is described, and general results are presented, determining the basic parameters and
properties of static, pulsating, and traveling AS that form in a wide class of the most diverse
systems— chemical and biochemical reactions, nonequilibrium gases and superconductors,
photoconductors and magnets, magnetic semiconductors, composite superconductors, active
lightguiding transmission lines, and many other systems.
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Introduction. One of the striking phenomena of nonlin-
ear physics is the formation of solitons and autosolitons—
localized stationary states in different physical, chemical,
and biological systems. Solitons are solitary waves that form
in dispersive nonlinear media and whose properties are in
many ways reminiscent of particles. There is an extensive
literature on solitons (see, for example, Refs. 1-7). Autoso-
litons (AS) are solitary stationary states of a different type
whose properties can differ fundamentally from particles. In
a general sense AS differ from solitons in the same way that

self-oscillations differ from oscillationsK " and autowaves
from waves.'2"18

An autosoliton is a stationary, solitary, characteristic
state (autostate) of a system. The parameters of AS (form,
amplitude, velocity, frequency of pulsations, etc.) are com-
pletely determined by the parameters of the system and do
not depend on the kind of the perturbation generating an AS
of a given type.

Autosolitons form in stable systems, in which small dis-
turbances are damped. An autosoliton is a stable localized
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state, which at the periphery transforms into the same stable
uniform state of the system." To excite AS a localized distur-
bance with sufficiently large amplitude and sufficiently long
duration must be applied to the system. After this additional
disturbance ceases one of the possible types of AS can form
spontaneously in the system. In this sense the formation of
AS can be regarded as a phenomenon of self-organization.21

We emphasize that AS can form in monostable noequi-
librium systems that have a solitary, uniform state for any
degree of nonequilibrium. The nontriviality of the formation
of such AS is associated with the fact that they do not dis-
perse owing to diffusion, but rather, on the contrary, diffu-
sion processes are responsible for their existence (Sec. 1).

Attractors, characterized by a definite region of attrac-
tion, are formally an example of both self-oscillations and
AS. The simplest attractor—a stable limit cycle in the phase
space of dynamic variables—corresponds to periodic self-
oscillations.St" An attractor in the configuration space, i.e.,
the space whose every point corresponds to a definite coordi-
nate distribution of the parameters of the system, corre-
sponds to an AS. In such a configuration space the system
can be characterized by several attractors, i.e., AS of differ-
ent type and form can arise in it. To excite AS, the local
short-time disturbance exciting it must transfer the system
into a state corresponding to a region of attraction (with
respect to the initial conditions) of an attractor correspond-
ing to the given type of AS. In this case after the disturbance
is switched off AS will form spontaneously.

The following types of AS can be excited in a system
depending on its parameters and the form of the disturbance:
static AS, whose velocity equals zero and whose form re-
mains constant in time25'30 (Sees. 3-5); pulsating AS, whose
velocity equals zero but whose form varies periodically in
time29"34 (Sec. 6); traveling AS,3) which move with a definite
finite velocity without damping'-I2"I6'27~30'35; and, AS in the
form of other, more complicated, solitary autostates (Sec. 2)
and autowaves (see Sees. 7 and 8).

We emphasize once again that the velocity and form of a
traveling AS, unlike a soliton, is determined uniquely by the
parameters of the system and not by the energy of the initial
disturbance.u2"16 When two traveling AS collide they can
annihilate12"16 or transform into AS of a different type (for
example, into static or pulsating AS), depending on the pa-
rameters of the system.32-35"37

The nature of autosolitons is extremely diverse (Sees. 1
and 2, and Conclusions). Thus an AS in the form of a travel-
ing, undamped electric pulse can be excited in a nerve fi-
keri,i2,3x,39 Qr jts eiectronic analog (neuristor).1'40*^2 In a
high-frequency gas discharge an AS in the form of a static
solitary striation44 can be excited in addition to periodic
striations.43 In semiconductors and semiconductor struc-
tures AS are observed in the form of glowing regions, where
the temperature of hot carriers45'46 or their density47 is high.
In media where autocatalytic reactions of the Belousov-Zha-
botinskii type occur different traveling AS and other
autowaves of a more complicated type form and are quite
sharp. Autosolitons in the form of strongly nonequilibrium
regions can form41 in gas and semiconductor plasma30"5' as
well as in thermodynamically slightly nonequilibrium neu-
tral gases52 (Sec. 5).

The properties of traveling AS (pulses) and some other
autowaves were analyzed qualitatively back in 1946 by Wie-

ner and Rosenblueth54 on the basis of an axiomatic discrete
model. In 1952 Hodgkin and Huxley proposed and studied a
model of the propagation of pulses in a nerve fiber.55 The
form and velocity of traveling AS (pulses) were analyzed in
greatest detail in the simplest two-parameter models of a
nerve fiber—models of the Fitz-Hugh-Nagumo (FHN)
type.56"60'1'12"16 5) The theory of static and pulsating AS is
developed in Refs. 25-28 and 31.

It later became clear that most static, pulsating, and
traveling AS studied are realized in the same (from the view-
point of the mathematical description) class of active sys-
tems with diffusion, whose properties are determined by a
system of two nonlinear differential equations of the diffu-
sion type6' (Sees. 1 and 2). In one of the limiting cases (Sec.
2.2) these equations correspond to models of the FHN type
and admit solutions only in the form of traveling AS and
other autowaves (Sec. 7), while in the other limit solutions
in the form of the simplest static autostructures are obtained
(Sec. 3.1). Traveling AS (pulses) and other atuowaves have
been studied very completely in models of the FHN type.
There is an extensive literature devoted to
them. '2"16' 'X.39.49,63-66.68.69 por ̂  reason thjs review js CQn.

fined primarily to static and pulsating AS; traveling AS are
discussed only to the extent necessary in order to present a
complete picture of the properties of AS.

In this review the properties of AS arising in a wide class
of active distributed systems7' are discussed and the basic
results of the theory are presented. First, the physics of AS in
the basic types of monostable active systems with diffusion
(Sec. 1) is studied for concrete examples, after which a clas-
sification of such systems is given and the basic properties of
the AS realized are discussed (Sec. 2). The theory and prop-
erties of static (Sees. 3-5), pulsating (Sec. 6), and traveling
(Sec. 7) AS in active systems with diffusion are then present-
ed. In the last section (Sec. 8) the characteristics of AS in
trigger systems and active media with long-range couplings
are studied.

1. AUTOSOLITONS IN SOME SYSTEMS

/./. Thermal-diffusion AS in systems with "positive"
thermal diffusion. Thermal-diffusion AS are formed as a re-
sult of the competition between diffusion and thermal-diffu-
sion fluxes.25'26'51 In this section AS in systems with "posi-
tive" thermal diffusion, i.e., in systems in which the
thermal-diffusion particle flux is directed from the hot re-
gion into the cold region, are studied.

For definiteness we shall study the formation of AS in
an electron-hole plasma (EHP), heated in the process of
carrier photogeneration.25'26 Let the energy of the exciting
photons -fico exceed the gap width of the semiconductor^ by
an amount 2A = fe — Eg. Then, when a photon is absorbed
hot carriers are formed and the EHP is heated up as a result
of interelectronic collisions. When the effective masses of the
electrons and holes are not very different and their density
(n =/>) is high enough, the carriers are heated as a single
system up to some effective temperature T. The value of T is
determined from the equation describing the local balance of
the energy of the carriers:

where G is the rate of generation of carriers, rf is the charac-

102 Sov. Phys. Usp. 32 (2), February 1989 B. S. Kerner and V. V. Osipov 102



FIG. 1. Autosolitons (AS) in systems with "posi-
tive" thermal diffusion: schematic illustration of a
radially-symmetric (a) and one-dimensional (b)
AS in a semiconductor film; the concentration
n(x) and temperature T(AT) distributions of a hot
electron-hole plasma (EHP) in a narrow spike (c)
and wide (d) AS.

teristic relaxation time of the energy of the carriers, and T, is
the lattice temperature of the semiconductor. If the lifetime
of the carriers rr —const, then a single uniform state of the
EHP is associated with fixed values of G and A:
n = «h = Grr and T = Th = T, + A • re /rr. In such a stable
EHP a hot AS in the form of a self-maintaining region of
high temperature and low carrier density can nonetheless be
excited (Fig. I).25-26

To excite AS the EHP must be additionally heated for a

iL X

FIG. 2. Kinetics of the formation of a hot AS in a stable, heated EHF*1*
with local short-duration (t-, = rr/6) action of a radiation pulse (heating
the carriers), a, b) distribution of the temperature T and density of the
carriers « at intermediate times / = t-, (a) and lt = 2rr/9 (b) . c) steady-
state form of the AS (r, = 1 Or r ) . d) time-dependence of the maximum
temperature in the AS formed.

short time in some region with light absorbed by free carri-
ers. At the end of this light pulse an As whose form is deter-
mined solely by the parameters of the EHP and does not
depend on the parameters of the pulse exciting the AS, is
formed at the point of illumination (Fig. 2).

The existence of a hot AS is determined by the fact that
thermal diffusion causes intense transfer of hot carriers out
of the high-temperature region (see Fig. Ic). As a result the
carrier density and therefore the power density removed
form the system of hot carriers into the lattice
P= 2n(T — Tt)/Tc, decrease in the high-temperature re-
gion. According to (1.1) this maintains the high value of the
carrier temperature at the center of the AS, since the power
W = 2A • G = const fed to the carriers maintains a high tem-
perature, i.e., it does not depend on « and T. The region of
low carrier density at the center of the AS does not spread
out because the diffusion flux of carriers at the center of the
AS is practically balanced by the oppositely directed ther-
mal diffusion flux (Fig. Ic).

The carrier density and temperature distributions in a
quasineutral EHP (n = p ) are described by the equations of
balance of the number of particles and their average energy

.
Y iV Je

(1.2)

(1-3)

where jc, and jr are the electron flux density and the energy
flux density of the carriers; R = n/rr is the carrier recombi-
nation rate. In a degenerate EHP2"-83-85 E = (3/2)T, and

je = — V(oZ) (T)) = — DVn — (1 -i- a) DT'lnVT,(\4)

where D is the coefficient of bipolar diffusion and
1 +a = d\nD/d\nT. It follows from (1.2) and (1.4) that

T,. ~^=L"\,\+ 1 - n, (1.5)

where the carrier density is measured in units of «h = Grr,
i] = nD(T) X (D°nh ) ~ ';/>" = D(T,),L = (Z>"r r )

 l / 2 is the
bipolar diffusion length.

One can see from Eq. (1.5) that in a hot EHP the quan-
tity L characterizes the spatial scale of variation not of the
carrier density n, but rather the quantity rjoonD(T), i.e., the
fluxy'e (1.4). For this reason the larger the value of L the
lower is the value of/e in the AS i.e., the more accurately the
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diffusion flux is compensated by the thermal diffusion flux
(Fig. 1 c). It follows from here that the size of the hot region
of the AS Jz"s has the upper limit ~L. On the other hand, in
order for the hot region of the AS not to spread out owing to
heat conduction by the carriers, J?% must be greater than the
characteristic length of variation of the temperature of the
carriers /;s(Z>re)' /2, whence follows the necessary condi-
tion for the existence of AS: L > /. In an AS of size (<(, ^fs 4,L
it can be assumed that the quantity rj satisfies -ij = nD(T)/
Z>0wh = const and Eq. (1.1) holds. Substituting n — nhriD°/
D(T) into (1.1) we obtain an equation for the local energy
balance in the AS

(1.6)

which takes into account, with rj = const, the compensation
of the diffusion and thermal-diffusion fluxes of the carriers,
i.e., the fact thaty'e (1.4) is small in the AS.

It follows from the theory of AS (see Sec. 3.2) that the
roots of Eq. (1.6) with W = const and rj = % determine the
values of the maximum rmax and minimum Tmin tempera-
tures in a wide AS26 (Fig. Id). Equation (1.6) has several
roots when in some range of temperatures of the carriers
a + s > 0, where s = d lnr£ /d In T. Thus the inequalities L > /
and a + s > 0 are the conditions for the existence of AS in a
photogenerated, weakly heated EHP.25'26

These conditions can also hold in a strongly asymmetric
(with m^mf) EHP,85 in a gas plasma (F-layer of the ion-
osphere),86 and in an ideal gas of heated excitons in semicon-
ductors87; for this reason, according to Refs. 25 and 26, AS
can be excited in these systems also.

The thermal-diffusion AS (Figs. 1 and 2) studied above
can be excited in a symmetric EHP, heated with a con-
stant50'88'89 or high-frequency electric field.51 When an EHP
is heated in a constant field a distinguished direction ap-
pears, so that a one-dimensional AS88'50 in the form of a hot
layer (Fig. Ib) perpendicular to the lines of currenty = crE
forms in it. For such an AS the current isy = const, and the
power heating the EHP is W=j2/axT/7j. Substituting
Woo T/ij into (1.6), we find50'88 that the conditions for the
existence of such a transverse AS reduce to L>/ and
a + s> — I . Depending on the mechanisms responsible for
the dissipation of the energy and momentum of the carriers,
i.e., the form of the functions D( T) and rs ( T ) , wide AS of
size J?^s > / (see Fig. 1 d) or spike AS of large amplitude25'89

(Sec. 5) can be excited in the EHP heated by a constant field.
In a "dense" EHP heated by an electric field a longitu-

dinal AS in the form of a pinch or a layer directed along the
lines of current90'9' can be excited. This is associated with the
fact that the mobility jj. of the carriers in a "dense" EHP is
determined by electron-hole scattering, i.e.,/4 cc T*/2n~\ In
a "dense" EHP the electronic current y'e oc d P/dx, i.e.,
rf = P = «71s the pressure of the electron gas, while the con-
ditions for the existence of AS reduce to90'91 L>/ and
s> -3/2.

A longitudinal thermal-diffusion AS (Fig. Ib) can be
excited under the same conditions in a gas plasma heated
with a constant or high-frequency field.90'5' In a gas plasma
the electron and ion pressure plays the role of the quantity 77,
varying smoothly as a function of the bipolar diffusion
length L (Fig. Ic): rj = P=n(T + T,), where Tt is the ion
temperature.

FIG. 3. Autosolitons in systems with "negative" thermal diffusion: distri-
bution of the density n ( x ) and temperature T(x) in an EHP thermalized
with the lattice in a narrow spike (a) and wide (b) AS.

Numerical studies of the kinetics of formation of a ther-
mal-diffusion AS (Fig. 2) have established89 that to excite
the AS the light pulse additionally heating the carriers must
have the following parameters: the duration ta 3: rr and the
spot size (d0)l^dH^L. These conditions follow89 from the
physics of a thermal-diffusion AS.25-50

1.2. Thermal-diffusion AS in systems with "negative"
thermal diffusion. In many systems, because of the fact that
the scattering cross section of the particles increases as the
velocity of the particles increases, the thermal diffusion flux
of the particles is directed from the cold region into the hot
region. Such "negative" thermal diffusion can be observed in
a mixture of neutral gases,92 in chemical reactions,93 and in
semiconductors.25'51 Thermal-diffusion AS, consisting of a
region of high temperature and particle density,25'52 can
arise in such systems (Fig. 3).

We shall illustrate the physics of formation of such an
AS using the example of a nonequilibrium EHP, thermalized
with the lattice of the semiconductor.25

For sufficiently high carrier temperatures and densities
there is enough time for the EHP generated in a thin semi-
conductor film to be thermalized with the lattice. The distri-
bution of the carrier density and temperature are described
by Eq. (1.2) and the heat-conduction equation

co = V_ (x (7-) ViT) - W -(T- 7't) v. (T)l'r. (1.7)

averaged over the thickness of the film; here c, p, and Y. are
the specific heat capacity, density, and thermal conductivity
of the lattice; 1T is the characteristic length of temperature
variation; and, 7\ is the temperature of the substrate (ther-
mostat). The lattice is heated as the carriers recombine25

and as they are heated by the radiation,94 i.e., W = n(Eg/
T, + <7ph4>), where aph and <I> are the photon absorption
cross section and the photon density.

For carriers thermalized with the lattice51

je = —DVn -J- (6 — a — 1) nDT~lVT, (1.8)
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where S = d\nrd (e,T)/d\nT, andrd is the momentum dissi-
pation time of a carrier with energy e. In some semiconduc-
tors 8 — a — 1 > 0, i.e., for carriers thermalized with the lat-
tice "negative" thermal diffusion can occur.

The existence of AS is linked with the fact25 that for
L > Jz^s > /T thermal diffusion leads to a carrier flux directed
from the cold peripheral regions into the hot central region
of the AS (Fig. 3). Carriers accumulating in the AS increase,
as a result of their recombination and absorption of radiation
by them, the power W flowing from the carriers into the
lattice and therby maintain a high temperature at the cener
of the AS.51

A thermal-diffusion AS (Fig. 3) can also be excited in a
mixture of reacting light and heavy gases, heated by radi-
ation selectively absorbed by the light component of the gas
mixture.52 The existence of an AS in such a mixture is deter-
mined by the fact that the highest absorption of electromag-
netic radiation occurs, i.e., the greatest heating is realized, in
the region where the density n of light gas particles is high
(Fig. 3). Diffusion spreading of the light gas is prevented by
the thermal diffusion flux of light gas particles away from
the periphery to the center of the hot region. In the case
under study narrow spike AS with a high temperature are
formed (Fig. 3a).M In addition, the smaller the ratio 1T/L
the higher are the temperature and density of the light gas at
the center of the AS and the lower is the value of W, i.e., the
degree of nonequilibrium of the mixture, with which an AS
can be excited in it S2 (Sec. 5.4).

1.3. Static, pulsating, and traveling AS in systems with
uniformly generated "combustion material. " The combus-
tion of a substance with concentration n is described by the
equations72-73

, T) — P,

T),

(1-9)

(1.10)

in which G and P = 0; <t> and E are the rate and heat of the
reaction. The rate of many reactions is given by 4> cc n
exp( — A/7"), i.e., it is of a thermal-activation character.72'73

Equations (1.9) and (1.10) with G = 0 describe the propa-
gation of the combustion front, i.e., the wave of switching
from one stable stationary state into another.l2'15'72'73

More complicated phenomena can be observed in sys-
tems in which uniform generation of combustion material
occurs, i.e., G ̂  0. In such systems AS can arise in the form of
static, pulsating, and traveling regions of combustion, out-
side which the concentration of combustion material and the
temperature are everywhere constant and below the thresh-
old for spontaneous combustion. A good example of a travel-
ing AS is buring of grass in a steppe followed by regeneration
of the grass owing to growth.

An example of a static AS is a steadily burning sphere.
Such a sphere can arise in a mixture of gases (including the
atmosphere), in which H2O, O2, or CO2 molecules disso-
ciate under the action of electromagnetic radiation (or other
source). As a result of such dissociation combustion materi-
al—hydrogen, ozone, or carbon monoxide—is generated
uniformly. Let the steady-state density of the combustion
material and the temperature of the mixture be much lower
than the threshold for spontaneous combustion of the mix-
ture. If, now, some small region of the mixture is ignited, i.e.,

heated by an additional source (for example, in the form of a
glowing metal filament) above the flash point, then when
this source of heat is switched off a steadily buring sphere
can appear in the mixture.

The rate of combustion 4>ooexp( — A/7") in such a
sphere is high because of the high temperature. Steady com-
bustion is maintained in the sphere by a constant diffusion
inflow of uniformly generated combustion material from the
peripheral regions of the sphere toward its center.95 This
inflow of combustion material is all the stronger the longer is
the diffusion length L compared with the size of the sphere.
The latter is determined by the characteristic distance (/)
over which the temperature changes. From here it follows
that a steadily burning sphere can exist only if L > /, which is
a necessary condition for the existence of static AS.25'29

The chemical reactions determining combustion pro-
cesses are very complicated and, as a rule, have been poorly
studied.72 But there exist simple physical systems, whose
properties are described by equations of the type (1.9) and
(1.10) with G ̂ 0. A nonequilibrium gas or semiconductor
plasma, in which the rate of recombination of electrons in-
creases rapidly with the temperature, for example, as
exp( — A/7"), is such a system with uniformly generated
combustion material.32'96

For definiteness we shall study a semiconductor in
which an EHP is generated uniformly with such high density
that the electrons and holes in it are degenerate, while their
rate of recombination R is determined by Auger processes.32

Carriers whose energy is of the order of the gap width of the
semiconductor Eg , which are produced in the process of Au-
ger recombination, heat the EHP as a result of electron-elec-
tron collisions.97'98 For this reason, here, carrier recombina-
tion can be regarded as an exothermal combination reaction
in which heat E = Eg is released.

In a degenerate EHP the thermal current is suppressed
compared with the diffusion current,83 i.e., jc = — DVn.
Equations (1.2) and (1.3) then actually reduce to (1.9) and
(1.10), in which 4> = R(n, T), E=E^, cp = nds/dT; G is
the rate of generation of electrons and holes; and,
P= P(n,T) is the power transferred from the hot EHP to
the semiconductor lattice.*3'99

If the EHP, weakly heated in the process of Auger re-
combination, is additionally illuminated in a region of size
d{} < L with a light pulse with duration of the order of rr , then
an AS in the form of a static ( Fig. 4a ) or pulsating ( Fig. 4b )
region of "combustion" — high carrier temperature — can
arise in it.32-100 The appearance of such AS is linked with the
fact32 that in semiconductors, as a rule, the rate of Auger
recombination is 7? aexp( — A/7"), while T, <rr , i.e.,

A static AS exists because32 strong recombination of
carriers occurs at its center owing to the fact that the rate of
Auger recombination R increases with the temperature T.
Because strong diffusion of carriers from peripheral regions
into the AS, however, the carrier density decreases signifi-
cantly less than R increases, i.e., than would happen in a
uniform EHP. The carriers flowing into the AS owing to
diffusion from the periphery recombine intensively in it,
generating in the process of Auger recombination carriers
with energy of the order of Eg , which, in their turn, maintain
a high temperature in the AS.

