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This review presents a microscopic construction of the thermodynamics and hydrodynamics of
superfluid bosons and fermions with singlet pairing, based on the concept of quasiaverages and
the hypothesis of reduced description. Here we do not assume that the Hamiltonian possesses any
dynamical symmetry. This has permitted obtaining results pertaining to both Galilean-invariant
and relativistic systems. Account is taken of dissipative processes. The kinetic coefficients are
presented in terms of the correlation functions of the flux operators. The approach is extended to
solutions of quantum liquids. The influence of an external ac field on superfluid systems is
studied, and the low-frequency asymptotic behavior of the Green’s function is found in the
hydrodynamic approximation. The symmetry properties of the equilibrium state are formulated,
and the thermodynamics is constructed for superfluid Fermi systems with triplet pairing (the
superfluid phases *He-B and *He-A ). For the latter the flux densities of the additive integrals of
motion are found in a state of equilibrium and the equations of ““ideal” hydrodynamics are

derived.

1.INTRODUCTION

At present the theoretical foundation for describing
both equilibrium and nonequilibrium states of systems with
spontaneously broker symmetry in statistical mechanics is
the concept of quasiaverages of N. N. Bogolyubov' and the
method of reduced description® developed by N. N. Bo-
golyubov to study the dynamics of physical systems based on
the Liouville equation. This approach enables one to obtain
both the thermodynamics and the equations of motion for
such macroscopic systems.

One of the examples of systems with spontaneously
broken symmetry is a superfluid liquid. The publications of
N. N. Bogolyubov** established the connection of the phe-
nomenon of superfluidity with that of Bose condensation,
and presented a microscopic derivation of the equations of
ideal hydrodynamics of a Galilean-invariant superfluid liq-
uid.

We should note that most of the physical results for
systems with spontaneously broken symmetry were ob-
tained on the basis of a phenomenological approach. This
primarily pertains to the phenomenon of superfluidity of He
11, for whose description the two-fluid Tisza-Landau model
proved effective. It is precisely within the framework of this
model that L. D. Landau® constructed the equations of ideal
hydrodynamics of superfluid He II, while dissipation pro-
cesses were taken into account in the studies of I. M. Khalat-
nikov (see Ref. 6). Subsequently the phenomenological ap-
proach was applied to other systems close to superfluid in
their properties. In particular, such systems include super-
conductive systems and quantum crystals (see Refs. 7-9).

In recent years intensive studies have been conducted
on superfluid *He (see, e.g., Refs. 10-17). In contrast to He
I1, in which the invariance of the equilibrium state with re-
spect to phase transitions is broken, in the case of *He the
symmetry breaking is more complex: in addition to breaking
of symmetry with respect to phase transitions, symmetry
breaking also occurs with respect to three-dimensional rota-
tions, both in coordinate and in spin space. Consequences of
this are a more complex structure of the order parameter, a
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vortical character of superfluid flow, and the appearance of
varied magnetic properties.

This review presents a microscopic construction of the
thermodynamics and hydrodynamics of superfluid Bose and
Fermi systems with singlet pairing on the basis of the meth-
od of quasiaverages and the method of reduced description.
Here we have not assumed that the Hamiltonian of the sys-
tem possess Galilean invariance. In particular, this has en-
abled both obtaining results pertaining to Galilean-invariant
systems and treating relativistic systems. Moreover, the in-
fluence is studied of external fields and the low-frequency
asymptotic behavior is found of the general Green’s func-
tions G }; (for arbitrary quasilocal operators @ and b) in the
hydrodynamic approximation. Finally, the symmetry prop-
erties of the equilibrium state are formulated on the basis of
the concept of quasiaverages, the thermodynamics is con-
structed, and the fluxes of the additive integrals of motion
are found for superfluid Fermi systems with triplet pairing
(the superfluid phases *He-A and *He-B).

This review is based principally on the results of Refs.
18-26.

2.STATE OF STATISTICAL EQUILIBRIUM
2.1. Conservation laws

In describing the state of statistical equilibrium and the
nonequilibrium dynamics of condensed media, the conser-
vation laws play a substantial role. In the Schrodinger repre-
sentation the density operators ¢, (x)={e(x),7, (x),
éd (x)} corresponding to the additive integrals of motion
v, = §@°x¢, (x) (@ = 0,1,2,3,a) satisfy the differential con-
servation laws

[196, By (0] = i [Per Eur (0] = — "ng %

B3

(2.1)

Here the £, (x) ={g, (x),}, (X), Ju (X)} are the current-
density operators of the additive integrals of motion, 7= 5/0
is thg Hamiltonian, %, =y, is the momentum (k = 1,2,3),
and v, are the integrals of motion associated with the inner
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symmetries of the system. Usually the operators y are the
operators for the number of particles N and the spin S.
Upon using the operator identity

65k (x)

A BWI=—iIB, a@)———.

br(x) =i 5 dox'x, 51 dA[a(x— (1 —A) x), b(x +Ax")],

which i Is valid for arbltrary quas1loca1 operators a(x), b(x)
(hereA =(d®xa(x) and B= §d3xb(x)), we find the expres-
sions for the operators of the flux densities {,, (x) in terms
of the operators of the densities of the additive integrals of
motion &, (x) (cf. Refs. 18 and 27):

e (X) = ’?j &ex'x, j' dA e (x — (1 —A) X'), & (x 4 AX")],
T (X) = —e(X) 8 + i jdax’x; 51 dA 8 (x — (1 — ) X)),

W (x 4 Ax")], (2.2)

B (x) = i 5 &' x, ‘f A [e (x — (1 —A)x), &(x 4 Ax)].

In deriving these formulas we have taken account of the fol-
lowing symmetry properties of the energy density £(x):

([P e@)= =2 15, e(x)] =0.
Ox,,

In studying the phenomenon of superfluidity one usual-
ly assumes invariance of the physical system with respect to
Galilean or Lorentzian transformations, which leads to cer-
tain transformation properties of the Hamiltonian. A feature
of the present treatment is that only the requirements of
translational and phase invariance are imposed on the Ham-
iltonian. This approach allows one to describe a broader
class of superfluid systems (we shall term them everywhere
below generalized; an example of such a generalized system
is the electron gas of metals), while also it permits one to
treat as special cases in unitary fashion systems having Gali-
lean or Lorentzian dynamical symmetry.

2.2.Introduction of quasiaverages

For systems having spontaneously broken symmetry,
the state of statistical equilibrium has a lower symmetry than
the symmetry of the Hamiltonian. A convenient concept
that enables describing such systems is the concept of quasia-
verages.

According to N. N. Bogolyubov' (cf. also the mono-
graphs?’°) the averages in a state of statistical equilibrium
(with broken symmetry) are defined by the formula

(...)=limlim Spwy ..., wy=exp(Qy— Yoy —vY, /)

v-30 V-s00

(2.3)

Here Vis the volume of the system, the Y, are the thermody-
namic forces conjugate to the additive integral of motion,
and Q, is the thermodynamic potential, which is defined by
the condltlon Sp w, = 1. The operator 7 possesses the sym-
metry of the phase under study and removes the degeneracy
of the state of statistical equilibrium. The limit
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Q
o = lim lim =
v—t Vox
defines the density of the thermodynamic potential. For qua-
siaverages (in contrast to ordinary averages) the principle of
spatial attenuation of correlation always holds. That is, we
have

(@ (%) b)) gy (@ (00 B,

where a(x) and 5(y) are arbitrary quasilocal operators [the
correlation of the operators d@(x) and b(y) can decline by a
power law].

It is known from the phenomenological theory that an
adequate description of the thermodynamics and kinetics of
degenerate systems requires introducing into the theory new
thermodynamic parameters g, which are not associated with
the conservation laws, but arise from the symmetry of the
equilibrium state being studied. Within the framework of the
microscopic approach this implies that the operator f
amounts to a certain linear functional of the order-param-
eter operator A(x),

f= §d3x (g(x, t; ) A (x) + He. ). (2.4)
Here g(x,t;,q) is a c-number function of the coordinates and
the time, which determines the equilibrium values of the or-
der parameter A(x,t) = (A(x)), and which depends on the
thermodynamic parameters ¢ that fix the symmetry proper-
ties of the physical phase being studied.

The dependence of g(x,t;q) on the coordinates x and
the time ¢ arises from the fact that the introduction of the
term vY,finto (2.3) can break the invariance of the equilib-
rium statistical operator with respect to translatlons Inspace
and time. That is, we have [w(¢),#7] #0, [w(¢), @ 1#0,
where w(?) is the equilibrium statistical operator

w(f) ==lim 11m wv(Y g 1),

v—0 V-

(2.5)

which depends on the thermodynamic forces Y, and also on
the parameters ¢ that determine the symmetry of the phase
being studied. (We should understand the taking of the limit
in (2.5) in the sense of averages (cf. (2.3)).)

To concretize the further presentation, let us examine
first a very simple superfluid system~—a one-component,
spin-free Bose liquid with the order-parameter operator
A(x) = ¥(x) [¢(x) is the operator for annihilation of a par-
ticle at the point x]. In line with the idea of Bose condensa-
tion, the state of statistical equilibrium of the superfluid Bose

liquid is determined by the condition
[@, P —pelN) = 0, [}, FPe— 0sN] = (2.6)

(the symmetry condition), where p, is a thermodynamic
parameter that has the meaning of the superfluid momen-
tum (momentum of condensate particles). Since we have

e-"i%"lp(x’) e"j‘)" = P (X4 X), eV (x) ool = gioy (x), (2.7)

we can easily see that g(x,r) = exp[i(px + @(¢#))], where
@(?) is a certain function of the time.
We note further that

lwy (), Y 6 + YF + YN+ Y fl=0.

Since, owing to the canonical commutation relations the op-
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erator [f,d(x)] is also quasilocal, while the average of the
quasilocal operator is assumed to be finite, we have

lim lim vSpwv(t)[f a(x)j= .

v—0 Voo
Therefore we have
[@(f), Y, + YF+ Y N =0.
Thus, upon taking account of (2.6), we have

w(t), % + poN] = 0, p* =TI

a

(2.8)

We shall call this relationship the stationarity condi-
tion. The statistical operator w(¢) must satisfy the von Neu-
mann equation. Therefore, using (2.8) we obtain

W (¢ 4+ 7) = ety () emirelT (2.9)
and hence, according to (2.4) and (2.9) we find
gi(x, y=exp(ip(x, 1), @(X, f)=px+pt42x (2.10)

In summarizing we can say that, in the superfluid sys-
tems being studied, the state of thermodynamic equilibrium
is characterized by the thermodynamic forces Y, associated
with the additive integrals of motion (¥,=7"" is the reci-
procal temperature, Y, /Y,=v,, is the velocity of a normal
component, and Y,/ Y,=u is the chemical potential), and
also with the superfluid momentum p and the phase
Y =@(0,0), the existence of which arises from the breaking
of the symmetry of the state of statistical equilibrium. We
stress that the dependence on the thermodynamic variables p
and y is introduced by means of infinitely small sources, and
that in a state with broken symmetry this dependence is
maintained as v—0.

