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Experimental data on the magnetic properties of copper oxide high-temperature superconductors
(HTSCs) and their theoretical interpretation in terms of existing models are systematically
reviewed. The crystal structure of the four existing classes of HTSCs (lanthanum, yttrium-
barium, bismuth, and thallium) is described, and their band structure is analyzed on the basis of
their crystal chemistry. The T, x and T, S phase diagrams are reproduced for the well-studied
compounds (La2 _ x Sr, CuO4 and YBa2Cu3O7 _ s). The magnetic structure of these compounds
and their evolution with increasing concentration of impurities (x) and oxygen vacancies (S) are
analyzed. Data on the inelastic magnetic scattering of neutrons is discussed in detail, and it is
shown that both compounds are quasi-two-dimensional antiferromagnets with spin 1/2. For
values of x and S for which there is no long-range magnetic order, both compounds exhibit two-
dimensional antiferromagnetic correlations on the CuO2 planes and high-energy spin excitations.
This type of state is described as a "quantum spin fluid". The excitations may be the carriers of the
pairing interaction between electrons in HTSCs. Basic theoretical models used to describe the
physical properties of HTSCs are presented, including the two-dimensional Heisenberg model
with spin 1/2, the nonlinear cr-model, and the Hubbard model with strong electron correlation
near the half-filled state. Antiferromagnetism in HTSC compounds and its disappearance with
increasing x or S can be understood in terms of these models. The fundamentals of Anderson's
theory of resonating valence bonds are presented together with his attempt to use it to explain the
physical properties of copper oxide HTSCs in terms of neutral fermions (spinons) and charged
bosons (holons). Alternative mechanisms are also discussed for electron pairing by magnetic
fluctuations near the phase transition point with the formation of spin density waves. These
mechanisms are based on the fact that the Fermi surface may be unstable near the half-filled state
with respect to the formation of a dielectric state with a spin density wave. It is concluded that
currently available experimental data on the magnetic properties of the HTSCs, and also other
experimental data, cannot as yet be used as a basis for choosing between existing theories of high-
temperature superconductivity. Nevertheless, many of the magnetic properties of copper oxides
in their normal phase are satisfactorily interpreted by these theories.

1. Introduction. The past two years of intensive experimental
research into the properties of copper oxide high-tempera-
ture superconductors (HTSCs) have demonstrated their ex-
ceptional physico-chemical complexity. The physical prop-
erties of all the existing classes of high-temperature
superconductors are exceedingly sensitive to deviations
from the stoichiometric composition, especially deviations
due to doping or with divalent metallic elements or due to
oxygen vacancies. A change in the impurity or vacancy con-
centration between relatively narrow limits is found to be
accompanied by a whole series of phase transitions, so that
the phase diagram on the temperature-concentration plane
takes the form of a set of successive states, i.e., dielectric,
metallic (normal and superconducting), and magnetically
ordered states. Phase transitions between them have super-
imposed upon them transitions from the tetragonal to the
orthorhombic phase. The superconducting state is thus seen
to arise when the metal-dielectric and antiferromagnet-para-
magnet transitions are close to one another. This means that
any acceptable explanation of the HTSCs must be based on a
study of the physical properties of not only the supercon-
ducting phase, but also of all the neighboring states on the
phase diagram.

Luckily, there are many HTSCs, so that certain general
properties can be identified by comparing the properties of
the individual compounds. For example, it has been found

that the charge carriers in all these compounds are holes in
the copper oxide sublattice,1 which are due to doping^o oxy-
gen vacancies. All the compounds exhibit strong anisotropy
of electronic properties, e.g., electrical conductivity, which
differs by several orders of magnitude in the direction of the c
axis and in the a, b plane. Finally, we note the existence of
three-dimensional antiferromagnetic order in compounds
with stoichiometric composition or small deviations from it.
Analysis of a large volume of experimental data on HTSCs
has shown1'2 that, despite the considerable anisotropy of
many of their properties in the normal phase, superconduc-
tivity is more likely to have a three-dimensional character,
and the correlation lengths J" in the direction of the principal
axis of the crystal and along the CuO2 planes differ by a
factor of only several units.

Extensive fundamental experimental data, including
observations of the Knight shift below Tc, show that the
singlet Cooper pairing of carriers occurs in open HTSCs, but
the mechanism responsible for this pairing, which leads to
such high Tc for the superconducting transition, is still not
understood. The traditional phonon mechanism encounters
serious difficulties when an attempt is made to use it to ex-
plain the properties of the HTSCs. They include the weak
isotopic effect, the high Tc, and the contradictory data on
strong electron-phonon coupling. At the same time, even the
early work on the HTSCs had already revealed the remark-
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able magnetic properties of the lanthanum and yttrium-bari-
um systems. These properties were subsequently discovered
in other HTSCs as well. They include antiferromagnetic or-
der in the copper sublattice near compositions for which su-
perconductivity is found to occur, and strong fluctuations in
the magnetic order parameter at temperatures above the
Neel point, or for compositions for which there is no long-
range magnetic order. These fluctuations have a well-de-
fined quasi-two-dimensional character, and their anoma-
lously high intrinsic energy is of the order of the electron
energies. All this has led to the hypothesis that electron pair-
ing in copper oxide compounds can proceed via the magnetic
degrees of freedom, and has acted as a considerable stimulus
to theoretical research.

The aim of this review is to examine the magnetic prop-
erties of copper oxide HTSCs and, especially, to present a
systematic summary of existing experimental results. Our
review is therefore complementary to the recent survey of
experimental studies given by Gor'kov and Kopnin.1 A sys-
tematic account of experimental data on magnetic structure
and spin dynamics must rely on fundamental data on the
crystal structure, crystal chemistry, and the electronic struc-
ture of the HTSCs. These data are now well established and
can serve as reference material for future publications in this
journal on high-temperature superconductivity.

The theory of these magnetic properties has had two
aims, namely, to explain the magnetic behavior of the com-
pounds, which is particularly well-defined for compositions
for which the compounds are not superconducting, and, sec-
ondly, to examine the possibility of electron pairing through
the magnetic excitation of the system, i.e., to search for pos-
sible mechanisms of HTSC. The theoretical part of our re-
view is largely confined to the former aspect, since none of
the many theoretical models of HTSC has been unambigu-
ously verified by experiment.

I. Basic experimental data

2. Crystal structure. The four known classes of high-
temperature superconductors have different crystal struc-
tures, but, nevertheless, have much in common with each
other. Common features include the existence of square
CuO2 planes that alternate with planes consisting of other
metallic elements and constantly repeat the same motif: the
Cu atoms are in the octahedral environment of the O atoms
and form the CuO6 complexes or complexes with oxygen
vacancies (CuO5 and CuO4). We begin with a brief descrip-
tion of the basic structures of HTSCs.

La2CuO4 is found to be in the tetragonal phase at high
temperatures (space group I4/mmm—D\l), whereas at
low temperatures it is found in the orthorhombic group
(Cmca—D 2® ) . This is the K2NiF4 type structure: each Cu
atom is surrounded by an O6 octahedron.

A phase transition to the ortho phase occurs at a certain
temperature T0 and is due to the rotation of the central octa-
hedron around the [110] direction and out-of-phase rota-
tions of octahedra in neighboring cells. This structural tran-
sition is a classic phase transition that occurs in accordance
with the soft-mode mechanism observed in many perovs-
kites.3'4

The typical lattice constants in the tetra and ortho-
phases are (a, = 3.7873 A, c, = 13.2883 A, an = 5.3562 A,
b0 = 5.3990 A, c0 = 13.1669 A) for compositions contain-
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FIG. 1. The crystal structure of La2CuO4. Arrows show the displacement
of the oxygen atoms in the orthorhombic phase.

ing a small amount of Ba instead of La ( Ref. 3 ) . As can be
seen, the system is only slightly orthorhombic, so that

The separations between the oxygen and copper atoms in a
plane and along the z axis are as follows: 1.8936 A (Cu — Ol)
and 2.428 A (Cu— O2).

Nonstoichiometric compounds of the form
La2 x Mx CuO4 s that contain small amount of a divalent
metal (M = Sr, Ba, Ca), and oxygen vacancies with the
composition La2_.cM,(CuO4 _s, have a similar structure.
The temperature T0 decreases with increasing dopant con-
centration. Figure 2 shows a typical phase diagram in the x,
T plane.

The second famous class of high-temperature supercon-
ductors has the form YBa2Cu3O7^5. As in the case of
La2CuO4, the unit cell looks like a set of three cubic perovs-
kite cells, one on top of another. The structure depends on
the concentration of oxygen vacancies, i.e., the parameter S.
When 8 = 0, we have the orthorhombic structure
Pmmm — D \h . The unit cell is shown in Fig. 3 and contains
one formula unit. The copper atoms in this structure form
the CuO2 planes and CuO chains running along the b direc-
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FIG. 2. Phase diagram for La2_ ^SrxCuO4 (Ref. 27).
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FIG. 3. Unit cell of YBa2Cu3O7_di in the orthorhombic phase.5

tion. The Cu atoms in the planes are surrounded by five O
atoms forming the CuO5 group, i.e., an incomplete octahe-
dron (pyramid). The unit-cell parameters depend on S and
on the temperature. Thus, when S = 0.09 and T— 95 K) we
have the following parameter values and separations
between the nearest-neighbor Cu and O (Ref. 6): a = 3.8099
A, b = 3.8789 A, c = 11.6425 A; Cul—Ol: 1.941 A, Cul—
O4: 1.957 A; Cu2—O2: 1.925 A; Cu2—O3: 1.957 A; and
Cu2—O4: 2.777 A.

It is clear that the Cu-O bond lengths for the nearest
four O atoms in planes and chains are roughly equal and that
there are long Cu-O bonds in planes for La2CuO4. The
Cu2—O4 separation in the Cu-O5 pyramid is shorter than
the corresponding distance along the z axis in La2CuO4,
which may play a definite part in strengthening the bonding
between the planes in Y-Ba compounds as compared with
La2CuO4.

Structural studies show that thermal factors are highly
anisotropic, especially for the O atoms in chains, in direc-
tions perpendicular to them. There are experimental6 and
theoretical7 reasons for supposing that these atoms are in
double-well potentials and are randomly distributed over
two positions at a distance of the order of + 0.1 A from the
chain axis in the direction of the a axis.

Heating above 700 °C produces a transition from the
ortho to the tetra phase as a result of the formation of oxygen
vacancies in chains in (0 -j- 0) positions and the filling by
them of the free {\ 0 0) positions. Equalization of oxygen
concentration in these positions produces the tetragonal
structure P4/mmm—D\h. The O-»T transition is also ob-
served as a consequence of substitution by the rare earths
Nd, Sm Eu, Gd, and Dy (Ref. 8). The electron microscope
has revealed twinning as T^O and the formation of a system
of orthorhombic domains of the form (110) and (HO) (Ref.
9). It has also been found that the oxygen vacancies form a
superlattice whose period varies with the concentration S
(Ref. 10).

FIG. 4. Unit cell of Bi2Sr2CaCu2Og.

A still more complicated structure is revealed by new
classes of HTSCs based on bismuth and thallium, but con-
taining no rare earth ions. Figure 4 shows the unit cells of the
Bi compound investigated in the case of the single crystal
Bi2 2Sr2Ca0 8 O8 + e with Tc = 84 K and the following lattice
constants:11 (a = 5.414 A, b = 5.418 A, c = 30.89 A. The
unit cell contains one formula unit (space group Fmmm).
As in the case of the Y-Ba compound, the structure consists
of CuO5 pyramids (the Cu—O distance in a plane is ~ 1.9 A
and the Cu—O2 distance along the z axis ~2.2 A). How-
ever, in contrast to YBa2Cu3O7 _ s, this compound does not
contain Cu—O chains: their role is replaced with Bi2O2 dou-
ble layer with the NaCl structure. The main phase in this
compound is chosen in Ref. 12 to be the tetragonal phase
I4/mmm with unit cell parameters a, = b, = 3.814 A c,
= 30.52 A, related to the orthorhombic cell by

a~bx\[2a,.

In addition to the orthorhombic distortion of this pseudote-
tragonal structure there is also an incommeasurate modula-
tion with a small amplitude, probably in the Bi2O2 plane.

Further analysis has demonstrated the possible exis-
tence of structures with a large number of CuO2 planes, sepa-
rated by Ca ions, with the general formula
A2B2Can _ , Cun O4 + 2 n, where A = Bi, Tl and B = Sr, Ba
for « = 1, 2, 3. The thallium structure with n = 2 differs by
the fact that the CuO5 pyramid is much more distorted: the
Cu—Ol separation in a plane is ~ 1.92 A, and the Cu—O2
separation along the z axis is ~ 2.70 A. The additional CuO2

plane that appears in the structure with « = 3 does not have
a significant effect on the principal parameters of the unit
cell, and only increases the constant along the z axis by about
5 A.

3. Doping and superconductivity. Superconductivity
arises in copper oxide compounds when there is a deviation
from the stoichiometric composition due to the replacement
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FIG. 5. Phase diagram for YBa2Cu,O7_£ (Ref. 13).

of metallic elements, or there is a change in the oxygen con-
tent. Figure 2 shows that superconductivity appears in the
lanthanum system when La3 + ions in La2CuO4 are replaced
with the divalent ions Sr2+ . Doping with other divalent
metals, for example, Ba and Ca, produces a similar effect. On
the other hand, in the yttrium-barium system, superconduc-
tivity arises YBa2Cu3O7 _ s only when the concentration S of
oxygen vacancies is low enough (Fig. 5). When 551, the
crystal structure is tetragonal and contains the dielectric and
magnetically ordered phases, but for S < 0.6, the structure is
orthorhombic and the superconducting phase appears.