The stability of a static AS (Sec. 4) is linked with the
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FIG. 4. Static (a), pulsating (b) , and traveling
(c) AS in a stable degenerate EHP, heated in the
process of Auger recombination.12 The results
of the numerical calculation were taken from
Ref. 100.

fact that the increase of the temperature in the AS is damped
by a corresponding decrease in the carrier density. This
damping is realized only in some range of variation of G, at
the limits of which the static AS spontaneously transforms
into a pulsating AS32 (Sec. 6). The pulsating AS appears as a
result of the growth of temperature fluctuations, which vary
with some frequency co = <uc (<uc rr > 1, but &>c Te <^ 1). The
growth of these fluctuations is associated with the fact that
because of the long lifetime of the carriers (rr >r£) the car-
rier density cannot follow such rapid changes in the tem-
perature, i.e., its damping action is weakened.

The conditions L *%> I and rr > r£, under which an AS
traveling in any direction can be excited32 (Fig. 4c) in addi-
tion to static (Fig. 4a) and pulsating AS (Fig. 4b), hold in
the EHP under study. In addition, depending on the param-
eters of the EHP, the AS can have a different form (the solid
curves in Fig. 5; 6 = T/Th, j] = «/nh ).

The appearance of a traveling AS can be explained as
follows. It follows from the equation describing the local
energy balance of the carriers EgR(n,T) = P(n,T) that two
states of the plasma can correspond to the same carrier den-
sity in a uniform EHP n = nh : T — Th and T = Tm^ . For

rr >r£ local, brief heating of the EHP by radiation absorbed
by free carriers can transfer the plasma at the location of the
illumination from the state with T= Th into the state with
T = rmax. Because of heat conduction the hot carriers pro-
duced can heat the neighboring regions of the EHP, transfer-
ring them successively into the state T = TmaK, i.e., a wave of
transfer from the state T=Th into the state with T = Tmax

arises. Over the time r = rc T/F (Fis the Fermi energy of the
electrons) the heat flux of the carriers propagates over a
distance ~ /, so that the velocity of such a wave v ~ I /r. Be-
hind this transfer wave (the front wall of the traveling AS,
Fig. 4c) the temperature and therefore the rate of Auger
recombination are high, so that the carrier density will de-
crease over a time ~rr, i.e., it will drop off over the drift
length L = vrr. This burnup of the density has a lower limit
n = nm,n (Fig- 4c), at which the velocity of the back wall
equals the velocity of the front wall. Behind the back wall the
density is restored to the value n = nh in a region of size ~L
(Fig. 4c).

The appearance of pulsating AS as well as traveling AS
in the form of a combustion wave followed by restoration of
the temperature and density of the combustion material is

x .\

! d

FIG. 5. The basic types of static (a-d),
pulsating (e-h), and traveling (i-1) auto-
solitons. The dotted curves show the dis-
tribution rf(x) in N- and A-systems,
while the solid curves show the distribu-
tion in H- and A-systems; the arrows in
Figs. 3-h show the process of oscillation
of the activator and inhibitor between two
extreme positions of the pulsating AS; the
dots in Figs, i-1 show the possible differ-
ence in the distribution of the activator in
KH-systems and fi-systems.
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characteristic for the class of systems of the combustion type
studied here.

1.4. Autosolitons in systems with local self-production of
matter. In many chemical and biological reactions self-pro-
duction of one of the chemical substances occurs as a result
of autocatalysis, cross-catalysis, fermentation processes, or
replication.I5J6'18'23'"'4-"3 Real reactions of this type are
very complicated.48-104-23-"'-'l3 pOr this reason, for conven-
ience, we shall study a hypothetical reaction, proposed by
Prigogine and his coworkers,23 whose scheme goes back to
the classical work of Turing''" and has the form

A — X, 2X -f Y ->- 3X, B -f X — Y + C, X — E,

(1-11)

where A and B are the starting, C and E are the final, and X
and Y are the intermediate products of the reactions. The
second reaction is autocatalytic. It describes the self-produc-
tion of the substance X, which is controlled by the chemical
substance Y, X, and Y are customarily called the activator
and the inhibitor, respectively. I6'"'7>109 The equations of
chemical kinetics (the Brusselator model)23'104 follow from
(1.11) :

(1.12)

where 0 and 77 are, respectively, the concentrations of the
activator X and inhibitor Y; re, r,: and /, L are the character-
istic times and distances over which 9 and 77 change; A and B
are constant coefficients. In such a stable, uniformly flow-
ing, chemical reaction AS in the form of a region of size ~/
with a high concentration of the activator 6 and a somewhat
lower concentration of the inhibitor rj (solid curves in Fig.
5b) can be excited when Z>/.25'37'"4 This is linked with the
fact that in a small region of size ~1<^L self-production of
the activator, which is described by the second of the reac-
tions (1.11) , cannot be suppressed by a corresponding local
change in the inhibitor concentration 77 because of the strong
diffusion inflow of inhibitor from the peripheral regions into
the center of the AS (Fig. 5b).

Traveling AS (pulses) as well as other autowaves have
been studied in greatest detail experimentally in investiga-
tions of reactions of the Belousov-Zhabotinskii
type.4S.62-64.66.6K.69.1 1 ' Examples of such autocatalytic reac-
tions are the oxidation-reduction reactions for cerium, mag-
nesium, or ion irons in the presence of bromine ions, potas-
sium bromate, cerium sulfate, and organic reducers—such
as malonic, bromomalonic, acetoacetic, malic, citric, and
other acids.48'''' These multistage reactions are described by
a system of many differential equations of chemical kinetics.

If, however, stages describing activation and inhibition
processes can be separated in the reaction, then by using
general mathematical methods''5>l l6 the description of AS
and autowaves in them can be reduced to a system of two or
three diffusion equations.I5J6 Thus autowaves in the Belou-
sov-Zhabotinski! reactions are described with the help of a
three-component Field-Koros-Noyes model ("Oregona-
tor"),12'15'23'106 as well as two-component models,15-1" in-
cluding also models described by equations of the
type4*-"7'"8

T0-|- - /'.NO + 9 {1 - r) [2 + (0-1)2)}

^- = LZ Vli - /in- o (n -1)-
(1.13)

Numerical studies of Eqs. (1.13) showed that in the model
under study for L>/ and r,t ^>ra, in accordance with the
general theory,25-29-30 pulsating AS33'34 can be excited in ad-
dition to traveling and static AS "7'"8 (Sec. 6).

The formation of shape (morphogenesis) and other
processes "0'16'23'106-'09 have been linked with self-produc-
tion of matter in biochemical reactions.

Thus Gierer and Meinhardt showed"9"122 that the ex-
perimental data on the development of hydra109 can be ex-
plained on the basis of the model

•B-Q,
(1.14)

T,,—:-=/,-_* 11 —UF-

In ( 1 . 1 4 ) 0 is a short-range activator while 77 is a long-range
inhibitor,109 i.e., ) Here the AS (Fig. 5b; broken curve
for 77) ' l4 describes the distribution of 9 and 77 in the "head"
of the hydra. The growth of such a "head" (excitation of an
AS ) in a morphologically uniform fragment of the hydra can
be provoked by translating the corresponding cells, taken
from the body of the adult hydra. ")9 The properties of AS
(Sec. 5) permit explaining37'"4 some results of experiments
with hydra109 and numerical studies of the model
( 1 . 1 4 ) . " 9~ ' 22 In particular, the instability of two close-lying
AS with respect to the "transfer" effect (Sec. 4.3), estab-
lished in the theory,25 explains"4 why it has not been possi-
ble to excite two close-lying "heads" in the body of the hydra
in the experimental and numerical studies. 109'"9~'22

Local self-production of particles can also occur in
semiconductors and gases. In a self-maintained gas dis-
charge as well as with interband or impurity breakdown of a
semiconductor this process is determined by the increase in
the rate of ionization of electrons v, with an increase in the
electron density. The increase in v, with increasing n is asso-
ciated with the increasing importance of excited centers and
electron-electron collisions in the ionization process.123'124

In such systems an AS is a region of high electron density
and somewhat low effective electron temperature44 (Fig. 5b,
where 9 = n, rj=T — solid curve). In other words, the elec-
tron density plays the role of the activator (6=n) and the
effective electron temperature plays the role of the inhibitor
(77= T). 44J25 For this reason an AS exists when the charac-
teristic distance over which the electron density changes is
much shorter than the distance over which the electron tem-
perature changes. In a gas discharge this condition holds
owing to the fact that the bipolar diffusion length of elec-
trons and ions is short owing to the large mass of the ions.
Under conditions of impurity breakdown of a semiconduc-
tor it can hold when the Debye screening length rd <^/f — the
characteristic cooling length of hot electrons.125

2. ACTIVE SYSTEMS WITH DIFFUSION

2.1. Definition and examples of systems. In the last few
years, primarily owing to the work of Glandsdorf and Prigo-
gine,104 Nicolis and Prigogine,23 Haken,107-24 Ebeling,106 as
well as Vasil'ev, Romanovskii, and Yakhno, '2 it has become
obvious that the properties of many physical, chemical, and
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biological systems (including those studied in Sec. 1) are
described by the following system of nonlinear equations of
the diffusion type9'

IT (LtjVXj)-gt

We call attention to the fundamental character of these
equations. They are the equations of macroscopic kinetics
and describe, in particular, chemical and biological reac-
tions. '2~I 6- I 0 4~' l3 In the latter case X, are the concentrations
of the intermediate products and A are the constants of the
chemical reactions (Sec. 1.4). In physical kinetics Eqs.
(2.1) in the hydrodynamic approximation follow from the
first moments of Boltzmann's kinetic equation2 and de-
scribe, for example, the properties of hot carriers in semicon-
ductors20'83'85 and gas plasma.84'"6-124'127 For physical sys-
tems Xj denote the temperature, the carrier density, the
potential, the current density, etc., while A is the emf of the
power supply, the intensity of electromagnetic radiation,
etc., (Sec. 1).

Interest in this class of distributed systems with diffu-
sion continues to grow owing to the fact that striking nonlin-
ear phenomena are realized in them. The uniform state of
such systems with some (bifurcation) value of the param-
eter^ = A, can become unstable,12-'6'23'24'106-"" and self-
excited oscillations"'17'23 or autostructures (dissipative
structures )12'16-23'24'29'106-'09 can appear spontaneously in
them. For A <AC, i.e., in the region of stability of the uni-
form state, different types of static and pulsating AS29'30 and
autowaves12-'6 can be excited in systems with external,
short-time, local perturbation. Thus in the class of systems
under study two types of nonlinear phenomena are realized:
1 ) spontaneous formation of autostructures and their subse-
quent evolution101; 2) induced formation of different types of
AS and complicated autowaves in stable systems.

Systems whose properties are described by Eqs. (2.1)
and in which these nonlinear phenomena are realized are
now called active systems with diffusion. They are said to be
active in the sense that positive feedback is realized on at
least one parameter X{ = 0 — the activator; this leads to self-
production of the activator and is responsible for the forma-
tion of autostructures. The activator production process is
controlled by some other parameter X2 = rj — the inhibitor,
which suppresses the activator production process. For this
reason, in the simplest but quite general case, active systems
with diffusion are described by two equations of the type

,^- I- A9 — q(Q. 11, A), (2.2)

(2.3)

where A is a bifurcation parameter.
Equations (2.2) and (2.3) are the basic equations of the

theory of autowaves and autostructures (dissipative struc-
tures ) in biological systems.'2-l4-'6-23' "l4-1()6-l09 In particular,
the Gierer-Meinhardt model (1.14) and the simplified Ja-
cob-Mono model of morphogenesis'2'16'128 as well as models
of the FHN type, describing propagation of pulses (traveling
AS) in a nerve fiber,1J2'15'16'39 along the myocardium of the
heart,'*'63-66-67 and in electronic neuristor circuits'•4"~42 re-
duce to these equations. Analysis of some ecological systems

as well as population genetics reduces to the study of equa-
tions of the type (2.2) and (2.3).129-'31 Analysis of other
systems with self-production of matter (Sec. 1.4), including
the simplest models of chemical reactions (1.12) and
(1.13), also reduces to the analysis of equations of the type
(2.2) and (2.3). In particular, they describe AS and stria-
tions in high-frequency gas discharge44'I23J24 and accompa-
nying shock ionization in semiconductors125 (Sec. 1.4).

Equations (1.10) and (1.11), describing processes of
the combustion type (Sec. 1.3), are a particular case of Eqs.
(2.2) and (2.3). In such systems the temperature plays the
role of the activator (0=T) while the concentration of the
"combustion material" plays the role of the inhibitor
(r) = n).

In systems with thermal diffusion (Sees. 1.1 and 1.2)
the temperature also plays the role of the activator (0=T)
while some function of the carrier density and carrier tem-
perature plays the role of the inhibitor (the specific form of rj
for some systems is presented in Sees. 1.1 and 1.2). It is easy
to verify that by transforming to the variables 6 and rj in Eqs.
(1.2) and (1.3) these equations are reduced to Eqs. (2.2)
and (2.3) with a somewhat more complicated left side. The
equations describing the stratification of the uniform state of
systems with "mutual diffusion" of two components can be
transformed in an analogous manner.132-133 In other words,
static AS in systems with thermal diffusion (Sees. 1.1 and
1.2) are described by Eqs. (2.2) and (2.3) for the stationary
case.2"6

Equations of the type (2.2) and (2.3) also describe
many other phenomena,12-16 including the formation of au-
tostructures in ferroelectrics—photoconductors,'34 in hot
plasma of semiconductors,32'135 in nonequilibrium super-
conductors,22'136 in materials with phase transitions,I37J3X

and in magnetic photoconductors139; the propagation of a
reaction wave along the surface of a catalyst,15'140 of a light
pulse in an active optical fiber,141 of photoinduced
autowaves in semiconductors,142^145 and in magnets146'147;
stratification of the lattice temperature in semiconduc-
tors25,94,96,i4n-i5o and in semiconductor structures,151'157 as
well as the appearance of regions of local ionization in uni-
form semiconductors125'158 and \np-n junctions.47'159

2.2. Classification of monostable systems and the proper-
ties of AS realized in them. In the theory of AS (Sees. 3-7) an
important characteristic determining their form is the de-
pendence 7 7 ( 6 ) , which is given by the equation

q (6, )], A) = 0 for A = const. (2.4)

This dependence determines the relation between rj and 9 in
the regions of AS, where 6 ( r ) varies smoothly (Sec. 3), so
that we shall call it the local coupling (LC). The uniform
state of the system 6 = #h and rj = rjh, according to (2.2)
and (2.3), satisfies the equations

9 (8h, *lh, -4) = 0, <? (6h, T|h, A) = 0, (2.5)

i.e., it corresponds to the point of intersection of the LC
curve and the equation-of-state (ES) curve. The ES curve
corresponds to the dependence 7 7 ( 6 ) , following from the
equation

Q (9, i), .4) = 0 for A = const. (2.6)

The qualitative form of the LC an ES curves (Fig. 6) for
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FIG. 6. The basic types of curves of local coupling (LC)
(cures 1) and equation of state (ES) (curves a, b, c). The ES
curves a, b, and c correspond, respectively, to cold (A <AH,
0h<9n), heated (A0<A<Aa, du<dh<9;,), and hot
(A>A;,,0h >#;,) systems.

monostable systems in which AS originate can be estab-
lished from general considerations.27-2S "' The existence of
negative feedback on the inhibitor and positive feedback on
the activator means that in some range of values of the pa-
rameters 9, r/, and A we have

(2.7)

For all A the monostable systems under study have a unique
uniform state, i.e., the dependences rjh (A) and 0h (A) are
single-valued. The latter is valid, according to (2.5), when

7.'i(?;1--r/;,(?e>0. (2.8)

When the conditions (2.7) hold this inequality is satisfied
only for q\Q'e < 0, i.e., when

(2.9)

or

(2.10)

Let the inequalities (2.7) hold in the range #,, < 6>< 6>,',.
Then, when (2.9) holds the derivative satisfies drj/dd < 0 for
both the LC and ES curves (Fig. 6a), since

•^L =- -^- on the curve JIG: g(0, n) = 0, (2.11)
* ' • ?tj

-i3-= ^L on the curve YC: Q (Q, n) = 0. (2.12)

At the points 9 = 00 and #,', the derivative is q'H = 0 (the
point 6 = 9 o does note necessarily exist, but it characteristi-
cally exists for many real systems). According to (2.11) the
derivative d-q/dd at the points 0 = 0() and 9 '„ changes sign,
i.e., when (2.9) holds the LC curve is N-shaped (Fig. 6a),
while in the case when the point 9 „ does not exist it is A-
shaped (Fig. 6b). In the general case the sign of Q,', (or Q 'e)
is not related with the sign of q'0, so that for the ES curve the
condition dr//dd<0 can also hold outside the region
0»<0^0o (Figs. 6a and b, curves 1-c).

Analogous arguments for the case when the conditions
(2.10) hold lead to H shaped or V-shaped LC curves (Figs.
6c and d).

Depending on the form of the LC curve we shall call the
system an N-, H-, A-, or V-system. In many physical systems
the parameter 9 characterizes the temperature (Sec. 1) and

increases as the degree of nonequilibrium increases (bifurca-
tion parameter A). For this reason we shall call the region I,
where 0<,90, the cold region; the region II, where
90<9<9'0, the heated region; and, the region III where
9^9o, the hot region (see Fig. 6). By analogy we shall say
that a system is cold, heated, or hot depending on the region
of values to which its uniform state, i.e., the quantity 9 = 0h,
corresponds (Fig. 6). The uniform state of cold and hot sys-
tems is stable and corresponds to values of 9 and 17 for which
<?0>0; the heated system is unstable, and it corresponds to

Autosolitons of a different type (Fig. 5) form in sys-
tems29'30 in which the diffusion (L) or drift (L) length of
variation of the inhibitor distribution 77 is much larger than
the characteristic diffusion length (/) of variationof the acti-
vator distribution Q (Sec. 1), i.e., for L^>1, or L = yr, >/,
where v is the velocity of the traveling AS.

In AS (Figs. 1-5 and 7) the activator distribution 9 in
some small regions (of the order of / in size)—the walls of
the AS—changes rapidly from 0max >0h to 0min <9h <00.
Outside these regions 0(r) varies smoothly with the same
characteristic length as rj ( r ) . The inhibitor distribution 77 (r)
everywhere varies smoothly in a static AS (Figs. 1-3, 4a and
5a-d) with characteristic length of the order of L (Sees. 3
and 5), while in a traveling AS it varies over a characteristic
length of the order of L (Figs. 4c and 5i-l; Sec. 7). At the
periphery of the AS the functions f3(r) and rj(r) approach
their values for the uniform state 9 = 9h and 77 = r/h (Figs.
1-5 and 7). In N- and A-systems 77(1-) outside the walls of
the AS varies in phase with f?( r ) [Fig. 5, solid curves for
r)(x)], while in H- and V-systems it varies an antiphase
(Fig. 5, broken curves; Sees. 3 and 5).29'3"

The type of AS is determined primarily by the quanti-
ties £ = I /L and a = re/rlt (Fig. 8). We shall therefore di-
vide the systems into three qualitatively different
classes29'30:

K-systems, for which e<l , a> l(Secs. 3-5),

fl-systems, f £ 1, a< l(Sec. 7),

KH-systems, < r< l , a< l (Sec . 6,7).

(2.13a)

(2.13b)

(2.13c)

According to (2.2), (2.3), and (2.13) in K-systems the
inhibitor rj is much longer-ranged but more responsive than
the activator 9; in fl-systems it is unresponsive but shorter-
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FIG. 7. Distribution of the activator in some
static AS of a complicated type: a-c) one-di-
mensional; d-f) two-dimensional, b, d-f) re-
sults of numerical studies of the model
(1.13)"7-'8 (in Figs, d-f in the dark regions
0~Q. 1; the uniform state corresponds to
<?„ = 1.0).

ranged; and, in Kfl-systems it is both longer-ranged and un-
responsive.

The uniform state of heated (Fig. 6, curve c) K-systems
with some A =AC, when #h exceeds &„, stratifies,12' i.e., it
becomes unstable (Turing instability"0) wth respect to
aperiodic (with frequency co = 0) growth of fluctuations
with a particular wave number k — /c0.

12'16'23'106"109 It is con-
venient to write the value of/:,, for Eqs. (2.2) and (2.3) in the
form28'153

(IL) -1/2 (2.14)

In K-systems autostructures (dissipative structures) with
large amplitude form abruptly as a result of stratifica-
tion.25""29 Uniform oscillations and pulsating and traveling
autostructures do not form in them. In some regions of sta-
bility of the uniform state in K-systems (Fig. 6, curves a and
c) static AS25"30 can be excited (Fig. 5, a-d; Sees. 3-5). The
properties and parameters of AS depend significantly on the
form of the LC curve (Fig. 6).