Let us introduce the unitary operator

Uy () = exp(— igdsxcp(x, Hn (x)) ) (2.11)

Upon choosing the function of (2.10) as @(x,t), we easily
see that
Ug () wy (1) Ug () = w,

= exp [Qv — Y56, — Vi (Pe + pelN) —Y,N —vY,

X [ (b () + ¥+ ()], (2.12)

where

My =Uy#U;, U, =exp (—ip Sd3x xﬁ(x))) . (2.13)
Since [#7,,7 ] =0, then, according to (2.11) and (2.12),

we have

Spwy () P (x) = &9 Sp @ (0) = e'vxhn, (2.14)

Thus the quantity ¢(x,¢) amounts to the phase of the equi-
librium order parameter Sp w, (¢)¥(x) (one can say that

Spw,¥(x) =Spw,¥™ (x)).

2.3. Thermodynamics

In line with the definition (2.3) and (2.10), we can
easily see that the density of the thermodynamic potential &
does not depend on the phase y and is a function of the ther-
modynamic parameters Y, ¥,, Y2p? and yp. Upon differ-
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entiating @ with respect to the thermodynamic forces Y,
and the superfluid momentum p, we obtain

X —Spuw'ey(0)=Spwe(0)=e¢,

BY

‘;‘; Spw’ (7 (0) - pin (0)) = Spw (0) = m, (2.15)
%0 Spwn (0

A pwn (0) =n,

. 07,
% _ Jim lim ( Sp wy
opy

5p[ v—0 Vox

Y N
TISpwVN) .

Upon taking account of the formulas of (2.13), we find

6.%’ ~ ~
lim lim — Sp w, P = L§d3xx1 Sp w’ [gp(x), 7(0)],
V=0 Voo V ap
&y = Upelp.

On the other hand, upon averaging the expression (2.2) for
the operator of the flux density of the number of particles
j, (x) _§4, (x) with the statistical operator w, in agreement
with (2.12) we have

ji=Spwji(x)= —ijdaxx, Spw’ [2p(x), n(0)]. (2.16)
(We have taken account of the fact that [w’, 5’] =0).
Therefore we have

(2.17)

Thus we have found an expression for the flux density of the
number of particles in terms of the thermodynamic potential
o. Upon using Egs. (2.15) and (2.17), we find the following
fundamental thermodynamic equation:

do =ed Yo+ mdVe+ndY, 4 (Yo 4 Ym)dp, (2.18)

which has the meaning of the second law of thermodynamics
for reversible processes in a superfluid liquid.

In constructing the hydrodynamics of an ideal super-
fluid liquid, and also in studying the low-frequency asymp-
totic behavior of the Green’s function, we shall need expres-
sions for the averages in the state w of the flux-density
operators of the momentum ¢, and the energy g, in terms of
the thermodynamic potential @. In proceeding to find these
quantities, we note that, according to (2.2) and (2.12)

tir = Spw £ (0) = — { & (0))odit — i {[Tir &5 (0)] Do+ Pie,
(2.19)

where the average is taken over the state w;,(...), = Sp w....
in this formula I';; = fd®xx, 7, (x) is the generator of the
group of arbitrary linear transformations x, — x| = a; x,.
The latter statement stems from the fact that the operators
¥(x) and ¥’ (x) = P (ax)|det a|'/? satisfy identical commu-
tation relationships, and hence are interrelated by the uni-
tary transformation U, :

Uab (x) Uz = ¢’ (x) = |det a|* ¢ (ax).

Upon treating the infinitely small transformations a
=08y +&u |§] €1, we easily find that U, =1 — &, Ty
The generator I'; satisfies the following commutation rela-
tionships:
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([T, n(0)] = — -G[sz; ),
i [Tty 1 (0)] = — 807 (0) — Sy, (0). (2.20)
Upon using the first of these relationships, we find that

fie = — (&5 (0))o 8v— i {T'as, & (O]o + i,

where & (x) =&, (x) + poft (X) + v(#(x) + ¢ (x)).
From the condition Sp w' = 1 we obtain (cf. (2.12))

= Spexp (— ij doxh (x)) , B0 =

(2.21)

Yo (x) +Yim (x).
(2.22)
Upon defining the operator ﬁa (x) by the formula
Udh (x) Uz = ha(ax)|detal,
we find that

e = SpUzexp (-— i d®xh (X)) U; = Spexp (-

(2.23)

§ doxh, (x)) ,

Va

(¥, =V |det a|). Since the potential {} is proportional to ¥,
we have

exp (— M?—tal) = Spexp <—5 d*ha (")) .

Hence, upon taking account of the fact that deta
=1+ 6,,&, for infinitely small transformations, we obtain

ok, (0
Spw( a()) =—(36k[,(:,)=lim Qv .
agkl E~ Vo

On the other hand, Eq. (2.23) implies that

ok, (0)
08y

[T R(0)] = ( ) + 84 (0),
=0

and hence

i ([P, B Oo -+ 801 A (0))0 = 0B,

Upon substituting into this formula the expression for h(x)
and taking account of (2.20), we obtain from (2.21) an
expression for the momentum flux density in a state of equi-
librium

(2.24)

To find the average in a state of equilibrium of the ener-
gy flux density we shall employ the following theorem?®
Theorem. For an equilibrium statistical operator

w = exp (Q — jdsxﬁ(x)) ,
v

that satisfies the condition of spatial homogeneity (2.6), the
Jollowing equation holds

Q= jdsm Spw[h (x), h(0)) =0. (2.25)
To prove this relationship, let us calculate the trace in
the expression for @, in the system of eigenvectors of the
momentum operator P=2 — pN P|P,a) P, |P,a) (the
index a numbers the remaining quantum numbers). Conse-
quently we can represent the quantity Q, in the form
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Qe=—

(2n),jdap 2t exp(Q — fip) (1 + fip) 2.

Here the quantity h p is an operator in the subspace of eigen-
vectors |P,a) of the operator P, belonging to fixed eigenval-
ues of P:

<P, a”d”xﬁ(x)lp, b> = {a|hp|b);

Here tr denotes the operation of taking the trace in the sub-
space of the vectors |a). Since we have

lim ﬁp—> 0o,

Pt
as is necessary for the following average to be finite:
Spwa(x) = (2n)® 5 d®P tr exp (@ — hp) (P | a (0) | P),

we have 0, = 0. Upon using the explicit form of the opera-
tor h (x) and taking account of the formulas (2.2) and
(2.25), we find

Yo (Yida + Yobar) =

Here we have §, =Sp wﬁ‘a S =Sp wg‘ak The term
vYof(x) does not contribute to the commutator in the inte-
gralin (2.25), since the operators § (x) and f (x) are quasi-
local, while it is assumed that the mean of quasilocal opera-
tors exists as v— 0. Starting from the formulas (2.17) and
(2.24) and the relationship (2.26), we arrive at the follow-
ing expression for the equilibrium average energy flux den-
sity:

(2.26)

(2.27)

Evidently, we can write the formulas (2.17), (2.24),
and (2.27) for the flux densities in the following form:

3 oY
v, Y,

dw dp,

35, 3, (2.28)

Now let us represent the expressions for the flux densi-
ties in a form corresponding to two-liquid hydrodynamics.
The thermodynamic potential o is a function of ¥,, Y, Y,,
p% and yp. Let us introduce the quantities p, 0., and m,
which are functions of these thermodynamic variables:
2 0o * Pp__ . dw
= RO

(2.29)

—_ ma,
Y, 0p? ;1

Then, upon taking account of (2.29), the fluxesj,, ¢, and g,

acquire the form

n=—2Y

°aw

Pp PsP
]k = ——'Un -+ s—k, lLip = — '—61k + PnVniUnk -+ Ps—— £iPx ;
m m’ mz
(2.30)

Qe = Une [—Yi‘i‘s“l‘(n—‘—)/’o] 0P Po-
0

m m’

Hence we see that p, has the meaning of the “mass” density
of the normal component, while p, is the “mass” density of
the superfluid component. If we interpret the quantity m as
the effective “mass of a particle”, then we must interpret
p/Mas the superfluid velocity. We note that generally the
total density p=n = Mdw/3dY, does not coincide with the
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sum of the normal p, densities:

P#Pn +Ps-

In this section the superfluid liquid was characterized
by the order-parameter operator—the field Bose operator 1.
We note that actually the structure of the order-parameter
operator involved with the statistics of the particles (Bose or
Fermi) is inessential. It suffices to consider that the order-
parameter operatQr KA (x) is translationally invariant
(A(x) =exp( — iZx)A(0)-exp(i#x)) and satisfies the
equation

(n(x), A(x)]=—gAx)6(x —x),

and superfluid p

(2.31)

Here the quantity g characterizes the system and is not asso-
ciated with its state. In particular, for bosons we have
Ax) =9¥(x),g= L For fermions with Cooper pairing in
the s-state we have A(x) = ¢, (x)¥, (x), and Eq. (2.31) is
satisfied when g = 2.

For relativistic superfluid Fermi systems we must take
as the order-parameter operator the relativistically invariant
operator ¥(x)¥* (x), where ¥(x) and y° (x) are bispinors
conjugate and charge-conjugate with respect to ¢(x).

According to the formulas (2.15) and (2.28) the densi-
ties §,, and the flux densities {,,, in a state of thermodynamic
equilibrium were represented in terms of the thermodynam-
ic potential @, which was a function of the variables Y, and
p. This notation of the formulas is usually employed for Ga-
lilean-invariant systems. Moreover we note that we can re-
write Egs. (2.15) and (2.28) in an equivalent form if we
choose as the independent variables the quantities
Y, = (Y4, Y, ),p, = (Po,pi ) and transform from the poten-
tial @ to the usually employed Gibbs potential ' = @/ Y

v
M= LMY= dm Y + u 00"
0[7“ 0pv

(2.32)
Here we have introduced the relativistic notation
=(nyj, ), t® =¢, t% =¢q,, t* =1,, ** =7, and have as-
sumed that the raising and lowering of indices is performed
by using the metric tensor g, (8oo = — 1, 8 =du,
Zox = 0). We shall use these formulas in the following sec-
tions in treating relativistic systems.

3.HYDRODYNAMICS OF A SUPERFLUID LIQUID
3.1. The method of reduced description

To study the evolution of spatially inhomogeneous
states of a superfluid liquid on the hydrodynamic level, we
shall use the hypothesis of reduced description, according to
which the nonequilibrium statistical operator p(¢) at times
t> 7, (1, is the relaxation time) depends on the time and on
the initial statistical operator p=p(0) via a certain set of
parameters. For a superfluid liquid such parameters are the
density of the additive integrals of motion §, (x,?) and the
phase ¢ (x,?) of the order parameter:

PO oflx tp) ox t, )},
(3.1)

LX) =Spo@ 9 &, @) =ImlnSpo, ¢)p(x).

Since [;’/,.7/}] = [9’/,1/\\/'] =0, then the equations of (3.1)
yield the formulas
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i

et {Le (X, 1), @ (X', 1)} et #T

=o{lu(x,t+ 1), e, t+ 1)},
e (L (, 1), (X, D) e

= o {La(x+ K, 1), ¢ (x+ X, )} (3.2)
#N e (L (X, 1), 9 (X, D} e = o (L (X', 1), (X', )+ ¢).

Upon differentiating the first relationship of (3.2) with
respect to 7 and assuming that 7 = 0, we obtain a functional
equation for o({,p):

. = (gx (oG o GO(L q>)
i[96, o ¢ f‘”(agu() Loty + 269 Lw())
(3.3)

The parameters of reduced description &, (x,f) and @(x,f)
satisfy the equations of motion

Lo (x) = La (x; L), 0 (¥)),

(3.4)

fa(x, ) = — kaSp ot ) Ear (%) =

Spa (L, 9) [#, b (x)]
X, 1) = Re
P, 0 Spo(Z, @YX

=L, (x)=Lo(X5(0), @ ().