The maximum Tc is achieved in La2_xSrxCuO4 for
x = 0.15 (Tc s;40 K). The replacement of copper with the
divalent ions of 3c?-metals, i.e., Ni,Fe, Co, etc, and also Zn,
leads to the rapid suppression of superconductivity. Where-
as in the case of Ni, Fe, and Co the phenomenon can be
explained in terms of the effect on electron pairing, of scat-
tering by the localized magnetic moment the suppression by
the Zn impurity is unexpected.

A more complicated effect of copper-replacing impuri-
ties is observed in YBa2Cu3O7 _ ,5, and also in isomorphic
compounds in which Y is replaced with a rare-earth metal.
The suppression of Tc by impurities in the form of different
3af-elements is illustrated in Fig. 6 from which it is clear that
Tc anticorrelates with the magnetic susceptibility x (T) that
is largely due to impurities introduced into the medium.14 If
the valley on the T c ( n ) curve is due to the paramagnetic Fe,
Co, and Li impurities, the sharp reduction in Tc due to the

Ti VCrMnFeCoNi Cu Zn

WO

80
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40

20

Zn impurity (as in the La-Sr system) is also unexpected. The
fact that, even for this high concentration of the magnetic
impurity (about 10%), the superconductivity is still not
suppressed, suggests that the oxide superconductors have
unusual properties whereby even a nonmagnetic impurity
can produce a considerable suppression of Tc.

The type of substituent position was not examined in
Ref. 15, but particular attention was paid in Ref. 15 to the
position of the substituent (Cu2 or Cul). The two systems
YBa2(Cu,_^Znx)3O7 and YBa^Cu^CaJjO^ with Zn
and Ga impurities, whose ionic radii were close to the ionic
radius of Cu, were investigated. Neutron diffraction data
show that Zn replaces Cu mostly in planes, whereas Ga re-
places them in chains, so that it is interesting to compare the
effect of doping on Tc in both cases. It is found that the Zn2 +

impurities rapidly suppress superconductivity without af-
fecting the orthorhombic phase. On the other hand, Ga3 +,
which replaces copper in chains has very little effect on Tc,
but even a small concentration (~ 6%) produces a phase
transition to the tetragonal phase. On the other hand, in the
normal phase, the resistance increases by a factor of several
units when the Ga impurity is introduced. It follows that the
CuO2 planes and not the CuO chains play the main role in
the onset of HTSC. This is confirmed indirectly by the rapid
suppression of superconductivity in La2_xSrxCuO4 by a
small concentration (~ 2.5%) of Zn or Ga. This compound
has only one copper position (in the CuO2 plane), so that the
Zn and Ga impurities produce a comparably strong suppres-
sion of Tc.

We therefore conclude that the CuO2 planes play the
dominant part in the onset of HTSC in the La-Sr and Y-Ba
compounds. The structure of the lattice (tetragonal or or-
thorhombic) does not play a significant part in this. The
superconducting phase can be produced in the tetragonal
structure by introducing a suitably chosen dopant. The
dominant role of the CuO2 planes is also confirmed by the
discovery of the bismuth and thallium HTSC in which the
copper ions are confined to the CuO2 planes.

4. Crystal chemistry and electronic structure. Band
structure calculations and x-ray and optical spectroscopy
show that the metallic properties of copper oxide HTSCs are
largely determined by the interaction between the outer-
shell electrons of Cu and O, whereas the other ions have
well-localized charges and form the ionic skeleton of the lat-
tice. The principal structural element of all known HTSCs is
the CuO2 plane. Each Cu ion on this plane is at the center of a
CuO6 octahedron in the La compounds, or an incomplete
CuO5 octahedron (pyramid) in the Y or Bi compounds.

The five-fold degenerate atomic cMevel of the Cu ion

" 4 6 8 10 12 N

FIG. 6. Superconducting transition temperature and magnetic suscepti-
bility of YBa2(Cu0,M0, )3O7_6 doped with 3d-elements.'" JV is the num-
ber of valence electrons in the impurity atom.

FIG. 7. The d-level splitting in the crystal field of cubic and tetragonal
symmetry.
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FIG. 9. Model electron structure of the copper oxides:18 a—half-filled 3d-
2/>-band without Coulomb correlations, b—-ditto, but including strong d-
d- Coulomb correlation, c—metallic state as the number of holes in the
CuO system increases. The bottom structures in Figs, b and c correspond
to Cu3d.

splits in a field of cubic symmetry into two two-fold and
three-fold degenerate levels eg and t2g, and an additional
splitting occurs in a tetragonal field (Fig. 7). Typically, the
separation between the levels eg and t2g is about 1 e V, and the
splitting of eg in a field of tetragonal symmetry is about 0.7
eV (Ref. 16). This splitting is due to the elongation of the
oxygen octahedron in the HTSC structure, and also the
Jahn-Teller effect.

If we look upon the state Cu2 + (3d9) as a hole in the
filled 3 J-shell of copper, we find in accordance with Fig. 7
that the hole should lie in the upper unfilled d^_yi level. The
three-fold degenerate/"-level of oxygen splits into the singlet
pz and doublet (px,py) in a field of tetragonal symmetry.

Figure 8 shows the CuO6, complex taken from the CuO2

plane. The dxi _^ orbital of the hole is shown on the copper
ion and the px ,py, and pz orbitals on the oxygen ions. Only
one orbital per oxygen ion is indicated for the sake of simpli-
city. In the crystal, the />-orbitals are given an additional
designation in order to show their orientation along the di-
rection joining a given O to ion to the Cu ion. Thus, p-oibi-
tals lying along this direction are called <7-orbitals, whereas
those perpendicular to it are known as ir-orbitals. The inter-
action between all these orbitals in the Cu and O ions form-
ing the CuO2 plane determines the energy spectrum of elec-
trons in this plane. This often assumes (see for example, Ref.
16) that the/>-holes in the 7r-orbitals have the lowest energy
because the splitting in the crystal field of the ionic skeleton
of the lattice is then smaller than for states on the er-orbitals.
It may therefore be expected that new holes that appear in
the CuO2 plane as a result of doping are mostly localized in
the/j-bands of oxygen, constructed from ir-type orbitals. The
dxi_yz and (pxt7,pya) orbitals are the most strongly bonded,
and this leads to a wide band officer-states when the electron
band structure is calculated. The (p^,pyv) andpzw orbitals
that do not interact with the d^ __ y and d3f _ r 2 states of Cu
form an individual w-band because of the direct overlap of
the PT, -orbitals and also because of indirect coupling via the
dxydyzdxz orbitals of Cu. This model also predicts two effec-
tive subbands (<7 and TT) that are weakly coupled to one an-
other. In the 13d 92p6) state, the holes are located in the half-
filled cr-band, and the new holes appear mostly in the \2ps)
w-band of oxygen.

Let us examine in greater detail this system of hole lev-
els in the crystal field, taking into account Coulomb correla-
tion on a single copper ion. In the 3c/-state of Cu, this energy
is relatively low: Ud ̂  7-8 eV. When the single-site Coulomb

interaction is taken into account, the filling of the 3cMevels
of Cu becomes more complicated. If in the Cu2 + ( 3 d 9 ) state
there is one d^ _^ hole in the ed level, the second hole (the
3d8 state) can appear only in the level with energy ea + Ud.
Such a high Coulomb correlation energy, exceeding the
width Wof the o?-band (Ud> W), ensures that the copper
oxides in which copper is in the Cu2 + state, and there is one
hole per primitive cell, are Mott-Hubbard dielectrics.17 The
observed finite conductivity is then typical of a semiconduc-
tor (dp/dt < 0) and is due to the presence of impurity carri-
ers. These compounds can assume the metallic state with
hole-type conductivity if we increase the number of holes by
altering the concentration x and also the concentration of
oxygen in the La and Y compounds. It is clear from the
foregoing that additional holes are probably formed in the/>-
orbitals of the 2p6 states of oxygen. Figure 9 illustrates these
qualitative ideas about the electron structure of copper oxide
compounds in terms of single-ion orbitals.

This crystal chemistry analysis must be compared with
band structure calculations. The very first calculations19'20

performed by the method of linearized plane waves, showed
that the main contribution to the electron density of states
near the Fermi surface of La2CuO4 was provided by ihepda-
band constructed from dxi_if states on Cu2+ and
pff(x),pa(y)-states on O2~ (Fig. 10). Of the seventeen
bands formed from the Cu(3c?)—O(2p)-states (five 3d-
states on the Cu ion and three 2/>-states on the four O ions in
a unit cell of the crystal), only two bands have high disper-
sion. They are the so-called bonding band (B) and antibond-
ing band ( A ) . The Fermi surface intersects an A -type band
and the remaining bands lie well below the Fermi energy.
Since electrons in the pdcr-band are localized in the CuO2

planes lying at a considerable distance from one another, this
band is essentially two-dimensional, i.e., the dispersion
along the axis is small [cf. the line A drawn between the
center of the band T and the point Z (0 0 1 /2). The La levels
are weakly coupled to the states in the Cu—O bands: the 5d-
level of La lies 1 eV above the 5/»-level 15 eV below the Fermi
level. We can therefore regard La as an isolated ion whose
replacement with a rare-earth element with an equal charge
has little effect on electronic properties. In particular, there
is little magnetic scattering of electrons into the pda-bands,
by the magnetic moment of rare-earth ions, and supercon-
ductivity is not suppressed thereby.

The two-band approximation to the spectrum in the
strong coupling approximation19 is meaningful because of
the two-dimensional character of bands near the Fermi sur-
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FIG. 10. Bands of electron energy states in the tetragonal phase of
La2CuO4 (Ref. 19).

face. A hybridized p-d band on a CuO2 plane is described by
the formula

(sin2 -2— + sin2 -£-

where ep ,ed are the atomic 2p- and 3e?-states of Cu and O,
and t is the matrix element of the transition between the
nearest neighbors of Cu and O in the plane. Comparison
with the calculated spectrum (Fig. 10) gives £p^ed

= - 3.2 eV, = (t VT/2) Vfda,Vpda = - 1.8 eV. The total
width of the A- and 5-bands is

W = 4 9 eV .

These data define the energy scale in the electron spectrum
of La2CuO4 without taking into account the electron corre-
lation on the copper ions.

The strong anisotropy of the/>c?<7-band leads to the qua-
si-two-dimensional character of the Fermi surface. In the
strong coupling approximation for the half-filled ^4-band,
the Fermi surface is determined by the condition
EA(kF)=Q,

. k,a kuasin' -£_ + sin2 -0- = 1,
2 2

the solution of which is | &.,. | + | /c,, | = -tr/a. In Fig. 1 1 we
show the Brillouin zone ( + ir/a, + v/a) of a square lattice
and the Fermi surface in the form of the straight lines AS,
BC, CD, and DA. The Fermi surface touches the Brillouin
zone at the points A, B, C, and D, and this leads to the van
Hove singularity in the density of electron states N(e). A
more rigorous calculation20 shows that this occurs in the
doped compound La2^^MxCuO4, where M = Sr, Ba for
jc~0. 15. Consequently, the Fermi surface for this concen-
tration passes through the van Hove singularity, and N(e)
has its maximum value. The maximum value of Tc is often
associated with the latter.

On the other hand, the presence of flat segments on the
Fermi surface ensures a high degree of congruence of this
surface when it is displaced by |q1>2 1 = 2kF,nt _2

= (-rr/a, + Tr/a,Q). Such a strong singularity usually leads

FIG. 11. Two-dimensional Fermi surface in the tetragonal phase of
La2CuO4 (Ref. 19).

to an instability of the lattice and to the formation of charge
density waves (CDW). However, the observed structural
phase transition D I

4
7
h ->D 2 ®, due to an increase in the lattice

period in the basal plane by the factor of V2, which in turn is
due to the condensation of the soft lattice mode with wave
vector qt (q2), does not lead to the formation of the charge
density wave. This transition is accompanied only by a
change in the separation between the O ions in the basal
plane, but the Cu—O separations remain the same for all
four O ions, and there is no gap in the electron spectrum on
the Fermi surface. The gap could have arisen during the
freezing of the "breathing" mode associated with the motion
of the oxygen ions in the basal plane along the Cu—O bonds.
The absence of this type of structure, or transition with the
freezing of the "breathing" mode, suggests that the band
calculations of Refs. 19-21 did not satisfactorily reflect the
real structure of the energy bands in La2CuO4. It would ap-
pear that the presence of strong Coulomb correlations in the
3a?-band of Cu produces a considerable reduction in the in-
stability of this type of lattice without at the same time pre-
venting the freezing of the rotational soft mode.

