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The progress already made in studies of the stability of shock waves and some tasks for the
future are reviewed. The following aspects of the problem are discussed: 1) stability of shock
waves as hydrodynamic discontinuities irrespective of the events which occur in the relaxation
zone of a wave (this aspect includes also the problem of stability of a shock wave sustained by
a piston and anomalies in the reaction of a wave to external perturbation, including reflection
and refraction of perturbations); 2) stability of flow in the relaxation zone (structural
stability) of a shock wave. The stress is on the theoretical side of the problem. However,
potential practical realization of the shock-wave instability criteria are also considered.
Schemes of decay of unstable shock-wave discontinuities are discussed.

INTRODUCTION

The problem of stability of shock waves has a number of
aspects which are qualitatively different both from the point
of view of the theory and in respect of possible practical ap-
plications. Therefore, each of these aspects should be dis-
cussed separately. In some cases these aspects are interrelat-
ed, but it is easier to understand them by investigating them
separately. We shall therefore consider the following topics.

/. Stability of shock waves considered as hydrodynamic
discontinuities irrespective of the events which occur in the
relaxation zone of a wave. This formulation of the problem is
of interest in studies of the stability of flow on a scale much
greater than the length of the relaxation zone of a shock
wave. We shall include here the problem of stability of a
shock wave sustained by a piston, as well as anomalies in the
reaction of a wave to external perturbations (reflection re-
fraction of perturbations).

2. Stability of flow in the relaxation zone (structural sta-
bility) of a shock wave. This aspect of the problem is of inter-
est mainly in studies of the flow and its characteristics on
scales comparable with the length of the relaxation zone.

In an analysis of these or other deformations of the
shock wave front it is necessary to distinguish the intrinsic
structural instability from the boundary effects associated
with the actual conditions during generation and propaga-
tion of a shock wave in a confined medium. This aspect of the
problem will also be discussed briefly as an inherent part of
the aspect 2.

3. Stability of shock waves propagating in a substance
which is not in thermodynamic equilibrium. A separate sec-
tion of the review is devoted to each of these three aspects of
the problem. The conditions under which the aspects 1 and 2
are interrelated are discussed in Sec. 4. Potential practical
realization of the criteria of instability of shock waves are
discussed in Sees. 5 and 6. The Appendix gives schemes of
decay of shock-wave discontinuities.

The review concentrates on the theoretical side of the
problem and then only on key fundamental topics. Conse-
quently, no attempt has been made to provide a comprehen-
sive bibliography, particularly of experimental investiga-
tions.

1. HYDRODYNAMIC STABILITY OF SHOCK WAVES

1.1. General conditions of existence of a shock-wave
discontinuity

In the problem of stability of shock waves, as in the
theory of shock waves in general, we have to consider the
wave front either as an infinitely thin surface of discontin-
uity or as a transition layer of finite width 8, which it in
reality is, depending on the characteristic geometric scale of
the problem. If we are interested in the flow of a scale much
larger than S, then the first of these approaches is acceptable
and in this case we can assume formally that 5 = 0, and that
all that occurs in the layer S can be regarded as unimportant.
This applies also to possible manifestations of the flow insta-
bility in this layer because the "memory" of such an instabil-
ity (representing short-wavelength perturbations traveling
downstream behind the shock wave front) decays because of
the always-present viscosity, in a manner similar to dissipa-
tion of perturbations in a liquid at rest, which establishes a
complete thermodynamic equilibrium.

The main conditions for the stability of a shock-wave
discontinuity regarded as an interface between two constant-
flow regions (the constancy is assumed to apply at least in a
small part of a continuous medium) are well known from the
fundamentals of the theory of shock waves.1'2 They can be
stated as follows.

1. The motion of the front of a shock wave should be
supersonic relative to the matter ahead of the discontinuity
and subsonic relative to the matter behind the discontinuity.
These conditions can be expressed in terms of the Mach
numbers Ma in the form

Ma2<], ( 1 )

where y, is the velocity of matter relative to the front and c, is
the velocity of sound; the indices 1 and 2 apply to the regions
ahead and behind the front, respectively.