In the spatially inhomogeneous case the superfluid momen-
tum is associated with the phase by the formula
p(x) = dp(x)/dx.

To find an unambiguous solution of Egs. (3.3) and
(3.4), we need a certain boundary condition that has the
meaning of the ergodic relationship. The ergodic relation-
ship expresses mathematically the fact of transition in the
region of large ¢ of an arbitrary nonequilibrium state to a
state of statistical equilibrium. Let p be the initial nonequi-
librium statistical operator that satisfies the condition of
spatial homogeneity [p, 7, — p, N 1 =0. Then in the pro-
cess of evolution a transitlon occurs rapidly, in the time 7, to
a state of statistical equilibrium. This means that the rela-
tionship is fulfilled that

p(f) = e~ Ftpet #¢

o W @, (3.5)
which should be understood in the sense of averages.

Let us find the dependence of the thermodynamic pa-
rameters Y, ,@(x,t) that enter into w(r) (cf. (2.3)) on the
initial statistical operator p. Since [N,{,, (x)] = 0 and the
statistical operator p(#) in (3.5) satisfies the condition
[p(t), Z —p N1 =0,Sp p(1)§, (x) does not depend on x
and ¢. Therefore we have

Spw () L2 (0) = Spp (0) & (0).

This equation determines the dependence of the thermody-
namic parameters Y, on the initial statistical operator p.

Upon introducing the phase of the quantity (x) in the
state p(1): ¢¥(¢) = Im In Sp p(1)$(0) (we have taken ac-
count of the fact that [p(¢), Z, — p. N] = 0), we can easily
show by using (2.14) that the quantity y in (2.10) is deter-
mined by the formula

(3.6)

x—cp(0>+§dr<<p(r)—po>

0

(3.7)

[since @(7),_ .. —=poT + Y, theintegral convergesas7— o |.
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This formula solves the problem of finding y as a functional
of p. We shall rewrite formula (3.5) in the form

o) i@ (Ya P, Pt + %)

= lirr; "gim wy (Y, P, Pof + %), (3.8)
where
wy (Va, P, X) = exp{Qy — Yata — ¥, [ d®x (9 (x)
x exp[— i (px+x)I+2. ¢}, (3.9)

Together with Egs. (2.10), (3.6), and (3.7), it defines the
ergodic relationship for superfluid Bose systems.

Let us study the average a(x)=Spo({(x’),
@(x) Ya(x). Owing to the principle of attenuation of spatial
correlations, the fundamental contribution to this average
will come from those values of the parameters £, (x') and
@(x) whose value of the argument x’ is close to x. Accord-
ingly, let us expand o(§,@) in a series in the gradients of the
parameters § and @. Here we must bear in mind the fact that
the quantity Vg is not small; however, the second derivative
VVgis of the order of V. In line with what we have said, we
have

St =0 [c (X), @ (X) + (%, — xe) a——‘a"j:’ .

That is, the statistical operator &'is a function (rather thana
functional) of the arguments §(x), ¥(x), and dy(x)/dx,.
A consequence of Eq. (3.2) is the spatial homogeneity of this

- A
state, i.e., [c(rl)(x),] Z — NV¢(x)] =0. Upon comparing
(3.1) and (3.8), we obtain

7 (L, 009+ 22 —wly @, 2O o),

(3.10)

Here the parameters Y, (x) as functions of § (x} and p(x) are
determined by the equation Sp w(Y,p,¢) §,(x) =&, (x).
Upon substituting the operator &’that we have found into
Eq. (3.4) and taking account of (3.10) and the symmetry
properties (2.5) and (2.8), we arrive at the following equa-
tion of superfluid hydrodynamics in the principal approxi-
mation in terms of the spatial gradients:
Yot YVo

. ©® .
bo=—Vidat, ¢=py="—"1—".
o

(3.11)
0)

Here §, and 2 «k are associated with the thermodynamic

potential by the formulas (2.15) and (2.28). Since the phase

1 enters into the right-hand sides of these equations only via

V1, but not explicitly, the latter equation (3.11) is usually

written in the form
p=Vp,, rotp=0. (3.12)

Let us introduce into the treatment the entropy density

s = —lim lim ViSpwvlnwv= — o+ Yl

v—=20 Voo

Upon using Eq. (3.11), we find that

vy sY,
§= .
) Y,
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This implies that entropy transport is effected by the normal
component of the liquid, which moves with the velocity
v, = —Y¥,~ . ‘

We note that the ergodic relationship (3.8) is necessary
also in taking account of the next—the dissipative—approx-
imation.

3.2. Galilean- and relativistically invariant systems

Let the equations of quantum mechanics be invariant
with respect to the Galilean transformation, which corre-
sponds to the unitary operator

Uv=exp(—imvj'd3xxﬁ(x)), (3.13)

where m is the mass of the particle. In the unitary transfor-

mation (3.13) the operators §, (x) are transformed accord-

ing to the formulas

UnUs = n(x), Us(x)Ub=xX +mvn(x),
?(X) Aﬂ(X) A“(X) : A()+ v n(x) (3.14)

Uve (x) Uy = g(x) 4 vau(x) + -2—mv’n (%).

Thus the transformed operators U, &a (x) U are a linear
combination of the original operators §a (x) with coeffi-
cients that depend on the transformation parameters v. We
note that Eqgs. (3.14) and (2.2) imply the coincidence of the
expressions for the mass flux density operator with the mo-
mentum density operator, i.e., mj, (x) = 7, (x). A conse-
quence of Egs. (2.2) and (3.14) is the transformation laws
for the flux-density operators #;, (x) and g, (x):

Ut (x) US = T (X) + Vite () + 07 (X) 4 mowen (),
Usge Uy = g (%) + it (X) + 00,7; (x)
+ ve (x) + ‘;_’ (T (%) 4 moent (x)).

Upon using these formulas we easily see that the follow-
ing relationship holds for the thermodynamic potential of
the superfluid liquid:

©Yeq p) = m(Y;, 0)= m(Y;),
(3.15)

Yo=Yy YimVYidYoor Vi Y,+muos+t Yo'"T”’ :

Here we have v, = p, /m. The thermodynamic potential @
of Galilean-invariant systems with account taken of rota-
tional invariance is a function of the three independent vari-
ables Y, Y% and Y,. The transformation w-uw'
= U,wU;" (cf. (2.12)) corresponds to a transition to a
reference system where the condensate is at rest, while the
parameter v=pm =v, has the meaning of the superfluid ve-
locity. In view of (2.18) and (3.15), the second law of ther-
modynamics for Galilean-invariant superfluid systems has
the form
do =8 dYq,

vz

S

£ =&-— VT - 5 n, 8 =x—mva, A'=n.

A consequence of Egs. (2.29) and (3.15) is the equations

=1, 05 =0 — O (3.16)
In the special case that we are discussing they lead to coinci-
dence of the equations (3.11) that we have derived with the
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equations of two-liquid hydrodynamics of L. D. Landau.
Now let us study the case in which the system is invar-
iant with respect to the Lorentz transformations
xt —»x"‘ = a4x” (x*=1,x* =x;). In this case the 4-vector
= (7, @ ) and the charge operator Q have the trans-
formatlon properties

=UQU:=0Q (u,v=0,1,23).
(3.17)

P — UL = 5,0

Here U, is a unitary transformation in Hilbert space corre-
sponding to the Lorentz transformation, whose explicit
form we have not written out. The equilibrium statistical
operator of a relativistic superfluid liquid has the form

@ (Yy, pu, @) = exp [Vu) — Y, P*—Y,Q
—nY, S do® {P (x) exp[— i (pvx¥ + )] + H.c. }] )
' (3.18)

Here we have Y,=(Y,Y,), p,=Pupr)s Po=(Y,
+ Yp) /Y, (for simplicity we assume that the complex sca-
lar field ¥ corresponds to the particles). Equations (3.17)
and (3.18) imply that

Usv (Y, pu, @) Us = w (Yy, P @),

Y;l = Yval\;v p;‘ = pva:’h (P, = (P

Thus the quantities Y, and p, form 4-vectors, while the
quantity ¥, = — Y, p* amounts to an invariant. The condi-
tion of spatial homogeneity (2.6) and the condition of sta-
tionarity (2.8) are combined into a single relativistically in-
variant relationship

[w, P* — prQ] = 0.

Since the volume ¥V is not a relativistic invariant, then,
instead of the density of the thermodynamic potential w, it is
expedient to transform to the relativistically invariant po-
tential ' = w/Y, (the Gibbs potential), which has the
physical meaning of a pressure. The potential @’ is a function
of the invariants Y2, p?, and Y, p*:

o'=o’ (Y% p?, ¥,p*).

Therefore the quantity /# amounts to the 4-vector of the flux,
while #* is the energy-momentum tensor [see (2.32)]. The
equations of ideal hydrodynamics of a relativistic superfluid
liquid, in agreement with (3.11) and (2.32), have the form

(3.19)

TR R ap* apY
ot 0 o p __L=0.

axY 9x dx,, 0xu

(3.20)

= y

Here the latter equation was derived by combining the equa-
tion of motion for the superfluid momentum with the condi-
tion of potentiality of flow (3.12), while the 4-momentum p,,
isconnected to the phase @ by the relationship p, = dg /dx”.
The entropy density s = — o + Y, £, , according to (2.32),
is equal to

)

S—S—quay

It is combined with
)

= —sY ,/Y, into the 4-vector

the entropy flux density s*
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@ .
= Yhy, %
ay

v

which amounts to the 4-flux of entropy. A consequence of
Eq. (3.20) is the condition of adiabaticity of flow of the su-
perfluid liquid

(0)
os* o

oM

The system of equations of ideal hydrodynamics (3.20) de-
rived in the microscopic approach is fully equivalent to the
equations of Ref. 30 on which the phenomenological ap-
proach is based.

3.3. Relaxation processes

Totake account of the dissipative terms in the equations
of hydrodynamics (3.11), we must find the statistical opera-
tor o(£,¥) in the linear approximation in the gradients VY,
and Vp, . This problem was solved in Ref. 19. Without stop-
ping on the method of deriving this operator, we shflll)l pres-
ent the expressions for the dissipative fluxes ¢ ax, L , and
the kinetic coefficients.

We can write the equations of hydrodynamics of a su-
perfluid liquid with account taken of dissipation processes in
the form

. © w . W
Lo = — Ve Gar + Lar)y, ¢ = po+ Lo.
Here the dissipative fluxes E j,,‘. and L . have the form

(1) ~r ~r oo ~, o
Lo = ViYpl Cpt, Ca) + ViapTI(h » Cak),
(3.21)
(l) e’ A’ am A’ AI
Lo =ViYel Cp1, )Y+ V,-(;[ W, ")

and the operators 2 Lks h, are defined by the formulas

<§ak>

Tar (%) = Tan (x) — —22 85 (),

(3.22)

R ()= g [, p (R e — (x)ew*]—ica ().

The quantities

I@ b= j dtjdax (et @ (x) —- (@) B (0)) (3.23)

-0

are the generalized kinetic coefficients and they satisfy the
Onsager principle

1(a, By=1(@, a).