Another difficulty of the band theory of La2CuO4,
which does not take electron correlations into account, has
to do with the explanation of the dielectric state and antifer-
romagnetism. Since the unit cell contains one Cu atom, the
dx, _yi band of copper states is half-filled, so that this com-
pound should be a metal. All this points to the importance of
many-particle effects (Coulomb correlation) in copper ox-
ide HTSCs, which are ignored in the single-particle band
theory. It is then legitimate to ask: is there any validity in the
standard band calculations of the physical properties of
these HTSCs? The answer must be in the affirmative. Band
calculations provide us with useful information about the
importance of the coupling between the eg -states of Cu and
the/7-states of O in CuO2 planes, the quasi-two-dimensional
character of these states, the magnitudes of the electron
transfer parameters t,,td in the copper and oxygen sublat-
tices, the parameter tdp of transitions between sublattices,
and so on. The most difficult question is the position of the
Fermi level, since Coulomb correlation in the individual
copper atoms splits the spin double degenerate level into two
well-separated levels, so that the number of possible "target
places" for the cf-electrons (this determines the Fermi level)
is substantially altered.

In the band theory employing the mean-field approxi-
mation, the Coulomb repulsion energy U between electrons
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in an atom produces a shift of the atomic level ed by the
amount U(nd),so that, in the paramagnetic state, there is a
J-band with energy Ed (k) = ed (k) + U (nd) for both spin
orientations. The necessary condition for the hybridization
of the c?-band and the^-electron band on the Fermi surface is
Ed(k)~Ep(k). This is possible if the atomic level ed lies
below the atomic level e, by an amount of the order of
U ( n d ) . It is only then that we obtain the structure of the
spectrum shown in Fig. 9, which is thought to be representa-
tive (at least qualitatively) of all classes of copper oxide
HTSCs.

Band structure calculations have also been performed
for other classes of HTSCs, i.e., for the Y, Bi, and Tl com-
pounds (Refs. 22,23, and 24, respectively). The structure of
the spectra is qualitatively similar to that of the La system.
The />c?6-hybridization of states on CuO2 planes is found to
occur throughout, and these planes emerge on the Fermi
surface with a small density of states N(O). The states of
other ions lie outside the limits of the Fermi surface, so that
their replacement with others does not as yet produce a sig-
nificant change in the electron properties of these com-
pounds. Of course, the electron spectra exhibit some differ-
ences associated with details of their crystal structure, e.g.,
the existence of Cu—O chains in the Y system and of a large
number of CuO2 layers in the Bi and Tl systems. An interest-
ing feature of the latter compounds is the presence of the
"electron pockets" near the Fermi surface, which consist of
the 6p- and 6s-states of Bi and Tl, respectively. The most
topical and complex problem for the methods of calculation
examined above2 is how the band calculations could be
modified so that the strong single-site Coulomb correlations
could be taken into account.

An understanding of many of the properties of copper
oxide HTSCs can be achieved on the basis of the simplified
picture of the electron structure that follows from the crystal
chemistry of these compounds, and by taking into account
the comparable electron correlations. The magnetic proper-
ties of the HTSCs will in fact be treated from this point of
view.

The paper of Anisimov et al26 in which an attempt was
made to take strong correlations into account in band calcu-
lations appeared after this review was practically complete.
The idea was to allow for the difference between the poten-
tials experienced by electrons in filled and unfilled states.
The first stage of the method relies on standard band calcula-
tions without taking into account correlations, which deter-
mine the Fermi level. For electron states lying above the
Fermi level, the potential is calculated with the electron con-
figurations altered by one. This takes into account the corre-
lation effect in the subsequent calculations. The procedure
was used in a self-consistent calculation for La2CuO4. Figure
12 shows the calculated densities of states in the neighbor-
hood of the Fermi level. The striking feature is the appear-
ance of a gap at the Fermi level of the standard calculation
without correlation. The compound La2CuO4 is therefore a
dielectric with a band gap of 0.86 eV. More than that, in the
ground state, it is an antiferromagnet with a magnetic mo-
ment of 0.38 /ZB per atom. All these data are in good agree-
ment with experiment. We thus see two half-filled Hubbard
bands. The rapid variation in the density of states near the
band edges corresponds to the van Hove singularities of the

), //eV-spin

-10 -0.5 0.5 1.0 E, eV

FIG. 12. Density of electron states in La2CuO4> calculated from first prin-
ciples by a new method that takes electron correlations into account.26

Dashed curve shows the usual band calculations.

two-dimensional spectrum corresponding to the CuO2

plane. This band structure leads to a sharp change in the
density of states at the Fermi level when holes are formed in
the band, and this may explain the sensitivity of many of the
properties to dopants in the form of divalent metals. The new
method appears to provide a qualitative description of many
of the physical properties of highly correlated systems such
as all the copper oxide HTSCs.

5. Magnetic structure. Stoichiometric La2CuO4 is a col-
linear antiferromagnet with the Neel point27"29 TN ̂  300 K.
It is clear that Fig. 1 that magnetic order occurs in the ortho-
rhombic phase, and that the alignment of the magnetic mo-
ments of the copper ions is closely related to structural dis-
tortions in this phase. It is clear from Fig. 1 that the magnetic
moments are oriented in the direction in which the oxygen
atoms are displaced during the spontaneous rotation of the
octahedra. The magnetic unit cell is the same as the ortho-
rhombic cell whose parameter is greater by the factor -fl
than the cell parameter in the tetragonal phase. Figure 13
shows the magnetic cell of La2CuO4 (only the copper atoms
are indicated). The magnetic moment of a copper site
is29^=;0.5 + 0.\5fj,B. The magnetic moment of the copper
ionCu2+ with spin5= 1/2 should be// =gS/u.B = 1.14yuB.
The observed smaller value of the magnetic moment may be

4—

FIG. 13. Magnetic unit cell of La2CuO4 (Ref. 29).
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due to quantum fluctuations and the influence of the cova-
lent bond between Cu and the O ion.27

The interesting feature of the antiferromagnetic spin or-
dering in La2CuO4 is the weak ferromagnetic moment in the
CuO2 planes, which is perpendicular to them and has oppo-
site directions involved in neighboring planes.30'31 The fer-
romagnetic moment is 2 • 10 ~ 3fj.B per copper atom. It arises
when the copper spins leave the a, c plane as they rotate by a
small angle (~0.17°) because of the rotation of the octahe-
dra in the orthorhombic phase (cf. Fig. 1). The octahedra
are in antiphase on neighboring planes, and this ensures that
the ferromagnetic moments on neighboring planes have op-
posite directions. There is no doubt that structural distor-
tions in the ortho phase and the magnetic ordering are sym-
metrically coupled. Symmetry analysis shows32 that both
phase transitions occur on a two-prong star of the wave vec-
tor (the point X) of the tetragonal body-centered original
lattice.

TN is found to be very sensitive to the concentration of
oxygen vacancies that replace the divalent La (in the same
way as the structural transition point30 T0) and also to the
divalent metal impurities Sr and Ba. It is clear from Fig. 2
that for Sr concentrations xzzQ.Q2, long range magnetic or-
der is already almost completely destroyed. This cannot be
understood in terms of the classical percolation model, and
requires the inclusion of the effect of holes introduced by the
impurity.33

Electric transport in these media is due to electron holes
localized on oxygen ions.18 Let us consider the instanta-
neous configuration with one hole on the O ~ ion. The hole
spin a interacts via exchange forces with the two neighbor-
ing copper spins S[ and S-,. The Hamiltonian for this interac-
tion is

and it is intuitively clear that, whatever the sign of Ja, the
ground state should correspond to parallel spins S, and S2.
The interaction (5.1) must therefore give rise to an effective
ferromagnetic interaction of the form <&" = — K S,S2 due
to the holes. The strength K of this interaction should be
comparable with the antiferromagnetic interaction J pro-
ducing the antiferromagnetic order in La2CuO4. The compe-
tition between ferro- and antiferromagnetic interactions
leads to the frustration of exchange bonding, the result of
which is the long range magnetic order at a certain critical
concentration, and the formation of the spin glass phase for a
relatively wide range of values of x. Apart from the frustra-
tion mechanism, the destruction of antiferromagnetic order
is also substantially influenced by the motion of holes be-
cause their delocalization produces a gain their kinetic ener-
gy. The compound YBa2Cu3O7 _ s with <5 S 1 (in the dielec-
tric phase) exhibits antiferromagnetic ordering of magnetic
moments on the Cu2 sites in CuO2 planes,27'34'35 which is
completely analogous to antiferromagnetic ordering in
La2CuO4. The volume of the magnetic cell is greater by a
factor of 2 than the volume of the crystal cell, and its param-
eters on the basal plane are -J2a,j2a, where a is the cell
parameter in the tetragonal phase [the wave vector of the
magnetic structure is (1/2, 1,2, 0); Fig. 14a]. The magnetic
moments of the Cul ions in chains appear only for S < 1, and
can be ordered at low enough temperature, as shown in Fig.
14b.

FIG. 14. Magnetic ordering in YBa2Cu3O7_6 for 65 1: a—5—1 (Ref.
34), b—<5<0.9 (Ref. 35). Copper atoms are indicated. Full points and
open circles represent antiparallel orientation of spins, unrelated to any
particular direction in the crystal. Shaded circles represent unordered
magnetic atomic moments.

It is useful to note that lines containing copper ions cor-
respond to bonding via oxygen atoms lying along these di-
rections. There is no bonding between planes C and A be-
cause there is no oxygen atom at the apex of the octahedron
for this structure (cf. Fig. 3), so that the bonding between
them is assumed to be due to dipole forces.

It is clear from Fig. 5 that magnetic order is very depen-
dent on the oxygen content. The figure shows the depen-
dence of the temperatures of magnetic ordering and of the
superconducting transition as functions of the concentration
5 of oxygen vacancies. These data were deduced from neu-
tron diffraction studies, but they agree with ,uSR data re-
ported in Ref. 36.

The maximum temperature TN ̂  500 K is greater than
TN for La2CuO4 by a factor of almost 2. This is probably due
to the difference between the bonding of the CuO2 planes in
these two structures. In the Y-Ba system, exchange bonding
between the copper ions is accomplished via the oxygen in
accordance with the scheme Cu2 + —O—Cu2 + whereas, in
the La-system, the indirect exchange chain is longer: Cu2 +

—O2 —La3 + —O2~—Cu2 + . The other possible explana-
tion relies on a structural feature of the Y-Ba-system. Thus,
studies of antiferromagnetic order have shown37 that the Y--
Ba system has two interplane interactions of different
strength [cf. (5.4) ]. This compound can therefore be looked
upon as a double-layer system. Friedel has used the XYmod-
el (see, for example, Ref. 37) to show that TN in the n-layer
system should be proportional to the number of layers.

The magnetic moment of copper in the Y-Ba system is
approximately 0.5pB, just as in the La system. The similarity
between the magnetic structures, the equal atomic magnetic
moments of copper, and the strong effect of oxygen vacan-
cies on the magnetic ordering temperature, suggest that
these two systems belong to the same class of spin 5=1/2
magnets. Which particular system is involved will become
clear from the discussion given below.

Soon after the discovery of the Y-Ba system, it was
found that the replacement of Y with rare-earth elements,
having high atomic magnetic moments does not affect the
crystal structure, the temperature of the superconducting
transition, or other superconducting properties.38'39 This
paradoxical phenomenon can be explained by recalling that
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TABLE I. Magnetic ordering temperatures of cop-
per as functions of S in NdBa2Cu3 O7 _ s.

6

0.9
0.8
0.65

TNI. K

430
400
230

TJVI. K

80
40
10

the electron states of the rare-earth ions in the crystal lie
deep under the Fermi surface. The latter is formed by elec-
trons in CuO2 planes, and this leads to weak exchange cou-
pling between these states and the rare-earth ions.

A particularly detailed neutron-diffraction study of the
magnetic structure of REBa2Cu3O7 _ s has been carried out
with Nd as the rare-earth element.39 A magnetic phase tran-
sition to an antiferromagnetic structure such as that shown
in Fig. 14a was found, with ordering of only the copper
atoms in CuO2 layers at high temperatures and oxygen va-
cancy concentrations <5>0.5. The temperature TNI was
found to fall with increasing S. Since the magnetic cell dou-
bles up in the a, b but retains its dimension in the c direction,
the magnetic Bragg reflections are characterized by the in-
dices (1/2, 1/2, /), where / is an integer. The temperature
behavior of these materials is very typical: the intensity in-
creases with decreasing T below TN,, but does so nonmono-
tonically, reaching a maximum at TN2 and vanishing as
7^0. At the same time, the (1/2, 1/2,1/2) lattice reflec-
tions appear for T<TNl, indicating the onset of a new mag-
netic order that corresponds to the doubling of the magnetic
cell in the c direction, as well. This order corresponds to the
magnetic ordering of copper ions in chains. Analysis of the
neutron diffraction patterns yields the structure of Fig. 14b.
The magnetic ordering of the copper atoms in chains is par-
ticularly sensitive to the parameter 8 (Table I). For the com-
pound with 8 = 0.9, the magnetic moment at low tempera-
ture is (0.97 + 0.05) JJ.B per copper atom in the CuO2 planes
and (0.46 + 0.06) /zfl per copper atom in chains. This very
considerable difference between the magnetic moments
seems to us to be evidence for a noncollinear magnetic order-
ing of atoms in chains, so that the figure of 0.46/zB represents
only the projection of the atomic magnetic moment onto the
a, b plane. We note here that, according to Ref. 37, the mag-
netic moments of atoms in chains have not been found in the
Y-Ba system, and the magnetic moments in planes were
found to be 0.64//s. This question of the magnetic ordering
of copper atoms in chains requires further analysis.