In the case of oblique shock waves we have to replace
the velocity V, in Eq. (1) with its component Vln normal to
the front and the Mach numbers have to be replaced with the
quantities Maln = F/n/c,. The stability conditions are then
defined by
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If the first of the two conditions in Eq. (2) is disobeyed,
perturbations travel forward from the wave front giving rise
to a time-dependent (expanding) region of a transition from
the state 1 to the state 2, i.e., a transition resulting in destruc-
tion of the shock wave front. When the second condition of
Eq. (2) is disobeyed, the front loses its linkage with the
"rear" and the intensity of the discontinuity becomes instan-
taneously (in the hydrodynamic sense) as small as we
please, which again implies destruction of the shock wave
front.

2. A necessary physical condition of the stability of a
shock wave front is the requirement of an increase in the
entropy when matter passes through a discontinuity:

s,>s,. (3)

All three conservation laws, relating to the mass, mo-
mentum, and energy, are symmetric relative to the indices 1
and 2 in the case of a shock wave. The inequality (3) is
asymmetric and it thus imposes the direction of motion of a
shock-wave discontinuity. As a rule, the condition (3)
means that a shock wave compresses matter (Zemplen
theoremK2). However, in exceptional cases, corresponding
to an inequality which is thermodynamically not forbidden
but very rarely satisfied,

; — is the specific volume),

it follows from Eq. (3) that v2>vt. In other words, in such
cases there is a rarefaction shock wave. A compression shock
wave is then unstable: its front expands without limit with
time and in the asymptotic limit f-» oo it represents an isen-
tropic compression wave.

The conditions (2) and (3) are necessary for the stabil-
ity of a shock wave but they are insufficient, since they do not
tell us anything of what will happen to the wave when its
front is bent by perturbations, whether such perturbations
decay or grow with time. Moreover, the states 1 and 2 satis-
fying the relationships applicable to one shock-wave discon-
tinuity may sometimes be linked also by a sequence of other
discontinuities and waves, such as shock waves of a different
amplitude, contact discontinuities, and rarefaction waves.
In the case of shock waves each of the theoretically possible
linkage variants may satisfy the inequalities of Eqs. (2) and
(3), but it is difficult to tell which variant occurs in practice.

1.2. Main results of a linear stability theory

The problem of stability of a shock wave against bend-
ing or corrugation of its front was first investigated by D'ya-
kov.3 He linearized the equations of hydrodynamics for per-
turbations and solved the characteristic equation for the
complex frequency. (For brevity, this approach and its re-
sults will be called the linear stability theory.) The inequal-
ities (2) and (3) were assumed to be satisfied. The main
results of the linear stability theory were as follows. The na-
ture of evolution of corrugated perturbations of the front of a
wave, the intensity of which in the unperturbed state is gov-
erned by a pressure p2, is described completely by the rela-
tionship between the following dimensionless parameters:

L^JZ(—} , Ma2, 6==-^, (4)
\ dp JH fa

where J=[( p2— p t ) / ( v , - v2) ] l / - is the flow of matter
across the shock wave front and (dv/dp) ,lf, . ,, is the deriva-
tive of the specific volume v with respect to the pressure p^
along the shock adiabat. All the dimensionless parameters of
Eq. (4) are known at any pressure p2 if we know the shock
adiabat p2 =f(v2, pt, v t ) and the velocity of sound behind
the shock wave at the point ( p2, v2).

There are three ranges of the values of the parameter L
which differ qualitatively in respect of the evolution of cor-
rugated perturbations. These ranges are limited by the in-
equalities0

'-QMa'-Ma2

L< — 1 or L> 1 +2Ma 2 ,

<1 +2Ma 2 .

(6)

(7)

The inequalities of Eqs. (5)-(7) apply to both com-
pression and rarefaction shock waves.3

In the case described by Eq. (5) we find that small cor-
rugated perturbations of the shock wave front decay with
time in accordance with a power law. In other words, a shock
wave satisfying the conditions of Eq. (5) is stable against
small perturbations.

In the cases described by Eq. (6) it follows from the
linear stability theory that perturbations of the wave front
increase exponentially with time. A nonlinear analysis yields
possible asymptotic results of the evolution in time (Sec.
1.3).

The range defined by Eq. (7) is puzzling when consid-
ered on the basis of the linear stability theory.