Moreover, Eqgs. (3.22) and (3.23) imply the properties
I@ @=0, I*@ b<I@ald, b,
I@ar, o) =0, 1, &) =0.

The equation of motion for the entropy density in the
approximation being studied has the form
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@ oo ®
s+ Vi (SUne + Sk)— I, se =Y Eak+

1 = VkYaCa.k + Ve —qu

= I(kaa'z;k -+ Vlzi . ﬁ', V.Y - Zé, + V,a_m_ R =0,
Opy, ap,

0 @
Here s, and I are respectively the dissipative flux density

and the entropy production.

Since the statistical operator w is a function of two vec-
tors—the normal velocity and the superfluid momentum—
the kinetic coefficients have a rather complicated tensor
structure. If we neglect the anisotropy, having assumed
p=20,v, =0in (3.3), then the superfluid liquid being stud-
ied is characterized by the following kinetic coefficients:

1 ~ s FYZ
= — —_ — =
x=ol@—n', @—u)=0

= ey iy y=_"Ya
D-—37,1(q m,J)(u— Yﬂ),

1 YR 1 B' ?"
0=—10,i1=0, N= 17! tw tu) =0,

5 .
t=Fie— o 8uli, b =3—;—1(tu, k),

l i i 1 Al AI
b= g G T) =0, Ly =1 B R) = 0;

Here »x is the heat conductivity coefficient, D and o are the

diffusion coefficients, and 7, £, &5, and _(,’ 5 are the viscosities.
(@) 1

In this case the fluxes s &, _(,’ ak»and L have the form

(1)
Sk = ——VkT kap,, hk = —DVkT— kap,,

(1)
bir = — Mt p— Oy [Clvt (Y_ a—) + Cthvnz]

10
Lo = G+ GV, -2
[

Here wehaveu,, =V, v,; + Vv, — (2/3)6,.V,v,,. Thus,
if we neglect anisotropy effects, the superfluid liquid being
studied is characterized by seven kinetic coefficients.

Let us examine the simplifications to which Galilean
invariance leads in the structure of the dissipative fluxes. In
this case the kinetic coefficients I(4,b) are functions of the
difference between the normal and superfluid velocities.
Moreover, upon taking account of (3;22)& we see that
§ 4 =0. Hence the kinetic coefficients I({ 4, & 4;) vanish if
one of the indices a or 3 equals 4. Therefore the dissipative
fluxes of a Galilean-invariant superfluid liquid with
v, — v, #0 are characterized by 14 independent kinetic co-
efficients.'” When v, — v, = 0, the number of kinetic coeffi-
cients is reduced to five and the structure of the dissipative
fluxes coincides with the results of the phenomenological
theory.®

Now let the liquid be invariant with respect to Lorentz
transformations. The equations of hydrodynamics of a rela-
tivistic superfluid liquid with account taken of dissipation
processes have the form

a(tam 4 Pawy o o _ A

at ox,, Ox,, dx, 9x,,
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(’Il‘)he dissipative fluxes 2,131#5(? wik) (a=wv4) and

L # are determined by the formulas

w Wy . r
f = ZE I @ g™ + 2 @ T,
dx

[e¥) ay ~r ~ a ary e
Do o pem w125 0w, (3.24)
axV ax*
do’ QYHYV ;
KIW _ 0 — KW"
Op, av*
and-the operators £ and & * have the form
2 2 3™ spw "
Lo (x) = Lo () — ——=—— ™ (Dup, up= ,
( ( oy D (x)upr, uy vy
B (x) = w14, cﬁ(xw———c (%) tn} -
P> uy

[Here H=u, (ﬁ”‘ - p* a) and (...) =Sp w..., where w has
the form (3.18)]. We can also represent the kinetic coeffi-
cients 7 in the form of averages of the type of (3.23).

We note that the presented expressions (3.24) of the
dissipative fluxes are more general as compared with the
phenomenological approach.’® The number of invariants
that determine the kinetic coefficients in our treatment is 35:
1 for I (h "2 h v); 2 for I (h'™,j™); 4 each for I
(h A '#")1( 747 10 for I(t'**j*), and 14 for
I (t "“ "4ey Upon comparing these coefficients with the re-
sults of Ref. 30, we see that the latter lack the coefficients of
the type I(h™, £'**).

In taking the nonrelativistic limit we must take account
of the fact that the relativistic expressions for the operators
t,, and j, are associated as c— « with the nonrelativistic
operators for the density and the flux density by the relation-
ships

-~

jo—> n, jk — — T,
m

too—>mcin + e, t—cre + g, tie— tie-

(Here we have taken account of the symmetric character of
the relativistic energy-momentum tensor.) Upon using these
formulas and taking account of the fact that I(...,.§;) =0,
we can show that the relativistic equations of superfluid hy-
drodynamics transform into the equations of hydrodyna-
mics of Galilean-invariant theory.

3.4. Solutions of quantum liquids

Let the solution of quantum liquids being studied con-
tain @ = 1,2,...,a={a} different components. For the sake of
definiteness we shall assume that the components of the lig-
uid 1, ..., s={s} exist in the superfluid state, while the re-
maining s + 1,....,a={n} exist in the normal (nondegener-
ate) state. The mixture of liquids contains s order
parameters (¢, ) = 7, exp(ig, ). For simplicity of presenta-
tion we assume that all the particles of the liquid are bosons.
The equilibrium statistical operator of the solution has the
form

W () = exp [ — Yot — Yo 3 f ¥ (s (€

g (x,8)

+ Hec. )]
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and has the following spatial, temporal, and phase symmetry

[w, §°—§‘pﬁs] =0, [w, Mi=0,
s (3.25)
l:wy 7 + Z;;SNS:, =0, ;;s = (Ys + Yps) Yo—l-

Equation (3.25) implies the structure of the asymptotic
phase @, (x,t) =p, X +});St + @,. Thus the mixture of su-
perfluid and normal liquids being studied is characterized by
the thermodynamic forces Y, (a =0, k, a), the superfluid
momenta p, and phases g, .

Upon employing the method of Sec. 2.3, we can easily
show that the equilibrium averages of the densities of the
additive integrals of motion and the flux densities corre-
sponding to them can also be expressed in terms of thermo-
dynamic potential w:

0
a oY, do 9p,
Ca— ’ gak—'—y'y—u-l-;uﬂaya (326)
Hence we obtain the thermodynamic equation
do = Lod Yo + ) (Yofse + Yers) d pee (3.27)

(s =&k ), which has the meaning of the second law of ther-
modynamics for a solution of quantum liquids. The thermo-
dynamic potential @ contains 2 +a + s+ [s(s+ 1)/2]
variables

O)(Ya, Ps) = (")(Yo» Yﬁy Ya, Yps, psps’)-

To trace the interrelation of the formulas (3.26) with
the expressions for the fluxes of the physical quantities
adopted in the “two-liquid” formulation, let us introduce
the quantities

* »
msm ’ do
=—-9Y , s .,
Pn= °av= Pssr = Yo 9(pp,)

where the thermodynamic “mass” m, is defined by the equa-
tion

= 2lpw.

s’

6 (Yp,

With account taken of these definitions, the fluxes £, ac-
quire the form

Y,
Jor =Car = —Y_ (fla 2605 o )+2 6‘”955 >

ms mym..

i PsiPs
t;k=———5tk+9n ky +2 SS—LL':

0 s,s’ mm

[}
Yy ® PPssr P
qk-————<»——+s+2—}i P e
Y, Y, s

s,s’
I’IIS 3 m

psps ke

We see that p,, has the meaning of the *“‘mass” density of
the normal component of the liquid, the matrix p,,, has the
meaning of the superfluid density associated with the inter-
action of the particles of the components s and 5. We can
interpret the quantity m, as the effective “mass” of a particle
of the s component. We see from the presented formulas that
the normal liquids in solution with superfluid ones partici-
pate only in the normal motion under any change in the
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concentration that does not lead to a phase transition. More-
over, we see within the framework of the approach that we
have developed that the existence of nondiagonal elements
Pss» 70 (s#5") leads to the effect of entraining each of the
superfluid motions of the other superfluid components of the
solution, as was first noted in Ref. 31.

If the studied solution of quantum liquids possesses Ga-
lilean invariance, we can easily show that the thermodynam-
ic potential @ is a function of the following variables:

Ya, Yps, PsPs’)
2

o (Y, Y,
’ m,Y Y m Y mg.
=0)(Y0,0,Ya———,0, (Ps+7‘)(ps’+ Y ))

\ 0 o

2y,

Here m, is the mass of a particle of the @ component. This
relationship leads to s + 1 relations among the introduced
quantities p,, p, , and r’;ls:

*
ms = Mg, Znama = Pn + Zpss'. (328)
P s,8’
Now let us study systems invariant with respect to Lor-
entz transformations. In this case the relativistic equilibrium
statistical operator w has the form

W == €xp [VYOO), — Yp,g‘)u — 2 Ynan — 2 YSQS
=Yy ‘Y ao* 3\ (s (x) exp [— i (pewr” + @) + 2. C-}]-

Here Y,=(Y,Y\), p,, ((B s»Dsk ) are 4-vectors, with
Y, = — Yp,,. In terms of the relativistically invariant
thermodynamic potential 0’ = o' (Y?p?, Y, p#,Y, ), which
depends on the independent variables Y, ,p,,, and Y,, the
energy-momentum tensor ¢ “* and the 4-flux j ¥, we can write
the @ component in the form

MY _6YVu)’ \ p Jw’ ,
ayu % apsv
(3.29)
NI Y WA L LA
Ja ; as o ; an oY,
Let us introduce the 4-flux of the entropy
b—__Y*
s y ( Vit +Zynay ) (3.30)

The thermodynamic relationship (3.27) with account taken
of the formulas (3.29) and (3.30) for a relativistically invar-
iant solution of quantum liquids is reduced to the form

dst = D Yadjh + Yod ™ = DY — V¥ d pgy.
a s

The method of reduced description developed in Sec. 3
can be easily generalized for deriving the equations of hydro-
dynamics of the studied mixtures of quantum liquids. The
parameters of the reduced description are the densities of the
additive integrals of motion {, and @,—the phase of the
order parameter of the s component of the solution. The
equations of hydrodynamics of such systems have the form

. 0. . . 0

tem — Viats Bs= Vs = V. (3.31)
The fluxes E Lk and _‘z’;s are determined by Eqgs. (3.25) and
(3.26) and describe an approximation corresponding to the
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ideal hydrodynamics of the solution of liquids. The dissipa-
tive approximation, which we shall not treat here, was stud-
ied in a microscopic approach in Ref. 20. In the case in which
the solution consists of superfluid and normal liquids, the
equations of hydrodynamics (3.31) with account taken of
(3.28) coincide with the phenomenological equations,®
while in the case of a solution of two superfluid liquids they
coincide with the equations of Refs. 31 and 32.