The magnetic ordering of the rare earth atoms occurs at
very low temperatures. In the case of ErBa2Cu3O7, the mag-
netic transition occurs at TN3 zzO.5 K. The magnetic mo-
ments of Er form the antiferromagnetic structure with unit

FIG. 15. Magnetic structure of the rare earth sublattice of
ReBa2Cu3O7_6.

cell twice the size in all three directions, and the magnetic
moments pointing along the c axis (Fig. 15). Similar order-
ing is observed in compounds with other rare earth elements
(Table II). The ordering temperatures of the rare earth sub-
lattices are found to be very low because of the very weak
coupling between the localized magnetic moments of the 4/-
shells and electrons on the Fermi surface, which explains the
other important feature of these compounds, namely, the
fact that Tc is independent of the concentration of the rare
earth elements. The only exception is the compound con-
taining praseodymium. It is already clear from Table II that
Pr is different from the other rare earth elements.40 TNT, for
this element is higher by an order of magnitude, and the
atomic magnetic moment is substantially lower for the other
rare earth elements. The data of Table II are given for the
nonsuperconducting compound PrBa2Cu3O7. The other
compounds, apart from Ce and, possibly, Tb and Lu, are
superconductors with the high values Tc ~ 80-90 K in this
concentration range of oxygen. Superconductivity also van-
ishes in the mixed compound Y, _ x Prx Ba2Cu3O7 for x S 0.6
because of suppression by the paramagnetic impurity. The
reason for this anomalous behavior of the Pr-containing
compound is the strong hybridization of the 4/-electrons
with electron states on CuO2 planes on the Fermi surface.
This is also indicated by the anomalously high value of the
parameter y in the electronic specific heat (yzz 196 mJ/mo-
le.K2), which is comparable with values obtained for many
heave-fermion systems.

The magnetic ordering observed in neutron diffraction
experiments is fully correlated with thermodynamic data,
e.g., with the temperature dependence of magnetic suscepti-
bility x( T) of La2CuO4, which shows a peak in the neighbor-
hood of the Neel point.41 The compound La2CuO4 is isomor-
phic with substances such as K2NiF4 and K2MnF4, which
are well known as quasi-two-dimensional antiferromagnets.
It follows from this that La2CuO4 should also be a quasi-

TABLE II. Magnetic ordering temperatures and atomic magnetic moments of the rare earth
sublattice in REBa2Cu3O7 _ s.

RE

THV K
P. K

Yb

0.35

Nd

0.5

Er

0.5
4.9

Dy

1.0
7.2

Qd

2.2
7.4

Pr

17
0.24

1068 Sov. Phys. Usp. 32 (12), December 1989 Izyumovefa/. 1068



two-dimensional antiferromagnet with strong predomi-
nance of exchange within planes (CuO2) as compared with
exchange between planes. The following spin Hamiltonian
was proposed in Ref. 41 for the analysis of magnetic experi-
mental data on La2CuO4:

^ (5.2)

(5.3)

where S, is the S = 1/2 spin operator and

(3m 0 0 \
X.= ( 0 J» J>>° •

\ 0 -Jbc JCCJ

in which the sum is evaluated over nearest-neighbor sites.
This Hamiltonian includes the antisymmetric exchange (cf.
the Dzyaloshinski-Moriya interaction) that describes cant-
ing of copper spins relative to the CuO2 planes mentioned
above. The corresponding parameters of the Hamiltonian
are determined from experimental data27'41 and have the fol-
lowing values:

f Jbb + J") w 1200 K, Jbe» 6K.

For the spin interactions between the CuO2 planes we have

/„„ =

In the case of the Y-Ba system, the results reported in
Ref. 3 show that the exchange interaction J^ between spins
in the CuO2 plane has the same value in the La system, but
the situation is more complicated for the interaction between
different planes. The CuO2 planes form bilayers consisting
of two Cu2 (02, 03) planes separated by a layer of Y atoms.
The interaction between these bilayers is conveyed by Cu 1—
Ox chains. We shall use JLt to denote the exchange spin
interaction between planes in a bilayer, and J12 will repre-
sent the interaction between spins in neighboring bilayers.
The spin Hamiltonian for this compound can be written in
the form

i,k,SL

(5.4)

where a is the nearest-neighbor vector on a CuO2 plane, c is
the nearest-neighbor vector along the c axis, and k = A, C
(cf. Fig. 14). Comparison with experimental data yields

/,i~1000K, /u~20K, /L 2 ~0 .2K.

Strictly speaking, the Hamiltonian (5.4) must include the
anisotropic exchange energy if we are to account for the ex-
perimental results. The magnetic properties of both the La
and Y-Ba systems can therefore be regarded as those of a
quasi-two-dimensional antiferromagnet. Serious evidence in
favor of this conclusion is provided by studies of spin corre-
lations in inelastic neutron scattering, which will be dis-
cussed in the next section.

The behavior of the La system in a magnetic field was
examined in Ref. 31, and a new phase boundary was found
on the magnetic field/temperature plane. When the magnet-
ic field was parallel to the c axis (H11 c), and the temperature
was greater than that corresponding to the critical field
HC(E), a weak induced ferromagnetic moment was ob-
served along the c axis with^c ~2-10 ~ 3//B. This can be un-

derstood by recalling the crystal structure of the orthorhom-
bic phase of La2CuO4 that allows weak ferromagnetism
corresponding to antisymmetric exchange in the Hamilto-
nian (5.2)-(5.3). In the ground state, the slight canting of
the antiferromagnetic moments of copper ions on the a, b
plane in each CuO2 layer produces weak ferromagnetic mo-
ments along the c axis in each layer. These moments are in
antiphase between neighboring layers, and can be given fer-
romagnetic order by an external magnetic field. This order-
ing arises as a result of the 180° rotation of the antiferromag-
netic moments on the a, b planes in those layers in which the
weak ferromagnetic moment along the c axis points against
the field. This phase transition was investigated in Ref. 3 1 in
the mean-field approximation, and good agreement was es-
tablished with experimental data on susceptibility and
HC(T). The magnetic phase diagram was also examined in
Ref. 3 1 . An interesting feature of this phase transition is the
considerable reduction (by a factor of roughly 2) in the re-
sistance of the sample in the a, b plane in the ferromagnetic
phase in the external field.

Antiferromagnetic ordering on the CuO2 planes that is
analogous to the ordering in La and Y-Ba systems is ob-
served by the /^SR method in the dielectric phases of
Bi2Sr2YCuO^ and by the polarized neutron method in
TlBa2YCu2O7.

51

Interesting magnetic properties are exhibited by the
new compounds Nd2 _ x Ce.x CuO4 for which electron-type
conductivity is expected (see Ref. 106). For the T<TN

— 255 K compound Nd2CuO4, exhibits antiferromagnetic
order of the same type as La2CuO4. However, additional
magnetic transitions at 80 and 30 K have been observed in
the former. It is assumed that the interaction between the
magnetic moments of Nd3 + and the spins of Cu2 + becomes
important for T< 30 K. Inelastic neutron scattering shows
the presence of strong two-dimensional spin correlations,
just as in the case of 7^ 196.

Finally, we note Ref. 42 which reports a symmetry anal-
ysis of the kinetic structure of YBa2Cu3O7_,5 and discusses
possible determinations of the parameters of the magnetic
Hamiltonian from antiferromagnetic resonance and the in-
elastic light scattering data. Experimental data of this type
would enable us to improve the values of the parameters of
the Hamiltonian (5.4).

6. Spin correlations. The double differential cross sec-
tion for the magnetic scattering of neutrons by a crystal with
the transfer of energy wand momentum Q = k — k' (kandk'
are the wave vectors of the incident and scattered neutron
beams ) can be written in the form of the Fourier transform
of the pair correlation function for the spins:

CO

= -!- (
23T J

(6.1)

The integral of this quantity with respect to energy deter-
mines the instantaneous correlation function

, o))da)=(Sa(-Q, 0)Sa(Q,0)>. (6.2)

The quantities 5 aa(Q,w) and Saa(Q) can be measured di-
rectly with three-crystal and two-crystal spectrometers.

This type of investigation was carried out as soon as a
large enough single crystal of La2CuO4 became avail-
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FIG. 16. Geometry of the neutron scattering experiment using La2CuO4

(Refs. 43 and 44). a*, b*, c* are the reciprocal lattice vectors. Wavy line
shows the diffuse scattering rod.

able.43'44 If we assume quasi-two-dimensional spin correla-
tion in this material, we must expect that diffuse scattering in
the back hemisphere, described by the quantity Saa(Q), will
take the form of rods joining the reciprocal lattice sites in the
direction perpendicular to the a, c planes, i.e., the CuO2

planes (Fig. 16). In this experiment, the energy of the inci-
dent neutron beam was 30 meV and the (1,0.4, 0) position
on the rod corresponded to a> = 0, showing that the wave
vector of the scattered neutrons was always parallel to the
vector b*. This means that, in the experiment with the two-
crystal spectrometer, in which for each fixed direction a
measurement is made of the energy integral (i.e., the quanti-
ty Saa(Q), we directly obtain the two-dimensional correla-
tion function (Sa( — q||,0)5a(q||,0)>, since the vector q,,
lies in the CuO2 plane.

The diffuse magnetic scattering distribution by spin
fluctuations is present well beyond the limits of the Neel
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FIG. 17. Scanning of the diffuse rod in reciprocal space in the direction of
the a* vector in the two-crystal diffractometer with the La2CuO4 speci-
men at T= 195 K (Ref. 45).
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FIG. 18. Temperature dependence of the reciprocal correlation length in
La2CuO4 (Ref. 45).

temperature. These data can be used to calculate the correla-
tion length for instantaneous spin correlations. The results
are shown in Fig. 18. The correlation length varies from 40 A
at 500 K to 400 A at TN.

The integral diffuse-scattering intensity rises slightly as
the temperature is reduced on the way to 7^,, but below the
magnetic ordering temperature it begins gradually to in-
crease, tending to zero as T-»0 (Refs. 43 and 44). At the
same time, the intensity of the (100) magnetic Bragg peak
grows in the usual way, reaching its maximum at T = 0. We
thus see the transformation of diffuse scattering into the
Bragg peak, which is observed in two-dimensional antiferro-
magnets, for example, K2NiF4. However, this transforma-
tion is smooth in La2CuO4, whereas it is relatively rapid in
K2NiF4: everything happens within the small temperature
interval of about 2% of TN. This reflects the fundamental
difference between three-dimensional magnetic ordering
and these planar antiferromagnets. In K2NiF4, i.e., an Ising
type magnet, the transition to long-range order is essentially
two-dimensional in character. In La2CuO4, on the other
hand, long-range order is formed as a result of the interac-
tion between the planes.27 In isomorphic magnets such as
La2NiO4 and La2CoO4, which have atomic spins S = 1 and
S = 3/2, respectively, the phase transition to long range or-
der is analogous to the transition in K2NiF4. Only La2CuO4,
with S = 1/2, exhibits unique properties: in the presence of
well-defined quasi-two-dimensional fluctuations, it behaves
during the phase transition as a Heisenberg antiferromagnet
with 5= 1/2.

The three-crystal spectrometer has been used to investi-
gate the dynamics of spin fluctuations. In contrast to the
low-energy dynamics of spin fluctuations near the phase
transition in the usual three-dimensional magnets, we now
have high-energy spin excitations in La2CuO4 for T> TN.
Their dispersion is quasi-two-dimensional in character:
o)(q) = vqn, i.e., it does not depend on the wave vector com-
ponent perpendicular to the CuO2 plane. The velocity of the
spin excitations is found to be exceedingly high. For exam-
ple, for T = 300 K, we have y>0.6 eV A. This figure agrees
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FIG. 19. Intensity of the inelastic peak with transition energy of
3 meVas a function of temperature for La2CuO4 (Ref. 45).
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with the data obtained for spin-wave excitations, deduced
from estimates of the planar exchange integral J (Ref. 40),
and also data on two-magnon Raman scattering.46

Figure 19 shows the density of spin excitations as a
function of temperature. The inelastic peak intensity is inde-
pendent of Tbetween 300 and 200 K (in the paramagnetic
phase), and then falls between 5 K and 150 K, following the
factor «(&>) + 1 with the Bose distribution function n(co).
The spin excitations of the system for T<TN are therefore
the usual spin waves in the Neel state of the antiferromagnet.

We see that the S — 1/2 Heisenberg antiferromagnet
La2CuO4 exhibits unusual properties in the paramagnetic
temperature range and in the neighborhood of TN. They in-
clude two-dimensional spin correlations over distances of
the order of 200 A, and a relatively high energy of spin exci-
tations. This state is called the quantum spin fluid (QSF).43

The word "fluid" reflects the fact that the structure factor
[the quantity Saa(Q) ] has a purely dynamic character.

Quantum effects play a very important part of this con-
text. One of them consists of a significant reduction in the
correlation length as compared with the classical two-di-
mensional Heisenberg magnet. The correlation length for
the latter (in units of the lattice constant a) is given by47

E 231/5"
— = exp
a V W

(6.3)

If we take for La2CuO4 the value JS2 = 650 K, then for
T= 300 K we obtain ^/csS-lO5, which is greater by four
orders of magnitude than the experimental result £ /a ~ 50.44

Next, in contrast to classical three-dimensional and two-di-
mensional systems, in which the slowing down of fluctu-
ations is observed as soon as the correlation length becomes
very large, it is found that La2CuO4 shows nothing of the
kind, and the fluctuations remain of the high energy type:
the velocity of spin excitations is greater by an order of mag-
nitude than the velocity of sound in this medium. A more
detailed account of the theory of two-dimensional quantum
antiferromagnets is discussed in Sec. 8.