It follows from the linear stability theory'"5 that in a
wider—compared with that defined by Eq. (7)—range of
values of the parameter L

L*<L< 1 +2Ma2)

where L * is a certain value of L lying within the range
— 1 <L * = Lw there are solutions with nondecaying per-

turbations of the shock wave front (which are stationary in a
coordinate system gliding along the front) and only the
acoustic waves arriving or departing at a certain angle are
found just behind the front. In the case of these solutions the
perturbations of all the quantities are proportional to a fac-
tor of the type

exp [ i (kx+ly—<at) ] (8)

with real values of k, I, and &>. (The x and y axes are directed
along the shock wave front and along the normal to the
front, respectively. ) The ratio k / I , representing the orienta-
tion of an acoustic wave, depends on L. The values of L for
the solutions with arriving acoustic waves are limited by the
inequalities

whereas for the solutions characterized by departing waves,
these values are limited by the inequalities in Eq. ( 7 ) .

When sound is reflected by shock wave10"14 the above
solutions with arriving waves correspond to vanishing of the
reflection coefficient x, whereas the solutions with departing
waves correspond to the infinite value of this coefficient
(x=pT/pf, whereof andpT are the pressures in the incident
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and reflected waves).
In the case when waves intersect, the theoretical pattern

of the reflection of sound is a configuration of four waves.
The conditions under which x = 0 or x = oo are also the
conditions of existence of a three-wave configuration formed
by perturbed and unperturbed shock waves and an infinitesi-
mally small arriving or departing wave.11'15 The relation-
ship between L and the angle y in the three-wave configura-
tion (Figs. 1-3) or in the solution given by Eq. (8) can be
represented by12

(9)

FIG. 2. Three-wave configuration with a departing wave 3: 17/2 < Y < TT
case. The notation is the same as in Fig. 1.

where

ctg7.
Possible values of the angles ^for the arriving or depart-

ing waves""14 lie within the following limits (Figs. 1-3):

0 < Y < Vo = arc cos Ma2,

Yo < V < «• (11)

The physical meaning of the solutions corresponding to
Eq. (7) and characterized by departing waves and infinite x
(representing a resonance in accordance with the terminol-
ogy of Refs. 11 and 13) can be found only by a special investi-
gation. The possibility of an instability of a shock wave in the
range defined by Eq. (7), where resonance reflection angles
exist, was not excluded in Refs. 3,11, and 13. However, the
presence of resonances was treated much more positively in
Ref. 14 (but a proof was not provided) and regarded as a
direct manifestation of a shock wave instability. The princi-
pal interest is therefore the question whether reflection of an
infinitesimally weak wave in the K = oo case leads to a finite
perturbation of a shock wave and, therefore, to its instabil-
ity.

The physical meaning of the solutions corresponding to
Eq. (8) with departing waves and an infinite reflection coef-
ficient had been identified relatively recently,12'16" so that it
would be desirable to treat this topic in greater detail com-
pared with the other aspects of the problem mentioned
above. Such a treatment is given in Sees. 1.6 and 1.7.

1.3. Decaying shock-wave discontinuities

Subsequent investigations of the shock wave stability
problems, not solved by the linear theory, demonstrated that
in the cases when L> 1 + 2Ma2 (Refs. 15, 17, and 18) or
L < 1 — 2Ma2 (Ref. 18) a shock-wave discontinuity can be
expanded into other elements (shock waves of different am-

' ' plitude, rarefaction waves, contact discontinuities,2 as is
true of any discontinuity). I fL> 1 4- 2Ma2 orL < 1 — 2Ma2

and Ma, = 1, i.e., when any of the inequalities of Eq. (6) is
satisfied, such elements or components move at different ve-
locities without catching up and the decay of the initial wave
is irreversible. In the cases defined by Eq. (6) a shock wave
decays immediately to a configuration of other waves of fi-
nite amplitude.

A detailed analysis of the wave configurations formed
as a result of decay of a shock-wave discontinuity in the cases
when L < — 1 and L > 1 + 2Ma2 was reported in Ref. 18 and
the method used to calculate the configurations was given
there. The shock adiabats (mpv andpu coordinates, where u
is the velocity of matter behind the shock wave front in the
laboratory coordinate system) which have sections with
L < — 1 and L > 1 + 2Ma2 are shown in Figs. 4 and 5, re-
spectively. The Appendix gives a similar scheme of wave
configurations formed as a result of decay of an original
shock-wave discontinuity, as a function of the governing pa-
rameters. A similar scheme can be provided also in the case
of rarefaction shock waves. l x

All qualitative and quantitative data on the decay of a
shock-wave discontinuity in the case when the inequalities of
Eq. (6) are satisfied were obtained by a rigorous nonlinear
analysis. This analysis was based on the application of the

FIG. 1. Three-wave configuration with an arriving wave 3. Here, 1 de-
notes an unperturbed shock wave and 2 represents a perturbed shock
wave; 7"is a tangential discontinuity. The arrows give the directions of the
lines of flow in a coordinate system with a fixed point O.