Only hot static AS of the spike type25'30 (Fig. 5b) with
amplitude #max > 60 > Q h , whose value increases with A and
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FIG. 8. Regions of existence of static (I), traveling (and other
autowaves) (II) , and pulsating (III) autosolitons in the a — T0/rn and
E = I/L plane in N- and H-systems (a) and A- and V-systems (b).

all the more the lower the value of e, can arise in KA- and
KV-systems (Sec. 5). Depending on the nonlinearity of the
system, narrow (~ / in size) and wide (~ L in size) spike AS
can form in them. The minimum level of excitation A = Ab,
for which narrow spike AS still exist, is proportional to e"
(n > 0). In other words AS can be excited forAb 4,AC, i.e., in
systems that depart slightly from the state of thermodynam-
ic equilibrium (Sec. 5.4). In two- and three-dimensional sys-
tems the one-dimensional, narrow, spike AS are unstable;
radially symmetric spike AS can exist in them.

In KN- and KH-systems (Sees. 3 and 4) the minimum
level of excitation A = Ab for which AS still exist is deter-
mined by the nonlinearities of the system and is virtually
independent of e (Sec. 4.3). In cold systems (with
Ab <A<AC) hot wide (J? s > / in size) AS with 0max >6'0
form (Figs. Id and 5a), while in hot systems (with
A'c<A<A'b) cold wide AS with 0min «90 form (Fig. 5c).
As A->Ab(A 'b) the size of a hot (cold) AS decreases and
reaches the value &s -~/ln£~' at the point A =Ab(A'b),
where the AS vanishes abruptly (Sec. 4.2). As A —Ac (A 'c)
the AS increases in size, and the monotonic dropoff of rj and
6>at the periphery of the AS can be replaced by an oscillating
dropoff (Fig. 7a). In some systems, not reaching the point
A = Ac (A 'c), the width of the AS reaches the critical size
~L, at which division of the AS occurs (Sec. 3.5).

In two- and three-dimensional systems one-dimension-
al and radially symmetric AS are stable in a wide range of
values of A. At the boundary of these regions AS with fluted
(cellular) walls form spontaneously and they can even frag-
ment (Sec. 4.4).

Aside from such AS many other complicated AS, both
one-dimensional (Figs. 7b and c) and two (three)-dimen-
sional (Fig. 7d-f), can form in the system. The form of the
distributions of 77 and 6 in the section of a complex two-
dimensional AS is reminiscent of the distributions of i) and 6
in one-dimensional AS. As A is varied a complicated AS of
one type can transform spontaneously into an AS of a differ-
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ent type as a result of "local breakdown" (Sec. 3.5), stratifi-
cation of the walls (Sec. 4.4), or "transfer" (Sec. 4.3).

In K-systems with ,4 close to^ (A '.) a small local non-
uniformity can lead to the abrupt, spontaneous appearance
of a static AS; the parameters of the AS formed are deter-
mined by the characteristics of the system and are virtually
independent of the parameters of the nonuniformity.13'

An external field puts static AS in ideally uniform sys-
tems into motion. Drifting AS can be pinned on a small non-
uniformity (pinning effect). For a sufficiently strong exter-
nal field the AS generated spontaneously at a small
nonuniformity or near the boundary of the sample can be-
come detached from it and lead to the appearance of a peri-
odic or stochastic sequence of moving AS.51

The uniform state of heated fl-systems is unstable with
respect to uniform (with& = 0) fluctuations with the partic-
ular frequency co = <y(),

l04'23 whose value is conveniently
written in the form28-153

'/a. (2.15)

As a result of such an instability relaxational oscilla-
tions appear in an abrupt fashion in fl systems.Ll)4'23 For this
reason such systems are sometimes said to be self-oscilla-
tory. Static and pulsating AS do not form in fl systems (Fig.
8). Traveling AS and other autowaves of a more complicat-
ed form can be excited in stable ll-systems' 2~'6'54"69-"' (Sec.
7) . I 4 ) In cold flN- and fiH-systems hot traveling AS form
(Figs. 5 i and k) , while cold traveling AS form in hot systems
(Figs. 5 1 and m); they are ~ L = ur,; in size and their veloc-
ity depends on the value of A and varies from v~l/T,, as
A^At up to v~a</2l /TO asA^A,, <AC (for A <A,, travel-
ing AS are not formed). In ft systems traveling AS are anni-
hilated in collisions; this determines many properties and the
interaction of complex autowaves. I2"I6'54~6MJ ' '

In KSl-systems all types of AS can be realized29"32-35:
simple (Fig. 5) and complicated static (Fig. 7), pulsating
and traveling AS, as well as different autowaves (Sec. 7). A
pulsating AS of large size can be represented, in a simplified
manner, in the form of a hot or cold static AS, whose width31

or radius34 varies periodically in time (Figs. 5f-g). A pulsat-
ing spike AS is reminiscent of a static spike AS with an oscil-
lating amplitude (Fig. 5f; Sec. 6).

The basic properties and parameters of static AS in KH-
systems are analogous to those described above for K-sys-
tems. When the excitation level is changed, however, static
AS in Kfl-systems can transform spontaneously into pulsat-
ing or traveling AS (Sec. 6.2). The larger is the value of the
ratio U/E, the smaller is the range A of existence of traveling
AS and the higher is their minimum velocity (Sec. 7.1).35

In Kfl-systems (Sec. 7), unlike H-systems, a diffusion
precursor, representing a "refractory zone" (points in Figs.
5i-l), propagates in front of the wall (front) of a traveling
AS. For this reason, traveling AS may not be annihilated in
collisions, but rather they can repel one another or even form
an AS of a different type (static or pulsating). Traveling AS
also collide inelastically with static or pulsating AS.

Depending on the parameters of the system (primarily
a and e) a small nonuniformity can lead to spontaneous
formation of static, pulsating, or traveling AS.

Based on the foregoing classification a gas discharge44

and a semiconductor under conditions of impact ioniza-
tion125 as well as systems with "negative" thermal diffusion

(Sec. 1.2) are KN- and KA-systems. The "Brusselator"
model (1.12) is a KA-system for re > r,t and for a KflA-
system re < r,;. Systems with "positive" thermal diffusion
(Sec. 1.1) are KH- and KV-systems; for them the form of
the LC curve is determined by Eq. (1.6). The model of
Gierer and Meinhardt (1.14) for r0 >rr) is a KV-system.
Models of the "Oregonator" type (1.13) are KftH- or flH-
systems. Systems with uniformly generated "combustion
material" (Sec. 1.3), including EHP, heated in the process
of Auger recombination,32 are, as a rule, KflN- or KflA-
systems. In models of the FHN type12""1 (see Introduction)
L = 0, while r0 <r,;, i.e., they are a limiting case of JIN- or
flH-systems in the limit £-» cc (Sec. 7). In many semicon-
ductor devices L is much greater than the size of the sample
y.l54-157 For this reason they can be regarded as a limiting
case (L-> oo ) ofK-orKfi-systems2K (Sees. 3.1,4.1, 5.1, and
6.1).

In real systems the LC curve may not have a distinct N-,
H- or A-, or V-shaped form. In A- and V-systems with a
"degenerate" LC curve (broken curves 1' in Figs. 6b and d)
wide AS (Fig. 5a) with large amplitude can form. Converse-
ly, based on their properties N- and H-systems with <? Q > <90

are closer to A- and V-systems, i.e., spike AS with large am-
plitude (Sec. 5) are realized in them in a large range of values
of A. In other words, more accurately, systems for which
Q'o ~0<> (Figs. 6a and c) should be classified as N- and H-
systems (Sees. 3 and 4).

3. STATIC AUTOSOLITONS (KH- AND KN-SYSTEMS)

Before presenting the theory of AS, it is convenient,
from the methodological viewpoint, to study the simplest
structures realized in systems of small size ,'^' -^L.

3.1. Structures in small systems.25'2"'157 In systems of
size ,y 4L, but y >/ the inhibitor density 77, unlike the
activator density 8, actually does not vary in space. Its value
under cyclic or neutral conditions at the boundaries of the
system S

= sve is = o. (3.1)

can be found by averaging Eq. (2.3) over the volume ( V) of
the system:

(3.2)

For the stationary, one-dimensional case Eq. (2.2) with
rj(x} = const can be written as

&
/ 2 - - + J ° < u*= - 9(e' 11- A]dQ- (3-3)

Equation ( 3.3 ) is formally identical to the equation describ-
ing the conservative motion of a "particle" with coordinate 9
and time A: in a potential C/,; . The form of the potential for a
fixed value of A is determined by the value of?/, which, in its
turn, depends on the solution 0 ( x ) . This functional relation
for the stationary case, according to (3.2), has the form

(Q(Q(x), 11, A ) } =0. (3.4)

The extrema of the potential U8 (3.3) with fixed A corre-
spond to the condition dUg/d0 = — q(9,r],A) = 0, i.e., ac-
cording to (2.4), they are determined by the points of inter-
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FIG. 9. Illustrating construction of states in
small systems, a, b) Form of the LC curve for N-
and H-systems. c) form of the potentials Uu, the
highest trajectories of a particle in which s, 2 and
1 correspond to the solutions 8(x) in Figs, d, e,
and f, respectively, g) wide striation; h) form of
a wide AS in large systems.

section of the LC curve with the straight line 77 = const
(Figs. 9a and b). This permits reconstructing the form of the
potential Ug from the form of the LC curve for different
values of 77 (Fig. 9c). Indeed, at the extremal points of Ue,
according to (3.3), d2Ue/d02 = — q'g. For this reason the
point of intersection of the straight line 77 = const and the
branch II of the LC curve (0Q<0<0'0, Figs. 9a and b),
where q'e < 0 (Sec. 2.2), corresponds to the minimum of Ug,
while intersection with the branches I (d<00) and HI
(0>8'0), where q'0 >0, corresponds to a maximum of Ug

(Fig. 9c). This implies that for values of 77 ranging from r/o
to 7/0 [where 77,, = 77(0,,) and 77^ = r j ( 9 ' 0 ) are the extremal
points of LC (Figs. 9a and b) ], Ug has the form of a poten-
tial well (Fig. 9c). For this reason 6 ( x ) can have periodic
solutions with a characteristic length of the order of/. Such
activator distributions are, however, unstable (Sec. 4.1).

The solutions 8(x) corresponding to trajectories of a
"particle" passing through a saddle point of Eq. (3.3), cor-
responding to a maximum of the potential Ug (Fig. 9c),
have a special form (Fig. 9d-g). This is associated with the
fact that as the saddle point is approached the variation of
9(x) becomes increasingly smoother." When the LC curve is
N- (or H-) shaped (Figs. 9a and b), the interval (fJo>r]o) of
values of 77 contains two saddle points (Fig. 9c). The values
of Ug at these points 0 = 6>sl and 0s3 are equal for some

77 = 77S, satisfying, according to (3.3), the equations
6s,

J 9(0, n\t. 4)d8 = 0, q(Qsi, T]g, A) = 0 (i = l, 2, 3).

»81
(3.5)

For 77 = 77s the particle trajectory (s in Fig. 9c) from one
saddle point 0sl to another 0s3 describes, with exponential
accuracy, the distribution 6 ( x ) in the form of wide striations
of size Jf ^ >/ at one of the boundaries of the system (Fig.
9d), while a trajectory close to this saddle trajectory de-
scribes a wide striation at the center of the system (Fig. 9g).

One can see from Fig. 9a that in KN-systems with
77>?7S the distribution 0(x) has the form of a narrow hot
striation (Fig. 9e), while for 77 < 77, it has the form of a nar-
row cold striation (Fig. 9f). In KH-systems (Fig. 9b) nar-
row hot striations are realized for 77 < 77,,, while narrow cold
striations are realized for 77 > 77,. The value of 77 and there-
fore the form of 6(x), according to (3.4), depend on the size
of the system ̂  and the value of A, i.e., on the values of
77 = 77,, and 0 = 0h for the uniform state of the system (Fig.
9a). Replacing the wide striation with a step, from (3.4)
with accuracy up to 1/& 4, \, we obtain an equation deter-
mining its size:

(3.6)
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Equation (3.6) is satisfied with different values of A owing
to the fact that Q has opposite signs (Figs. 9a and b) to the
right and left of the ES curve (Q = 0; Sec. 2.2). It follows
from (3.6) that as .4 decreases the width of the striation J^s

(Fig. 9g) decreases. This is linked with the fact that as A,
more accurately the value of 6 > h , decreases the value of r}h

approaches increasingly more closely to rj.., while 0h ap-
proaches (9s l , i.e., the quantity Q(9^,jj..,A)
-^Q(9h,r/h,A) = 0 (Fig. 9a). For this reason Eq. (3.6) can
hold in the limit rjh -»?/, only if ,¥\ ->0. It also follows from
here that for 6 h <6^ (or #h > <9S,) the condition (3.6) obvi-
ously does not hold, since in this case Q(0^, r;s, A) and
2 ( # s i » T / S ) ^ ) have the same sign. In other words, for A <AS

and A >A s' (A = AS corresponds to rjh = r/.. and 0h = 9^ ;
A = A s' — tjh = 77 s and 6 h = (9S,) the solution in the form of
striations is not realized, i.e., it exists only when A^ <A <A s'.
From here there follows a fundamental difference between
the states in the two-parameter systems under study (Figs.
9d-g) and states with analogous form realized in bistable
(or trigger) one-parameter systems with two stable states
0= 0M and $ = 6*h3 (for example, in materials with a
structural phase transition, in semiconductors with an S- or
N-shaped current-voltage characteristic (IVC),'y '2° and in
other bistable systems21'22). In the latter cases the solution
9 ( x ) in the form of a step (Fig. 9d) describes a domain wall
between two stable states of the system 9 = 6 h, and 6 = 9 h , .

The systems studied have, for all values of A, only one
uniform state # = 6>,, (r/ = r/h ), which, as one can see from
the formula (3.6), is not the same as the quantities $sl and
6>s, for any values of A for a wide striation (Fig. 9d). The
appearance of virtually uniform states 9(x)~9^ and
6(x)~6^ outside the wall of the striation (domain) is
linked with strong diffusion spreading of the inhibitor
through a system of size .¥" <L, which is taken into account
by Eq. (3.4) or (3.6). Diffusion fluxes of the inhibitor cause
the system to deviate strongly from a uniform state and lead
to the formation of nonuniform states with 77 =£ rid of the type
shown in Figs. 9d-g.

Thus in systems with J/ <^L (more accurately, with
L = oo ) there exists, in a wide range of values of A, a solution
in the form of a wide striation, for which 77 = 77s ^77,, (Fig.
9g). Obviously, in systems with y >Z. at the periphery of
the striation the value of 77 should transform smoothly with a
characteristic length of the order of L to the value 77 = 77,,,
while 9 should transform to 0 h . The qualitative form of a hot
wide AS (Fig. 9h) can already be reconstructed easily from
these considerations only.

3.2. Method for constructing an antisoliton.26~28 It is
convenient to write Eqs. (2.2) and (2.3) for the one-dimen-
sional stationary case in the form

= 0- Ue=-\q(Q. i! (9), A) Aft, (3.7)

]), T|, 4)dT|, (3 .8 )

q(Q(x), ii(z))d:r= 7(6, T](0))de = 0, (3.9)

where x is measured in units of L. It follows from (3.7) and
(3.8) that the distributions 0(x) and77(;c) describing a soli-
tary, symmetric (relative to the point x = 0) state, must sat-
isfy the integral equations

\Q(B(x), i\(x))dx= \' (3.10)

where 9m = 9(0), rjm = rj(Q). The presence of the small
parameter e = 1 /L in (3.7) permits using, when studying
stationary states, the method of qualitative analysis, based
on the concepts of slow and fast motions*'4—in our case
smooth and sharp distributions.

The solutions of Eqs. (3.7) and (3.8) can be studied as
phase trajectories in the four-dimensional phase space of the
variables^, ( /= 1,...,4):

satisfying, according to (3.7) and (3.8), the system of equa-
tions

Ax,

where

7 = 1, 2,

4).

A = X2, /, = q (X,, Xs, A).

h = A'4? /4 = Q (Xlt X3, A).

(3.12)

(3.13)

According to the qualitative theory of differential equa-
tions,* for e< 1 all phase trajectories of the system of equa-
tions (3.12) pass near trajectories corresponding to smooth
or sharp distributions, as well as their combinations (see,
however, Sec. 5.3).

Smooth distributions correspond to solutions of the sys-
tem (3.12) with £ = l/L = 0; more precisely, / = 0. The
characteristic length of these distributions is L. One can see
from (3.7) and (3.8) that for £ = 0 the quantities 77 and 0 are
related with one another locally by Eq. (2.4), while the dis-
tribution 77 (x) is described by the equation

(3.14)

For this reason the dependence r/(6), given by (2.4), is
called the local coupling (LC).

Sharp distributions correspond to solutions of the sys-
tem of equations (3.7) and (3.8) withL = oo, i.e., they satis-
fy Eq. (3.3) with rj(x) = const. Thus the solutions 6 ( x )
studied in Sec. 3.1 are sharp distributions.

In KN- and KH- systems the LC curve ( Figs. 9a and b )
has three sections (I, II, and III) where the dependence
#(77) is single-valued (Fig. lOa). For this reason the poten-
tial C/7/ in (3.14) consists of three independent branches (I,
II, and III), which correspond to 9<9n, 0()<0<#o and

'0 (Fig. lOb), respectively. According to (3.14)

dr.
= -9(9(11), 11, A). (3.15)

It follows from (2.4)-(2.6) and (3.15) that the potential U,,
has an extremum at the point 77 = 77,, and 6 = < 9 h , corre-
sponding to a uniform state of the system. The form of the
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FIG. 10. Illustrating construction of a hot, wide
AS (f) in N-systems: form of the LC (q = 0)
and ES (Q = 0) curves (a) , the branches I-III
of the potential £/,, for smooth distributions
(b), the true potential t/ , and the trajectory of
a "particle" in it (c), corresponding to the dis-
tribution rj(x) in AS (f), of the true potential
U,t with A =Ad (d), of the true potential U,,
(solid curves) (e), the highest particle trajec-
tory in which corresponds to the distribution
0 ( x ) i n t h e A S ( f ) .

extremum is determined by the sign of the derivative

<l2k'r, VaOl. — q'r.Oa
(3.16)

i.e., according to (2.8) the sign of q'e. In a cold system
6h <#() and the uniform state corresponds to q'6 >0 (Sec.
2.2). Therefore the branch I of the potential U^ has the form
of a potential hump (Fig. lOb). Branches II and III of the
potential U^ have the form of potential steps (Fig. lOb),
whose slope, according to (3.15), is determined by the sign
of Q (Fig. lOa).

It follows from the form of Un that the motion of a
"particle" in each branch of the potential Un (Fig. lOb) is
infinite, i.e., it cannot describe the distribution 0(x) and
rj(x) in the form of an AS. Thus a solitary state—an AS—
cannot be constructed in the class of only smooth or only
sharp distributions. The distributions 9(x) and TJ(X) in the
form of an AS consist of a combination of segments of
smooth and sharp distributions.

For definiteness we shall study the construction of the
form of a hot wide AS (Fig. 9h), realized in a cold KN-
system (Fig. 10). The wall of such an AS is described by the
solution corresponding to the separatrix of Eq. (3.3) with
97 = 77,,, closed at the two saddle points 0 = 0sl and #s3,
whose values correspond to sections I and III on the LC
curve (Fig. lOa). To construct rj(x) we shall arrange the
branches I and III of the potential Un (Fig. lOb) so that they
intersect at the point 77 = rjs (Fig. lOc). Then the potential
£/,, in (3.8) will assume the form of a potential well (Fig.
lOc), in which the highest particle trajectory corresponds to
the distribution rj(x) in AS (Fig. lOf). Indeed, the uniform
state rj = 7/h (9 = 6>h ) corresponds, as already pointed out,
to the point of maximum of the potential (7,;, where d U^ /
drj = 0 (Fig. lOc). This point is the saddle point of Eq.
(3.14) and the trajectory, closing at this point, describes the
smooth distribution rj ( x ) , asymptotically transforming at
the periphery to the value rj = rjh (Fig. lOf).

In smooth distributions 6(x) is locally related with
ir( x) by Eq. (2.4). The values of 6 outside the walls of AS in
KN-systems correspond to the branch I of the LC curve for
rj(x) >?7S or the branch III for -rj(x) <r;s (Fig. 10).Joining
at the points TJ = rj.., 6 = 0sl and 17 = i)s, d = 0s3 the sec-

tions of the smooth distributions 0(x) with sharp distribu-
tions in the form of walls (Fig. 9d), we obtain a distribution
d ( x ) in the form of a wide hot AS (Fig. lOf). Thus to order
e 4. 1 the distributions 6(x ) and r) (x ) in a wide AS ( Jz"s > /) ,
taking into account their symmetry relative to the point
x = 0 (Fig. lOf), can be written in the form

(3.17)
'1 (X) = T|III,

here #sh (x) is a sharp distribution describing the wall of the
AS; it corresponds at rj = T/S to the separatrix of Eq. (3.3),
passing from one saddle point 0s3 to another 0S, ; 17, m ( x ) ,
0 1,111 (x) are smooth distributions, which describe rj(x) and
0(x) outside the walls of the AS. The latter, as follows from
(3.14) and (2.4), are solutions of the equations32

q(6j, 11, 4) = 0, (/=!, Ill), (3.18)

which satisfy the boundary conditions

(3.19)da:
= 0.

The value of the inhibitor distribution at the wall of the
wide AS rj = ij,. as well as the extremal values of the activa-
tor #max = 0s3 and 0min = <9S, can be found from simple, as a
rule, algebraic equations (3.5). The latter also determine the
value of e at the point x = J^/2: <9sh (J^/2) = 0s2 (Fig.
lOf). Integrating Eq. (3.18), taking into account the
smoothness of the inhibitor concentration at the point
x = ̂ J2 (i.e., the conditions d^/dx = dr)in/dx at
x = J^s /2), we obtain the equations for determining J^s, as
well as the values of 7/(0) = 7jm and 0(0) = 0m at the center
of the AS (at the point x = 0; Fig. 10f)32-29-30
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(3.20)

^m lira
9 (6m, llm, A) = 0.