We now turn to the doped compounds La2 _ x Mx CuO4.
It is clear from Fig. 2 that Sr-containing compounds exhibit
the metal-insulator transition for x~0.05. Typical hopping
conductivity, described by Incr (T0/T)}/4, is observed
for x 5 0.05 and T^ 100 K, and the carriers are found to be
localized because of disorder. The carriers (holes) become
delocalized for x > 0.05, and the material becomes a metal
and a superconductor. As we have seen, TN depends on the
concentration x of the divalent metal impurity. In the ab-

sence of long range magnetic order, doped compounds in the
metallic phase can also be in the QSF state, and the high-
energy spin fluctuations can be the conveyors of the pairing
interaction between the electrons. This idea has stimulated
detailed studies of spin fluctuations in doped systems.

Experiments with the two-crystal spectrometer have
shown that the correlation length of spin fluctuations falls
with increasing dopant concentration (Fig. 20). The solid
line in this figure represents the function 3.8.x 1/2 A that
gives the mean separation between O~ holes on the CuO2

planes, which are introduced by the Sr impurity. It is re-
markable that I" is in very good agreement with this quantity,
which suggests that the holes have a very strong destructive
effect on the magnetic state of the system of Cu2 + ions. This
effect can be partially understood in terms of the above idea
of frustration of exchange coupling, although this mecha-
nism was proposed for the description of the dielectric
phase. The reduction in the correlation length with x should
be correlated with the variation TN in the magnetically or-
dered phase. Actually, the authors of Ref. 45 have consid-
ered the following estimated temperature of the three-di-
mensional phase transition in the quasi-two-dimensional
model, expressed in terms of the correlation length §2 of two-
dimensional spin fluctuations (in units of the separation
between nearest neighbors):

The measured peak intensities, integrated with respect
to the transferred energy, taking into account the entire con-
tribution due to spin fluctuations have shown27 that these
intensities, which determine the local magnetic moment of
Cu2 + do not depend on the impurity concentration. This
leads to the following important general conclusion. Holes

40
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FIG. 20. Magnetic correlation length as a function of Sr concentration in
La2^Sr,CuO4 (Ref. 27).
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influence only the correlation between the spins of the cop-
per ions, but have no effect on the magnitude of the atomic
magnetic moment of copper in doped compounds.

Spin fluctuations in highly-doped samples are mostly
high-energy fluctuations at room temperature, but even at
350 K there is a substantial fraction with energies E<0.5
meV, and these low energy fluctuations are three-dimen-
sional. As the temperature T is reduced, the fraction of low-
energy components is found to rise, and new Sr experiments
with La2^xSrxCuO4 have shown107 that, for x = 0, 0.01,
0.02, and 0.05, all these spins are frozen at temperatures
below about 4 K. It follows that La2 _ x Srx CuO4 is supercon-
ducting in the presence of the slowly fluctuating spin fluid.

Spin fluctuations in the Y-Ba system were investigated
in Ref. 37. At T= 200 K, the antiferromagnet YBa2CuO6.3
with 7^ — 350 K, was found to produce peaks corresponding
to inelastic magnetic scattering in the (q, q, 0) direction for
transferred energies of 3 and 6 meV, and the intensity de-
creased as a function of the transferred energy. The width of
these peaks increased from 0.07 A ~ ' at 3 meV to 0.1 A ~ ' at
6 meV. This behavior of the peak widths, and also the ob-
served asymmetry of the peak at 3 meV, was explained by the
spin-wave contribution. Since the resolution of the
spectrometer was not good enough to produce two well-re-
solved peaks, the experiment revealed an asymmetric peak.
A similar result was obtained in Ref. 27 for La2CuO4. Esti-
mates of the spin-wave velocity gave ~0.4 eV A.

A more detailed investigation of spin waves in a single-
crystal of YBa2Cu3O63 was undertaken in Ref. 48b. Com-
parison of the experimental data with the theory based on
the Hamiltonian (5.4) was used to determine the parameters
of the latter. The resulting values have already been listed
above. In addition, an estimate was made of the anisotropic
exchange energy, and the result was ~0.0035 meV. For
transferred energies of 3, 9, and 15 meV and T — 300 K,
inelastic-scattering peaks were observed but could not be
resolved for the two values qn and — q(| because of the
strong dispersion of the excitations. These experiments dem-
onstrated that the lower limit of the spin-wave velocity was
0.5 eV A, which is in good agreement with the results de-
duced from inelastic light-scattering data.49 Dispersion
along the c axis was found to be slight. The temperature
dependence of the inelastic scattering intensity showed that
spin correlations in the CuO2 planes persisted up to tempera-
tures of at least 100 K above TN. Although rather limited,
these data may be regarded as confirmation of the quasi-two-
dimensional character of magnetism in YBa2Cu3O7_g for
<5>0.5.

Further confirmation of this can be seen in magnetic
susceptibility data.29 For samples with a low oxygen content
(<5;sl) the susceptibility ^(7"), has a maximum for high
temperatures T, and falls smoothly with decreasing tem-
perature. This behavior is typical for spin correlations in
two-dimensional antiferromagnets. The susceptibility x( T)
varies very slowly with increasing oxygen content, ap-
proaching the temperature-independent form for SzzQ. This
gradual variation shows that the antiferromagnetic correla-
tions survive in orthorhombic phase, just as they do in
La2 xMxCuO4.

Until now, there has been very little information on
magnetism in the superconducting phase of the Y-Ba sys-

tems. Polarized-neutron scattering by powders has indicat-
ed the existence of low-energy spin fluctuations in
YBa2Cu3O66 (Ref. 50). The /*SR method36 has revealed
that, although the long-range antiferromagnetic moment de-
creases with decreasing 8, the local magnetic moment re-
mains constant, at least in the tetragonal phase. Attempts to
detect inelastic magnetic scattering at energies below 20
meV in the superconducting phase of YBa2Cu3O7_5 (Ref.
48b) have been unsuccessful.

Summarizing the experimental studies of known classes
HTSCs, we conclude that the onset of long range magnetic
order, or magnetic fluctuations, in the copper sublattice is
closely related to the onset of the superconducting state and
to its properties in both La2 _ x Srx CuO4 and YBa2Cu3O7 _ s,
and superconductivity appears for high enough x or large
8^1, and superconductivity appears for high enough x or
small 8 (this is the anticorrelation between magnetic and
superconducting order parameters), there are ranges of x
and 8 in which the two phenomena co-exist or at least inter-
fere. Since the mechanism responsible for superconducting
pairing in these HTSCs has not as yet been discovered, it is
tempting to perform a theoretical investigation of pairing via
spin excitations of the particular magnetic state found in
these materials, which is referred to as the quantum spin
fluid (QSF). This is more likely to be the superproblem for
the theory. The current problem is the theoretical analysis of
the QSF state and the interpretation of the change in the
magnetic state of these systems as a result of doping.

II. ATTEMPTED THEORETICAL INTERPRETATIONS

7. Magnetism and superconductivity in quasi-two-di-
mensional systems with strong electron correlation. Extensive
experimental data are now available on the magnetic and
superconducting properties of high-temperature supercon-
ducting compounds. Their most obvious property is the high
sensitivity to changes in the number of electron holes pro-
duced on doping, but they also exhibit the metal-insulator
phase transition. Both phenomena have long been known in
other materials, and different theoretical models have been
proposed for their interpretation. An important place
among them is occupied by the Hubbard model that allows
for strong electron correlations in a narrow band. The Hub-
bard Hamiltonian is

—'2 + U (7.1)

where the first term describes the transfer of electrons with
spin a from site / to the nearest site j, whereas the second
term represents the repulsion energy between two electrons
with opposite spins on site /'. In the case of a narrow band, the
Coulomb repulsion is large (£/> t ) , and the model provides a
description of the metal-insulator phase transition (Mott
transition) as well as many physical properties that depend
on the band population (see, for example, Refs. 17 and 52).
Since it is likely that U^ t in copper oxide HTSCs, immedi-
ate and numerous attempts were made to use the Hubbard
model in the description of HTSCs. In view of the impor-
tance of the electron states of CuO2 layers, and the quasi-
two-dimensional character of the electron spectrum, we
have to devote particular attention to the properties of the
two-dimensional Hubbard model.
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The statistical mechanics of the Hubbard model is a
very complicated subject that has not been adequately inves-
tigated. Attempts to understand the physics of the two-di-
mensional case can be made from two points of view: either
by using the results of the three-dimensional model, which
has been extensively investigated, or by considering the one-
dimensional problem for which there is an exact solution.53

From among the numerous results obtained with the
three-dimensional Hubbard model, we mention those that
may be of interest for our discussion here. For a half-filled
band, for which the number of electrons Ne is equal to the
number of atoms Na, i.e., Ne/Na =n = 1, the Hubbard mod-
el has an antiferromagnetic ground state.52 As we depart
from the half-filled state (n ̂  1), the behavior of the system
is described by the exact result obtained by Nagaoka54 and
stating that, as U-> <x, the ground state is a ferromagnet for
Ne =Na ±1. (We note, by the way, that Anderson68 has
recently thrown some doubt on the validity of the Nagaoka
theorem,54 at least in the two-dimensional case.)

The physical justification for the above result relies on
the fact that excess carriers can move freely through neigh-
boring atoms if their spins are parallel to the spins of the
atoms, and this results in a reduction in their kinetic energy.
Ferromagnetism is possible for finite values of U, even if the
concentration of excess carriers is finite (Fig.21).

A remarkable consequence of the exact solution of the
one-dimensional Hubbard model is that it is in principle im-
possible to reduce it to the Fermi-fluid type Landau picture
in which the introduction of the interaction between elec-
trons in the electron gas does not affect the Fermi momen-
tum and influences only the size of the jump Z in the particle
momentum distribution at the Fermi momentum. This con-
clusion has far-reaching consequences and is beautifully il-
lustrated by the graph of « as a function of Q which, in the
exact one-dimensional solution of Lieb and Wu, plays the
part of the Fermi momentum55 (Fig. 22).

It is readily seen that, for « = 1, the quantity Q is nu-
merically equal to ir/2 for noninteracting electrons and to IT
for interacting electrons. This is so because, in the one-di-
mensional Hubbard model, any weak interaction (C/^0)
leads to a dielectric ground state.53 Its Hamiltonian can be
reduced to the Hamiltonian for the Heisenberg model of an
antiferromagnet.56 The ground state of the one-dimensional
Heisenberg antiferromagnet has a long history that began
with the invention of the Bethe ansatz (see, for example, Ref.
57), which can be used to obtain the exact solution for the
ferromagnetic or antiferromagnetic chain of S = 1/2 spins.

AF

0,2 0,4 0.6 0,8 Q/Tt

FIG. 22. n as a function of Q for different values of U/t (Ref. 55).

The ground state of the antiferromagnetic chain is a singlet,
and analysis of the spectrum of elementary excitations per-
formed by Takhtajan and Faddeev58 has shown that a "spin
wave" on an antiferromagnetic chain can be represented by
two neutral fermions (kinks) of spin 1/2. In other words,
neutral fermions are the elementary excitations of the one-
dimensional antiferromagnetic Heisenberg chain.

Anderson59 has proposed that the two-dimensional an-
tiferromagnet should exhibit some of the properties of one-
dimensional systems. In particular, for the completely frus-
trated triangular lattice of half spins, the ground state can be
constructed by analogy with the exact singlet Bethe ground
state of the linear antiferromagnetic chain.

Each pair of neighboring spins on a plane lattice is as-
sumed to be in the singlet state relative to one another, and
there is a constant variation in the combination of neighbor-
ing spins into pairs. In other words, the "bonds" between
nearest neighbors can travel or resonate by analogy with the
way "double" and "single" (valence) bonds resonate in the
benzene ring. This state of the spin system is a superposition
of all the realizations of singlet pairs, and is described by
analogy with quantum chemistry as a state with resonating
valence bonds (RVB).

Consider a planar square lattice. It belongs to a class of
lattices that can be imagined as two interpenetrating lattices,
and can therefore be said to have "black and white symme-
try", i.e., there are two types of site (black and white) and,
generally, four types of bond ending on four sites, e.g., white,
surrounding a black site. The RVB state can then be looked
upon as a superposition of all the "instantaneous" pictures
of the form shown in Fig. 23. It has a lower energy than the
Neel state with long-range antiferromagnetic order if the
interactions after the nearest-neighbor interactions are anti-
ferromagnetic and strong enough, so that, just as in the trian-
gular lattice, we again have frustration.

Since the Hubbard-Hamiltonian near the half-filled
band with £/> t is actually identical with the Hamiltonian
for the Heisenberg antiferromagnet, Anderson suggested

I I
I I

FIG. 21. Phase diagram of magnetic states in the three-dimensional Hub-
bard model ont he t/U,n plane.