FIG. 3. Three-wave configuration with a departing wave 3: ya < y < w/2
case. The notation is the same as in Fig. 1.
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FIG. 4. Shock adiabat with a kink or a smooth in-
flection (dashed curve) at the point L . The in-
equality L < — 1 is satisfied in the section L L 4 .
The coordinates/)!/ are used to show the following:
an isentrope of the 5+ family (lower dashed
curve), touching the shock adiabat at the point
L * ; a shock adiabat of the// * family drawn from
the point L (upper dashed curve).

general method of the theory of decay of discontinuities21'22

without recourse to any expansions in powers of a small pa-
rameter.

It is important to stress (see Ref. 18) the following two
circumstances. The range of values of the parameter L for
shock-wave discontinuities which can be expanded into oth-
er elements (components) firstly includes completely both
subregions defined by Eq. (6) and, secondly, an expansion
into other elements is also possible for those shock-wave dis-
continuities for which small deformations of the surface do
not increase with time according to the linear stability theo-
ry, i.e., which correspond to

-KL<l+2Ma2. (12)

We shall use L and L + to denote the lower (charac-
terized by a lower pressure) and upper limits of an interval
L~ L + of the shock adiabat within which we have L< — 1
or L > 1 + 2Ma2. If the varies monotonically along the
shock adiabat,3' the values of L at the limits of the interval

are — 1 in the first case and 1 + 2Ma, in the second. We can
show (Sec. 1.5) that in such cases the intervals L L + cor-
responding to a wave instability in accordance with the lin-
ear theory are distributed as shown in Figs. 6a and 6b rela-
tive to sections AS of the shock adiabat where a shock-wave
discontinuity can be expanded into other elements (compo-
nents).

The limits of the inequalities in Eq. (6), L = — 1 and
L = 1 + 2Ma2, are set mathematically by the condition that
the imaginary part of the complex frequency a> should van-
ish in a solution of the type exp( — mt) representing the am-
plitude of a corrugated perturbation of the shock wave
front.3 We shall now give a clear physical interpretation of
these limits and of the instability criteria described by Eq.
(6).

1.4. Graphical interpretation of the instability criteria

1.4.1. L< —1 case. We can see from Fig. 4 that through-
out the interval L L + the shock wave velocity D decreases
on increase in the pressure; we recall that this velocity is
given by D = J~'vl = v, [ ( p 2 -/>,) (v, - v2) ~ ' ] l / 2 , i.e.,
that D - is proportional to the modulus of slope of the Ray-
leigh-Michaelson line relative to the v axis (Fig. 4). This
means that after a random local reduction in the pressure the
initially flat part of the shock wave becomes convex: cylin-
drical in the case of a two-dimensional perturbation and
spherical for a three-dimensional geometry. The area of the

,b

FIG. 5. Shock adiabat with a section L L + where L > 1 + 2Ma2. An
isentrope of the S~ family is shown on the right using the pit coordi-
nates (lowest dashed curve). The other dashed curves represent sche-
matically isentropes of the 5" family (for downward transitions) or
shock adiabats of the H~ family (for upward transitions); see the
Appendix.

FIG. 6. Relative positions of the boundaries L and L + of an
instability of a shock wave deduced using the linear theory and the
boundaries A and B of a shock adiabat segment where representa-
tion of a shock-wave discontinuity is many-valued (point A lies
below L~ in Fig. 6a).
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convex front increases proportionally to time / or t2 for a
cylinder and a sphere, respectively, and this is known to re-
duce the front pressure compared with the pressure in a
plane wave for identical parameters of the flow far from the
front. This reduction in the front pressure increases even
further the shock wave velocity at wave intensities corre-
sponding to the shock adiabat interval L ~ L + , and so on,
i.e., the plane surface of the front is unstable. The boundary
of this "negative" dependence of the velocity of the shock
wave front is given by

dp (13)

which is identical to the equality L = — 1. The instability
region L < — 1 established in this way is in full agreement
with the results obtained from the liner theory of the shock
wave stability. The simple proof of the instability given here
can be regarded as a graphic interpretation of its mechanism
in the case when L < — 1.