4. THE GREEN’S FUNCTION
4.1. Definition and properties of the Green’s function

For superfluid systems the Gibbs operator w of (3.8)
commutes with the operators Hand P (but does not com-
mute with the operators #” and & ). Therefore we can natu-
rally give the following definition of the translationally in-
variant (with respect to the coordinates and the time)
retarded ( + ) and advanced ( — ) Green’s functions:

Gz (x, f) = F i0(x ) Spwla(x, 1), b(0)]. (4.1)

Here we have
a(x, t) = exp[i (Ht — Ppx)] a(0) exp [— i (Ht — Pix)]. (4.2)

The Green’s functions that we have introduced deter-
mine the linear response of the system to an external pertur-
bation. Actually, let the system exist as - — oo in a state of
statistical equilibrium that is described by the statistical op-
erator w of (3.8). At some instant ¢, of time an external field
is turned on, so that the Hamiltonian of the system becomes
the operator 57 (¢) = # + V(t), and correspondingly, the
von Neumann equation acquires the form

128 _ 15+ v@), o).

py (4.3)

Upon introducing the following operator instead of p(¢):

p(t) = eimdip (1) e, (4.4)
we obtain for it the equation

i20 _ 1 170, 50, (4.5)
where we have

V() = einty (1) eim¥ = [ a2k (&, 1) B (x) (4.6)

(£(x,t) — cisthe numerical external field and [3(x) is a qua-
silocal operator that determines the interaction of the parti-
cles with the external field). Since the external field was ab-
sent as — — oo and the system existed in equilibrium, we
have

p(— o0) = e-inelt (2) eiralt |,
= exp [9 — Yoye — Y, ﬁ dex(p (X) e0*+% 4 H.c. )] =w,
(4.7)

(We stress that in the representation ~, in contrast to the
original representation, the equilibrium statistical operator
w does not depend on the time. )

If we consider the interaction of the system with the
external field to be weak, we can expand g(¢) in a power
series in V(¢): p(t) =w +p’(¢) + ... . We shall define the
mean value of the operator &(x)=exp( — ng_()&(O)
exp(i/Px), apart from terms linear in the interaction V(¢) by
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the formula

a(x, ) =Spp(t)a(x) = Spwa(x) + a(x, ) + ...,

where we have

(4.8)

ag(x, t) = ﬁ dr §d3x’§(x’, ) Gh(x—x, t—t)  (4.9)

and the Green’s function G} (x — x',t — t") is determined
by Eq. (4.1) (the mean value a(x,?) is easily related to the
ordinary mean Sp p(t)exp ( — i_.??x)&(O) Xexp(i_.??x) ).

The invariance of the equations of quantum mechanics
with respect to continuous transformations leads to certain
restrictions on the structure of the Green’s function.

Let us study as an example the case in which the equa-
tions of quantum mechanics are invariant with respect to
Galilean transformations. In this case, according to (3.8),
we have

Upw (Ya, 1) Uy = 0(Yq, 0).

Here the thermodynamic forces Y/, are related to the ther-
modynamic forces Y, by the formulas of (3.15). Further,
upon taking account of (3.14) we obtain

where 2(0)=U,a(0)U," ,b(0)=U,b(0)U } .

Now let us study the case in which the system possesses
the property of relativistic invariance. As before, the Green’s
function is determined by Eq. (4.1):

Ga (%) = F 0 (£ %) Spw (Yy, oy, 9)[a(%), H(ON. (4.10)
where we have
a (x) =exp[—i (@"’ —_ p“f)) EA| 5(0) exp[i (.“7’“ — p“Q) 1]

and the statistical operator w( Y,.p,. @) is determined by
Eq. (3.18). Since, according to (3.18), ¥ is a scalar field, we
have

Ua¥ (0) Uz = ¥ (0).
Therefore, upon taking account of (3.17), we find
Gai (%us Y Pu) = G35 (¥r Y, D).

Here a(0)=u,a(0)U;,b(0)=1U, (0)U;, and the

primed quantities are related to the unprimed quantities by

the formulas x;, = a;x,,Y, =Y, a;, and p;, =p,a,.

4.2. The hydrodynamics of a superfiuid liquid in external
fields

In this section we shall study the influence of quite arbi-
trary weak, slowly varying external fields on the evolution of
the system. To solve this problem we shall turn to the equa-
tion of motion (4.3) for the statistical operator p(¢). Just as
in Sec. 4.1, we shall assume that the statistical operator p(¢)
(cf. (4.4)) satisfies the asymptotic relationship (4.7). (For
simplicity we shall study states of equilibrium such that
x = 0). In the presence of a weak external field, provided
only that its frequency is small in comparison with 7, ', the
statistical operator p(¢) for ¢> 7, will depend on the time not
only via ¢, (x,¢) and ¢(x,?) (see Sec. 3.1), but also yia the
external field £(x,¢) and all its time derivatives &(x,t),
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E(x,),...

0 50 La PO E@) EQ), ..
(4.11)

Here we have

Spp(e(®), @) 8) La(x) = Lu(x, 2),

(4.12)
ImInSp p (G (1), @ (9 )9 () =@ (x, 2).
(Here @(x,?) is the phase of 1/(x) in the state p({,@;¢) ). We
stress that in this formula the functional arguments gz, @, &,
&,..., considered as functions of x, must be assumed indepen-
dent.
Upon comparing Eq.
&=&=..=0,wehave

PCa®) (0,0, ...) =0, ¢@).

Let us linearize the asymptotic relationship (4.11) near the
state of (4.7), while assuming that 5(¢) = w + p'(¢). Upon
taking account of (4.13), we obtain

o) e Calth @ @) FPEO) + ...,

where

O (@), @ (1) = | % (Ca (N (%, )+ To () @' (x, D)},
(4.15)

(4.11) with (3.1), with

(4.13)

(4.14)

8o (L, 9)

’ 8‘]) (X) = SCP (X)

6(! (p
t=.0=px’

g () t=T.o=px"
Further '/ (x,t), ¢ '(x,t) are the deviations of the param-
eters é‘a (x,r) and @(x,t) from the equilibrium values, i.e.,
from ¢, = Sp w{, and ¢ = Im In Sp wy(x) = px, respec-
tively ($.(xt0) =8,(xt) —&,, ¢ (x,1) =@(x,t) — @).
In Eq. (4.14) p(£())=p(&(1), E(1), ...) is the deviation
linear in £ of the statistical operator p(,, @; ¢) from w asso-
ciated with the explicit dependence of ;3(; «> @; 1) on the field
&(x,t). If the only reason for nonequilibrium is the external
field, then the quantities § /, (x,?) and ¢ '(x,#) amount to lin-
ear functionals of £(x,t), f(x,t),
Upon taking account of (3.2) we have

etPyg, (X) Py = Oa x—y), e“?yc? (x) €Y = Gq, x—y),
eifog, (X) eV = g, (x), eR9'G, (x) el = 95, (x).

These formulas state that, when p50, the operator P (rather
than the operator 7 ) can be expediently interpreted as the
translation operator.

Since the phase ¢ in the state w equals px, we can repre-
sent the phase in the state w + ¢’ (£ '(¢), ¢ '(¢)) in the form

@ (X 1) =Spa’ ¢ (), ¢ (1) ¢ (¥) + px, (4.16)
where
P (x) = 2%](\»* () Pl p (x) ) = ;P3G (0) ePx.  (4.17)

(Here n = | Sp wy)|; see (2.14)). We shall call the operator
@ (x) the phase operator, upon noting that, according to the
definition of o' ({ ', '), we have

La(x, £) =Spo’ ¢’ (), @ () & (X),

@ (x, ) =Spd’ T’ (), ¢ ()X (4.18)
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V=0 (D), @t); 1),

and using Eq. (4.5), we find the linearized equations of the
hydrodynamics of a superfluid liquid in the presence of ex-
ternal fields

be (X, ) — Lo (x; ) = na (X, ),

@ (x, 1) — Lo (%, ) = mg (x; 1), (4.19)
where we have
La(x; ) =i Spo’ € (O, @ () 1H, L (®],
(4.20)

Lo(x; ) = iSpa’ ¢ (), (&) [H, 9 (X)]

and the *“sources” 7, (x;t) and 7, (x;¢) are determined by
the formulas

o (x; 8) = iSpw[VEE), L]+ iSpp E®) A, L ()],
- . _ 42D
Mo (X 8) =iSpw [V (E(®), o(x)]+ iSpp EW)[H, ¢ ()],

(Here 7, (x;0) =7, (x; £(1), £(1), ...
£, E(), ...
)

Upon taking account of (4.12-4.14) and (4.18), we
have

SppE W& =0, SppE®) ¢(x)=0

We obtain the following from Eq. (4.5) with account taken
of (4.19) and the expansion (4.14):

i {42 (0a(¥) (La (% 1) -+ Mla (%; 1) 4 0o (%) (Lo (% O
+ e (X3 9)}
4,260 @(”’ =1H, 0" € @) ¢ @)

)s Mpn (X52) =71 (X5
) are unknown linear functionals of £(1), £(¢),

(4.22)

+H, p EON 4+ IVE®), w]. (4.23)

We can rewrite this equation by using Eq. (3.3) in the form

08 (B 00 (5 ) + G () 1o 3 1) + ¢ 2 COL

=[H p EON+[VEQ), wl. (4.24)

As 7— o0, according to (3.1), the following formula holds
ep R (1) € —m> 0" (7 1), (% 1)

= 750" (£(0; 1), 9 (0; 8) €',

o (0: 0, 9(0; ) = | &% (G (X) L (X, 0 )

+ G (X) 9 (x, 0; O}

This is because the evolution in 7 occurs with the Hamilto-
nian H, which does not contain the external field. [ The pa-
rameters §,, (X,7;¢), @(x,7;1) satisfy the equations in the
variables x and 7 of linearized hydrodynamics with the ini-
tial conditions &, (x,0;1) =¢,, (x;¢), @(x,0;1) = @(x;1). The
latter are linear functionals of £ (x,¢), £(x,t), §(x,t), ... That
is, we  have .g,,(x 1 =§, (x50, §(t), ),
e(x;t) = @(x;£(2), £(2), ..., while ¢ is a parameter.] Upon
taking account of this limit relationship we obtain from
(4.24)
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PE®) =0 (X5 0, 93 1)
— F dte“'”"{i [H, o (E(X’; ?), g(x'; 13))]

+ iV E®), w]+ p &)
+ €6 (6 (9 Mo (55 £) + G () mo (x; £))} e,
(4.25)

The parameters £, (x;¢) and ¢ (x;¢) are determined from Eq.
(4.22). One can apply to Eq. (4.25) the standard iteration
procedure in the spatial and time derivatives of the field
&(x,1).

To find the “sources” in perturbation theory in the gra-
dients of the external field £(x,¢), we must find the statistical
operator p(&(#)) also in perturbation theory in the inhomo-
geneities of the external field. According to Eq. (4.25), todo
this we must know the expansicn of the statistical operator
o' ({(x;t), @(x5¢)) in a series in the gradients of the param-
eters of the reduced description. In the zero-order approxi-
mation, according to (4.15), we have

o) © o~ @ ,~
O G0, 9 =La (%, 9 [ @ x'0a(X) + @(%, 1) { & x'Ge (x),
(4.26)
© )
where we have § . (x;¢) ~5(x,1), @ (x,1) ~£(x,2).

To determine the quantities § d’x'6,(x"),
sdx '6, (x') we must apply the ergodic relationship (3.8).
In this relatlonshlp let the statistical operator p (such that
[p, Vd « — (Pr + P )N ] = 0 differ little from the equilibri-
um _statistical operator w, p=w+p'. Then since
[w, Pk ] = 0 (the statistical operator w corresponds to the
superfluid momentum p), we have

[0, Bsl = prlw, N]. (4.27)

In the zero-order approximation we evidently have y =0
(the quantity p’ is of the first order of smallness in the devi-
ation from a state of equilibrium). Hence Eq. (3.8) in the
linear approximation acquires the form

’ ow .’ dw ., 0w ., '
e e g b gy Pt O+ i) (4.28)

where

ta=Sppls £, = Ca ap° +p' o

or (4.29)
X =000+ | dr(Sp o (%) (0) — p).