FIG. 23. One of the components forming the "vacuum" state in a system
with resonating valence bonds.62 The lines represent the valence bonds.
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that the ground state of the two-dimensional Hubbard mod-
el should be a RVB state.60

Let us now present the basic assumptions and conclu-
sions of RVB theory. If « ~ 1, £/> t, it is convenient to replace
the Hamiltonian (7.1) with the effective Hamiltonian in
which virtual states with doubly populated sites have been
excluded by a canonical transformation, so that only singly
populated sites remain:61

where

(7.2)

(7.3)

"/ = nii + nu > /" is the chemical potential, and J = 4t 2/Uis
the exchange parameter of the effective antiferromagnetic
interaction.

We now introduce the creation operator for the singlet
valence-coupled pair on sites / and j:

(7.4)

so that, in terms of the effective Hamiltonian, (7.2) can be
written as the sum of two terms describing, respectively, the
kinetic energy of electrons in the almost filled bottom Hub-
bard band and the interaction energy of the singlet pairs:

eff = — (1 — «',-«) tioClo (1 — 1/.-o)

(7.5)

Before we turn to a systematic investigation of the states
determined by this Hamiltonian, we must provide, following
Kivelson,63 a qualitative picture of the excited states that
appear above the vacuum (Fig. 23) in which all the corners
are occupied by electrons (one per site) that form singlet
pairs with their neighbors. Neutral fermions (spinons) and
charged bosons (holons) are of this kind.

To understand the origin of these excitations, we must
remember that each lattice site with n, = 1 is neutral, but not
spinless. In the ground state, each site participates in one
valence bond, so that two unpaired electrons are produced
when one valence bond is broken (Fig. 24). If we compare
this with the vacuum state, we can describe it in terms of the
appearance of two quasiparticles localized on lattice sites
with spin half and zero charge. We thus arrive at the concept
of a neutral fermion, i.e., the spinon.

Another type of vacuum excitation appears if an elec-
tron is removed from a given site (by excitation to another
band or by doping). The resulting hole has the charge e+ ,

T

FIG. 24. Excited states in the RVB system:63 a—two spins due to the
breaking of one valence pair with spinons indicated by the arrow, b—one
holon for a less than half-filled band.

but the excited state must be assigned zero spin. The result is
a charged Bose quasiparticle, called the holon (cf. Fig. 24b).
The charge and spin have to be separated from one another
to produce excited states of a system with RVB. Figure 25
illustrates the interaction of a real electron with quasiparti-
cle excitations of the RVB system, i.e., spinons and holons.

Having introduced the very pictorial concepts of quasi-
particles in a system with RVB, we now proceed to the de-
scription ofthesystembasedontheHamiltonian(7.5).The
first attempt to employ this very complicated Hamiltonian
was made by the self-consistent field method.64 A closely
related problem is the derivation of the equation for the or-
der parameter, defined as the expectation value of the singlet
pair creation operator

A// = (6,7). (7.6)

In the mean-field approximation, the Hamiltonian (7.5)
takes the form64'65

, (7.7)
k,o

where

2
k'

Vkk' = J [cos (kx — k'x) + cos (ky

8k = — tx (COS kx + COS ky).

(7.8)

(7.9)

The quantity x = 1 — n describes the deviation from
the half-full population. The Hamiltonian (7.7) is formally
analogous to the Hamiltonian in the Bardeen-Cooper-
Schriffer (BCS) model Hamiltonian. The standard diagona-
lization procedure applied to the quadratic form gives the
following mean-field equations for the order parameter Ak

and the chemical potential/z:

^k- th-

N

where

• — x;

(7.10)

(7.11)

(7.12)

is the quasiparticle energy.

I I

1 1
—• •

1 1"

FIG. 25. Interaction between an electron and a spinon and'holon63: a—
spinon produced from a holon when an electron is added, b—spinon and
holon produced by removing an electron from the valence bond.
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The authors of Ref. 64 at first assumed that the order
parameter A,-,- was the same for all four types of bond that
end on the four nearest neighbors, i.e., At = A2 = A3 = A4.
This assumption reduces to the following expression for Ak

as a function of the momenta:

= A, (cos kx + cos ku). (7.13)

which contains the same phases in the kx and ky directions.
This form of the solution corresponds to the ^-symmetry. It
was subsequently found65 that there is a solution with d-
symmetry:

Ak = A<( (cos fe, — cos fey), (7.14)

and also a solution describing the so-called mixed state:

Ak = A (cos kx'+ i cos ky). (7.15)

Analysis of (7.10) and (7.11) then showed that the solu-
tions with s- and c?-symmetry are equivalent in the half-filled
case. This equivalence is a reflection of U( 1) gauge symme-
try (invariance of the Hamiltonian under the transforma-
tion c+ -*e 'c^ ), which can be used to transform solutions
with i- and rf-symmetry into one another in the half-filled
case. However, this symmetry does not occur in the mixed
state, which suggests that there may be a more general gauge
symmetry. We shall return to this point later.

Let us now consider the expression for the quasiparticle
energy (7.12). For half-filled band x = 0,/z = 0, this expres-
sion reduces to Et = | Ak . in particular, for the s-like solu-
tion,

£k = As|cos&x-r- cos£y|, (7.16)

and the spectrum becomes gapless for lines determined by
the equation coskx 4- cosky = 0. For the mixed state, the
spectrum

Ek = A (cos2 kx + cos2 ky (7.17)

becomes gapless only at the points k = ( + ir/2, + 77/2). A
gapless spectrum presupposes that the specific heat depends
on a power of temperature [the first power for (7.16) and
the second for (7.17) ]. It is interesting to compare this with
the well-known result for heavy fermions in the three-di-
mensional problem for which the gapless line spectrum gives
a quadratic dependence of the specific heat on temperature,
and a gapless point spectrum gives a cubic dependence.

The fundamental task in the two-dimensional Hubbard
model near the half-filled state is to construct the phase dia-
gram on the T, x plane. Anderson tried to deduce this dia-
gram (Fig. 26) from simple physical ideas.68 Thus, first,
there is the line of phase transitions T0 (x) to the RVB state
(dashed line), which can be obtained in the self-consistent
field approximation from the solution of (7.10) and (7.11).
Second, as already noted, for the exactly half-filled band, the
ground state must be an antiferromagnet and a dielectric in
the three-dimensional case. It is clear, that however weak the
interaction between the planes, the temperature TN of the
phase transition to the magnetically ordered state will be
determined by the strength of this interaction. The TN(x)
curve should fall rapidly with increasing hole concentration
x because the destruction of antiferromagnetic order pro-
duces a gain in the kinetic energy of the holes. Further in-

o > V

FIG. 26. Anderson's phase diagram on the T, x plane.68

crease in x is accompanied by a phase transition from the
dielectric to the metallic state (wavy line) in which one can
expect the appearance of superconductivity. This requires
further explanation. If we compare Fig. 26 with the experi-
mental phase diagram for La2 x Srx CuO4 (Fig. 2), we find
that they are similar at least at the qualitative level, if we
identify the structural tetragonal-orthorhombic phase tran-
sition with the phase transition to the RVB state.

The appearance of superconductivity in RVB theory is
related to the existence of holons. Since holons are bosons, it
was initially suggested67'69 that their Bose condensation
ends in a superfluid state and, hence, a superconducting
state, since holons are charged particles. However, this
mechanism was found to be inconsistent because, although
holons are bosons, they cannot be subjected to Bose conden-
sation as they would then have to satisfy an exclusion princi-
ple by analogy with Fermi particles. They cannot, therefore,
accumulate in any particular state.68 A superconductivity
mechanism based on the pairing of holons,68 followed by
their transition from layer to layer, was subsequently pro-
posed.68 It would appear that a complete explanation of
high-temperature superconductivity could not be found
within the framework of the two-dimensional theory alone,
so that the Hamiltonian describing the pure two-dimension-
al model had to be augmented by a term representing the
hoping of electrons from one plane to another. The following
picture of the onset of superconductivity state in this quasi-
two-dimensional system has been proposed.68

In the normal state, an electron hole decays into a
spinon and a holon, which is readily seen by inspection of
Fig. 25. This process can be described mathematically in
terms of the following representation of the electron opera-
tor:69

where et,d,+ are boson operators with the following mean-
ing: e( is the operator for the annihilation of an empty site
(holon), d,+ is the operator for the creation of a doubly
filled site (twin), and £/-» oo is the operator for the creation
of a neutral fermion on a site (spinon). In the limit as U-> oo,
the contribution of the doubly occupied sites is unimportant,
so that the second term of (7.18) can be neglected and

r* -~w 0 ^+ (1 1 Q"\l * l f j '̂ ' t-(O((J, ^ / . 1 7 )

which interprets the creation of an electron as the annihila-
tion of a hole and the creation of a spinon on the same site. It
is important to note that holons and spinons are confined to a
plane and cannot leave it because the separation of charge
and spin degrees of freedom is performed only in a plane. On
the other hand, a pair of holons is equivalent to a singlet pair
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FIG. 27. Transition of a pair of holons from one plane to another.68 Solid
line—electron pair, dotted line—holon, dashed line—spinon.

of electrons, and can move from plane to plane. This process
can be represented by the diagram of Fig. 27. We thus see
that boson pairing can be used to find the superconducting
state. The estimate of Tc given in Ref. 68 is Tc~t2

c/J or
Tc ~t*/J3, depending on the form of the boson spectrum
(tc is the integral representing the transfer of electrons
between planes).

The above mechanism of superconductivity predicts
high Tc of the order of the typical electron energy, but it is
too complicated to be satisfactory. The idea of the RVB
state, and the existence of new types of excitation, i.e., neu-
tral fermions and charged bosons, is undoubtedly potential-
ly useful in any search for a new mechanism of electron pair-
ing. The problem is not only physical, but also largely
mathematical because of the exceptional complexity of the
model Hamiltonian (7.2) or the equivalent (7.5). Even
when the kinetic term is written in the simplified form exam-
ined in Refs. 61 and 64, the mathematical difficulties are
enormous.

In view of the foregoing, it is important to establish the
fundamental properties of this model, including the internal
symmetry of the Hamiltonian. We have already noted the
U( 1 ) gauge symmetry of the Hamiltonian (7.5) in the half-
filled case. In accordance with the well-known Elitzur theo-
ry ( cf . for example, Ref. 1 7b ) , this local symmetry cannot be
broken, so that the mean value is A = 0 at all temperatures,
and the temperature of transition to RVB states is zero for
the half-filled case. It has also been found that this system is
invariant under the local SU ( 2 ) gauge transformation.66 To
demonstrate this, let us examine the Heisenberg Hamilto-
nian

in the Hubbard model for large U. We shall use the pseudo-
fermion representation of S = 1/2 spin operators:

s, = |2tfo (7.20)

where a is a vector with components taken from the Pauli
matrices. The relationship given by (7.20) can readily be
written in the form

(7.21)

where <TT is the transpose of the Pauli matrix and ^, is a 2 X 2
matrix with operator components:

(7.22)

This representation can be used to rewrite the Heisenberg
Hamiltonian in the form

from which it is clear that it is invariant under the gauge
transformation

l|>tap->- ftiav^vP' (7.24)

where the SU(2) matrices h, depend on the site index.
The demonstration of local SU(2) gauge symmetry

leads to an order parameter formed by SU (2) matrices of the
form

<M/> =

where

A</
X,7

A;/ = <C;+C,_ — C,-_C/+>, X</ = S (Cta

(7.25)

(7.26)

in which As is the U( 1 ) gauge field (7.6) and^-,7 is the U( 1 )
gauge field previously used in Ref. 70. We thus have the
possibility of describing the RVB theory by means of lattice
SU (2) gauge theories.

We note at this point that the two-dimensional single-
band Hubbard model has also been the subject of numerous
calculations by methods whose advantage was that they
were independent of uncontrollable approximations. The
phase diagram (U/t,x), obtained by numerical methods,
was presented by Baskaran in a review paper.71 The RVB
region was identified on this diagram with disordered mag-
netic moments between the ferromagnetic and antiferro-
magnetic regions. For x = 0, the ground state is antiferro-
magnetic. Variational Monte Carlo calculations have also
been carried out. According to Ref. 72, a hole concentration
of about 20% is necessary for the stabilization of the RVB
state, which differs by an order of magnitude from the figure
predicted by the Anderson theory.

The (t-J) -model described by the Hamiltonian (7.5)
has also been investigated by the method of exact diagonali-
zation of small two-dimensional systems. In particular, the
authors of Ref. 73 examined the properties of such systems
with a high hole concentration Nh =4,N— 16), and found
that this reduced the antiferromagnetic correlation length.
Moreover, there was a tendency for the holes to pair off in
the intermediate regime of exchange coupling with J/t~ 0.4,
in contrast to the formation of hole droplets when J/tZ1.2.

Approximate methods have to be used when models
with a macroscopic number of particles are examined. For
example, the authors of Ref. 74 used a variational method to
examine the wave function proposed by Anderson for the
RVB state |<p > = Pd \q>0 ), where

is the Gutzwiller projection operator and \q>0) is the BCS
wave functions. The authors of Ref. 74 used the Gutzwiller
approximation for the projection operators, and replaced
the Hamiltonian (7.5) with a renormalized Hamiltonian in
which the projection operators were in turn replaced with
renormalizing factors. Next, and in contrast to the supercon-
ductivity mechanism in the Anderson RVB theory (holon
superfluidity ) , the authors of Ref. 74 assumed that the su-
perconducting state could be characterized by the order pa-
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rameter

| cp), (7.27)

which is linearly related to the parameter ARVB = {<Po\ cit cjt
— c^c£ \<p0) that characterizes the RVB state [cf. (7.6)

and (7.7)], where A5C~;fARVB. The dependence of ARVB

and Asc on x was determined, and the significant point is
that Asc = 0 and ARVB is finite for x = 0. This is in agree-
ment with the SU(2) gauge symmetry for x — 0.