1.4.2. L> ] + 2Ma2 case. A corrugated instability of the
shock wave front is in this case associated with a characteris-
tic reaction of the wave front to the perturbations reaching
it.

The coefficient x representing the reflection of an
acoustic perturbation by a shock wave front is given by the
following expression which is valid in the case of normal
incidence2'

X =
/ ._(l+2Ma2)

(14)

It follows from Eq. (14) that in the L > 1 + 2Ma2 case
the reflection coefficient is negative and its absolute value is
greater than unity. This means that weak compression (rar-
efaction) waves are reflected in the form of rarefaction
(compression) waves with a larger absolute amplitude. This
interaction of the shock wave front with the arriving behind-
front perturbations gives rise to a characteristic wave insta-
bility mechanism.

Let us assume that reflection of a random local pertur-
bation of finite size with the intensity of a shock wave in-
creases in a small element of the surface of its front. In view
of the finite size of a local perturbation (rarefaction wave),
the process of its reflection takes a finite time during which
the element of the shock wave front under investigation
moves at a higher velocity than the unperturbed shock wave.
The front of this wave therefore becomes convex. (This ef-
fect is of the same order of smallness as the initial random
perturbation.) The behind-front region of flow reacts to
such a deformation by "sending" a weak rarefaction wave in
the direction of the convex part of the front. However, it
follows from Eq. (14) that such waves further increase the
pressure and the front propagation velocity,4' i.e., such a
randomly initiated convexity of the front continues to grow.

The condition for this instability mechanism, expressed
by the inequality L > 1 + 2Ma2, is again in full agreement
with the linear theory of the shock wave stability.

This interpretation of the mechanism of the instability
of a wave for a shock adiabat interval where L > 1 + 2Ma2 is
not based on a rigorous mathematical analysis and should be
regarded simply as a qualitative result.51

In the case of the experimentally known anomalies of a
shock adiabat which satisfy the necessary conditions for the
decay of a wave (represented by expansion into other stable

elements) and also the inequalities of Eq. (12 ) the wave
decay is indeed observed: in the case of first-order phase
transitions it is found that in a certain range of pressures
(corresponding to the section AB of the adiabat in Fig. 4) the
inequalities of Eq. (12) are obeyed, but instead of one wave a
configuration of two shock waves traveling in the same di-
rection is formed.18'24'26 However, we cannot exclude the
possibility that if the structure of the initial jump is regarded
as stationary, we may find that in the region defined by Eq.
(12) a shock wave satisfying the necessary decay conditions
does not decay spontaneously. In such a case the parts of the
adiabats where the conditions of Eq. (12) and the necessary
decay conditions are satisfied simultaneously correspond to
relatively stable shock waves which decay only as a result of
a major modification of their structure under the influence
of external perturbation sources. This problem requires
further study. It must be stressed that the solution to this
problem cannot be obtained using a conventional hydrody-
namic analysis in which a transition region between the flow
ahead and behind the front is replaced by a surface of discon-
tinuity, but the structure of the surface is not investigated.

The following "structure" arguments are put forward
in Ref. 26 to demonstrate an instability of a shock-wave dis-
continuity in the interval L 4 L (Fig. 4). A straight line
drawn from a point 1 to any point in the interval L ' L
intersects the shock adiabat at two additional points. These
intersections allow us to interpret the initial shock-wave dis-
continuity (Fig. 4) as a sequence of three shock waves separ-
ating respectively the states 1-2', 2'-2", and 2"-2 moving at
the same velocity. In the case of a weak almost isentropic
wave 1-2' we can readily show 27 that the entropy decreases
in a 2'-2" wave, i.e., such a compression shock wave cannot
exist. Hence, it is concluded that the overall shock-wave dis-
continuity 1-2 is unstable. However, such a proof is explicit-
ly or implicitly based on the assumption that the whole phase
path of a relaxing system is projected in the/w plane as con-
tinuous motion along the Rayleigh-Michaelson straight
line, which is justified only in the case of weak almost isen-
tropic waves solely in the case when the shear viscosity is
unimportant.