In the variation of the relationship (3.8) we chose as the
independent variables the quantities &, =~Sp wl,=¢,
(Y4,p), rather than the quantities Y, p, and X which are
functionals of p, since we have Sp p§ « =Sp wg‘a, owing to
the fact that £, is the density of the additive integrals of
motion. Moreover, we have taken account of the fact that
po= (Y, + Yp)/Y,and have used Eq. (3.7) for the phase y.
We stress that the relationship (4.28) is valid for the initial
statistical operators, which satisfy the condition (4.27).
Now let us turn to formula (4.14) for £(x,£) = 0. Upon
choosing the initial statistical operator 5'(0), which coin-
cides with the statistical operator p' in (4.28) and noting
that in this case £/, (x,#) = { ., owing to the conservation
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©)
p

laws, does not depend on x and ¢, while the phase ¢’ (x,)
=p'x + p4t + )', we obtain

| 40 102 () Lo+ Go (0) (0'x + put + x')]-"

e-iHtp’ ghtit

Upon comparing this expression with (4.28) we find
that

—= 5 @ x40 (X). (4.30)

Now let p’ be a rather arbitrary statistical operator.
Then, upon neglecting the gradients £/, (x,#), but taking ac-
count of the phase gradients ¢ '(x,t), we can represent the
average Sp exp( — iHt)p'exp(iHt)a(x) for t» 7., with ac-
count taken of (4.30), in the form

Spe“”’p'e”'”& (x) — _>€a( 8 3 Za)

ca
a<a> Btp’ (x, ) 8¢

. (4.
2o om0

+¢ (x, 0)

(Here a(x)=exp( — iPx)&(O)exp(iPx). We shall use this
relationship below in finding the low-frequency asymptotic
behavior of the Green’s function.

Upon taking account of (4.3), Eq. (4.26) implies that

) © ( a

M QN =L )t . (432)
~ ~ ~ 0%g ~ de

Thus, upon taking account of (4.32), the statistical operator

(§(1)) in the zero-order approximation in the gradients
of the external field has the following structure:

PED) =5 (x 1) S aca +9x, e — j d ettt

x (f Ve, ol
+t[H L(x, )—+q>(x y 2 ]

- © x: _ﬂ_”_ . LHT
2R 0 S s ) e,
Here we have ‘i’/’(g(t)) =E&(x,0)f d*xb(x). This implies
that [ﬁ%’(g(t)) Pk] =0. Then Eq. (4.21), which deter-

mines na (x;¢) and 77.,, (x;?) in the zero-order approximation
in the field inhomogeneities

0 0 . () ~ :

T (6 ) = £ Spw [V & (), £ (0 + Spp GO IH, Eur)],
(4.33)

o0 ) = ISpwIVE W), § 001+ 1Sp b & () 1H, ),

and the fact that [ H, &a x)]= [?’k ,&ak (x)] together imply
that
©

"Ia(x y=iSpw(VEW), W] (4.34)

Since the ﬁa (x) are the density operators of the additive
integrals of motion and Sp p(O) (£(1))¢, (x) =0, then, upon
using (4.34), we obtain gl, (%, =Sp 0"V (£(),@(1)) &4 (X)
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)(§(t)) has the form
)

PEE) =9(x ———jdrr‘*’f (z [V & @), ©]

= 0. Therefore p(2

+— a( t)+—'qq,(x, t)) ettt (4.35)
(We have taken account of the fact that [H,0w/dp] =

The parameter (ggy)(x,t) is determined from the condition
(2)

p (§(t))gv)(x) 0. Upon taking account of the fact that
[w, Pk] = [w,H] =0, we find, according to (4.34) and
(4.6):

na(x t) = — & (x, t)Spuzv[N b(O)]Yo ay (4.36)
To determine 1}.,, (x;¢) we must find [p)(§(t)) H]. We
obtain from (4.35)

(0)

[p(E(t)) Hl =i 11m il (l [V(E(t)) w] +—— na(x t)
+ a—‘” (f{w (x; t)}e“'“ — i[i[V(E @), vl
P

Qo 2 (% B) o o). (4.37)
+ aﬁa o (X; +—nw( [ .

Since H =57 -+-p01/§’ depends on &, p, and [w,H]
have

=0, we

ow
4

I8 piHT — 0w T 9p, Ow

g-ifit .
@ g, oLy 09

Therefore, noting that [ H,dw,dg]
(4.37) in the form

= 0, we shall rewrite Eq.

()

[(:’)(E ), H} = — lim (e-iﬁr[V(g ), w] et

9p
—lﬂla(x t) a;o

This implies that the second of the formulas of (4.33) ac-
quires the form

© .
o (% £) = — i lim (Sp e [V & (1), w] 6976 (¥)
— itng (%; £) Z? ) (4.38)

Upon using the ergodic relationship (4.28), we easily see
that

®
11m {te-‘”T V E @), w] et T_ ﬂa (x; 7 Zgo }

Jw @
= _ 9w e (X;

t == r

. ) — ==y .

Here y’ is determined by Eq. (4.29), in which we have cho-
©

sen the operator i[w,V (£(¢))] as the initial operator p'.

Thus we have
©
ne (X; ) =% (X, 8). (4.39)

If [N,5] = 0, then we have 77, (x;t) = 0 (cf. (4.36)).In
this case we can simplify the expression (4.38) for
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2) Ve, ol

(1(}); (x;¢). To do this we again use the ergodic relationship
(4.28), in which we have chosen as the initial statistical op-
erator p’ the quantity [w, fd3x(1//+/gx)e"px —(x)e
Since this operator commutes with P,, then according to
(4.38), (4.29), and (4.28), we obtain

ﬂw(x t)——E( ' 8)

a;a
[ Splw, 4 () 20— px) 561 £, 0

Upon taking account of the fact that [w,H] =0 and
[w, Pk ] = 0, we can easily transform 17¢, (x;?) to the form

']w(X; )=—8(x, 9 (M’)

a(b) T T
Jo , [N, b=0.
P ) (W, §)

(4.40)

[Here we have used the relativistic notatlon cf. (2.32).1
Since in the case being studied ( [N b] 0) the princi-
pal approximation for 7, (x;t) vanishes, we must find the
quantities 77, (x;t) in the first approximation in the gradients
of the external field. Upon using the formulas (4.6), (4.15),
(4.21), (4.25), and (4.30), as well as the ergodic relation-
ship (4.28), we obtaln as a result the following expression

for the ““‘sources” na (x;t) (cf. Ref. 24):
)

(4.41)

(1 At (x, ¢ a<b dp, 0 by
na<x;t)=——§‘5—’—( LAy A AU

dx, ay Yo oY, dp

Here we have

Kiagp= — if d® xx; Spw [La (x), &5 (0)] = Kiga

We can easily show that, if we take account of (2.2) and
(2.28), we can represent the elements of the matrix K, 4 in
the following compact form:

Kiys=—Y Ry, % Cﬂ

Yar, lov,
Kiap = 8polar + Opily.

+p 2 w=0,1,23),

(4.42)

We call attention to the fact that the terms in the sources
1, (X;t) proportional to the first derivatives of the external
field with respect to time d¢ (x,¢)/dt vanish.

Thus the formulas (4.36) and (4.39)-(4.41) yield in
the principal approximation expressions for the “sources”
7. (x;¢) and 77, (x;t) in the equations of hydrodynamics of a
superfluid liquid in the case of an external field £(x,¢) that
varies slowly in space and time.

4.3. Low-frequency asymptotic behavior of the Green’s
function

In this section we shall find the concrete structure of the
Green’s function G 3 (k,) in the region of small wave vec-
tors k (kl<1; ! is the free-flight path) and frequencies w
(o1, €1, 7, istherelaxation time). For this purpose we shall
use the equations of hydrodynamics of the superfluid liquid
in the form (3.20). In the presence of the “sources” 7, (x;t)
and 7, (x;t), these equations have the form>*

Bogolyubov, Jr.etal. 1053



MV (x, 1) ¥ (x, ¢
e, LR s,
oM, ) pV(x, 8y _ .
ox, ox, v (x; 7). (4.43)

The latter equation in (4.43) is a consequence of the equa-
tions

P (X, £) = po (X, 1) + Tip (; ¥), el L

Pe(X, £) = ="
k

Hence we see that

0% (x; 1

(Guo@w. — Zwr8w) (M, v, A =0, 1, 2, 3).
(4.44)

Muv (X; ) =

Considering the “sources” to be small, we shall linearize Eq.
(4.43) about the equilibrium state, choosing as the param-
eters describing the deviation from the equilibrium state the
quantities 8Y, (x,t) = Y, (x,t) — Y, [the deviation of the
Qlermodynamic forces Y, (x,t) from the equilibrium values
Y, ], the quantity Seo(x,t) = po(X,t) — po, and the phase
6@(x,t) (the phase @ in the equilibrium state is assumed
equal to zero). Then the equations of hydrodynamics (4.43)
for the Fourier components of the corresponding quantities,
when linearized about the equilibrium state with &J =0, have
the form

ity ("’iay <k>+—6pt<k>) = 14 (&),

oo (S8 @+ 2 0m8)) = v @, (4.45)
kvBpu (k) — kubpy (k) = 1o (k) (kvguo — kugw).

We shall write the solution of the last equation in the form
Bpy (k) = kB (k) + gvatio (). (4.46)

Upon taking account of (4.46), we find from (4.45) that
8Y.y (k) = iDyi [1* (k) — p*1i* (k) — (kY) @ (R)],

(4.47)
89 (#) = —— [* (&) (1 — &* DAp¥) + @Dl (%),
Here we have
" (k) =# (k) + tkv nw (k),
4 (k) =n* (k) + ikvinw (k), (4.48)
A (k) =b— (kY) a’*D,\',ia" (4.49)

v AR o’ oo’
=— =kv— , b=kvky ————
ay, oy, p, OY, p., 9p,,

(4.50)

Now let us study the problem of the concrete structure
of the “sources” 7, 77%, and 7"*”. As we saw in Sec. 4.2, their
explicit form substantially depends on whether the operator
b(x) entering into Eq. (4 6) commutes with the operator for
the number of particles Nor not. First let us examine the case
in which [N b] #0. According to (4.36) the Fourier compo-
nents of the sources 7+ (k) and E17)‘(k) are determined by the
formulas
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(0) g () b
ME=tOLZ MH=ERLZ . 45D

Since in the “sources” 7* (k) and 7*(k) the quantity 74 (k)
enters in combination with the coefficient k,, then in the
principal approximation in k£ we have
() (0) 0
() = b (), ) = nd (). (4.52)
If [1/\\’,13] = 0, then the “sources” 7* and %* vanish in
the principal approximation in k and therefore we must find
them in the next approximation in k. According to the for-

mulag (4.40) and (4.41) the “sources” ‘;7”17"(k) 7 (k),
and 77, (k) are determined by the formulas