The two-dimensional Hubbard model with a magnetic
field was examined in Ref 75 for t/> t. The phase diagram on
the (x,h) plane was found, where h is the magnetic field. It
was shown that phase transitions on this diagram were of the
first order, with the exception of the case of small n and high
fields for which there is a second-order phase transition to
the ferromagnetic superconducting state.

The alternative to the introduction of additional fields
(holons and spinons) in the investigation of the effective
Hamiltonian (7.2) is the method of Hubbard operators
which automatically takes into account the splitting of the
electron band (at the level of the commutation relations)
into the upper and lower Hubbard sub-bands for t/> t. The
method of Green's functions was used in Ref. 76 to derive an
expression for the superconducting order parameter Ay
(7.27) which, in contrast to the mean-field approximation
for holons in (7.8), contains contributions due to both the
kinetic term ~?and the exchange term ~J'm (7.2). How-
ever, the rigorous condition for the absence of pairing of
particles in the same band on the same site leads to the d-
wave symmetry of the order parameter (7.14) for which
only the exchange term provides a nonzero contribution, as
in the case of (7.8).

In conclusion, let us compare the properties of the
above model with the physical properties of copper oxide
HTSCs. The Anderson theory is confined to one nondegen-
erate narrow band near the half-filled state. If we compare
the results of this theory with the properties of copper oxide
HTSCs, we have to take into account the existence of the
CuO2 planes which must be described by the two-sublattice
model77 in which one of the sublattices is assigned to the d-
states of Cu and the other to the /^-states of O. If we retain
only direct electron transitions between nearest neighbors,
i.e., the Cu and O ions, then we can use perturbation theory
to eliminate the/>-sublattice and confine our attention to the
af-sublattice. The effective transfer parameter td between
neighboring ions is then given by

(7.28)

where ed and ep are the atomic levels of Cu and O, V is the
Coulomb interaction between them, and tpd is the transfer
integral. Thus, when holes are present in the oxygen sublat-
tice, which occurs in the HTSCs after doping, they can move
inside the copper sublattice. The single-band Hubbard mod-
el can therefore be used to describe the physical properties of
HTSCs (cf. Ref. 78).

We note that the validity of the last result was ques-
tioned by the authors of Ref. 108, who used the exact solu-
tion for a model of the motion of holes on CuO2 planes with a
ferromagnetic background. However, it was shown in Ref.
109 that, even in this case, the band of states splits, and be-

comes equivalent in all its characteristics (density of states,
dispersion law, and eigenfunctions) to the single-band mod-
el with the (t-J)effective Hamiltonian.

8. Two-dimensional Heisenberg antiferromagnet with
spin 1/2. The RVB theory of the two-dimensional Hubbard
model in the limit of large U has recently given rise to consid-
erable interest in the properties of isotropic two-dimensional
Heisenberg antiferromagnets as the simplest systems for
which there is some hope of finding Fermi type excitations,
i.e., the analogs of neutral fermions in the Hubbard model.
Attempts have been made to introduce into the two-dimen-
sional model the ideas that arose in the exact solution of the
one-dimensional Heisenberg model.

We begin by recalling some of the fundamental results
found for the one-dimensional model. In 1961, Lieb et a/79

proved a theorem stating that an antiferromagnetic periodic
chain of 1/2 spins of length L has low-energy excitations
with energy of the order of \/L. This theorem can be trivially
extended to the case of arbitrary half-integral spins, but not
to the case of integral spins. We thus encounter a situation
whereby systems with integral and half-integral spins exhib-
it different behavior.80 In its modern version, the theorem of
Ref. 79 states that, in the case of half integral spins, and in
the limit of an infinite chain, the ground state is either degen-
erate or there are gapless excitations.81 In the former case,
the degeneracy of the ground state should be the result of
spontaneous symmetry breaking. The nondegenerate state
with a gap in the excitation spectrum is impossible for sys-
tems of half-integral spins and, conversely.this state can oc-
cur for systems with integral spins. The exact solution for the
Heisenberg antiferromagnetic chain shows that the ground
state is not degenerate and that the Descloizeaux-Pearson
dispersion relation for the single-particle excitations has the
form

nJ\sink\. (8.1)

Thus, in accordance with the theorem of Ref. 79, the excita-
tion spectrum is indeed gapless.

The difference between systems with integral and half
integral spins in one dimension is more simply investigated
in the so-called nonlinear a-mode!80~83 which may be looked
upon as the semiclassical limit of the Heisenberg antiferro-
magnet with high spin. It can be formulated as a field theory
for the unit vector n(x, t) that describes the local variation of
the direction of the Neel order parameter.

The Hamiltonian of the cr-model is derived from the
standard Heisenberg Hamiltonian

36 = J 2 SsSjti
i

by transforming to the new variables

n* = (8* - SM-+1) {2 [S (S + l)]i/'}

(8.2)

(8.3)

In the functional approximation, and in the limit of high S,
we find from (8.2) that the cr-model Hamiltonian is

d n \ a 1 / d n \ 2 ,„ ..

- (8'4)

where g = 2/[S(S + 1 ) ] 1/2 is often referred to as the cou-
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pling constant and 0 = 2ir^S(S + 1) is the topological an-
gle. The vectors n and 1 satisfy the relations (nl) = 0, n2-» 1.
We can now use the Lagrangian corresponding to the Hamil-
tonian (8.4) to write the action S in Euclidean space (coor-
dinate x + imaginary time T) in the form

S = £ Jd* Jdt[(n)2 iQQ,

where

(8.5)

(8.6)

is the topological charge. In our two-dimensional Euclidean
space, the topological charge is a topological invariant that
assumes integral values.

It is well known that the amplitude for the transition of
a particle from one point in space-time to another is de-
scribed by a functional integral over the trajectory, the
weight of each trajectory being determined by the action. In
Euclidean space, this weight is proportional to exp ( — S /fi),
which readily shows the difference between the contribu-
tions of the topological term in (8.5) for systems with inte-
gral and half-integrals spins. Actually, for integral spins (in
the limit of large S), the contribution of the topological term
to exp( — S/fi) does not differ from ( + 1). Consequently,
in this case, we can put 6 = 0. Conversely, for half-integral
spins, this contribution i s ( — l ) e = ( + l), depending on
the parity of the topological charge. In this case, 0 = IT.
Therefore, for systems with half-integral spins, the topologi-
cal terms leads to "quantum interference" of topologically
different trajectories n(jt,r) in the functional integral for the
transition amplitude.

Let us now examine the question of long range order in
the ground state of the antiferromagnetic chain consisting of
integral spins. We note, to start with, that the action given by
(8.5) coincides for 0 = 0, with the functional limit of
^f/kT, i.e. the effective Hamiltonian for the classical Hei-
senberg two-dimensional ferromagnet with effective tem-
perature g. To this we add the point that the partition func-
tion Z= Tr exp( — $f/kT) can also be written as the
functional integral with respect to the "field" n(xlt x2) with
weight exp ( — ̂ /kT) (we have put r=x2). The problem
of the long range order of the antiferromagnetic chain in
which we are interested here can therefore be solved with the
aid of the two-dimensional classical ferromagnet. According
to the theorem of Mermin and Wagner, long range order
arises in the two-dimensional model only for T = 0, so that
the correlation length is finite for T 7^0 and, as shown in Ref.
47, it increases exponentially as 7"->0. Bearing in mind that,
in this case, the quantity g plays the part of temperature, we
immediately see that the correlation length is finite in the
ground state of the antiferromagnet, and, according to Ref.
47, takes the form

(8.7)

(8.8)

This correlation length corresponds to the gap

A ~ E"1» <r2n/«.

in the excitation spectrum. The ground state of the antiferro-
magnetic chain consisting of integral spin is therefore disor-
dered, nondegenerate, and has a gap in its excitation spec-
trum.

Once we have the results for the one-dimensional anti-
ferromagnet, we can try to answer the following question: is
there a topological term in the action for the two-dimension-
al antiferromagnet? This is a topical question because of the
RVB theory in which there are neutral Fermi excitations
with spin half (spinons). Attempts have recently been made
to gain an understanding of the nature of these neutral fer-
mions in terms of field-theoretic ideas. The basis for this was
Ref. 84 in which it was noted that nonlinear excitations
(skyrmions) arising in the nonlinear (2 + 1)-dimensional
cr-model have spin that can be determined by eliminating the
topological term from the action. For the nonlinear (2 + 1)
-dimensional cr-model with the field n(x,y,t), the topological
invariant is the Hopf invariant H, and the topologically dif-
ferent trajectories are classified by the Hopf index (an inte-
gral). By analogy with (8.5), we can now write down the
expression for the action that corresponds to the field
n(x,y,r) in euclidean space:

S = 1 jj [(n)2 + (Vn)2] drdt+idH. (8.9)

The Hopf invariant takes the form of a complicated integral
of an expression that consists of the components of the vec-
tor n and its derivatives. Hence, by virtue of homotopy theo-
ry, it is the coupling coefficient between curves in the space
(x,y,T).*5 The authors of Refs. 86 and 87 assumed that neu-
tral fermions with spin half, i.e., the spinons of RVB theory,
were none other than the skyrmions, i.e., the topological ex-
citations of the (2 + 1)-dimensional nonlinear cr-model,
where the cr-model with the Hopf invariant in the action
describes the two-dimensional quantum antiferromagnet.

Considerable effort88'92 has been expended in trying to
obtain the action from the microscopic model as a way of
elucidating the situation. It was eventually found that the
topological Hopf invariant in the action for the two-dimen-
sional quantum Heisenberg antiferromagnet with nearest-
neighbor interaction does not appear, so that skyrmions can-
not have half-integral spin. A recent critical evaluation of
the situation110 concludes that the absence of the topological
Hopf invariant in the action is due to the fact that the discus-
sion in Refs. 88-92 was confined to the Neel ground state. If
on the other hand, one were to consider other states, for
example, the "current phase" obtained in Refs. 65 and 70 for
the generalized current phase of Ref. 86b, then one would
hope88'92 to show that the topological invariant will appear
in a self-consistent manner in the action.

We now return to the question of long range order in
two-dimensional Heisenberg antiferromagnets. The g, T
phase diagram can be investigated by the renormalization
group method93 for the system whose action is given by
(8.9), but without the topological term

(8.10)
2g

where g = ficA/JS2a, A is the maximum wave vector, a de-
fines the degree of frustration of the lattice (a = 0 for total
frustration), c is the velocity of spin waves, and /? = 1/kT.
The renormalization group equations for the coupling con-
stant g show that, for T= 0, there is a nontrivial fixed point
gc = 4-rr that describes the quantum phase transition with
the critical indices of the classical three-dimensional Heisen-
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FIG. 28. Phase diagram for the two-dimensional Heisenberg model in
terms of the variables g and t (Refs. 93): 1—disordered quantum region,
2—critical quantum region, 3—renormalized classical region, 4—Neel
state.

berg model. The phase diagram on the (g, t) plane,is shown
in Fig. 28. Thus, when T = 0, the Neel order exists for cou-
pling constants g<gc, and an disordered quantum phase
with excitation gap ( quantum paramagnet ) arises for g > gc .
We emphasize that an increasing g corresponds to small S
and a.

We shall now reproduce the correlation length calcula-
tions for different regions on the phase diagram. In the re-
normalized classical region (for g<gc), the correlation
length diverges exponentially as 7"-» 0:

In the disordered quantum region (g >gc ), the correlation
length becomes independent of temperature as T->0, and is
given by

(8.12)

where v is found to be equal to 1, Finally, for g = gc, it is
found that

, He

' kT
(8.13)

Figure 28 shows the crossover lines between different re-
gimes. The expression for the line with g>gc, which sepa-
rates regions 1 and 2, can be estimated from

For g < gc, the crossover line separating regions 2 and 3 is
given by

1-1-

Let us now return to the inelastic scattering of neutrons
by La2CuO4. The question is: what is the range of values of
the coupling constant g for this compound? The presence or
otherwise of long range order cannot be established because
the onset of the observed three-dimensional order is due to
the interaction between the planes. However, the tempera
ture dependence of the correlation length (cf. Fig. 18) sug-
gests that g < gc in La2CuO4. The theoretical curve based on

(8.11) is superimposed on the experimental points of Fig. 18
for the following parameter values: g/gc =0.685, fe = 0.425
eV A, and is in agreement with the inelastic scattering data
given in Sec. 6. Judging by this comparison between theory
and experiment, the compound La2CuO4 is in the state of
renormalized classical critical fluctuation of the Neel order
parameter for T> TN.

A possible explanation of the unusual spin correlations
in La2CuO4 at temperatures above TN may therefore be
found in the relatively strong quantum fluctuations, typical
for this compound, as indicated by the experimental data of
Sec. 6. We know that classical fluctuations play an impor-
tant part in the two-dimensional case. Polyakov47 has shown
that they lead to a exponential dependence of the correlation
length on temperature. In the quantum antiferromagnet,
quantum effects produce a renormalization of the correla-
tion length of classical fluctuations. In particular, the expo-
nential dependence of the correlation length on temperature
forg < gc is retained [ cf (8.11) ], but the correlation length is
reduced as compared with the classical result. Comparison
between theory and experimental results shows that this sit-
uation occurs in La2CuO4. With increasing frustration pro-
duced by doping, the coupling constant g is found to increase
and, when g>gc (7'=0), the disordered quantum phase
arises with a gap in the excitation spectrum. According to
Ref. 93, this phase is similar to the RVB state in the version
proposed in Ref. 62. On the other hand, if it is found that
g = gc, then the (T = 0) -spectrum of the excitations will
become gapless, and the resulting phase will resemble the
RVB state in Anderson's formulation.