An analysis of the existence and uniqueness of a shock-
wave transition based on a qualitative study of stationary
solutions of differential equations describing the motion of a
viscous heat-conducting gas followed by reduction of the
viscosity and thermal conductivity to zero and a consequent
reduction of the finite thickness of the transition layer to a
shock-wave discontinuity (see Ref. 28 and the literature
cited there) essentially also applies only to weak waves. The
equation of state, the equations of gas dynamics, and the
linear relationships from the thermodynamics of irreversible
processes which occur in them and are used in such analysis
are known to be unsuitable for the description of the struc-
ture of strong shock waves characterized by a very small
width of a density jump characteristic of strong shock waves.
The very concept of temperature is inapplicable to the struc-
ture of such a jump and this is true even in the case of the
subsystem of the translational degrees of freedom of mole-
cules. Nevertheless, the results of such an analysis are of
interest at least as a model description. Using this model we
can show that a shock-wave transition from a point 1 to a
point 2 is structurally possible only on condition that the
whole section 1-2 of the shock adiabat between these points
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is located in thepv plane so that it does not lie to the right of
the straight line joining these points. Consequently, intersec-
tion of this line with the shock adiabat section 1-2, apart
from its boundaries, implies the impossibility (instability)
of the 1 -»2 shock-wave transition (Fig. 4) at least within the
framework of this model.

1.5. Relative positions of the boundaries L and L+ of
instability of a shock wave front deduced from the linear
theory and of the boundaries A and B of a multivalued
representation of a shock-wave discontinuity. Stability of a
shock wave in the range of intensities corresponding to the
sections AL~ and L+Bo1 a shock adiabat

7.5.7. L> 7-/-2Ma2 case. In this case a shock-wave dis-
continuity canjpe represented in two other ways using con-
figurations PKYand YKY (see the Appendix; the notation
used here and later is as follows: Fis a shock wave, P is an
isentropic rarefaction wave, and A" is a contact discontinuity;
the arrow identifies the direction of motion of the wave). An
analysis of the conditions for a multivalued representation of
a shock-wave discontinuity can be carried out conveniently
using/? (pressure) and u (velocity of matter in the laborato-
ry system) as the coordinates, because these variables vary
continuously across a contact discontinuity.

The ability to expand a shock-wave discontinuity at a
certain pressure/;, behind it into a fAf ^configuration corre-
sponds to the condition of a second intersection of an isen-
trope drawn in thep-u plane from the point p, on the shock
adiabat in the direction of lower pressures with the adiabat
itself. The initial part of the shock adiabat (weak shock
waves) plotted using the coordinates/; and u coincides with
that isentrope which corresponds to the motion of a behind-
front isentropic perturbation in the direction of the wave
front. Therefore, a family of isentropes for a perturbation in
the opposite direction (we shall denote this family by S )
intersects the initial part of the shock adiabat analogously to
the specular reflection of the adiabat from constant-pressure
lines and this happens only once-see Fig. 5 (the dependence
of/; on u in the initial part of the adiabat is nearly rectilinear,
since in the case of a weak wave we have p2 — p, ~p ,c, u).

The boundary of a region of multiple intersection of an
isentrope with a shock adiabat corresponds to (but does not
coincide with-as shown below) the point of tangency of
these curves which is identified at L 4 in Fig. 5. The tangen-
cy condition is expressed in the form L = 1 + 2Ma2. (In or-
der to avoid misunderstanding, it should be pointed out that
intersection of a shock adiabat and an isentrope drawn from
a point at a pressurep2 to a point/;, in thep-u plane does not
imply equality of the entropy on the shock adiabat at the
points/;-, and/;,. In thep-v plane such an isentrope does not
intersect the shock adiabat at the point/;,.)

The ability to expand a shock^waA'e discontinuity with
the pressure p2 behind it into the YKY configuration corre-
sponds in thep-u plane to the condition of a further intersec-
tion of the initial shock adiabat with a shock adiabat for a
wave traveling in the opposite direction (we shall denote a
family of shock adiabats for waves traveling in the opposite
direction by H " , from the point /?2-see Fig. 5). The bound-
ary of the region of multiple intersections corresponds to the
point of tangency of the shock adiabats labeled L ~ in Fig. 5.
However, the adiabat H ~ in the vicinity of the initial point
p2 coincides with the isentrope. Consequently, the point L ~

is determined, like L ' , by the condition of tangency of the
shock adiabat and an isentrope from the S family. How-
ever, the condition of tangency can be expressed in the form
L — 1 + 2Ma:. This accounts for the coincidence of the
boundaries L and£ + and of the points of tangency men-
tioned above.