We note that Eqs. (3.5) and (3.20), determining the main
parameters of the AS, satisfy, to order E, (3.9) and (3.10),
respectively.

To simplify the presentation we have omitted many de-
tails, which can be established27 from an analysis of the true
dependence rj(9) in an AS (thick curve in Fig. lOa). By
studying its behavior one can determine more accurately the
form of 17(jc) and 0(x) and construct, in a self-consistent
manner,27 the potentials U,t in (3.8) and U,, in (3.7), taking
into account (3.9) and (3.10). In particular, it can be shown
that the potential U,, in (3.7) is a potential well, which, to
orders, is close to the potential U,, in (3.3), shown in Fig. 9c
(curve s). Near the extremal points Omm~6^ and
#,,,.,x ~0-,T, (Fig- l°a) of this potential (Fig. lOe) it branches
off with two shallow potential wells (with depth of the order
of e). The regions of smooth distributions correspond to the
highest trajectory of the motion in these shallow wells, while
the regions of the sharp distribution (walls of AS) corre-
spond to the highest trajectory in a deep well (Fig. lOe).

It follows from the procedure described above for con-
structing the form of the AS that in KN-systems (Fig. lOa)
the functions 9 ( x ) and rj(x) outside the walls of the AS
change in phase (Fig. lOf), while in KH-systems (Fig. 9b)
they change in antiphase (Fig. 5, broken curves). This is
essentially the only qualitative difference between AS in
KN- and KH-systems.

In hot systems with <9h >#,',, i.e., for A >A L' (Figs. 6a
and c, curves c), there exist cold AS26"30 (Figs. 5c and d),
the procedure for constructing 9 ( x ) and r/(x) in which is
analogous to that described above for a hot AS. The maxi-
mum <9max = 0s3 and minimum <9min = 0sl values of 6 as well
as the value of rj = r;s at the wall of a cold AS are also deter-
mined, to orders, from Eqs. (3.5), while its width, as well as
the distributions 0(x) and t)(x) are determined from Eqs.
(3.3) and (3.20), (3.17)-(3.19), in which the indices I and
III as well as 1 and 3 must be interchanged.29'32

We note that Eqs. (3.3), (3.5), and (3.17)-(3.20) also
determine the parameters and form of the AS for /<£ in
systems whose properties are described by more complicated
equations than (2.2) and (2.3), containing, for example,
cross terms Vrj'Vd. This and other results can be rigorously
proven,32 using the asymptotic theory of AS presented be-
low.

It also follows from the qualitative procedure described
above25'27 that aside from the simplest static autosolitons
(Figs. 5a-d) AS of a complicated form, both mirror-sym-
metric (Fig. 7b) and unsymmetric (Fig. 7c), can be excited
in the system. The latter contain several regions—stria-
tions—with high (low) activator density and different
width, and located at different distances from one another.
Numerical calculations indicate that excitation of compli-
cated AS is possible."7'""'5'

3.3. Asymptotic theory.Ths walls of an AS, in which the
activator density changes sharply over a short length

can be regarded as boundary layers. The existence of such
boundary layers makes it possible to use the ideas of the
theory of singular perturbations, developed for other prob-
lems with boundary layers,'l6-16"-162 for analyzing AS. Thus
it can be verified that to order £ = ///,< 1 Eqs. (2.2) and
(2.3) for stationary states in accordance with the general
theory" reduce""'60'163 to equations for sharp (3.3) and
smooth (3.14) distributions. To construct AS from a set of
sharp and smooth distributions one must construct a solu-
tion that satisfies the integral (3.9) and (3.10) and corre-
sponding boundary conditions.27

Using the ideas of the theory of singular perturba-
tions,"6 it can be shown29'32 that the functions 9(x) and
r / ( x ) , satisfying (3.17)-(3.20), are the solution describing
the form of the AS (Fig. lOf) to order £<1. Indeed, taking
into account the symmetry of the AS relative to the point
x = 0 (Fig. lOf), we study two sections: m=l,
0<jc<jc()= y s/2 and m = 2, where JCG<X< oo. The bound-
ary conditions for the functions X]m}(x~) in Eqs. (3.12) on
each of the sections m = 1 and 2 have the form

x<" (0) = x<" (0) = o, x» x<*>
4). (3.21)

Following the theory of singular perturbations' l h we write
the solutions of the system (3.12) in the form

Xw = x>> (£, 6) + X';"" (i, e) (i = 1, . . . , 4; m = 1, 2),

(3.22)

where g = x — XH, £= (x — xn)/e; we shall seek the so-
called"6 exterior solution X]I"''(£,E) and interior (bound-
ary) solution J^ ,-'"'( !",£•) in the form of series in e:

Xt (£, e) =Xi l 0 (I)

(3.23)

.
(3.24)

We substitute (3.22)-(3.24) into (3.12), (3.13). Then, ex-
panding the functions/* (Xs ) in a series in powers of £ and
equating the coefficients with equal powers of £ (depending
separately on f and g "6) , we obtain to zeroth order in £ the
system of equations

~ ~ d'v'7711 ~
*2mo = 0, /2TO(£))=0, - - = XroQ, (3.25)

J 4, 0

im) A Y(m)
1, 0 ™»l> /£» Q A2, 0 Ts— = A2, o ( S ) . —j- / a , o , J, U

dt = 0, (3.27)

(3.28)
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•^j|p- = 0 (i = l. . . . . 4: m = l, 2),

where

/;. o = /; W!"o (0) + X>i (i)) -/, fe (0)), (3.29)

and the boundary conditions

^0(-,o) = 0;^(0)^X-(0) (^3 ,4) , ( 3 3 o )

•"^\, 0 (°°) = 9/1- X'3> o (oo) = T)h,

xY/o (0) -f-^Vo (0) = XV% (0) 4- X^\, (0), (3.31)

^'0(0) = X(22)o(0), (3.32)
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in which the conditions"6

- oo) = Xi% (oo) = 0 (i = 1, . . . , 4) (3.33)

were employed. It follows from (3.27), (3.28), and (3.33)
that

) = Q (111=1, 2). (3.34)

In order for the conditions (3.32)-(3.34) to hold at the
same time the solutions X \^y (£), X(

2^(£) of the first two
equations (3.27) must correspond to the separatrix passing
from one saddle point to another. This situation is realized
only if Jr<"'(())_= T?S (m = 1,2), where 77, satisfies (3.5).
Assuming'that X\^(0) = 6>s2 - <9S,, X\%(0) = 6>s2 - 6>s3,
we obtain (3.17)-(3.20) from (3.25)-(3.34).

The form of the static AS in KN- and KH-systems
(Figs. 5a and c), established in the theory described in Refs.
26-28, has been confirmed in detail by numerical and analy-
tical studies of different models'6-33- ">"•' '7 ' ' '«•'28 ' ' M~'67 (see,
for example, the figures in Sec. 1).

3.4. Radially symmetric autosolitons.27'28 Radially sym-
metric static AS, as follows from (2.2) and (2.3), are de-
scribed by the following system of equations:

0, (3.35)

(3.36)

where the radius p is measured in units of L, while U0 and
t/r, are determined in (3.7) and (3.8); s = 0 (or 1) in the
case of cylindrical (or spherical) symmetry. The solutions
(3.35) and (3.36) can be formally regarded as trajectories of
two interacting "particles," moving with time/? along the 6
and 77 axes in the potentials U0 and Un, but, unlike Eqs.
(3.7)and(3.8),inthe presence of friction forces that dimin-
ish as p increases. As p increases the "work of the friction
forces" decreases, and Eqs. (3.35) and (3.36) become in-
creasingly more like Eqs. (3.7) and (3.8) for a one-dimen-
sional AS. It follows from here that the distributions 6(p)
and i)(p) in an AS with large radiuspa~~L (Fig. l l a ) are
qualitatively identical to 6>(x) and 7 7 ( x ) in a one-dimension-
al, wide AS (Fig. 5a). In addition, in the wall of an AS with
radiuspa~ZL, to orders = //£<!, 77 = 77,. (3.5), while the
distribution G(p) is identical to 6(x) for a one-dimensional
AS (Sec. 3.2). These results based on the theory of singular
perturbations are proved in Refs. 29 and 32, where simple

equations, describing 0(p) and rj(p) in an AS with a large
radius, are also derived.

To describe AS with radiusp,, <L (Fig. 1 Ib) it is neces-
sary to take into account the fact that because of the work of
"friction forces" accompanying the motion the "energies of
the particles" decrease, i.e., the "particles" move in poten-
tials Ug and £/,, along downwards sloping trajectories. It
follows from here that in the wall of an AS with radius pn < L
*! — ?7sh ¥= ̂ s i and for a hot AS in KN-systems i7sh > 77,, (Fig.
l ib) , while in KH-systems 77sh <7/s. Aside from the AS
studied above, in the form of a hot cluster or a spot (Figs, l la
and b), in cold systems (A <AC, Fig. 6, curves a) there exist
AS in the form of a hollow sphere or cylinder (Fig. l i e ) .
Such states with a large interior radius/3<n (Fig. l ie) have in
cross-section, the distributions 9(p) and 7 7 ( p ) that are close
to Q(x) and 7 7 ( x ) in a one-dimensional AS (Fig. 5a).

In hot systems (for A >A '., Figs. 6a and b, curves c)
radially symmetric AS in the form of a cold cluster or a spot
(Fig. l i d ) as well as in the form of a cold spherical or cylin-
drical layer (Fig. 1 le) can be excited.

3.5. "Local breakdown" and division of AS. Analysis of
(3.20) or (3.10) shows that as the degree of nonequilibrium
of the system (the bifurcation parameter A) increases the
size of the hot AS J^s (Fig. lOf) increases. 26'2H At the same
time it follows from the physics of the existence of AS that
the size J^s has the upper limit ~L (Sec. 1). This result also
follows from the procedure for constructing AS (Sec.
3.2).26J6S Indeed, the distribution rj(x) in an AS corre-
sponds to the highest trajectory of a "particle" with coordi-
nate 77 in the potential C/T, (Fig. lOc). The coordinate 77 has
the lower limit 770. For this reason the highest trajectory of
the "particle," passing through the point 77 = 77,',, in princi-
ple limits the width of the AS.

Thus the highest trajectory (Fig. lOd) is realized in the
case when for some A = A d <AC (the point A = A,, deter-
mines the point of stratification of the uniform state of the
system, see Sec. 2.2) the condition
Ur,(0'0,ri'0,Ad) = U11(6^,-qhAd) holds. This condition, de-
termining the critical valued =Ad, can be written, based on
the results of Sec. 3.2, to order £4,1 in the form

I. 11. Ad)dt}. (3.37)

"S ^S

It follows from (3.20) that the maximum possible size of an

FIG. 11. Radially symmetric AS: in the form of
a hot sphere or spot with large (a) and small (b)
radii, hollow hot sphere or ring (c), cold sphere
or spot (d), and hollow cold sphere or spot (e).
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FIG. 12. Kinetics of division of AS in a "dense"

AS is

Is r,

|. (3.38)

Since for ,4 >A d a solution in the form of a hot AS does
not exist, the starting state in the form of an AS must be
restructured dynamically. Such restructuring will occur as a
result of "local breakdown,"29'168 i.e., a jump-like drop in
the activator density at the center of the AS. The latter is
determined by the fact that at A = Ad the value of 77 at the
center of the AS reaches 170 , so that for A > A d the activator
density, as one can see from Fig. lOa, should drop abruptly

The successive division of an AS owing to "local break-
down" was observed in numerical studies of AS in a "dense"
EHP (Fig. 12).9' The division of AS (in the form of do-
mains), observed in numerical studies of composite super-
conductors, 169JA7'22 is apparently also explained by "local
breakdown."

Successive division of AS, owing to "local breakdown,"
is one of the scenarios of dynamic restructuring of autostruc-
tures,'6s as a result of which self-organization occurs with-
out the participation of fluctuations. The "local breakdown"
effect can determine not only self-organization, occurring
with a quasistationary change of the bifurcation parameter
A, but also the kinetics of formation of autostructures. Thus,
for example, two striations, which can move away from one
another, can form as a result of "local breakdown" accom-
panying the excitation of the system with a short-duration

but sufficiently wide pulse,170'"7 and two AS form in the
system with,4 <Ad.

[71

Autosolitons of a complicated form can form spontan-
eously in a system as a result of "local breakdown." Thus, for
example, an AS in the form of a hot sphere (or spot) (Fig.
1 la) for A>Ad can transform into an AS in the form of a
hollow, hot sphere (or ring) (Fig. l ie) .

It follows from the procedure for constructing (Sec.
3.2) a cold wide AS (Fig. 5c) in a hot system l68'29 that for
some/I = A d "local breakdown" can appear at the center of
such an AS, i.e., the attractor density can increase in an ava-
lanche-like fashion from Om =#0 up to 9 = 0'd (Fig. lOa).
The values of A d and J^max = ^s (A d ) for a cold AS are
determined from the conditions

\

(3.39)

4. STABILITY AND EVOLUTION OF STATIC ASs (KN- and
KH-SYSTEMS).

4.1. Stability and evolution of structures in small 5js-
tems.2><-3''l571o study the stability of states in one-dimen-
sional systems of size J f - ^ L we shall linearize Eqs. (2.2)
and (3.2) and the cyclic boundary conditions near the sta-
tionary distribution 0(x), studied above, relative to pertur-
bations of the form

66 (x, t) = 60 (x) e-

6T) (t) = 611 <rv(,

As a result we obtain

(t) = 6,4 e-v.

e - v) 66 = - <?;,6r] - (/A

, n, A),

1= -[(QW + WriSA]^-

60(0) =66(2), *g d69

(4.1)

(4.2)

(4.3)

(4.4)
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whereto = (O'ri); x and the time are measured in units of /
and 7e, respectively. It is obvious from (4.1) that the distri-
bution 9(x) is unstable if Ref<0.

We note that for uniform one-parameter systems'6'
with no inhibitor (Sf) = 0) it can be shown, based solely on
the translational symmetry of the problem, that all nonuni-
form distributions 6(x) are unstable. Indeed, it follows from
(4.2) that the problem of the stability of the distributions
d ( x ) with 8rj = 0 and fixed value of A reduces to the analysis
of the eigenvalues of the self-adjoint problem

TT XO 1 AA (A. ^ A

and (4.4) with normalized eigenfunctions 8dn. Following
Ref. 71, to find the spectrum An we differentiate Eq. (3.3)
with respect to x:

(4.6)
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ation (Fig. 13) is unstable if the function

c

/ \rffS, ^dS/dx

f !
I

If* A
FIG. 13. Illustrating the analysis of the stability of a wide striation (a):
form of the "potential" V9 (b) and corresponding functions of the first
"excited" 50, (c) and "ground" 80a (d) state.

One can see from (4.6) and (4.5) that50m ccd6/dxisthem-
th eigenfunction of the operator He, corresponding to
Am = 0, where m is the number of nodes of the function dO /
dx in the interval (0,J^). For the cyclic boundary condi-
tions (4.4) under study, the function 0(x) has at least one
extremum. As a result 86 oc d6 /dx has at least one zero, i.e.,
according to the oscillation theorem172'173 it is not the
ground-state function of the problem (4.5), (4.4), so that
r = ̂ 0<o.

In small, two-parameter systems distributions 6(x)
with several extrema (Sec. 3.1) are also unstable. To prove
this, we expand the function 8d(x) in (4.2)-(4.4) in terms
of the eigenfunctions 86„ of the problem (4.5), (4.4) and
substitute them into (4.2) and (4.3). Substituting (4.3) into
(4.2) with 8A = 0, after the corresponding transformations,
we obtain

n<*»-
n=0 (4.7)

where the coefficients are

(4.8)

in accordance with the conditions (2.7), (2.9) and (2.10).
Using the properties of translational symmetry of the solu-
tions 6(x), the problem (4.2)-(4.4) can be reduced to the
analysis of the stability of the distributions d(x), symmetric
relative to the center of the striation — the point AC = J^/2 in
Fig. 13a. With respect to this point q'^(0(x)) and Q'e(Q(x)}
are even functions; the functions 86 '„ (x) are even functions
of A; for even n (Fig. 13d) and odd functions for odd n (Fig.
13c).172-173 For this reason, for odd n the coefficients are
an = 0, and according to (4.7) y = An. From here it follows
that if the distribution 0(x) has more than one extremum,
i.e., «>1 , then it is unstable,17' since for it as least
r = A,<o .

The distribution 0(x) in the form of one striation (Figs.
9g and 13), owing to the damping effect of the uniformly
varying inhibitor concentration, turns out to be stable in a
wide range of values of A. This distribution has one extre-
mum, so that the function dd /dx (Fig. 13c) has one node,
and according to (4.5 ) and (4.6) it corresponds to the func-
tion <5#, with /I, = 0. It follows from here that y = /Ln > 0.
for all n > 1 . We have for even n that only A0 < 0, while all
others satisfy An >0. According to (4.7), an isolated stri-

n=0

(4.9)

has at least one zero in the upper half-plane of the complex
frequency ca. In (4.9) n are even numbers. The number of
such zeros ( N ) , based on the principle of the argument of
Ref. 126, is '

N - P + (2jr) (4.10)

where P is the number of poles of the function D(o)) in the
upper half-plane of co. According to (2.7) fj,0>0; hence,
since for a striation only A0 <0, it follows from (4.9) that
P = 1 . It is obvious from (4.9 ) that ReZ>( ca ) is an even func-
tion of a, while ImD(a) is an odd function, and
D( ± oo ) = 1 (Fig. 14). Thus when Z>(0) >0 (curve 1 in
Fig. 14a), N = \ and therefore the striation is unstable.

WhenD(O) <0 the quantity A argJD(cu) depends on the
behavior of the function

oo

K («) = V an (op, + XB -' or> »-« Im D (») .

(4.11)

In KN- and KH-systems, owing to the fact that a > 1 (Sec.
2.2), the condition

under with K(co ) is known to be greater than 0 for all values
of co, since all an >0 (4.8), usually holds. In this case A arg
D((o ) = — 2ir (curve 2 in Fig. 14a), i.e., N = 0, and there-
fore when Z>(0) <0 the striation is stable. Thus when the
degree of nonequilibrium of the system changes at the point
A =Ab, where D(0) changes sign, the function D(co) (4.9)
in the upper half-plane acquires a zero with Imy = 0. It fol-
lows from here that when the condition (4.12) holds the
instability of the striation is of an aperiodic character, while
the limit of its stability is determined by the equation

(4.13)

We shall show that the condition (4.13) determines the
point A = Ab , where d-rj/dA = oo . For this we expand the
function 86 in (4.2) and (4.3) in a series in 86 '„. Let us
premultiply (4.2) on the left by 86 '„ and average over the
volume of the system. As a result, taking (4.3) into account
and setting y = iVa, after appropriate transformations we ob-
tain

n=0

x^o-twcr'r1- (4.14)

Comparison of (4. 14) and (4.13) shows that in K-systems a
striation becomes unstable at points where drj/dA = oo at
the frequency a = 0.

The critical width of a striation at the point where the
striation becomes unstable can be determined from the con-
dition ( 4. 1 3 ) . For this we note that the function 86 , <x d# /dx
is localized in the regions of the walls of a wide striation (Fig.
13c) and decays exponentially away from it. The latter be-
havior follows from the fact that the extremal points 0m.M
and <?min of the distribution 6(x) in the form of a wide stri-
ation are exponentially close to the saddle points 6 = 0s3 and
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£(0)<0

S00 (Fig. 13d), from (4.8) we find that

1

D(0)<0

Re O(o)f) <6 Re 0(uf) >0

FIG. 14. Qualitative behavior of the complex function D(u>) over a circuit
in the upper half-plane to for K(co) >0and A"(0) <0 (b) .

0sl of Eq. ( 3.3 ) . As these points are approached"

e (x) - esl,3 <*, «-*"!. 3, *,,, = * (FB (e(1. .jr"
2 « /.

(4.15)
where x is the distance from the wall of the striation. The
same results can also be obtained from a quantum-mechani-
cal analogy, based on which the form to S60(x) can also be
constructed and Aa can be determined. Indeed, it follows
from the construction (Sec. 3.1) of a wide striation (Fig. 9)
that for 0 = 0mm = 0sl and 0 = 6>max = <?s3 the derivative
satisfies q'e > 0. The derivative satisfies q'0 < 0 only for values
of 0 close to the points of intersection of the branch II of the
LC curve (Sec. 2.2) and the straight line 77 = T/S (Figs. 9a
and b). From here it follows that in the "Hamiltonian" H0

the "potential" V0 = q'g in (4.2) for a wide striation has the
form of two narrow (of size — / ) potential wells, localized in
the walls of the striation (Fig. 13b) and separated by poten-
tial barriers of height Vg = q'e (0S] , ) ~ 1. Thus the value
/I, = 0 lies deep in these wells. Therefore the function 80,
must be an asymmetric combination of the functions 89 o°'
of the ground state of each of the isolated wells of the poten-
tial Ve (Fig. 13b). Outside these potential wells the local-
ized functions S0(

0
0) decay exponentially, and according to

the same law172 as in (4.15). The ground state function 860

(Fig. 13d) of the potential V0 (Fig. 13b) is a symmeric com-
bination ' 72 of the functions 88 £0) of the ground state of each
of the isolated wells. Owing to the fact that the overlapping
of the functions 80 (',

0) is exponentially small the function 86(}

corresponds172 to the eigenvalue A0 -- exp( — J^s//),
where J^s is the size of the hot striation (Fig. 13a). Since
|/1() | < 1, the sums in (4.7) and (4.13) can be restricted to the
first term only and for a > 1 and y-*Q we find that

(4.16)

The expressions (4.16) graphically illustrate the fact, pre-
sented above, that the condition (4.13) corresponds to the
point where y = 0. We recall that the critical fluctuation S0H

with Si] = 0 has the increment — A,,. Its growth is damped
by a corresponding change in the inhibitor density, which is
described by the coefficient a ( l>0 in the expression (4.16)
for Y- Taking into account the conditions (2.9) and (2.10) as
well as the localized character of the normalized function

(4.17)

where the symbol {...)sh denotes averaging of the function
over the region of the striation wall, more precisely, the re-
gion of localization of the function 50,, (Fig. 13d). Substitut-
ing into (4.16) the estimates for A0 and a,,, from the condi-
tion y = 0 we find that the critical size of the striation
approximately equals

Hn-f. (4.18)

We note that (4.18) was obtained from the condition for the
threshold of stability of the striation (4.13), which deter-
mines the point A—Ab, where drj/dA = oo. As A decreases
the width of the striation decreases (Sec. 3.1), so that at the
point A — Ab the striation, having the width J^s = J^b

(4.18), vanishes abruptly. The evolution of a striation with
J$f <^L was analyzed in greater detail in Ref. 28, while radial-
ly symmetric states were analyzed in Ref. 31.