9. Superconductivity due to magnetic degrees of freedom
in systems with weak Coulomb interaction. The discovery of
high-temperature superconductivity has not only stimulated
the development of interpretations, e.g., the RVB theory,
but has also triggered renewed interest in existing theories.
This applies, in the first instance, to theories that take into
account specific properties of the Fermi surface of metals.
One of them is the presence of flat areas on the Fermi surface
that coincide with one another when they are displaced by a
wave vector Q (nesting). This can lead to pairing interac-
tions between electrons via the magnetic degrees of freedom.
Although this mechanism does not provide a complete de-
scription of superconductivity in HTSCs, studies of it have
led to extensive and useful material that will have to be taken
into account when a complete theory of high-temperature
superconductivity eventually emerges.

We begin with the three-dimensional cubic crystal de-
scribed by the Hubbard model and having a "bare" electron
spectrum of the form

= — 2t (cos kx + cos ku + cos kz). (9.1)

We know that, in the random-phase approximation, the spin
susceptibility ̂ (q) has a pole at the point q = Q (the vector
Q is defined below):

l-^Xo(Qo)- (9.2)

which corresponds to a ground-state instability with the for-
mation of a spin density wave, where ;f0(q) is the free-elec-
tron susceptibility

(9.3)
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/(£•) is the Fermi function, and £k = Ek — p.
For a half-filled band (// =0), the Fermi surface has

the ideal nesting for (Q = ( ± TT, + TT, ±ir):
ek + Q = — £k. When q = Q and // = 0, we have the follow-
ing estimate for %0 (q) -.

Xo(Q)' •\n-L, (9.4)

so that, for all values of U, the condition (9.2) is always
satisfied for finite T. When^/0 and T= 0, we have

X o ( Q ) ~ l n - (9.5)

For fixed U and with (9.2) satisfied, there then exists a criti-
cal value of p for which

1 =l/Xo(Q, He, T = 0). (9.6)

We shall be interested in the case p, <Juc, and will determine
the corresponding superconducting transition point due to
the inclusion of the pairing mechanism for electrons via the
fluctuations of the state with the spin density wave in the pre-
transition regime, i.e., when the transition to the state with
the spin density wave has not yet taken place.94 We shall
assume that the superconducting transition occurs at low
enough temperatures, so that Xo is close to its value for
T= 0, and we can use (9.6).

The pairing interaction between electrons in the singlet
and triplet channels is obtained by summing graphs with an
antiparallel ladder and simple electron loops. This leads to94

(9.7)

(9.8)

1 — f 3Co (k'

V. (k .kQ = -

To evaluate Tc, we use the well known formulas for
superconductors with strong coupling (cf., for example,
Ref. 95) in which the coupling constant is given by

o, F (<*)=/ -- - Imy(k ,k ' ,CD)
\ n

\ (9.9)

where K(k, k', co) is the effective interaction between elec-
trons on the Fermi surface and the symbol (...)F represents
averaging over this surface. If we are interested in the partial
contribution to A. due to states of a Cooper pair with given
orbital angular momentum /, and use the dispersion rela-
tions (9.9) we can write

-</((k)ReV(k, k', (9.10)

where/, (k) are the basic functions for the orbital state in the
crystal field.

The coupling constant A, (subject to A, >0) determines
the transition temperature for the superconducting state
with /-type pairing, where

Tel (9.11)

in which coc is the cut-off energy (of the order of the maxi-
mum energy of spin fluctuations that mediate the pairing
interaction).

The basis functions/, (k) should be taken in the strong-

0.10

0.05

-0.05
-3 -2

FIG. 29. The coupling constant A, as a function of /i for £7=4, fic

= — 0.71 (Ref. 94). The quantities t/and/i are expressed in units oft.

coupling approximation. For states with s, p, and c?-symme-
try in a cubic crystal, they are

cos kx + cos ky + cos fe,s:
p: s'inkx, sinkz,

d (eg): cos kx — cos ky, 2 cos kz — cos kx — cos ky,
d(t2g): sin kx sinky, sinkxsinkz, sinkysink2.

(9.12)

The expressions given by (9.7)-(9.12) were used in
Ref. 94 to calculate the constants A, as functions of /u, for
different values of the Coulomb repulsion U. The graph of
A,(fi) is shown in Fig. 29. It is clear that, as the chemical
potential// increases toward its critical value nc, the domi-
nant coupling constant A/ corresponds to a d(eg )-type state
(of course, for singlet pairing) . The coupling constant is too
small for this mechanism to explain high-temperature super-
conductivity.

Nevertheless, we now turn to the two-dimensional case
near the half-filled state. The electron spectrum is shown in
Fig. 11. If the half-filling is exact, the Fermi surface touches
the boundary of the Brillouin zone at^4, B, C, and D, and the
neighborhoods of these points provide a singular contribu-
tion to the density of states

lne (9.13)

(van Hove singularity). Let us consider the contribution of
electron states near this singularity to superconductivity.96

Whatever the electron pairing mechanism, Tc is given by the
following equation in weak-coupling theory:

2*7-,,

so that

Tc ~ CDC exp I— -If

(9.14)

(9.15)

which differs from (9.11). Hence, for small A < 1, the singu-
larity of N(E) leads to a higher Tc.

The contribution of van Hove singularities to Tc must
now be evaluated in greater detail. Simple analysis97 shows
that, near A, B, C, and D (Fig. 11), both the Cooper channel
that corresponds to the interaction of electrons from A and
C, and the zero-sound channel, in which electrons from A
and B interact, are "doubly logarithmic" [cf. (9.14)]. In
this situation, we must sum all diagrams that are of the same
order of magnitude in the double-logarithmic approxima-
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tion, A \n2(coc/e) ~ 1. These are the so-called parquet dia-
grams. A very laborious and complicated method of evaluat-
ing the vertex parts and response functions is described in
detail in Ref. 97. It has produced the singular parts in terms
of response functions, namely, the response Xss to singlet
superconductivity, the response JSDW to the spontaneous
spin density waves, and the response XCD-W to the charge
density waves. The solutions obtained for the response func-
tions include solutions that give independent singlet super-
conductivity, spin density wave, and charge density wave.
However, there is also a solution that corresponds to a possi-
ble transition to a state that is a coherent combination of
superconductivity, antiferromagnetism, and a charge den-
sity wave.

Although, this result is unlikely to be useful in the ex-
planation of the HTSC mechanism, it provides an example
of an interesting and very complicated theoretical problem
in physics, which has arisen in connection with the HTSC
problem.

A further mechanism of electron pairing has recently
been proposed and is based on the existence of antiferromag-
netism.98 10° By analogy with the "bag" model in quantum
chromodynamics, it is referred to as the "spin-bag theory".
Let us turn once again to the three-dimensional Hubbard
model with weak Coulomb interaction USt. Because of
nesting, we then have a spin density wave with wave vector
Q = (77,77), which is responsible for the opening up of a gap
2ASDW on the Fermi surface.

Let us now consider what can happen if we add an elec-
tron hole to this state.

The result of this is an effect similar to the spin polaron.
The addition of the hole reduces the electron charge density
and thus reduces the magnetic order parameter m at the giv-
en point. Since the local value of the energy gap ASDW (x) is
proportional to m(x), it follows that the hole will suppress
the gap in its neighborhood. The energy of the hole will be
reduced in this region. The hole is thus seen to give rise to an
effective potential well or "bag" in its neighborhood, and is
itself trapped by this bag. The hole and its surrounding bag
move through the crystal, and together behave as a Fermi
particle of charge e + and spin 1/2. When two such particles
interact, the effective potential due to the "unified bag" can
be attractive. According to Ref. 98, this attraction is the
interaction that is responsible for superconducting proper-
ties.

The problem now is to cast the physical picture into a
mathematical form. Unfortunately, the situation is not as
favorable as it might appear at first sight. The authors of Ref.
98 have shown that the superconducting gap is given by

Asc « AsDwe-f/aU,

where a is a constant of the order of unity. On the other
hand, serious objections were raised in Ref. 99 against the
validity of the effective interaction (Ref. 98) but, despite
these objections, there is no doubt that this type of pairing
interaction can actually occur. However, to demonstrate the
attractive character of the interaction, we need a more de-
tailed microscopic theory of the phenomenon and, so far, the
question remains an open one.

10. Conclusion. Of the four known classes of copper ox-
ide HTSCs, only two, namely, La2 _ ̂  Srx CuO4 and

YBa2Cu3O7_,5, have been investigated in the necessary de-
tail from the point of view of the magnetic properties. It is
remarkable that these systems exhibit similar behavior as x
and S are varied. Near the stoichiometric composition (x ~0
or (5s; 1, the two systems exhibit the same type of antiferro-
magnetic ordering in the copper sublattice with comparable
values of TN that fall rapidly with increasing x and S, i.e.,
with increasing carrier concentration. Outside the interval
in which there is long range antiferromagnetic order, the
spin glass phase arises at low temperatures.

The magnetic moment of a copper atom is ~0.5^iB and
is independent of carrier concentration. Recent experiments
have revealed the same type of antiferromagnetic order in
the CuO2 planes of Bi and Tl compounds.

Studies of spin dynamics in the La and Y-Ba systems
have also demonstrated their similarity. For example, both
systems probably contain quasi-two-dimensional magnetic
fluctuations which, at about 100" above TN have a correla-
tion length of the order of 100 A. These fluctuations have
high energies, and their velocity is of the order of 0.5 eV A.
More detailed studies of La2CuO4 show that it offers a good
realization of the two-dimensional Heisenberg quantum an-
tiferromagnet with spin 1/2. Long range magnetic order
rapidly disappears with increasing dopant concentration,
but the system becomes a "quantum spin fluid" character-
ized by long correlation lengths and high energy of spin exci-
tations. Studies of the spin dynamics of other HTSCs have
run into the serious problem of availability of high-grade
single crystals.

The most interesting question is the connection
between magnetic and superconducting ordering. In the La
and Y-Ba systems, superconductivity appears for composi-
tions for which there is no magnetic ordering, but there are
exceptions to this rule. For example, in a recent paper.101

neutron diffraction studies were said to have revealed the
coexistence of antiferromagnetic order TN = 230 K and su-
perconductivity (Tc=55 K) in single-crystal
YBa2Cu3O6 55. For other compositions, for which in the su-
perconducting state there is no long range magnetic order,
there is considerable interest in studies of magnetic fluctu-
ations as possible conveyors of the pairing interaction. The
importance of magnetic fluctuations in the subsystem of Id-
electrons of copper, and the participation of the latter in the
superconducting transition, are clearly shown by NMR ex-
periments (see, for example, Ref. 102).

Experimental studies of the magnetic properties of the
copper oxides have triggered the development of a number of
new areas in condensed state theory, e.g., the two-dimen-
sional Heisenberg model with S= 1/2, the nonlinear a-
model, and the Hubbard model. For example, the theory of
resonating valence bonds in the two-dimensional Hubbard
model with its neutral fermions and charged bosons has
grown out of experimental studies of the magnetic properties
of HTSCs. It is still too early to speak of a comparison
between the conclusions of this theory and experiment, espe-
cially since the theory itself is incomplete. However, whether
or not all these ideas will be important for the explanation of
high-temperature superconductivity, they will probably re-
main in the arsenal of the theory of low-dimensional sys-
tems.

The experimental data that have now accumulated pose
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the serious question of whether there is a connection
between magnetism and superconductivity in copper oxide
HTSCs. The question has not been answered, but there are
still hopes that magnetism will be fundamental to high-tem-
perature superconductivity. However, the discovery of the
(K, Ba)BiO3 compound with perovskite structure and Tc

= 30 K, which does not contain copper and does not there-
fore have atomic magnetic moments, has again brought to
the fore the electron-phonon mechanism. It is likely that the
phonon mechanism contributes to Tc, but we do not know
which particular phonon mechanism it is. This is indicated
by the strong coupling effects in the Y-Ba system (see, for
example, Ref. 103). Structural instability and its possible
influence on HTSCs is again attracting considerable interest
to the HTSCs problem. They are reviewed in detail in Ref.
104. Whatever the final solution of the problem of supercon-
ducting pairing in HTSCs, the development of a systematic
theory of this phenomenon will undoubtedly involve the in-
clusion of strong Coulomb correlations in the system of Id-
electrons of copper and their associated spin correlations.

A multiplicity of new results has recently appeared in
the theory of the Heisenberg model of the two-dimensional
frustrated quantum antiferromagnet with spin 1/2. In par-
ticular, it has been shown that the ground state of this model
is a chiral spin fluid, and that the elementary excitations
above it obey fractional statistics. These and other questions
relating to the possibility of superconductivity in a particle
gas with fractional statistics are discussed in detail in a re-
cent review paper1'' which lists the most recent references.

"The compounds Nd2 _ * Ce, CuO4 were recently synthesized10! (with
electrons as carriers).
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