The points of tangency L and L + and the interval
L L + between them exist if the shock adiabat is S-shaped
(Fig. 5). The isentropes of the S~ family and the shock
adiabats of the H family, which intersect the initial shock
adiabat in the interval L L + , intersect this adiabat at two
more points, i.e., the number of intersections with this adia-
bat is three and not one as usual (Fig. 5). This corresponds
to three different representations of a shock-wave discontin-
uity for the S-shaped region AB of the shock adiabat. One of
these representations is a single shock wave and the other
two represent a combination of several waves and a contact
discontinuity. Depending on the position of the point p2

(governing the intensity of a single shock wave) on one of
the characteristic regions of an S-shaped curve, we can have
various combinations listed in the Appendix. Three repre-
sentations correspond to three pressures of a shock wave
traveling forward. We shall label them in the order of in-
creasing pressure by p\n, p(

}
2}, and p^}. If they are consid-

ered as a function of p2, these three pressures are three
branches of the solution, i.e., three roots of a certain equa-
tion/?, = /( />i), such that one of the roots corresponding to
a single shock wave is naturally p, = /;,. [The actual form of
the function/( p2) can always be determined for any given
equation of state,IK but this is unimportant here.]

The lower and upper branches of the solution exist also
far from the S-shaped region (each of which is a unique solu-
tion in its own range of values ofp2) and correspond to shock
waves which are stable there. However, the middle branch
exists only in the middle of the three characteristic sections
of the S-shaped curve. This section is bounded by the points
of tangency mentioned above, i.e., by the points L and
L ' . However, according to the linear theory it is in this
section that a shock-wave discontinuity is absolutely unsta-
ble. Thus, the middle branch of the solution corresponds to
an absolutely unstable shock-wave discontinuity. This
means that a discontinuity corresponding to any point p2 in
the interval L L f separating infinite regions of constant
flow is specified artificially and immediately begins to decay
going over asymptotically with time to new steady-state flow
with a configuration of discontinuities which corresponds to
the lower or upper branch of the solution, depending on the
nature of the initial random (or deliberately specified) per-
turbation.

As pointed out already, these particular branches corre-
spond to stable shock-wave discontinuities at points on the
shock adiabat far from the S-shaped region and such that the
solution of the equation/;, =f(p2) is unique. In the triple-
valued region the solutions naturally correspond to a rela-
tively stable flow in the case of low perturbations and permit
a transition from one to another as a result of sufficiently
strong perturbations.

Obviously, we can expect here only those relationships
which are well known from the physics of other phenomena
(for example, in the case of an S-shaped current-voltage
characteristic of an arc electric discharge, in the case of non-
linear processes of combustion, detonation with losses in a
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finite medium29" or without losses in an infinite medium but
with nonmonotonic heat evolution25* ) when for certain val-
ues of the parameters there are three solutions instead of one
(bifurcation takes place) and these alternate in respect of the
stability: there are two stable solutions corresponding to two
different regimes of the process and one unstable solution
between them.

1.5.2. L < — 1 case. The shape of the shock adiabat with
a monotonic rise of the pressure and with an interval L L +

where L < — 1 is shown in Fig. 4. The reasons for the multi-
valued representation of a shock-wave continuity in this case
is basically the same as in L > 1 + 2Ma2 case discussed
above. Once again we have two points of tangency L and
L + of a shock adiabat with isentropes and these isentropes
intersect the shock adiabat in the interval L ~ L + and have
two additional points of intersection with the adiabat. Such
triple intersections correspond, as in the case L > 1 + 2Ma2

case described above, to three branches of the solution of the
problem of variants of representation of a shock-wave dis-
continuity. The points labeled A, L ~ , L + , and B in Fig. 4
separate the section AB into three regions. The indetermin-
acy of the representation of a shock-wave discontinuity in
these three parts and the nature of the stability of the wave
configurations can be determined by repeating basically all
the operations described above for the case when
L > 1 + 2Ma2. However, there are diiferences. They follow
primarily from the fact that the anomalous part of the shock
adiabat is no longer S-shaped, but such as that shown in Fig.
4 between the points A and B.