ﬂ“(k)——lkE(k)< >Ku. + po ""”),

9p,
(4.53)
n (k)——zk@(k)( B Keep +a<”>),
)
o) ==t (G0 S ) =~ S0

Here we have p® = (p*,1), (@ = u,4). Therefore, upon us-
ing (4.48), (4 53), (4. 42), and transforming from the de-
rivatives J b Y3¢g,0 (b )/3p to the derivatives 3 (b )/3Y,

3 b )/8p#, we obtam the following expressions for the

“sources”’ 17# (k) and 17 “(k)
)

=m0 (22 a4 25 ),

o)
a
N (k) = it (k) < 0k 4 4 <”> Bv>, (4.54)
‘V ‘V
) Ay 97, aky 9Y, P
= — B LA
o) = — 8@ (57 S| et S| £
Here we have
ayY. Y
Ay =Yg+ —= B = — By -+ Spoat —2| p* (@ =W, 4),
w=1Iq a* n w+ Opo @ —— P pP ( )
(ky) g‘V (pl»lax Dl-ﬂ-) (p‘r ‘V, A’ = Oy l) 2’ 3)1
P
—kvP“+5w aca p* (pta* — DM)-

Let us describe the scheme for finding the low-frequen-
cy asymptotic behavior of the Green’s function G ;{ (k). Ac-
cording to Eq. (4.9) the Fourier component of the quantity
a; (x,t) isrelated to the Green’s function by the relationship

az (k, ) = E(k, ©) G (K, w). (4.55)

On the other hand, upon taking account of (4.8) and (4.14),
we can represent the quantity a, (x,¢) in the region of large ¢
(t>r,) in the form

az(x, ) =Spa’ ¢’ (1), 9 () a(®) +Spp & () a(x),

Here the operator o'($'(t), ¢ ‘(1)) is determined by Eq.
(4.15). Since Sp &, (x')a(x) and Sp o, (x)'a(x) depend on
the difference x — x’, the Fourier component a, (k,w) of the

(4.56)
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quantity a, (x,#) contains terms that arise from the first term
in (4.56) and are proportional to ¢/ (k@) =6, (Kw),
¢ ' (k) =8¢(k,0). The equations of superfluid hydrodyn-
amics with the “sources” 77(k,w) (which are proportional to
&(k,w)) imply that, in the region of small k and @ (k<™ ",
w <1, '), the quantities 8¢, (k,w) and ¢(k,») are singu-
lar (cf. (4.47)), while the Fourier component of the second
term in Eq. (4.56), according to the preceding Sec. 4.2, is
regular. Upon taking account of what we have said, the
Fourier component of the quantity a, (x,?) in the region of
small k and w can be represented according to (4.31) in the
principal approximation in the form

oz (k, ©) = ‘; Z‘” 8t (k, ©) - ia%)—ik,&p (k, ®)
le

(4.57)

3
+ ™ b (k, @)

or

as () = 0<ﬂ> 8Y, (k) + ‘“‘” 8pu () + 122 0“” 50 (£). (4.58)
]J.

Upon using the formulas (4.46)—(4.47), which were derived
from the equations of linearized hydrodynamics, as well as
the express1ons for the “sources” (4.51) and (4.52) (with
[Nb] #0) and (4.54) (with [Nb] = 0), we find the quanti-
ties 8Y, (k), 6p,, (k), and 6@ (k) (they will be proportional
to §(k) ). Then, upon comparing Eq. (4.58) and (4.55), we
obtain®* the final expression for the Fourier components of
the Green’s functions G} (k) in the region of small & (in the
case of arbitrary quas1loca1 operators a and b):

+ ____1 _6(2)_6{&) , .6(2) A-1
Gio () = - {[ 0 20 iy 1 22 k1) D;,u]

x 6<b> _ a(b) ikv+l a(b> (ky) QA'ID;'IV
I ap,, oY,

_d@ o >4 ) DM} . (4.59)

9y, oY

Here we have neglected the contribution of the non-pole
term in G, (k), since we have already neglected terms of
this type in droppmg terms of the type Sp p(£)é& in a, (k).
If the potential w corresponds to a relativistically invar-
iant system (cf. (3.19)), then p, and Y, amount to 4-vec-
tors, while D,,, is a 4-tensor. In this case Eq. (4.59) yields a
relativistically covariant representation of the low-frequen-
cy asymptotic behavior of the Green’s function (cf. (4.10)).
In certain cases it is convenient to represent the low-
frequency asymptotic behavior of the Green’s functions in
the form of a bilinear combination of the derivatives
da&)/9¢,,d(a)/dp;, and d{a)/dp and the derivatives
b Y/3¢,.d (b »/dp;,and d (b ) /3¢. This representation is
convenient for nonrelativistic generalized superfluid sys-
tems. Upon starting with Eq. (4.59), we shall represent the
pole component of the low-frequency asymptotic behavior
of the Green’s function G J; (k,) in the form?’
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acay by

Gh, (k = Gy Kk, ®
ab( ’ (’)) aga agﬂ Caﬁﬁ( )
i aca [ o<y .. a<hy
—_— — ik Gty (k, ®)
n 3, ( o ap, > tat (
i a9k [acay , ., 0@ \ ¢
—_— ik Gyrq (k, ®)
n ot ( 3 + an, > \le(
_ (0@ 44 ‘9<">><"<"> — g 2B >G$¢(k, o).
N\ d¢ 9p; dp 9p;

(4.60)

The Green’s functions that figure here, G,/ ¢, (K@),
Gy (kw), G (kw), and G J, (kw), are determined by
the formulas

G ozp (K, @) = __Z_ ) 2= aca %o g aaiﬁ |
Giyok, @) =1 Za, Gl (k@) = — 2 Za,
Gy (@) =I5, n=[Spwyl,

where we have
Zy= %’%k;‘ X ooz

The quantity A (cf. (4.49) determines the poles of the
Green’s function (branches of vibrations) of the superfluid
liquid. We stress that there are no poles associated with
det D = 0. This involves the fact that, near a singularity
det D = 0, the quantity 1/A behaveslikedet D, 1/A ~det D.
Therefore the structure of the asymptotic behavior of the
Green’s function (4.59) has no poles involving singularities
of the matrix D. One can show that the singularities involv-
ing the vanishing of det D cancel.

One can easily show that the dispersion equation
A(k,w) = 0for Y = 0, p = 0 with account taken of the defi-
nitions (2.28) and (2.29) acquires the following form:

Ak, 0) = 0¢ — 022 (B4 pC) — kb —2 A _0,  (4.61)
yon m

Here we have

=L (L_ Yoo s (61’ Py 0_&_)

m \ 9 Yy 8, Yopn \ 9% m 9% Y,
(4.62)
CE.;(LL_LLﬁ ey
mt \ 9y Y, Yo 35 Y, Yoo 05 Y,

(Herepc =P —Pn —Ps ).
For Galilean-invariant systems, according to (3.16),
we have p. = 0 1= m, while the quantities 4 and B acquire

the form
To?
A=_-m2—°—(£) ("P s 4.63
pcy \ 9 /7 dp ) o Pty ! )
(Here P= —w/Y,= — o' is the pressure; o=s/p

=Y,[(P + e+ (pY,/Y,))/p is the entropy per unit
mass; ¢, is the heat capacity per unit mass at constant vol-
ume; and Y 5 '=T is the temperature). In this case the dis-
persion equation (4.61) leads to the well known expressions
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for the velocities u, , of first and second sound:
Tos,
da=3| (5 ) + o
21\ % Jo = cypn
2l [(G0),+ o - (%), )™
4 |\d/g  cyPq o /1 oypy
(The index | corresponds to the sign * 4+ ”*, and the index 2
to the sign *“ — ”.)
In closing this section, let us write the asymptotics of
the Green’s function G J,(k,w) for wr, €1, kI<€l (the
asymptotics of the Green’s function GZ,(kw) and

G 5: £ (k,w) are given in Ref. 24 in the case in which Y =0,

p = 0 (we shall not assume here that the superfluid system
has the property of Galilean or relativistic invariance):

* —_— n? 2 ﬁli—-—a—ﬁ
Gy (k, @) A (k, ©) [0) (Yo %, Y, L, Yo)
P A].
+ Yoby

(The quantities 4, A(k,w) are determined by Eqs. (4.62)
and (4.61).)

If the superfluid system has the property of Galilean
invariance, then the asymptotic behavior that we have found
of the Green’s functions G J, (k,») and G £y (k@) with ac-
count taken of (4.63) transform at Y = 0, p = O respectively
into the results of N. N. Bogolyubov* and of Galasevich,*?
while G é £ (k,w) transforms into the results of Hohenberg

and Martin.3

5. THERMODYNAMICS AND HYDRODYNAMICS OF THE
SUPERFLUID PHASES OF *He

In this section we shall briefly treat superfluid systems
in which, in addition to breakdown of phase invariance, also
rotational symmetry in coordinate and spin spaces is broken
(examples of such systems are the A and B phases of super-
fluid *He). In the case of Fermi systems the operator fin the

Gibbs exponential has the structure [see (2.4)]
F=(@r@au@gux, H+He) @ k=123,
i R _ o D
Agr (X) i 0204 (X);

%

= P (X) 020a

Here A 4 is the operator of the order - parameter (we shall
denote the spin index of the operator A with Greek letters,
and the orbital index with Roman letters), o, are the Pauli
matrices, g, (X,?) is a certain function of the coordinates
and time that characterizes the equilibrium state of the sys-
tem. The commutation relationships of the order-parameter
operator with the integrals of motion N, Z;, as well as with
the spin operator Sﬁ and the orbital angular momentum of
the system f = § d®x€,4, x, 7, (x) have the form

Aak (x)
ax;

1

N, Rgs (0] = — 28as (%), [P1, Ao (V)] = i

[Se, Bue ()] = iegarBiue (%), (5.2)

ak()

[2’1, alz (%) = iegx; + LelijGl (x).

To establish in explicit form the dependences of the
function g,, (x,¢) on x, and ¢, we assume as before that the
state of statistical equilibrium is spatially homogeneous in
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the sense of (2.6). In view of the existence of weak relativis-
tic interactions of the particles of the studied system (which
we neglect in the Gibbs exponential), the spin operator is not
an integral of motion, and hence the Gibbs distribution of
(2.3) lacks a thermodynamic force conjugate with this oper-
ator. Therefore the condition of stationarity in the case being
studied, as before, has the form (2.8). The relationships
(2.6), (2.8), and (5.1) imply that

8k (X, 1) = e tig, (5.3)

where@(x,t) = px + pot,po = (Y + Yp)Y,~',g.. =const.
The further concretization of the superfluid state (find-
ing the structure of the quantities g,,. ) involves the formula-
tion of the symmetry properties of the operator fwith respect
to rotations in coordinate and spin spaces. Since the operator
f explicitly contains the superfluid momentum B then as we
haveseen, it is convenient to treat the operator P= ] — pN
as the translation operator. By analogous considerations, it
is convenient to treat as the rotation operator, instead of the
angular momentum operator .%;, the operator L,
=%, — i€yupr 0 /dp,, which acts both in Hilbert space and
in the space of fungtions of the superfluid momentum p. The
operators P; and L, satisfy the commutation relationships
characteristic of the generators of the translation and three-
dimensional rotation groups of coordinate space:

[, ]Sk] =0, L, Py)=iewPs, [Li, Le] = iegly. (5.4)

In the case of the A phase of superfluid *He the symme-
try conditions of the operator f (and hence, those of the
Gibbs distribution) are determined by commutation rela-
tionships of the type

[7, lf.—%m;ﬁ]=0, [f dS———2-ms ] 0.  (5.5)
Here 1 and d are unit vectors that characterize the equilibri-
um state (for *He-A: m, = 1, m, = 0). Let us elucidate the
physical meaning of these symmetry conditions. For this
purpose we shall introduce the “wave function” of a Cooper
pair of particles of the system:

Yoo, (X1, X2} = Sp e, (%;) Yo, (Xs).