In studying the stability of a striation in the two-
and three-dimensional cases the fluctuations
S0o,S0(x)exp(ikLrL - yt) with k1 ^0 (k } = (2irl-n</
J^j, )2 + (277/-«2/«yz )

2 «, 2 = !,-••) must be taken into ac-
count. For such fluctuations which are nonuniform along
the striation walls, in (4.7) all coefficients are a,, = 0, while
An change to/1,, + k J . Therefore it follows from (4.7) that

(4.19)

Substituting A0~ — exp( — ̂ s//) into (4.19) we obtain
the critical width of a striation for which it stratifies in the
plane of its walls: «^s ~Hn(JP//)2.

4.2. Stability of AS in one-dimensional systems. •""-'"Let
us linearize Eqs. (2.2) and (2.3) near solutions in the form
of a one-dimensional AS with respect to fluctuations of the
form

69 (r, t) = 66 (x) exp (ik1ri — yt), 6r) (r, t)

= 6t) (x) exp (ik^rj. — Vf). (4.20)

As a result, for the one-dimensional case
at the system of equations

(£9-7)66= -(/,>], ffe= -

Ve=q'e(Q(x),

= 0) we arrive

A), (4.21)

#n= -^lr-H'r.. l%=--^(8(.r), i,(.r), -4),

(4.22)
in which length and time are measured in units o f / and rg,
respectively.

Differentiating Eqs. (3.7) and (3.8) with respect tox it
is easy to verify that 80 oc d9 /dx and <5r/ a dq/dx are the ei-
genfunctions of the problem (4.21), (4.22) with cyclic
boundary conditions, corresponding to the eigenvalue
7=0. This result is a consequence of the translational sym-
metry of the problem. It follows uniquely from it for systems
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with r)(x) = const that any solution 0(x) for which the
function dO /dx has more than one node is unstable (Sec.
4.1).

For the complicated problem under study [the fourth-
order system of equations (4.21) and (4.22)], unlike the
problem (4.5) and (4.4), there is no oscillation theorem.
States not only in the form of a wide AS, for which dQ /dx has
five nodes (Fig. lOf), but also more complicated states are
stable.27-166

It is convenient to analyze the stability and evolution of
AS as the degree of nonequilibrium of the system changes
(Sec. 4.3) with the help of the bifurcation characteristic of
the system — the A -dependence (Fig. 15) of the value?; = 17,
in the wall of the AS (Fig. lOf). In K-sy stems the threshold
of stability of AS on this characteristic corresponds to the
points = Ab , where drjs /dA = oo (Fig. 15). This assertion
is a generalization of the result presented in Sec. 4. 1 for sys-
tems with & <Z,, for which rj (x ) = ?;s . It can be established
from the following simple considerations.

Small changes d6 and dr\ in the starting distributions
6(x) and rj (x) caused by a small change in the parameter^
are determined, according to (3.7) and (3.8), from the
equations

d6 = — i)'n dii - (7.4 »I4, j = - Q'B de - Q'A (U.

(4.23)

The existence of a point where dr)s /dA = oo means that at
this point with dA = 0 the increments dij(x) and dd(x) do
not vanish and do not correspond to the functions Srj cc dt]/
dx and 86 oc dd /dx, describing a small shift of the AS. It is
obvious from (4.23) with dA=0 that such increments

A /,- A, A' /C Al A

FIG. 15. Form of the bifurcation characteristics for a radiation-heated or
electric-field-heated EHP (Sec. LI)26'** (a), for a degenerate EHP heat-
ed in the process of Auger recombination (Sec. 1.3)" (b). The curves I,
II, and II' correspond, respectively, to the uniform state of an EHP and
hot and cold AS; the broken sections of the curves correspond to unstable
states.

FIG. 16. Illustrating the study of the stability of a static AS. (a) activator
distribution in a wide AS. b,c) form of the "potentials" V,, (b) and Vtl (c)
for fluctuations. d,e) form of the critical (d) and "shear" (e) fluctuations
of the activator S00, and the corresponding disturbances S i j u t damping
them.

drj(x) and dd(x) correspond to a nontrivial solution of the
system of equations (4.21) and (4.22) with y = 0. From
here it follows that the threshold of stability of AS in K-
systems (7 = 0) is correlated with the point A = Ab (Fig.
15), where the derivatives of the quantities characteristic for
AS (r]s, J;fs, etc.) with respect to A become infinite.181 It
does not follow uniquely from this assertion that other val-
ues/I j^Ah for which Rey changes sign cannot, in principle,
exist. For example, AS of complicated form (Fig. 7b and c)
can become unstable without reaching the point A = Ab (see
the last paragraph of Sec. 4.3).

The stability of wide AS for A >Ab is associated with
the fact that the "dangerous" fluctuations of the activator
density are damped by a corresponding nonuniform change
in the inhibitor density (Fig. 16). To verify this and to evalu-
ate the critical size of an AS at the point A = Ah, we shall
study the eigenfunctions and eigenvalues of the problems

for which the functions 89n and 8rjk are normalized and
satisfy cyclic bounary conditions. One can see from (4.21)
and (4.22) that the eigenfunctions 80'„ and eigenvalues /!„
describe fluctuations of the activator density with Si] = 0,
while Srjk and/z^ describe fluctuations of the inhibitor den-
sity with 8d = 0.

According to (4.22) and (2.7) in the "Hamiltonian"
H^ the "potential" satisfies V^ = Q '„ > 0. It follows from
here172 that all/z* > 0; in addition, according to the oscilla-
tion theorem172'173 the larger the index k the higher is the
value of /j,k. This reflects the fact that because Q '„ > 0 (Sec.
2.2) all fluctuations of the inhibitor density with 89 = 0 are
damped.
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The "potential" VB = q'e in the "Hamiltonian" He

(4.21), as in the case of a small system (Fig. 13b), consists of
two narrow (of the order o f / in size) potential wells (Fig.
16), localized in the walls of the AS, i.e., located at a distance
J^s from one another. Indeed, in KN- and ATM-systems
(Sec. 2.2) the derivative q'e <0 for the branch II of the LC
curve and q'(, > 0 for the branches I and III of the LC curve
(Fig. lOa). For this reason, it follows from the procedure for
constructing an AS (Sec. 3.2) that Ve = q'e>0 in regions
where d ( x ) is a smooth function (outside the walls of the AS
in Fig. 10) and Ve <0 only in regions where 6(x) changes
sharply, i.e., at the walls of the AS. Outside the walls of the
AS Ve = q'g ~ 1, so that the ground state functions 56(

0
0> of

each solitary potential well (Fig. 13b) are strongly localized.
To find the eigenvalue A, (0

0) corresponding to these
functions we differentiate Eq. (3.7) with respect to x, multi-
ply it on the left by 86 (

0°\ and average over x. Next, we
multiply the first of the equations (4.24) for n = 0 on the left
by dO /dx and average it over x. Subtracting the equations so
obtained from one another and taking into account the her-
mitian character of the operator H0 we find that

' - -<-^<7'n -^ 66" L
(4.25)

In determining A (
(,0) in (4.25) we employed the fact that the

eigenfunction 89^ is localized in the region of the well of
size ~1(/) , where 6 changes by an amount ~1, while 17
changes by an amount ~£^S/L. Since the depth and width
of the well ~1, A <0 ) - A < 0 ) ~ I,1 7 2 i.e., the value A < 0 ) ~ 1
corresponds to the first "excited" state in the well.

The "potential" Ve consists of two identical wells, sepa-
rated by a hump of magnitude ~ 1 (Fig. 16b), so that owing
to the exponentially weak overlapping of the ground state of
each of the "isolated" wells the level A 0°' will split into two
exponentially close levels'72: /I, £^^/L and

~T~e s • (4.26)

The eigenfunctions AQ and A, of the operator 77,, correspond
to the functions 89() and d9}, which are the binding and anti-
binding combinations of the ground-state functions 89 (

a
m of

each of the "isolated" wells (Figs. 16d and e).172 Since A \0)

~ 1 it can be concluded that the spectrum A,, contains only
two negative values. The corresponding functions <56*0 and
89\ are the only growing (with increment — A0 and — A , )
fluctuations of the activator density with 8rj = 0. The damp-
ing action of the inhibitor on the growth of these functions is
described by the term - q'^Stj in (4.21). Taking into ac-
count the fact that 890(x) is an even function of x while
80, (x) is an odd function of x with respect to the center of
the AS (Fig. 16) it is easy to verify that, as in small systems~
(Sec. 4.1), these functions grow independently.

The function 89, to order e < 1 is close to the true fluctu-
ation of the activator density 89 a d9 /dx (Fig. 16e), which
describes a small translational shift of the AS. Therefore the
eigenvalue of the problem (4.21) and (4.22) corresponding
to the function 80^89, is y{ = 0. Thus among the fluctu-
ations of the activator density 89 in the problem (4.21) and
(4.22) the fluctuation 60zzS00 is the only "dangerous" one
(Fig. 16d). Its growth can be suppressed by a corresponding
change in the inhibitor density which, according to (4.22),
equals

where all the coefficients are

(4.27)
where T(x,x',y) is the Green's function of the homogeneous
problem (4.22); the symbol (...) denotes averaging over the
volume of the system, while k are even numbers, since for
odd k the integrals in (4.27) vanish because of the different
symmetry of the functions Srjk and 860.

We substitute (4.27) into (4.21) with the function
89 = 89Q, premultiply the equation obtained on the left by
890, and average it over the volume of the system. As a result
we obtain an equation for the critical value of y:

(4.28)

in accordance with the conditions (2.7), (2.9), and (2.10).
It follows from (4.28) that the AS is stable, when the func-
tions <b(y = — ico) has no zeros in the upper half-plane of
the complex frequency &>. Analysis of this function (see Sec.
6.2) shows that in AT systems in which the condition (4.12)
holds the quantity y near the threshold of stability of the AS
equals

oo

V= Vr S as, (4.30)
»=o

where k are even numbers. As in (4.16), the second term in
(4.30) describes the damping effect of the inhibitor on the
growth of the critical fluctuation 86~S00. The quantity /uk

increases with the index k, and the number of nodes of the
function Srjk increases. The sum (4.30) can therefore be
truncated at the first term. Setting in (4.30) y = 0 and tak-
ing into account (4.26), we obtain the following estimate for
the critical width of the AS (at the point A = Ab ):

In deriving (4.31) the fact that a 0 ~ / /L was taken into ac-
count. This estimate follows from the formula (4.29), if the
conditions of normalization of the functions 89H and 8rj(i and
the fact that Srj0 is localized in walls of the AS of size ~ / and
the smoothly varying function 8rj0 is localized in regions of
size ~L are taken into account (Fig. 16d).

We note that (4.31) is identical to (4.18), if ¥ in the
latter equation is replaced by L—the characteristic size of
the region of localization of the AS (Fig. lOf).

4.3. Evolution of autosolitons.-^'2^'29 For A <AC a hot
AS (Fig. 5a), for which 77 = T/S at the wall of the AS (Sec.
3.2) differs strongly from 77 = rjh (Fig. 15), can be excited in
a stable system. As A (the level of excitation of thesystem) is
lowered the AS becomes narrower (Sec. 3.2) and vanishes
abruptly at the point A = Ab, where its size is J^s = J?h

(4.31) (the jump 1 -^2 in Fig. 15a). The valued = Ab corre-
sponds to the point where d7j^./dA = oo (Sec. 4.2). Since
according to (4.31) J^b >/ for L^>1, in virtually the entire
region of existence of the AS its basic parameters and the
dependence rj,.(A), i.e., the bifurcation characteristic of the
system, are determined from the simple equations (3.5) and
(3.20). In addition, to order £<1, Ah =/4s. (The quantity
A =AS is determined from Eqs. (3.5) and (2.5), in which
77,, =T75 , while <9h =05l (Sec. 3.1)).

As A is increased the AS becomes larger, and for A > Ac

striations arise in the system as a result of instability of the
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uniform state outside the region of localization of the AS. A
different scenario of restructuring of the AS is, however, also
possible. For A = A d <AC the width of the AS can reach a
critical size, at which "local breakdown," leading to division
of the AS (Sec. 3.5), will occur at the center of the AS. As a
result of successive division of the AS formed the entire sys-
tem will be filled with striations (Fig. 12).91

When A>A'C it is possible to excite in a hot stable sys-
tem a cold AS (Fig. 5c), which as A is increased narrows and
vanishes abruptly at the point A = Ab, where dr)s/dA = oo
(the jump l'->2' in Fig. 15). The formula (4.31) holds for
the critical size of the AS at A — A'b. Thus the main param-
eters of the cold AS, like that of the hot AS, are determined
in virtually the entire region of its existence, to order £< 1,
from the simple equations (3.5) and of the type (3.20) (see
Sec. 3.2); in addition, A b = A 's. [The quantity A = A s' is
determined from Eqs. (3.5) and (2.5) with rjh = 17s and
d h = <9s3 (Sec. 3.1) ]. As A is reduced the width of the cold
AS increases and at the point A = A 'corA 'd>A 'c (Fig. 15a)
the entire system is filled with striations as a result of fluctua-
tional or dynamic restructuring (Sec. 3.5).

An AS can also form in a system spontaneously. In uni-
form systems with A =AC striations form in a jump-like
fashion as a result of instability of the uniform state (Sec.
2.2). As A is lowered the number of striations decreases
spontaneously in a jump-like fashion as a result of instability
(of the "transfer" type),'9)'25-26 and as A ->Ab an AS forms in
jj 25,26,29 jn a feaj svstem an AS can form spontaneously in a
jump-like fashion at a small nonuniformity29 for A close to
Ac (or A ^ ) .

The foregoing picture of the evolution of an AS de-
scribes the results of numerical studies of models of compos-
ite superconductors22'167"169 and electron-hole plasma (Fig.
1C-) 91,100,171

We call attention to the characteristics of the restruc-
turing of the form of the complex AS as A changes. In a
complex AS (Sec. 3.2) "local breakdown" can occur only in
the widest striation (the region of high or low activator den-
sity). This can bring about not the filling of the entire sample
with striations (Sec. 3.5), but rather the appearance of a
more complicated AS, containing a larger number of stria-
tions. In a complex AS an instability of the "transfer" type,
arising in the vicinity of the two closest striations, can lead to
the formation of an AS containing a smaller number of stria-
tions. Such an instability appears before the points Ab or A'h,
which determine the limits of stability of a simple AS, are
reached (Fig. 15a).

4.4. Autosolitons in two- and three-dimensional sys-
tems.27'-9 A. hot, wide, one-dimensional AS (Fig. 16a) in
two- and three-dimensional systems is stable, but in a
smaller range of values of A than in one-dimensional sys-
tems. At the limits of this range [Ab} ,Ac}]a one-dimension-
al AS becomes unstable with respect to fluctuations of the
form (4.20) with kL ^0, nonuniform in the region of the
walls of the AS, i.e., leading in a two-dimensional system to
fluting of the surface of its walls, and in a three-dimensional
system to the appearance of a cellular structure on them or to
division of the AS into smaller regions. To prove this we take
into account in (4.20) /q ^0 and after appropriate transfor-
mations we arrive at Eqs. (4.28) and (4.29), in which A(l

must be replaced by /l() + k \ and fik by fik + e~2k ]_. As a
result, instead of (4.30) we obtain

7 = (4.32)

where ak is given by (4.29). Retaining in the sum (4.32)
only the first term and taking into account the estimate for
a0~£ and the localized character of the functions 890 (Fig.
16d) we find that the walls of the AS stratify relative to
critical fluctuations 80zz6ffl)(x')exp(ikLrL ) with k±~(l/
L ) l / 4 ( l L ) ~ l / 2 , while the width of the AS at the points
A = Abl and A =Acl equals, correspondingly, to

jf M = #s (/I,,,) ~ I In - -

(4.33)

A more rigorous result, which takes into account the entire
sum in (4.32), can be obtained when Q J, =E = const. For
such systems the Green's function in (4.27) equals

e
~2uT

= r̂ expfetp (x — ,r')j

for

for
(4.34)

where w= e~2k2
L — ya~')1 / 2 . Using (4.34), we ob-

tain an expression for y, analysis of which shows that
172, and

-l/6 (4.35)

Comparing (4.33) and (4.35) with (4.31) shows that
J?b < «^bl, i.e., as A is lowered the autosoliton stratifies at
the point Abl >Ab (Fig. 15). This result can be obtained in a
more rigorous fashion by analyzing (4.32) and (4.30).

On the other hand, since Jz^cl </-, as A is increased the
widening AS can stratify along the walls at A = A c ^ , without
reaching the point A =Ad or A = Ac (Sec. 4.3).

Analogous conclusions can also be drawn regarding the
stratification of a stable one-dimensional cold AS (Figs. 5c
and d) as the degree of nonequilibrium of the hot system is
varied. Numerical calculations also show that wide, one-di-
mensional AS in two-dimensional systems are stable.'ls

A radially symmetric AS (Sec. 3.4) in the form of a
cluster (Figs, lla, b, and d) or a hollow sphere (Figs, lie
and e) can be excited in three-dimensional systems, while an
AS in the form of a spot or ring can be excited in two-dimen-
sional systems. The critical fluctuations 86 are localized in a
surface layer (of thickness ~/) of the cluster or spot with
radius p = p() ^> /. The growth increment of such a radially
symmetric fluctuation <§#„ with Srj = 0 equals approximate-
ly35 /10~ — epa/L-(l /p0)

2. Growth of <500 is damped by a
corresponding change in the inhibitor density right up to the
point A = Ab, where dt],./d A = oo. At/I = Ab the cluster
vanishes abruptly (Fig. 15). As A is increased the radius of
the cluster (spot) increases, but it can become unstable with-
out reaching the points A = Ad or A =AC (Fig. 15) with
respect to radially unsymmetric fluctuations. An AS in the
form of a hollow sphere or ring with an inner radius pni > L is
stable for values of A for which its thickness J?"s = ptn — p(n

falls in the range whose limits J^bl and J^c, are determined
by (4.33) or (4.35). Outside this range the AS becomes un-
stable with respect to radially unsymmetric fluctuations.29

It follows from here that the picture of the evolution of
radially symmetric AS can be very complicated. As A is in-
creased an expanding AS in the form of a cluster (Fig. lla)
can transform as a result of "local breakdown" (Sec. 3.5)
into a hollow sphere (Fig. 11 c), which can then fragment, as
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a result of the growth of radially unsymmetric fluctuations,
into smaller parts. As a result many AS or one AS, but of a
very complicated form, can arise in the system.
5. Static spike autosolitons (KA-, KV-systems).

In Sees. 3 and 4 we studied AS in KN- and ATM-systems,
whose amplitude, according to (3.5) (#max-
~ ^min = #s3 — #si ) > is determined by the existence of the

branch III of the single-valued dependence 0(rj) on the N-
or H-shaped LC curve (Figs. 9a and b). The values 0> 6'0,
corresponding to this branch, can be regarded, in a certain
sense, as the "hot stable phase" of a system with "tempera-
ture" 6>~$s, corresponding to 77 = ?7S (Fig. 10).

A different situation is realized in A"A- and A"F-systems
(Sec. 2.2), whose LC curve is A-or F-shaped (Figs. 17aand
b). In such systems for /<L spike AS of two types can exist:
narrow (Sec. 5.2)"-28and wide (Sec. 5.3).89J74Thewidthof
the spike (^ s) of a narrow AS, irrespective of the smallness
of e = I /L -41, is of the order of ~ /, while the width of the
spike of the wide AS is of the order of ~L.

5.1. Structures in small systems.25'28''" The distribution
0(x) and the value rj(x) = ?/sh = const in systems of size
«y <^L are determined by Eqs. (3.3) and (3.4). It follows
(Sec. 3.1) from the LC curve in A-and F-systems (Figs. 17a
andb) that the potential U0 in (3.3) has two extrema, one of
which 6 = (91 corresponds to a maximum of U0 (Fig. 17c).
The highest trajectory of the "particle" in such a potential
U(i corresponds to the separatrix of Eq. (3.3), terminating at
the point 9 — 6{. It describes the only solution 0(x), in the
form of a narrow striation of size — / (Fig. 17d), with only
one maximum. It was shown in Sec. 4.1 that with cyclic
boundary conditions, among all possible distributions 9(x)
(Sec. 3.1) only a solution in the form of one striation (Fig.
17d) is stable right up to point A — Ab on the bifurcation
characteristic, where drjKh/dA = oo (Fig. 18).

To illustrate our results we shall study the distribution
0 { x ) and the form of the bifurcation characteristic in models
that can be solved analytically. For the Brusselator model
(1.12) Eqs. (3.3) and (3.4) have the form

(5.1)

It follows from them25-175 that for J^ > / (more precisely, for

_ 24Z [XA- (1 -

(5.2)

(5.3)

where

•Ay>z:2, 0h = fi.

For the model (1.14) with Jf >/ the inhibitor density176

(5.4)

(5.5)

while the activator density 6 ( x ) is determined by (5.13),"4

in which
o _ - n . r?/l\-l 9 A~if2n , a n - - C,n £2/1-1vi — ' f c h \ /*/ — —./d c 'Ish 5 in'ix — 1 — l^h i

The expressions (5.2) and (5.5) determine the bifurca-
tion characteristics of the models studied (Fig. 18). The val-
ues of the inhibitor density for the uniform state in the model
(1.12) r?h =A/B, while in (1.14) 17 h =C[(A/C) + B}2

and, as follows from (5.2) and (5.5), they differ significant-
ly from the values of ?;sh for striations (Fig. 18). The upper
sign in (5.2) and (5.5) determines the value of 7/sh inastable
striation of high amplitude, for which the expressions (5.4)
and (5.6) are valid. It follows from (5.2) and (5.5) that the
limiting value of the parameter^ =Ab, for which the stri-
ation vanishes abruptly (Fig. 18), Ab a (//,y)l /2, i.e., it de-
creases as the size of the system J^ increases.

Substituting^.2) and (5.3) into the expression for the
"Hamiltonian" H0 in (4.2) we find that the "potential" ap-
pearing in it is given by

d i
-e

of X

FIG. 17. Illustrating construction of structures
in small A and K-systems. a,b) local-coupling
curves for A-(a) and K-systems (b) . c) form of
the potential Uu. d,e) form of a narrow spike
striation (d) and a narrow spike AS (e). Broken
curves—value of the inhibitor in A-systems.
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V9 = 9e (6 (x), >1sh) = - ?> clr*

(5.7)

In this potential [the problems (4.5) and (4.4)] with expo-
nential accuracy /I , = 0, while A0 and <500 equal172

(5.8)

It is obvious from (5.8) that the function 86 0 is localized in
the region of striation of size ~/ and it corresponds to
A0~ - 1.

The conclusion that in the spectrum of Art of the prob-
lem (4.5) and (4.4) for a narrow striation /I, =0 while
A0 -- 1 is of a general character. Indeed, the strict equality
A i = 0 follows from the translational symmetry of the prob-
lem for the striation ( Sec. 4.1). The condition A ,-/l0 ~ 1 fol-
lows from the fact that the size and width of the "potential"
Ve for the striation is ~ 1. It follows from (4.16) that the
condition a() £ 1 is a necessary condition for the striation to
be stable for A, 1. For a striation amplitude (5.10) \ ( Q )

— f?, 5 1, according to (4.17), we have the coefficient
fl()~//J^<l. For this reason the condition o()S; 1 cannot
hold for striations with small amplitude (Fig. 18, broken
curves). It follows from the procedure for constructing a
narrow striation (Fig. 17) that the condition (3.4) can be
written approximately in the form

I Q (ema3t, Tj.t) \=(X-ZI)\Q (8,, (5.9)

For narrow striations with large amplitude
usually holds, i.e., the condition (5.9) with <£ s ~/ is valid,
when |2(0max ) | S -2Y/> 1. The latter condition can be sat-
isfied only in systems for which Q(6) is an increasing func-
tion of d. In A-and V- systems for which this is not realized
wide spike striations,176 which according (5.9) should have
a size .2% ~ J^/2, can form.

5.2 Narrow spike autosolitons.25-21'2* The qualitative
form of a narrow spike AS in extended A- and V-systems can
be established from simple considerations: as & increases
the value 77 = ??sh =£ tjh at the center of a striation (Fig. 17d)
should, at the periphery of the striation, transform smoothly
over a characteristic distance ~L to the value
7] = rjh(0 — 0h) for the uniform state (Fig. 17e).

To construct a narrow spike AS we shall employ the
method described in Sec. 3.2. Unlike N- and H-systems the
potential for sharp distributions Ug in A- and V-systems
(Fig. 17c) has only one maximum. This difference leads to
the fact that only spike ASs can exist in A- and V-systems.
The construction of narrow spike AS (Fig. 17e) is illustrated
in Fig. 19. To construct the true potential U^ (Fig. 19c) in
(3.8) the first of the conditions (3.10) is employed; it fol-
lows from this condition that

«?>sh = — e-1((?)am, (5.10)

where the symbols {...)sh and{...)sm denote averaging of the
function Q(d,Tj) over the region of sharp and smooth distri-
butions, respectively. Usually | {£? }sm | S 1, i.e, according to

e- '^l. The derivative satisfies dt/,,/
d,, = — Q, so that the potential Un in (3.8) near 17 = 7/sh

branches sharply upwards away from the branch I of the
potential {/, in (3.14) for smooth distributions (Fig. 19b),
forming a steep wall, i.e., it acquires the form of a potential
well (Fig. 19c). The distribution ij(x) (Fig. 19d) corre-
sponds to the finite motion of a "particle" in such a well
(trajectory 1 in Fig. 19c).

It follows from the procedure for constructing an AS
(Sec. 3.2) that the distributions 9(x) and rj(x), taking into
account the symmetry of the AS with respect to the point
x = 0, can be written approximately in the form

9 (x) = 9sh (X) - ex - 9t (.c) (0< x < oo).

<oo) (5.11)

4CB

ZCd FIG. 18. Form of the bifurcation characteristics, a) For the
Brusselator model (1.12)25-'"; b) for the Gierer-Meinhardt
model (1.14)"'176; c) for a mixture of neutral gases heated with
electromagnetic radiation.52 The broken sections of the curves
correspond to unstable states.
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FIG. 19. Illustrating construction of a narrow spike AS. a) Form of local
coupling (curve 1), ES curve (2) , and the true dependence ij(9) (3) . b)
form of the branches I and II of the potential U, for smooth distributions;
c) form of the true potential £/,,, in which the highest trajectory (1 ) corre-
sponds to the distribution y ( x ) in the autosoliton (d ) ; e) form of the
potential £/„: the broken curve shows the potential in the approximation
of sharp distributions, while the solid curve shows the true potential Ua,
the highest particle trajectory in which corresponds to the distribution
6(x) i n d ) .

where 0sh (x) is the sharp distribution, obtained in Sec. 5.1
and corresponding to the separatrix of Eq. ( 3.3 ) , terminat-
ing at the saddle point 6 = 8t (Fig. 17d); the functions
77, (x) and 9, (x) are smooth distributions of the inhibitor
and activator densities, which are solutions of Eqs. (3.18)
corresponding to the boundary conditions r/{ ( <x ) = rjh ,
77, (0) = 77sh ; rjsh can be evaluated from the equation29- 17f)

\'

h, A)-Q(Qlt t|Bh, .4)) da;, (5.12)>1sh

which essentially follows from (3.10). The form of the nar-
row spike AS (Fig. 19), found in the general theory,25-27 is
confirmed by the results of analytical and numerical studies
of different models.16-"4-120-175-'77

Just as for a striation (Sec. 5.1), for a narrow spike AS
(Fig. 2a) the potential Vg in the "Hamiltonian" He (4.21),
determining the growth increment and the form of the criti-
cal fluctuations of the activator S9n for St] = 0 (4.24), has
the form of a narrow well ( Fig. 20b ) . In the spectrum of such
a well we have only A0 and A , < 0, and in addition28 A. , 5 — E,
while /l()~ — 1. The functions <56>0 and 89 ^ corresponding to
A() and At are localized in the region of the AS spike (Figs.

20c and d). The function Sdt is close to 6Q°^dd/dx (Fig.
20d), which describes a small shift of the AS, i.e., for it
y ,=0.

An autosoliton exists in the range from A = A h up to A c

(Sec. 4.2): for ,4 <Ab it vanishes abruptly (Fig. 18);as/l is
increased the amplitude of the AS increases, and for A >AC

as a result of the instability of the uniform state (Sec. 2.2)
outside the AS a more complicated autostructure appears in
the system.25-29

The expressions (5.11) for some form of the functions
Q(0,rj) a.ndq(d,r]) can be rigorously substantiated'76 based
on the theory of singular perturbations.'lf> Unlike the proce-
dure for constructing an AS in KN- and KH-systems (Sec.
3.3), for narrow spike AS in KA^_and KV-systems we shall
seek the exterior Xf and interior X: solutions in the form of
series in powers ofe with exponents that can take on nega-
tive, including fractional, values:

(5.13)

where £ = X/E, a, = Nf /m, 131 = M, /m; N, and M, are any
integers; and m is a positive integer. The coefficients a, and
/?, are determined by the boundary conditions and the spe-
cific form of the functions Q(d,irj) and q(G,f}).

Using this procedure for the model (1.14) with
C = B = 1 makes it possible to prove that the expressions
(5.11) and (5.12) are valid to order £<1, and it can be
shown that in leading order in £176

(5.14)

The next correction for 17 equals

•^r- (24-+clr2-£-—4hich-£--4 i , ,2 \ (5.16)b \ ( ^/ J/ /

and makes it possible for the condition drj/dx = 0 to hold at
the point x = 0. The expressions (5.14)-(5.16) are valid for
A 2 > £. The quantity A = Ab, for which the solution in the
form of an AS vanishes (Fig. 18), can be determined from
(5.15), by setting Jf = 2L in it. This follows from the fact
that the expressions (5.14) and (5.15) in the neighborhood
of an AS spike (the point x = 0, Fig. 17e) essentially trans-
form into the expressions (5.5) and (5.6), if we set Jf = 2L
in them.

We note that in two-and three-dimensional systems
one-dimensional narrow spike ASs are unstable27 relative to
fluctuations with &, ~ ( /£)1 / 2 that are nonuniform along the
plane of the AS. This follows from (4.32), if we set in it

FIG. 20. Illustrating the analysis of the stability of a
narrow spike AS (a): form of the "potential" Vu (b)
and corresponding eigenfunctions S0n (c) and<5$, (d)
and perturbations 6r), damping the growth of the dan-
gerous fluctuation 6d^69u and "shear" fluctuation
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AQ 1. In such systems, radially symmetric spike AS with
radius ~ /, whose 6 and 77 distributions in the cross section
are identical to those shown in Fig. 17e, are stable. These
conclusions explain the results of numerical studies."9

5.3 Wide spike autosolitons. 89->74\n some KA- and KV-
systems with l-^L wide spike AS, the width of whose peak is
of the order of L, form. This, as already pointed out in Sec.
5.1 in the discussion of the condition (5.9), can be realized in
systems in which the quantity \Q \ does not grow as 9 in-
creases; more precisely, the conditions (5.10) does not hold,
even for large values of 0max. To construct AS in such sys-
tems the concepts of sharp and smooth distributions (Sees.
3.2 and 5.2), which form the basis of the method described in
Ref. 25, cannot be employed. The expansions (5.13) in the
form of an exponential boundary layer also turn out to be
unjustified.176

Wide spike AS are realized, for example, in a nondegen-
erate heated EHP, described by Eqs. (1.2)-(1.5).89-174 It
follows from Sec. 1.1 [Eq. (1.5)] that

Q— ^n~~ = r ]9~ i ~ g —1, (245c)

where 6=T/T,,
nh = GTr,D&Tl+a

the form

r) = nD (T)/D°nh = nd' + a/nh,
. In this case the condition (3.10) has

\ (n - Gtr) fi1 Ax = (5.17)

i.e., it describes the overall balance of particles in AS: carri-
ers ejected owing to thermal diffusion ( Sec. 1.1) from the AS
spike, where the carrier temperature is high (Fig. 2 la), ac-
cumulate at the periphery of the AS (Fig. 21b). Since at the
center of a spike Q^ — 1 (Fig. 21b), the condition (5.17)
can hold only when J^s ~L. Precisely such a wide AS was
discovered89 in a numerical study of a heated nondegenerate
EHP with TI greater than the Debye temperature of the sem-
iconductor (Fig. 21).

Wide spike AS have the amazing property that their
amplitude, i.e., 6?max at the center of the AS, can have a huge
value for not very small values of E = I /L. Thus numerical
studies of AS in EHP have established89 that for E = 1/10
0max ~ 100 (Fig. 21 ), and #ma)l =* 103 already for £ = 1/15.

5.4. Strongly nonequilibrium regions in weakly non-
equilibrium systems. 50~52

Studies of the models (1.12) and (1.14) show (Sees. 5.1
and 5.2) that the smaller the value of e = l/L the larger is
(9max [see (5.14) ] and the smaller is the minimum value of
A = A b for which an AS exists ( Fig. 1 8 ) . This means that for
£ <^ 1 AS in the form of strongly nonequilibrium regions can
form in physical systems that depart slightly from thermo-
dynamic equilibrium. We shall illustrate this effect for the
example of a mixture of light and heavy gases, heated weakly
by radiation absorbed by the light component of the gas
(Sec. 1.2).20)

Let the gas be confined in a small tube. The distribution
of the temperature Tin such a tube is described by Eq. (1.7)
for the one-dimensional case, in which W— ncrph <I>, where n
is the number density of light particles; <rph and <t> are the
photon absorption cross section and the photon flux density.
Diffusion of the light gas in the heavy gas with density A> n
is described by Eq. (1.2), in which je — — T(d /
dx) (nD( T) T " ' ) is the flux of particles of the light gas.2J7x

From an analysis of these equations, describing the distribu-
tion of n and T along the tube, analogous to that presented in
Sees. 5.1 and 5.2 for models (1.12) and (1.14), it follows
that the minimum radiation power for which an AS exists is
3> = 4>fc cc (/ /L)'/2, where L equals J?—the size of the tube
in the case of nonreacting gases (G = R = 0) or the diffu-
sion length of light paticles. For $ = <bb uniform heating of
the mixture T = Th can constitute a fraction of a percent of
its equilibrium temperature, while the temperature of the gas
and the density at the center of the AS (Fig. 3a) can be
several orders of magnitude higher than the equilibrium val-
ue: Tmax a Th (L //)1/2, «max ~ (L //)«„ .

Regions of high temperature can form in semiconduc-
tor films, heated weakly by radiation absorbed by electrons
and holes in thermal equilibrium with the lattice, whose den-
sity distribution (n =/>) and temperature are described by
Eqs. (1.2), (1.7), and (1.8). Regions of high temperature
("hot spots") have been studied in greatest detail experi-
mentally (see, for example, Refs. 151 and 179) and theoreti-
cally157 in semiconductor structures, since the appearance of
such regions determines the quality and reliability of many
modern electronics devices (there is a very extensive litera-
ture on this question; see the reviews of Refs. 180 and 181).

6. PULSATING AUTOSOLITONS (Kll-SYSTEMS)

The conditions £<1 and a<l , defining Kfl-systems
(Sec. 2.2), hold for many physical and chemical systems
(Sec. 1). In most of them /=(Z) 0 r e ) ' / 2 and
L = (D^rn )1 / 2 , where De andZ)^ are the coefficients of dif-
fusion. The smallness of £ = (aDg/D^ ) 1 / 2<^ 1, is, as a rule,
associated with the smallness of a = re/r^ < 1. For this rea-
son, depending on the ratio De/DJ1, different ratios off and
a can be realized.

Since £ •< 1 static AS in K-systems (Sec. 3.5) and in Kfl-
systems have the same form. In Kfl-systems, however, static
AS exist in a smaller range of values of A. At the boundaries
of this region, because a is small the condition

FIG. 21. Form of a wide spike AS in a heated degenerate EHPKl<: activator
distribution—temperature 8 = T/T/, inhibitor distribution T) = nD(T)/
n,,D(T,) (a), carrier density n, and Q (b).
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0, (6.1)

can hold31; this condition essentially determines the thresh-
old for instability of a static AS relative to pulsations,2" i.e.,
growth of fluctuations of the form (4.20) with Re 7 < 0 and
Im Y = &>c 7^0- This is linked with the fact that because of
the slowness of the change in the inhibitor density (rtl $>rg)
there is not enough time for the inhibitor to damp the critical
fluctuations of the activator density, varying with frequency
u> = coc :T~ ' <a>c < r0~ ' . For this reason pulsating AS exist
in Kfl-systems in addition to static AS (Figs. 5e-h).3l~34

6.1 Pulsating structures in small systems.3' The crite-
rion for the appearance of pulsations of wide striations (Fig.
13a) for a 41 can be found by analyzing the zeros of the
function D(y=ico) (4.9) in the upper half-plane of the
complex frequency at. In the region of stability of a striation
with respect to fluctuations with Im y = 0 Z)(0) <0 (Sec.
4.1). Since for wide striations A() < 0 and |/l,, < 1 (Sec. 4.1),
it follows from the expression (4.11) that when (6.1) holds
K(Q) <0. However, already for some 01 = <y, < 1 the quanti-
ty K(co) changes sign. Analogously, at some co = coc

ReD((oc)=0, since ReZ)(0) = D(0) <0, and
R e Z > ( o o ) = l. Analysis of D(co] (4.9) shows that for
K(0) <0 the striation is stable [in (4.10) N = P - 1 =0], if
R e £ > ( < a , ) < 0 (the curve 3 in Fig. 14b), and unstable

= 2 ) , i fRe J D(« , )>0( thecu rve4 inF ig . 14b).
For some A=Ab(a the frequency a)\=a>c, while
D(coc) = 0, i.e., the real frequency <ac is a zero of the func-
tion D(CI)) at the threshold of stability of the striation. Thus
according to (4.14) the threshold of stability of a striation
relative to pulsations coincides with the point A = Abla,
where the "susceptibility" of the system is drf/dA = oo at
the frequency a> = coc.

In order to be able to determine the value of ec and the
critical width of a striation J?" ̂  = Jf s (Aha ) for a < 1 from
the condition D(a>c) = 0, because |/l,,| -41 the sum in (4.9)
can be truncated at the first term. As a result we find that

(>\. « (a(j.0)1 '2(a) + A.0)1''2Te1, (6.2)

while the criterion for the appearance of pulsations of a stri-
ation reduces to (6.1). Using the fact that a0~l/^ (4.17)
MdAH exp( — -^s//) (Sec. 4.1), it is easy to find from
(6.1) and (6.2) that

One can see by comparing (4.18) with (6.3) that
«y'hll> > .¥',,, i.e., A/,,,, >Ah, in systems with a<//.y. Thus
as A is reduced the narrowing striation (Sec. 4.1) in systems
with a </ /,¥' becomes unstable at the point A = A,M rela-
tive to pulsations, before reaching the point A =Ab on the
bifurcation characteristic, where d-rj/dA = oo (Fig. 15b).

The formula (6.2) and the condition (6.1) also deter-
mine the frequency and criterion for pulsations of radially
symmetric structures in two- and three-dimensional sys-
tems.11 In addition, it follows from the estimates that at the
point at which pulsations arise the critical radius and fre-
quency are given by

where R is the radius of the system and s = 0 ( 1 ) for the
cylindrically (spherically) symmetric state.

For A=Ablo the instability is associated with the
growth of the fluctuations Srj = Srj cos(<yc?) and
86~80n(p)cos((i>ct). From the form of the functions
8rj = const and 860 (Figs. 13d), corresponding to A 0 <0
(Sec. 4. 1 ), we can conclude that the pulsations are periodic
oscillations of the size and amplitude of the striation (spot or
drop), accompanied by uniform oscillations of the inhibitor
density.

These results have been confirmed by numerical studies
of pulsating states in the model ( 1 . 1 3 ) ,34 These studies also
showed that in accordance with (6.3) and (6.4) the frequen-
cy of the pulsating structures is lower than the frequency of
the critical fluctuation a>0 ) at the threshold of
stability relative to uniform oscillations (Sec. 2.2).

We note that for stable states in A- and V-systems
A0 -- 1 (Sec. 5.1), so that according to the condition (6.1)
spike structures pulsating in amplitude can be observed in
these systems even for a~ I.157'175

6.2 Conditions for the appearance of and form of pulsat-
ing AS. 3 ' It was shown in Sec. 6. 1 that the threshold for
pulsations of a striation with J^ <L is determined by the
point where the "susceptibility" of the system is drf/dA = co
at the frequency a>c ^0. The same criterion also determines
the threshold of stability of AS. Indeed the change in the
activator d6 and the inhibitor dr/ density in a static AS,
caused by a small change in the bifurcation parameter dA(t)
= dA exp( — icoc. t), as follows from (2.2) and (2.3), is de-

termined by the equations

(HB d6 = -

| = - Q'e d6 - Q'A 6A,
(6.5)

(6.4)

where, as in (4.21) and (4.22), the time is measured in units
of Te. The existence of points where drjs /dA = oo for coc ̂  0
means that at these points with dA = 0 the increments are
dri(x) and d0(x)^Q. One can see from (6.5) with dA =0
that such increments drj(x) and dO(x) correspond to a non-
trivial solution of the system of equations (4.21) and (4.22)
with Re Y = 0 and Im 7 = o)c. Thus the threshold of stabil-
ity of AS relative to pulsations is correlated with the exis-
tence of points where the derivative of the characteristic
quantities of an AS ( i j s , J^s ) etc.) with respect to A at the
particular frequency a> = a>L becomes infinite.