Let us assume {! that pP= 0, Y = 0. Then, L, upon noting that in

this case [w, lf (Nm,/2)] = [w, dS Nm /2] =
have

SP[ % mT ] P, (X,) Yoy (X2) =0,

0, we

Sp [w, dS —

MIB

] o (X1) Yo (%) = 0.

Since

[Zi, Yo (O] = — e (%), [Si, o (W] = —-% (G9)ap b3 (%),
(5.6)

then we have
LAY 4+ 1) Yo, (1, %) = m¥ s (X1, Xo),
d (3(1) -+ E(ﬂ)) W (X, Xg) = mg¥ (X1, Xo),

where the 7, @ = — ig,, x{” V{3 (a = 1,2) are the op-
erators for the moment of momentum and the spin, which
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act respectively on the first and second arguments of the
“wave function”. Therefore we shall say that the state of
statistical equilibrium for which the relationship (5.5) is sat-
isfied corresponds to a state in which the projection on the
direction of 1 of the moment of momentum of the Cooper
pair equals m,, while the projection of the spin of the Cooper
pair on the direction of d equals m, . The choice of the order-
parameter operator in the form of a vector in the spin and
orbital indices (cf. (5.1)) corresponds to the idea that the
spin and the moment of momentum of the Cooper pair are
assumed equal to 1.
The relationships (5.5) and (5.1) imply that

Gar = do (ms) & (my),

where
dy(mg) =di, me=—1, E(m) =8, m=—1,
=d;, me=1, =&, m=1,
=dy, ms=0, =, m=0
Here we have
4= = V' — (A} £ iA), & = V‘ — (A; £ iA,)

and A,, A, (A},A}) are real, mutually orthogonal unit vec-
tors orthogonal to the vector 1 (or d). In the case of *He-A
we have: g, =d, &« .

The state of equilibrium of *He-A is described by a sta-
tistical operator w(z) of the form of (2.3), in which we
should understand as}” the following expression:

F = d®xBax (x) exp[— i2 (px + pot)] dui + He.

= S d® xAgs (%) dofr (%, £) + Hec. | (5.7)
Here we have § [ (x,t) = & , exp[ — i2(px + pot)]. The ex-
plicit form of the operator w(¢) and the commutation rela-
tionships (5.2) imply that

e_,-,vq,w (ya’ P, E_, §+_ d) elN?p.= w (Ya, P, §+e-uq>’ g—elw' d),
e“"’gw (Yan P, §+’ g-» d) eimg___ w (Ya, P, §+- E-’ d((l))) .

(Here we have d(®) = d exp @, and Oup =Eupy @,-) Therg—
fore the potential @ and the averages of the operators Q,
which are invariant with respect to spin rotations and phase
transformations ([Q,S ]1=0, [Q,N ] =0), do not depend
on ¢ and d. Hence they are functions of Y., p and /.

The symmetry of *He-B is determined by the commuta-
tion relationship

[}, Zi + Riaga] =_0,

where R,, is a rotation matrix (RR = 1) defined by three
parameters that characterize the state of statistical equilibri-
um of *He-B. Therefore, upon noting that

[IZ +§, {d*x Bu (x) 2042 - Hee. )] =0,

and performing on this relationship a unitary transforma-
tion corresponding to the rotation R in spin space, we easily’
find that g, = R, exp(ip), é @). Thus the equilibrium
state of *He-B is described by the statistical operator w(#) of
(2.3), in which the operator f has the form
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[ =(d® x(Ba (x) 29%9Res +-Hee. ), @(x, 1) = px+ pof + @

and the potential @ obviously does not depend on ¢.

Now let us take up the finding of the equilibrium mean
operators of the flux densities (£, ) in *He-A. Proceeding
just as in Sec. 2.3, we can easily see that the flux density
§ ax =Ji has the form

(5.8)

Wesaw in Sec. 2.3 that, in finding the expression for the
momentum flux density #,,, an important role is played by
the unitary transformations U, that correspond to the group
of arbitrary affine transformations x; —»x;' —a, x,. The
reason why one could express 7, in the case of superfluid
*Hein terms of the thermodynamic potential consisted in the
fact that the operator f(¥,p) in the unitary transformations
U, . transformegl in terms of itself, namely,
U UG =f(V|deta|,pa ')-|deta|~'"*.In the case
of *He-A the situation changes, and the operator}”in the
Gibbs exponential in the unitary transformations U, trans-
forms in terms of itself only under certain restrictions on the
matrix a,, of the affine transformation. Let us elucidate
these restrictions. According to (5.7) we have

U (V, 0, &) Ua
= § d*x(Bee %) exp[—i2 (uai'x; + pod)] auiidy + Hec).

Videtal

We can express the right-hand side of this equation in terms

of fonly in the case in which
apbi’ = acull, (5.9)

where a is an arbitrary scalar parameter and ¢ is an arbitrary
matrix of spatial rotations (¢¢ = 1). In this case we have

Udf (V, p, §) Ui = af (V|deta|, a”p, c§).

We find from Eq. (5.9) that the most general structure of the
matrix a,; has the form

(5.10)

Or = Cribuy,

where b, =af ;. Hence we obtain that b, =ad,

+ Bl (a and B are arbitrary parameters). Thus, in con-
trast to the complete group of homogeneous affine transfor-
mations, which is characterized by nine real parameters, the
group of transformations that leave invariant the structure
of the operator f( V,p,E~ ) in the sense of (5.10) is character-
ized by five arbitrary parameters. Therefore, in contrast to
the case of superfluid “He, the information obtainable on the
momentum flux density #,, starting with the symmetry prop-
erties of the operator f will be more meager in the case of
*He-A. Upon repeating the calculations of Sec. 2.3, we ob-
tain the following expression for the tension tensor 7, :

_ o oY 1 oo
e = Yo Op 0¥, Y, + 3, ("‘?q: — 737[) + ta
(5.11)
(The potential » depends only on the ratio ,/|n|=/;; the
vector 7; has been introduced so that the derivatives dw/d7;

may be understood in the ordinary sense.) The term ¢ |, sat-
isfies only the following relationships:
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tu=0, ULitu=0. (5.12)

tip = L,

(Inderiving (5.11) we took account of the fact that the oper-
ator f is defined essentially only up to a transformation
J/—af, since, according to the method of quasiaverages,
v-0).

We note that the thermodynamic potential @ is a func-
tion of the invariants Y,, ¥,, Y2, Y% Yp, (YD? (pl)%
(YD) (pl), and p°. Hence, according to (5.11), this implies
that the tension tensor ¢, = ¢, is symmetric.

Upon applying Eq. (2.26) and Egs. (5.8), (5.11), we
can easily find an expression for the energy flux density.
Consequently we obtain a formula that combines all the
fluxes in the state of statistical equilibrium of *He-A,

6 "’Yk 60) 0Py a Y
P
Sk = Tav, ¥, ' op oY, Tl “ov, Y, '
(5.13)
1 dw
tn = v ( ka-—ﬂt-an—k) + ti.
Here t }, satisfies the relationships of (5.12). In the phenom-

enological theory it is assumed that the tensor ¢ }, vanishes if
the potential @ does not depend on the vector 1 (in this case
eq. (5.13) transforms into (2.28)). Accordingly the tensor
t . can be represented in the form

Leties = 0.  (5.14)

. P . .
tin =t — [nl,  tieg = tui,

oy

Now let us take account of the invariance of the system
being treated with respect to Galilean transformations. In
this case the potential @ is a function of the invariants
Y5, Y., Y% and (YNDX(Y,=Y, Y=Y, + (Yp./m),
and Y, = Y, + Yp + (Y,p?>/2m)), we took account of the
pseudovector character of the quantity 1). Let us introduce
into the treatment the superfluid and normal densities
PsPniPn +ps =p (cf. (2.29)), as well as the quantity p,:

90

ps= — —mt,

Y, op?

dw

= —2Y o
[y 2 %5 (Y12

oaY,. v Po=—

Then we shall represent the flux density of the number of
particles j; and the tension tensor ¢, in the form

Ji = (Pa)it Vak - (Ps)ix Vsk,
(Pa)ie = Pndiz +- polile,  (Ps)ie = PsOir: — Pylilk,
tie = Pby + PaUniUne - PsVsilst

+ %po Vo 3 Vo) LLL (Vi Ve Lk (Vo 4 V)i t;k;

Here we havev, = — Y/Y,, v, =p/m.

The formulas of transformation of the tension tensor ¢
in Galilean transformations implies that the tensor ¢, is a
function of the vectors Y’ and /. Therefore the tensor ¢, is
constructed from a combination of &,,/./,Y Y],
(Y10 + (YN, [Y1L,Y,+{Y'1]. Y, and [Y;
+ £, Y ;. In view of (5.12) it is characterized in the general
case by four scalar functions. Upon taking account of the
pseudovector character of the quantity 1 and assuming that
the structure of ¢/, (Y ;) does not contain singularities as
Y’ -0, and also, upon using (5.14), we obtain in the princi-
pal approximation in Y':
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tlk (m 0']]: + nk 0']; )
Here a is a certain function of the thermodynamic param-
eters (the coefficients of the other three scalar functions con-
tain higher powers of Y’').

If we have expressions for the equilibrium average flux
densities § ;. of (5.13), we can write the equations of balance
for *He-A in an approximation linear in the spatial gradients
(ideal hydrodynamics):

Ew = — Valar.

In this approximation in the expressions for the flux densi-
ties £,,, we can neglect the terms usually written out,'s
which involve the spatial gradients of both the vector 1 and
the other thermodynamic parameters; the terms containing
the gradients of these quantities appear in the next approxi-
mation, which leads to both dissipative terms and to modifi-
cation of the reactive terms in the equations of hydrodyna-
mics of *He-A.

The equations (35.15) are not closed. Analogously to the
way in which it was done in treating superfluid “He, one
must supplement them with the equations of motion for p
and 1. We can easily show that the equation of motion for the
superfluid momentum p has the same form in the approxi-
mation being treated as in the case of “He (cf. (3.12)):

Po=(Ys+ Yp) Y5" (5.16)

A problem of the microscopic theory is also to derive the
equations of motion for the vector 1. We shall not present the
derivation of this equation, which has the following form in
the approximation linear in the gradients (see the review of
Ref. 15):

(5.15)

f')k = Vipy,

h=— (VnV) I+ B — L) t}k,pvkvni

0w
_— [l rotv,,];— Y_o[l —aT]

Here ¢ j; , is determined by the formulas of (5.14) and 7 is a

certain function of the thermodynamic parameters. One can
easily derive this equation from Eqs. (5.15) and (5.16) by
requiring the adiabaticity of flow of the superfluid liquid.
That is, we have

n; = V (svﬂ)l

Here the entropy density is determined by the formula
s= —w+Y,¢,.
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