The frequency of the pulsations and the critical size of
an AS can be evaluated by analyzing the zero of the function
4>(7 = iea) (4.28) in the upper half-plane of the complex
frequency co. Since the function 4>(<y) has no poles in this
half-plane, the number of its zeros according to the principle
of the argument in Ref. 126 equals
N = (2ir) " ' XA arg 4>(<y) . The change in the argument of
the function <!>(&)) along a circuit in the upper half-plane can
be established with the help of the properties of the function
<!>(&>). It is obvious from (4.28) that Re4>(&>) is an even
while Im <t>(a>) is an odd function of <y; for Re co = +00
and Im <u = 0 the values are Re 4> = A0 < 0,
I m 4 > = — < y = +00, while for Im co = oc the values are
Re <J> and Im <t> = oo. It follows from here that for 4>(0) < 0
N = I (curve 1 in Fig. 22), and therefore the AS is unstable.
For4>(0) >0 A arg<f>(&)) depends on the sign of the function
K(<a) =«-'Im 4>(w). Whentf(O) <0thequantity/i:(<y) is
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FIG. 22. Qualitative behavior of the complex function <j> (a>) over a circuit
in the upper half-plane of ta for K(0) <0 (a) andtf(0)>0 (b).

obviously less than zero for all real a, and N=0( the curve 2
in Fig. 22), i.e., the AS is stable.

The conditon K(0) <0 holds in K-systems because
a > 1, so that in these systems an AS becomes unstable at the
point where 4>(0) becomes negative. The sign of $(0) is
correlated with the sign ofyin the expression (4.30), follow-
ing from (4.28) with a > 1 and |y|<l.

In Kfl-systems a static AS is stable in a smaller range of
values of A than in K-systems. It becomes unstable when
<J>(0) >0, i.e., in the region of stability of static AS in K-
systems (a > 1), owing to the fact that K(Q) > 0 when a < 1.
In addition, K(<a) changes sign already for some real fre-
quency &> = &>,<!. Analogously Re 4>(&>c) =0 for some
real frequency u> = a>c, since Re $(0) = <I>(0) >0, while
Re<t>(co) =A0<0. One can see from Fig. 22 that when
K(0) > 0 the AS is stable (N = 0) if Re <t>(«,) > 0 (curve 3
in Fig. 22) and unstable (A^= 2) if Re <t>(«,) <0 (curve 4 in
Fig. 22).

Thus the limit of stability of the AS corresponds to the
condition <a, = coc, under which <!>(&>,,) = 0. As in the anal-
ysis of (4.30), only the first term need be retained in the sum
(4.28) and from the condition 4>(wc) = 0 we find that the
frequency of and the condition for pulsations of AS are de-
termined by (6.2) and (6.1), respectively.

Substituting into (6.1) the estimate of A0 from (4.26)
we obtain

This condition for a <^e2 <^ 1 holds for any values of J?s , i.e.,
static AS are not realized in such Kfl-systems (Fig. 8). Ac-
cording to (6.6) for f2 ̂ a S £< 1 a static AS in one-dimen-
sional Kfl-systems is stable in the range of A where the width
^s of the AS falls within the limits

£M~ Z,n0 (a/e). (6.7)

Thus under conditions of both cooling and heating a static
AS can become a pulsating AS when A =A/,t:1 >Ab and
AM <AC, Ad (Fig. 15b), i.e., before the point limiting the
existence of a static AS in K-systems (Sec. 4.3) is reached.
Since for AS a0~e (Sec. 4.2) it follows from (6.2) that the
frequencies of the pulsations of a one-dimensional AS with
A = Abla and Aa are equal in order of magnitude and are
given by

-1/2 (6.8)

It can be shown analogously that the radius of a stable
radially symmetric AS in the form of a spot (cylinder) or a
drop (sphere) ranges from phia ~/(a//0)^ ' / 2 to
pM ~L/j,0(a/e). The frequency of the pulsations of an AS
with radius p(, = pia equals29

<n-2) /2
TG", (6.9)

where n = 1,2 or 3 is the dimension of the AS.
It follows from (6.9) that when a < e the frequencies of

the pulsations at the threshold of stability of a static AS in
the form of a wide layer (Fig. 5a), cylinder, or sphere with a
large radius (Fig. 1 la) decrease as the dimension of the AS
increases. Numerical studies of the model (1.13) have
shown that this result is also true for frequencies of steadily
pulsating AS in the form of a layer, cylinder, or sphere.34

Somewhat different estimates for the quantites ^f'btti,
jfa and a)c can be obtained for one-dimensional systems, in
which the^'potential" V^ = Q ̂  = B = const, in the "Ham-
iltonian" H^, i.e., the corresponding STJH (4.24) is not local-
ized. In this case the relation between ST] and <5#0 is deter-
mined by the formula (4.27), in which F is given by (4.34).
We substitute STJ in (4.21) with 86 = 8df» multiply this
expression on the left by <56>0, and average over the volume of
the system. Analysis of the equation so obtained from y
shows that32

%t In
(6.10)

aun~e-=7^ — < (6.6)

Strictly speaking, conclusions about the frequency of
pulsating AS in the case when they appear in a soft excitation
regime can be drawn from the formulas (6.9) and (6.10). At
the same time numerical studies have shown33-34 that for
a 4.1 hard excitation of pulsating AS can be realized. There
then can exist an interval of A in which a static, pulsating,
and traveling AS can be excited34'10() (Sec. 7). To excite each
AS it is necessary to choose a disturbance that would trans-
fer the system into the region of attraction of a given type of
AS.

The form of pulsating AS can be predicted from the fact
that at the point at which pulsations appear the solution
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6(x) and rj(x) in the form of a static AS branches with the
solution 6>(x) ±89n(x)cos((i)ct) and
T)(X) + 5Tjl-l(x)cos(a)ct) in the form of a pulsating AS. The
form of the functions S00(x), STJO(X) in a wide AS is shown
in Fig. 16d. It follows from the figure that a pulsating AS
forms at A = Aia. Its size varies periodically in time, more
precisely, in it the activator describes antiphase auto-oscilla-
tions of the walls of the AS, while the inhibitor varies peri-
odically in the entire region of localization of the AS (Fig.
5e).

When H- or N-systems are cooled a wide AS narrows
and becomes increasingly more like a spike AS (Fig. 5b)
with an amplitude ~ 1. Since in such an AS the functions
89(}(x) are localized at the center of the AS, a pulsating AS
with an oscillating amplitude (Fig. 5f) can arise at the point
A=Aba (Fig. 15b).

Such large-amplitude, pulsating, spike ASs can arise in
A- and V-systems, and even for a ~ 1. The latter result fol-
lows from the condition (6.1), if the fact that for spike AS
A() 1 (Sec. 5.2) is taken into account in it.

From an analysis of the growth of fluctuations 86, close
to the functions 86„ of the problem (4.24), corresponding to
An < 0 with n / 0, it may be concluded that pulsating AS of a
complicated form can exist.31 Thus in the analysis of the
stability of a wide AS it was shown (Sec. 4.2) that the spec-
trum of eigenvalues An contains, aside from an eigenvalue
A,, < 0, an eigenvalue A, < 0 whose value is exponentially
close to Au. Fluctuations close to <5<90 and 8d\ grow indepen-
dently. It follows from the form of the fluctuation 56—86\
(Fig. 16e) that as a result of the growth of such fluctuations
for^4 close toAla rocking (with walls oscillating in phase) or
traveling AS can arise in KflN- and KflH-systems with
e2 4a $£^1.35 Numerical studies, in which rocking stria-
tions in a finite sample were observed, also indicate that
rocking AS can arise. lo°

Study of the growth of the fluctuation 89~86^(x)
exp(/kiri — ici)ct) with A0 + k 2

L <0 leas to the conclusion
that wide AS with wavy walls can be excited in two- and
three-dimensional systems.31

Thus radially symmetric AS with periodically varying
amplitude can be excited in two- and three-dimensional
KflA- and KflV-systems, while in KflN- and KflH-sys-
tems, in addition to such AS, AS excited in which primarily
their radius oscillates, as well as can be, AS in the form of
drops or spots, undergoing radially unsymmetric oscilla-
tions, and also pulsating autostructures of a complicated
type.31

The qualitative results presented above are also valid
for cold pulsating AS (Figs. 5, g and h), which can be excited
in hot stable KflN- and KflH-systems. The existence of pul-
sating, cold ASs was established in numerical studies of the"
model (1.13).33-34

(7.1)

7. TRAVELING AUTOSOLITONS (Kn- AND n-SYSTEMS).

7.1 Form and velocity of traveling AS. To constuct the form
of one-dimensional AS traveling with a constant velocity v
we transform in Eqs. (2.2) and (2.3) to the self-similar vari-
able x=? x — vt:

dr,

Here and below the velocity is measured in units of / /re,
length is measured in units of/, and time is measured in units
of Tg; the potentials Ue and U^ are defined in (3.7) and
(3.8). The equations (7.1) with cyclic boundary conditions
comprise an eigenvalue problem, whose spectrum deter-
mines the possible velocities, while the corresponding eigen-
functions <9(x) and rj(x} are the forms of different traveling
AS.

Using 6(x) and rj(x) for static AS (Sec. 3) as the ze-
roth-order approximation, it is easy to verify that this prob-
lem does not admit solutions with v 4.a, £2, i.e., traveling AS
have only a finite velocity.35 It follows from analysis of
(7.1)35 that in N- and H-systems the minimum velocity is
vmin ~a' /2,and small AS ( J f , ~ / In a~') have this velocity
and only in systems with a < £4.

The solutions of Eqs. (7.1) with a, e< 1 according to
the general theory8 are close to the solutions corresponding
to combinations of smooth and sharp distributions (Sec.
3.2), which in this case satisfy the equations

Ax dr. = 0, g-(6,

(7.2)

(7.3)

The solution of the system (7. 1 ) can be regarded as the tra-
jectory of two "particles," moving with time x along the rj
and 9 axes in the potentials t/, and Ue , but unlike the case of
static AS (Sec. 3. 2), in the presence of friction forces that are
proportional to the velocity v and have a constant sign.27'28'35

The forms of the potentials Ue and Un in (7.2) and in (7.3)
were studied in Sec. 3.2. As the "particles" move their ener-
gies decrease owing to the work of the friction forces, and the
higher v the more does their energy decrease, i.e., the more
does the form of the traveling AS (Fig. 23) differ from a
statis AS (Fig. 10).

Thus the "particles" in the potentials Ue and U^ move
along downward sloping trajectories ( Fig. 23 ). Premultiply-
ing (7.2) bydff/dxand (7.3) by dij/dx and integrating over
x, respectively, along the /th andy'th elementary sections of
d ( x ) and 17 ( x ) , at whole limits dd /dx or drj/dx, respective-
ly, vanish (the extrema of 6(x) and r)(x) are located at dif-
ferent points A:), we obtain

(7.4)

where AC/e. and AC/, is the decrease in the potential energy
of the particles owing to the "work of the friction forces" on
the corresponding elementary sections (Fig. 23).

According to the general procedure of constructing AS
(Sec. 3.2) in H- and N-systems (Fig. 23d) a sharp distribu-
tion ff(x), describing the walls of the AS (Fig. 3b), can
transform into a smooth distribution, describing 0(x) and
77 (x) outside the walls and between them, only near the
peaks of the potential Ue (Fig. 23a), i.e., the saddle points of
Eq. (7.2). In the case of a static AS Af/fl = 0 and a half-
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FIG. 23. Illustrating construction of the form of
traveling AS: the distributions 6(x) and
i)(x),which are shown in (b) for the case
£ 2 <a<£<<l and (h) forage2 (see text for ex-
planation ).

oscillation of a sharp distribution, describing the wall of an
AS, corresponds to the value rj = t/s (Sec. 3.2), which is
determined from (3.5). Near 77 = rjs the branches I and III
of the potential U^, the highest trajectory in which describes
r)(x) in a static AS (Fig. 10), are joined. For a traveling AS
A Ue > 0, so that with the transfer from the branch I to the
branch III of I/v (Fig. 23e, the trajectory of the particle with
j = 1) the potential Ue should have the form of the curve 1 in
Fig. 23(a). Such a poetntial, as one can see from Fig. 9, is
realized for 77 , < 77,, ( r j , > 77, for H-systems). In other words,
the joining of the branches I and III of the potential U^ in
(7.3) occurs for 77, <T;S (Fig. 23e). One can see from Fig. 9
that the value 77, < ?7S corresponds to <9minl and 6>maxl on the
trailing edge (wall) of a traveling AS (Fig. 23b), lower than
0min = 0si and f?max = 0s3 for a static AS (Sec. 3.2).

The turning point of the trajectory of a particle in the
potential £/, corresponds to the values rj = rjm (Fig. 23e).
At this point a transition occurs from the trajectory/' = 1 to
the trajectory/' = 2 in the potential Un in (7.1), whose mini-
mum lies at 772 < '/s (Fig. 23e). Indeed, the transition from
the branch III to the branch I of the potential U^ in (7.3)
can occur for smooth distributions when the potential Ug

has the form of the curve 2 in Fig. 9c, which is possible only
when 77, > 77S. It follows from here that 0max2 and 6>min2 in the
leading edge (wall) of the traveling AS (Fig. 23b) are larger
than the corresponding values for a static AS. Successive
joining of the segments of smooth and sharp distributions
leads to a self-consistent adjustment of the potentials Ug and
£/, and the distributions 0(x) and 7 7 ( x ) (Figs. 23a, b,
e)35,2«

It follows from the above-described procedure for con-
structing a traveling AS that v has an upper limit of ~ 1 (//
Te). Indeed for v > 1 it is obvious from (7.2) that the work of
positive friction forces is much larger than the kinetic energy
of a "particle" moving in the potential Ug> i.e., it will be
stuck in its minimum (Fig. 23a), without reaching the sec-
ond maximum, corresponding to the point of joining with
the corresponding smooth distribution (Fig. 23). According
to (7.4) the velocity v~l/rg is realized when 77, and 7?2 differ

from r;s by an amount ~ 1. It follows from the construction
of the potential U^ (Fig. 23e) that this is possible when the
kinetic energy of a "particle," moving in the potential U^ is
less than, or of the order of, the work of friction forces. The
latter, according to (7.3J is realized when the diffusion
length satisfies L^VT^= L—the drift length. Since v S / /re,
it follows from the last equality that a traveling, wide AS can
be excited in N- and H-systems only when a5£<l (Fig.8).

As A is decreased a wide AS becomes narrower and
transforms into a narrow AS. The smaller the size ̂ s of a
traveling AS the smaller is the change in 77(x) between its
walls, i.e., the smaller is the diiference between 77, and 772. In
its turn, 771 < ?7S, while ff2> rfs (Fig. 23), and their difference
from 77S determines v. It follows from here that as a wide AS
becomes narrower its velocity decreases and for some size
J^s (Av) = J2^y a solution in the form of an AS moving with
velocity umin >a' / 2 vanishes (Fig. 23c).

This assertion is valid for £44a Sf< 1, since wide AS
can transform on narrowing (as A is decreased) into slow
AS, moving with D~a1/2 only in systems with a <e4. It also
follows from here that the smaller the ratio a/e the smaller
are the values of umin and Av (Fig. 23c). We note that the
results presented here also hold for a periodic sequence of
traveling striations (pulses).35'28

The form of traveling AS, shown in Fig. 23b, is realized
in KflN- (and KflH-)-systems for which a is not too small
compared with e4,1. When a <£ the distributions d(x) and
77 (je) at the top and between the walls of the AS become
monotonic (Fig. 23h). Indeed for a^e, more precisely,
L>£, the "kinetic energy of the particle," i.e., the term
£ ~ 2d277/djc2 in (7.1), can be neglected and it can be assumed
that the change in the "potential energy" Uri is entirely ex-
pended on the work of "friction forces." This means that the
trajectory of a particle corresponds to slipping along the
branches of a multivalued potential U^, i.e., for L>L the
trajectories/' = 1 and 2 in Fig. 23e degenerate into/' = 1 and
2 in Fig. 23f. In the process, the minimum in the distribution
r/(x) 17 = 77, = 77m lies on the trailing edge of the AS (Fig.
23, h) ; on the leading edge 77 = rjh (Fig. 23f),and<9min = <9h
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FIG. 24. Elucidation of the properties of AS in trig-
ger systems. a,b) LC and ES curves, d) Form of
wide AS (3 and 3') and of a complicated domain
wall (4). c,e,f) bifurcation characteristics. g,h)
form of the coupling functions. The solid sections
in c), e), and f) correspond to stable AS, while the
broken sections correspond to unstable states. The
numbers on the curves 3, 3', and 4 in (d) corre-
spond to points on the bifurcation characteristics in
c) and e).

X.

and #max, are the minimum and maximum roots of the equa-
tion q(0,rjh,A) = 0.

When a<e2, for all possible velocities L>L, i.e., the
distribution rj (x) is characterized not by the diffusion length
L but rather by the drift length L. Thus for a < e2 (L > L) the
condition for using the approximation of sharp and smooth
distributions reduces to L > /, i.e., the small parameter of the
problem is not E, but rather a< 1. In addition, there are no
upper limits on e.

It follows from here that in flN (OH)-systems (E> 1,
«< 1; Sec. 2.2), in which the static and pulsating AS are not
realized (Fig. 8; see Sec. 3.6), an AS, whose form is identical
to that shown in Fig. 23h and which travels with velocity
v%al/2 can be excited. These results were essentially estab-
lished from studies of models of the FHN type,1'12'58-60

which are limiting cases of fl-systems as £ -> oo, i.e., they are
described by Eqs. (2.2) and (2.3) with L = 0. Studies of
these models have also revealed1'59 that the dependence of v
on the bifurcation parameter A has the form shown in Fig.
23i: wide stable AS correspond to high velocities, while nar-
row, unstable AS (broken section of the curve in Fig. 23i)
correspond to low velocities. The minimum velocity is
ymin ~«' / 2 (/ /Te), while the maximum velocity is v ~ / /re

and is reached for ,4 close toAc (Fig. 23i).59 For A >AC the

uniform state of the system is unstable (Sec. 2.2), i.e., a trav-
eling AS cannot be excited.

It follows from the construction of a traveling AS in f i -
systems (Fig. 23h), which was proven rigorously59'60 with
the help of the theory of singular perturbations,'l6 as well as
the physics of its formation (Sec. 1.4), that its leading edge
represents a wave of transfer of activator from the state
d = 0h to 6 = #max2 at t}~r}h = const. For this reason, two
AS traveling towards one another annihilate when they col-
lide.12'16

As we have already pointed out, a traveling AS is real-
ized in KHN- and KHH-systems for a <e4 1 (Fig. 8).15-28

The larger the ratio a/e the larger are the values of vm,n and
AV (Fig. 23c), i.e., the smaller is the range of A(AV

<A<AC) for which a traveling AS can be excited in the
system. For A close to Ac or Ad (see Sec. 3.5) in KflN
(KJ1H-) -systems with e2 < a ^ £ < 1, static and pulsating AS
can be excited together with traveling AS (Sec. 3 and 6) ,35 It
follows from here that when two traveling AS collide in such
systems a static or pulsating AS can form. This is attribut-
able to the fact that in Kfi-systems, unlike fl-systems, a "dif-
fusion precursor"—a region where the inhibitor distribution
changes smoothly from r}2 to rjh (Fig. 23b)—travels in front
of the leading edge of the traveling AS.
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We note that all results presented above also hold for
cold traveling AS (Figs. 51 and m), which can be excited in
hot fi- and Kfl-systems with an N- or H-shaped LC curve.

In H- and KH-systems, in which the LC curve has a A
or V shape (Figs. 6b and d), traveling spike AS (Fig. 5j)
with a large amplitude can be excited. Such one-dimensional
traveling AS are unstable in two- and three-dimensional sys-
tems with respect to division into smaller regions for the
same reason as static, spike AS (Sec. 5.2), so that autowaves
of a complicated type (spiral, radially diverging, etc.) can-
not be excited in them.
7.2 More complicated autowaves. In one-dimensional sys-
tems a periodic'1'2"16 and possibly also a stochasticl6'27'182

sequence of pulses, whose shape is close to one of those
shown in Figs. 5i-l, can be excited in addition to traveling AS
(pulses).

Based on analysis of the stability, analogous to that per-
formed in Sees. 4.2 and 4.4, it can be concluded29'32 that for
a<£ one-dimensional, wide, traveling AS are stable with
respect to fluting of their walls in two- and three-dimension-
al systems. Numerical studies of two-dimensional
autowaves have established that in models of the FHN type
traveling AS in fi-systems are stable (see, for example, Refs.
18, 61-69). A one-dimensional traveling AS in two-dimen-
sional systems can excite, on encountering a nonuniformity,
a spiral autowave—a reverberator54'13'15'183"185; this was
first observed and studied in greatest detail in chemical reac-
tions of the Belousov-Zhabotinskii type (Sec. 1.4).48'49 In
three-dimensional systems complicated autowaves in the
form of loops, rings, and other vortices can be excit-
£CJ 49,66-69.1 1 1

In Kfl-systems a pulsating AS (Sec. 6.2) and other au-
tostructures can be excited in addition to the autowaves enu-
merated above.31'29 A pulsating AS with a quite large ampli-
tude in the form of a cluster (spot or layer) can lead to the
excitation of autowaves that diverge away from it spherical-
ly (cylindrically or one-dimensionally) without damping
and which are, far from the center, in the cross section, close
to a traveling AS (Fig. 23b). In other words, a pulsating AS
can be manifested as a guiding center (a source of radially
diverging autowaves), observed experimentally in chemical
reactions.48'15 A stationary guiding center in a two-dimen-
sional Kfl-system was observed in numerical studies of the
model (1.13) ,34 The formation of a guiding center in fl-sys-
tems could be associated with a nonuniformity, which every-
where transforms a stable system in a local region into a self-
oscillatory state.12'15 In Kfl-systems a small nonuniformity
can lead to spontaneous appearance of a guiding center with
Ad <A<A,.:& small nonuniformity will provoke the forma-
tion of AS (Sec. 4.3), and in the course of its formation
"local breakdown" will occur at the center of the AS (Sec.
4.4), as a result of which radially diverging autowaves can be
generated. The conditions for excitation of a guiding center
are most easily met in three-component'2'16 and in more
complicated active systems with diffusion.186

8. CHARACTERISTICS OF AUTOSOLITONS IN BISTABLE
"TRIGGER" SYSTEMS

8.1. Systems with diffusion. N- and H-systems, in which
LC and ES curves (Sec. 2.2) intersect at three points are
customarily called trigger systems (Fig. 24a). This situation

can be realized, for example, in semiconductors149'150-32 and
in gas plasma,90 as well as in chemical reactions.48'1" Of
three uniform states in trigger systems with fixed A two are
stable — the states corresponding to the cold ( 0 M , r ) M ) and
hot ( 9 h3 , ?7h3 ) state of the system ( Fig. 24a ) . The theory of
AS in monostable systems, presented in Sees. 3, 4, 6, and 7,
also holds for AS in trigger (bistable) systems, for which the
conditions (2.7), (2.8), or (2.10) are satisfied.29'32 It fol-
lows from it29'32 that in such bistable K-systems, unlike
monostable systems (Sees. 3 and 4), the regions of existence
of hot and cold AS join at some level of excitation^ = A k : a
hot AS (Figs. 5a and b) can be excited in a cold system
(9M <eo\ Sec. 2.2) right up to ,4 = Ab (Sec. 4.2), while a
cold AS (Figs. 5c and d) can be excited in a hot system
( 0 h 3 > 0 o ) "ght up to A = A ; (Sec. 4.2).32

This is associated with the fact that bistable systems
have two stable uniform states, corresponding to the
branches I and III of the LC curve (Fig. 24a). These states,
according to Sec. 3.2, determine the points of the maximum
of the potential U^ in the equation for smooth distributions
(3.12), i.e., the branches I and III of the potential U^ have
the form of potential humps.28 To construct the true poten-
tial in (3.8) these branches must be joined at the point
77 = r/s (Sec. 3.2). According to (3.14) the values of U^ at
the maxima are equal when the condition29'32

11), 1, 4«)<]Ti = \ 0(em (TI), 'I,
"hi l'hs
9(6i. in, n, ^k) = 0, (8.1)

holds; this condition determines to order £< 1 the value of
A = A k . The highest trajectory of a "particle" in such a po-
tential describes the transition from one stable state into an-
other. In a cold system the maximum of Un corresponding to
branch I is less than for branch III, while the highest trajec-
tory of a "particle" in such a potential corresponds to a hot
AS (Fig. 5a). In a hot system the situation is reversed, i.e.,
only a cold AS is realized in them (Fig. 5c).

As A -*A k the width of the AS approaches infinity, and
a state in the form of a complicated static domain structure,
describing the transition from the state r) = rjM, # = #M
into the state 77 = rjb3 , d = #h3 (Fig. 24d, curve 4), is real-
ized in the system.32'39

Waves of transfer of a complicated structure, transfer-
ring the system from a cold state into a hot state or vice versa,
can be excited in the K-systems studied. These waves are
realized in different ranges of A, joining at the points =Ak,
at which the velocity of the waves is v = 0.

One-dimensional AS in two-and three-dimensional K-
systems are stable with respect to stratification in the plane
of their walls (Sec. 4.4) in the range of values of ,4 whose
limits are determined by the values of Jz^bl and J^cl , given
by (4.33) or (4.35).

In one-dimensional KH-systems with e2<a <£•< 1 AS
become unstable with respect to pulsations (Sec. 6.2) at the
boundaries of the region determined by the conditions (6.7)
or(6.10).32'39

In fl-systems switching autowaves, transferring the
system from a cold state (rj = T]M,& = # h l ) into a hot state
(TJM, Q M ; Fig. 24a) and vice versa — from a hot into a cold
state60'29 — can be excited in addition to traveling AS and
other autowaves (Sec. 7). The existence of two such differ-
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ent switching waves, moving in the same direction, in il-
systems (unlike K-systems) for the same value of A is one of
the characteristic effects that distinguish the two-parameter
systems under study from one-parameter systems with diffu-
sion, for example, from semiconductors with an S-shaped
IVC. In the latter systems only one wave that transforms the
system into one of two stable states can be excited.19 The
possibility of switching the system sequentially from a cold
state into a hot state and vice versa permits exciting in it very
arbitrary sequences of autowaves of different width.

The characteristic properties of AS in trigger systems,
following from the general theory, have been con-
firmed ' 64~ ' 66 by analytical studies of an axiomatic piecewise-
linear model (Fig. 24b), described by Eqs. (2.2) and (2.3)
in which

q ( Q , r ] , A ) = Q + i f ] — H ( Q — A), Q (6, n) = r] - BQ,

(8.2)

where H = 1 for d^A and H = 0 for 9 < A, i.e., A determines
the excitation threshold of the medium. The model (2.2)
and (2.3) with L = 0, r^ >r6 ,(«<l) , and with q given by
( 8.2) is widely employed for analyzing autowaves 15-187-188 in
fl-systems (Sec. 7).

It has been established188 that a traveling AS (pulse)
has the form shown in Fig. 23g. A fixed value of A corre-
sponds to two solutions — in the form of a stable, fast, wide
pulse and an unstable, slow, narrow pulse. The pulse vanish-
es abruptly before reaching the point A =AV, where dv/

dA = oo (Fig. 23i) while umin = Via"2.15

It can be verified that these results are also valid for
£ ̂  1 , but a < e4. As the ratio a/e increases, in accordance
with the general assertions (Sec. 7. 1 ), the minimum value of
the velocity ymin increases at which a traveling AS vanishes
abruptly (Fig. 23c). For 3 ~ ' / 2 £ < a < l a solution in the
form of traveling AS is not realized.

Analytic formulas describing the distributions 6(x) nd
77 (x) in static AS,164-166 whose forms are identical to those
shown in Figs. 5a-d, can be found for this model for £< 1.
The form of the potentials Ug and t/7/ in (3.7) and (3.8) can
be reconstructed based on these formulas and it can be veri-
fied166 that their form is identical to that following from the
general theory (Sec. 3.2). It also follows from the analytical
study of Ref. 166 that for the model under study <9h, =0,
0h, = (1+5) - ' , Ak=0.56^, Ab =0.5

A b = — Ab, while the bifurcation characteristics, i.e.,
the dependences of T;S or Jz^s on A, have the form shown in
Figs. 24c and e. The branch I corresponds to a hot AS ( Figs.
Saandb) while I' corresponds to a cold AS (Figs. Scandd).-
For a > 1 stable AS correspond to the solid sections on the
bifurcation characteristics ( Figs. 24c and e) . As A ̂ A k the
size of the AS increases without bound (Fig. 24d, curves 3
and 3'), while for A = Ak the size becomes infinite, more
precisely, a structure in the form of a complicated domain
wall is realized (Fig. 24d, curve 4). As A ̂ Ab (or A {, ) the
size of the AS decreases, and becomes equal to
J"b = 1 In [e- ' ( 1 + B) ' /2B ~ ' ] at the critical points 2 and
2' ( Figs. 24c and e ) , and this agrees with the estimate ( 4. 3 1 ) .
The formulas (4.35) and (6.10) are also confirmed for this
model.

8.2 Systems with long-range couplings. Above, we stud-

ied the properties of AS in two-parameter systems, in which
the long-range action of the inhibitor is determined by diffu-
sion processes. Autosolitons in active (excitable) systems, in
which a nonuniform distribution of the activator gives rise to
long-range "forces," leading to the suppression (inhibition)
of the activation process, have analogous properties. Such a
situation is realized, for example, in distributed neuron net-
works, including, apparently, in the cortex of the brain'89>'9<l

the so-called TV analog,36 and active distributed optoelec-
tronic media.191 Long-range forces in physical systems can
have a different nature (electric, strain, magnetic). In optoe-
lectronic media long-range "forces" are determined by opti-
cal and electric couplings.191

In neuristor networks and simple media short-range ex-
citing and long-range damping couplings are real-
ized.189^192'36 The activation process is realized thanks to the
former couplings, while long-range inhibition is realized
owing to the latter couplings. In the simplest one-dimension-
al case the processes in neuristor networks are described by
an integral equation of the form189

-| = - 6 -f \ <S)(x'- .r) H (6 (x'. t) -A) Ax' (8.3)

or

x', t) Ax' — A~] ,

(8.4)

where the coupling function 3>(x) describes short-range ac-
tivation and long-range inhibition (Fig. 24g).

The solution of Eq. (8.4) in the stationary case de-
scribes the local state of the elements of the excitable medi-
um (0 or 1) and has the form of a rectangle:
6(x) = H(x + J^s/2) - H(x - ^'s/2), where .¥\ is the
width of the AS and is determined from the equation192

\' (8.5)

The spatial distribution of the threshold in such a medium
has a more complicated form, identical to the activator dis-
tribution 0(x) in the model (8.3). Indeed, the simple trans-
formation189-192

x' -x)Q(x")Ax' (8.6)

reduces Eq. (8.4) to (8.3).
In spite of the fact that Eqs. (8.3) or (8.4) differ qual-

itatively from the system (2.2), (2.3), and (8.2), the bifur-
cation characteristic ^ f s ( A ) of the models (8.3) and
(8.4),192 determined by (8.5), is qualitatively the same as
that shown in Fig. 24e for the model (8.2)166 (Sec. 8.1). For
the model (8.3) 0h l =0,0h3 = 2A k (the points 1 and 1', re-
spectively, in Fig. 24e)192

A,, = \ (I> (x) dr. Ab = \ <I) (r) d.r

(8.7)

where a is the positive root of the function 4>(;c) (Fig. 24g).
The branch I of the bifurcation characteristic (Fig. 24e) de-
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scribes the evolution of the simplest hot AS, for which192

(8.8)

The branch I' corresponds to a cold AS, in which the
activator distribution equals 2A k — #(;*:), where6>(jc) is giv-
en by (8.8).

Based on the form of the coupling function <S>(x) (Fig.
24g), it can be easily concluded from (8.8) that the distribu-
tions 6 ( x ) in the form of a hot and cold AS are identical to
those shown in Figs. 5 ( a-d ) and 24d. In addition, the evolu-
tion and basic properties of AS in the models (8.3) and (8.4)
under study and in the one-dimensional model of an active
medium with diffusion (2.2), (2.3), (8.2) (Sec. 8.1) are
completely identical.

When the coupling function $>(x) has an oscillating
character (Fig. 24g ) , for A close to A k ( 8 . 7 ) , many AS with
different size ̂ s , whose number increases without bound as
A-*A k (Fig. 24f), can be realized.192 The distribution of the
activator in the nth hot AS is given by the formula ( 8. 8 ) , in
which J?s must be replaced by J^sn ,192 It differs from that
shown in Figs. 5a and b and 24e (curve 3) only in that 9(x)
does not drop off monotonically at the periphery of the AS,
but rather it has an oscillating character (Fig. 7a).

According to the theory of stability of AS (Sec. 4.2)
stable and unstable sections of existence of AS on a bifurca-
tion characteristic (Fig. 24f) are separated by the points
A = Ahn and Atn, where dJ^s/dA = oo. The values of Ahn

tn and the corresponding widths of hot AS equal192

\ O(,r)d,r,

(8.9)

where an is the positive nth root of the function 4>(x) (Fig.
24h).

We emphasize that the models (8.3) and (8.4) describe
media in which the process of retardation (inhibition) is
long-ranged, but inertialess, i.e., they belong to K-systems
(Sec. 2.2).

The properties of media in which the retardation pro-
cess is not only long-ranged, but also slower than the activa-
tion (excitation) process, are analogous to those of Kfl-sys-
tems (Sec. 2.2); more precisely, pulsating and traveling AS
can be realized in them in addition to static AS. A "refrac-
tory zone" (here it is associated with long-range damping
rather than diffusion (Sees. 2.2 and 7.1)) travels in front of
the leading wall of a traveling AS in such systems. This ex-
plains why in numerical studies of one of the models of such
a medium36 traveling AS are not annihilated, but rather re-
pelled or form a static AS, i.e., they manifest properties that
are also characteristic of other Kfl-systems (Sec. 2.2).

CONCLUSIONS

The properties of many real physical, and especially
chemical49'"' and biological16 systems are described by sev-
eral differential equations. If, however, activation and inhi-
bition processes are separated in them, then the description
of AS can, as a rule, be reduced to the analysis of two equa-
tions of the diffusion type (Sec. 2.1). For this reason the

results of the theory of AS presented in this review are of a
very general character.

In real systems activation and inhibition processes can
be of a completely different nature and can be described not
only by equations of the diffusion type, but also by other
types of equations, including integral (Sec. 8.2). It follows
from the theory of AS presented in this review that the types
of AS is determined primarily by the characteristic spatial
and temporal scales of variation of the activator and inhibi-
tor densities. In generalizing the results of Sec. 2.2, systems
where the inhibition (damping) process is faster than the
activation (excitation) process and has a longer range must
be classified as K systems, in which static AS form; systems
where inhibition is slower, but short-range must be classified
as fl-systems, in which traveling AS form; systems where
inhibition is slower and long-range must be classified as Kfl-
systems, in which static, pulsating, and traveling AS are re-
alized. It is natural to expect that the types and basic proper-
ties of AS in each of these classes of systems, irrespective of
the physical nature of the activation and inhibition pro-
cesses, will be analogous to those studied for active systems
with diffusion. This conclusion is confirmed by the results
presented in Sec. 8.2 for AS realized in active media de-
scribed in integral equations, as well as by numerical studies
of AS in active media described by several differential equa-
tions, "2''86 including also those of a complicated type.193'194

The results of the theory of AS presented in this review
are employed to explain diverse phenomena in chemistry
and biology. 12~'7'37'109''14 The formation of striations in a gas
discharge,44 clusters of hot carriers in gas and semiconduc-
tor plasma,45'46'5' luminous points under conditions of ava-
lanche breakdown of p-n junctions,47 and local regions of
melting on the surface of a crystal accompanying uniform,
pulsed, laser excitation195 can be explained on the basis of
the theory of AS.

In semiconductors and semiconductor structures AS
can consist of strongly nonequilibrium regions, in which the
electron or lattice temperature is high.25 For this reason,
many degradation effects in microelectronic devices could
be associated with spontaneous formation of AS at small
nonuniformities.

The diversity of the properties of AS and the important
role that AS play in biology12'16 are stimulating inter-
este36'117'"8'191 in the development of diverse, microelec-
tronic devices for recording, storing, and processing infor-
mation based on active distributed media with diffusion or
long-range couplings.

As pointed out in Sec. 2.2, a static or pulsating AS can
drift under the action of external forces with a velocity pro-
portional to the flux generated by the forces. Autosolitons
can also appear in systems whose degree of departure from
equilibrium is determined by the magnitude of the flux itself.
Autosolitons exist in such systems owing to the fact that
dissipative losses in them are compensated by "pumping" of
energy from the flux (flow). For example, two-dimensional
moving AS can arise in a viscous liquid flowing down along
the vertical surface of a pipe196 or plane76; AS in the form of
vortices can form in a rotating liquid or in planetary atmo-
spheres.80-82

Autosolitons can also be excited in the region of insta-
bility of uniform state of a system in which a stable periodic
autostructure is formed. The autosoliton here could be one

134 Sov. Phys. Usp. 32 (2), February 1989 B. S. Kerner and V. V. Osipov 134



of the types of "defects"221 of the periodic structure.194 Auto-
solitons can also be excited in a turbulent medium. An exam-
ple of such an AS is the formation of typhoons in a turbulent
atmosphere.197'198

Since the conditions for the formation of AS are of an
extremely general character, AS can be observed in the most
diverse systems. It has not been excluded that many of the
puzzling phenomena in nature, such as ball lightning,199 the
formation of high-temperature accumulations of gas in
space,200 as well as the aurora borealis and many other ob-
served nonuniformities in the ionosphere,201 can be ex-
plained based on the ideas regarding AS presented in this
review.
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"In this sense nonuniform states in the form of domain walls, arising in
bistable nonequilibrium systems,'''~22 are not AS.

2IThe term self-organization is usually employed for spontaneous forma-
tion and subsequent evolution of structures in nonequilibrium sys-
tems2''24—"to ordering through fluctuations"2' (see Sec. 2.1).

"The well-known'-12""1 autowave in the form of a traveling pulse is the
simplest one-dimensional, traveling AS. After it passes the system re-
turns to the starting, stable, uniform state.

4lThe uniform state of a system that deviates from thermodynamic equi-
librium not beyond the limits of validity of Onsager's relations is sta-
ble.5' For this reason the assertion that AS exist means that the uniform
state is not the only stable state of even such weakly nonequilibrium
systems.

"Other, more complicated autowaves,12 l5 "' IX-"M''M~W' including spiral
(reverberators) waves and guiding centers (Sec. 7) as well as different
auto-wave vortices64"'* have also been studied in models of the FHN
type.

""Autosolitons are not formed in one-parameter, uniform systems, whose
properties are described by one diffusion equation. A single stationary
process in the form of an autowave of transfer from one stable uniform
state into another is realized in such bistable systems.7"'12'15 Such an
autowave has been studied in detail in application to problems in the
theory of combustion.71'7' Nonstationary localized regions with the val-
ue of the parameter of the system growing in an unbounded fashion in
time71'75—the temperature in problems of combustion and explo-
sion72'7'—can arise in one-parameter systems with one stable, uniform
state. The theory of such a nonstationary process (regime with peaking)
is presented in Ref. 75.

7lAutosolitons can also form in other systems, for example, in hydrody-
namic systems in the presence of flows, i.e., convective flows, caused by
external disturbances7'1"82 (see Conclusions).

"'It is assumed that the action of neuronal networks, for example, in the
cortex of the brain, is also controlled by the interaction of short-range
activation and long-range inhibition (Sec. 8.2).

""The system (2.1) is formally a system of autonomous, quasilinear equa-
tions of the parabolic type12'': the "sources" g, in them are strongly
nonlinear functions of X, and A, but do not depend explicitly on the
spatial coordinates and time.

""It is known that depending on the parameters of the system a soft or
hard regime of excitation of autostructures can be realized in them. In
the case of the soft regime autostructures with a low amplitude, which
equals zero for A = Ac and increases with the supercriticality (the value
of A—A,.), are formed in the case of the soft regime. The formation and
evolution of gradually excited auto-structures were analyzed in detail in
monographs by Nicolis and Prigogine2' and Haken.24 ">7 In the case of
hard excitation autostructures with large amplitude appear abruptly.
The properties and evolution of such autostructures are analyzed in
Refs. 25-29. In this review these questions, which refer to the problem
of self-organization, are not studied.

" The LC and ES curves, defined by (2.4) and (2.6),areformallythezero
isoclines," corresponding to the point equations (2.2) and (2.3).

l2'The uniform state of KN- and K-H-systems stratifies in some range
At <,A<,A (.. To order ~e<f. I A,. = An and A 'c = A ,',, where A — Au and
A =/),', correspond to 6,, = 6U and 0 ;, =<? , "> , respectively.

'"This effect is reminiscent of the formation of nuclei of the new phase in a
first-order phase transition.

'4'Systems in which autowaves can be excited are also called excitable
media.'1*'"'

l5'The existence of different complicated AS in the system means that a set
of doubly asymptotic trajectories, terminating in the limit x — + oo at
the singular point 6 = 8,,, 17 = iji, is realized in the four-dimensional
phase space of the variables 0, d0 /dx, ij, and dtj/dx. The latter point,
according to the theory of dynamic systems,9 is a saddle point of the
type O2'. and it corresponds to a set of different trajectories terminating
at it.

""The effect of a nonuniformity in one-parameter systems is discussed in
Ref. 21.

'7lThis result was essentially taken from the theory of stability of domains
in bistable semiconductors.'"2" It also holds for neutral boundary con-
ditions (3 .1 ) . 2 *

""This assertion is valid in the case when at the threshold of stability
Im/ = 0. A different situation is realized in A^!!-systems (Sec. 6.2).

IMIThe instability of two close-lying striations is linked with the fact that
because of strong diffusion spreading of the inhibitor the changes in the
inhibitor distribution cannot follow locally the growth of the antisym-
metric fluctuations of the activator.3''29 Such "pumping" of the activa-
tor between striations causes the amplitude of the width of the striations
to grow as a result of "consumption" of a neighboring striation. The
"pumping" effect determines the minimum possible distance :/'„„„ be-
tween striations. The value of .y'min depends on A.31 Because of the
"pumping" effect two AS at a distance of y < .S'mm cannot be excited;
this is also confirmed by numerical studies."7

2<"Bistability, oscillations, and stratification of such a two-component,
strongly heated mixture are studied in Refs. 93, 92, and 178.

2 "The condition for the appearance of pulsations was derived previously
in an analysis of the stability of "hot spots" in semiconductor struc-
tures.'57 It transforms into (6.1), if r,( = C, T/el. (1 +a), T,, = T,,
/nu = 1 are substituted in it; Se is the emitter capacitance; /,. and a are
the collector current and the current transfer factor; r, is the character-
istic time of variation of the temperature ( 7") of the structure.

22)M. I. Rabinovich called our attention to this phenomenon.
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