Isentropes (and shock adiabats) with each of which the
initial shock adiabat has three points of intersection belong
in terms of the p-u coordinates to the families S + (and
H + ). These families represent propagation of perturba-
tions in the same direction as the initial shock wave. Wave
configurations into which we can expand a single shock-
wave discontinuity differ considerably from those in the case
when L > 1 + 2Ma2, because they do not contain waves be-
longing to the families S~ and H + . Waves composing a
configuration move in the same direction. The existence of a
configuration which can be used to describe a shock-wave
discontinuity must not only ensure stability of the waves in
this configuration. We must also make sure that the second
wave does not catch up with the first.

The Appendix gives a scheme of wave configurations
depending on the location of the point p2, governing the in-
tensity of a single shock wave, in one of the characteristic
intervals AL ~ , L ' L + , and L + B.

In the case of a nonmonotonic variation of the pressure
along the shock adiabat the above relationships are con-
served and they describe the relatiye_positions of the boun-
daries A and B for decay to the PKY configuration and of
points at which L = 1 + 2Ma2, but between these points
there are now sections of the shock adiabats where L < — 1
(Ref. 18). A fuller analysis of the cases of nonmonotonic
variation of the pressure will not be made because such
shock adiabats are known to be of no practical interest.

1.6. Solutions of the type described by Eq. (8) with
departing waves and the causality principle

In the hydrodynamic formulation of the problem (free
of dispersion) weak perturbations travel behind the front of
a shock wave at the velocity of sound c2 which is independent

of the frequency. The velocity v, of perturbations along the
shock wave front obtained for this solution given by Eq. (8)
is described by

»< = c,(l — Ma, cos v) (sin v)'1. (15)

A point O in a three-wave configuration travels at the
same velocity v, (Figs. 1-3). In the case of the solution de-
scribed by Eq. (8) characterized by departing waves and
also in the case of the corresponding three-wave configura-
tions in the range of angles defined by Eq. (11) it follows
from the identity(10) and the expression (15) that the in-
equality v, > c2 ( 1 — Ma2)1/2 is obeyed. However, the veloc-
ity of propagation of an acoustic signal along the surface of a
shock wave is known to be c2 (1 — Ma?,)1/2. Therefore, for all
the angles defined by Eq. (11) a weak perturbation (signal)
should propagate, in accordance with the solution described
by Eq. (8), at a supersonic velocity in contrast to the predic-
tions based on the laws of linear hydrodynamics. It therefore
follows that spontaneous propagation of "ripples" along the
surface of the front of a shock wave, described by solutions of
the (8) type, should not be in the form of signals within the
angular range described by Eq. (11). However, a local initial
perturbation of the surface, for example a three-wave config-
uration (Figs. 2 and 3), can be formed by a suitable superpo-
sition of solutions of the type (8) with a constant ratio k /I.
In a dispersion-free medium such a perturbation would trav-
el along the front of a shock wave at the velocity v, (without
a change in its profile) and it would form a signal. This ap-
plies to any other superposition of solutions of the (8) type
with a constant value of the ratio k //, limited initially along
the coordinate x. The edge of such a perturbation also would
propagate along the front of a shock wave at the supersonic
velocity of Eq. (15).

This contradiction leads to the following definite con-
clusion: There are no spontaneous perturbations of the front
of a shock wave which can be described by solutions of the
type given by Eq. (8) with waves departing at angles defined
by Eq. (11). These solutions do not satisfy the causality
principle.

Formally the solution (8) considered in the linear ap-
proximation satisfies the equations of hydrodynamics and
the boundary conditions in the form of conservation laws on
the front of a shock wave. However, within the range of an-
gles defined by Eq. (11) this solution suiFers from an implic-
it inconsistency. This is because in the range of angles de-
fined by Eq. (11) the solution (8) and the corresponding
three-wave configurations do not obey the stability condi-
tion of a shock wave given by Eq. (2). It was assumed in
Refs. 3-5 that this condition is satisfied initially for an un-
perturbed shock wave. However, in the solution obtained
this causal relationship is disobeyed in a special manner by a
perturbed front within the range of angles defined by Eq.
(11). The special manner means that "signals" from the per-
turbed region of the behind-front motion do not reach the
point O (Fig. 3) and such regions should be related causally
to the point O. The condition (2) for the point O is then
satisfied only formally, in accordance with the "letter" but
not "in the spirit" of the laws of hydrodynamics. In fact,
when the angles are

(16)
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the components of the velocity of matter normal to the fronts
2 and 3 at the point O do not apply at all to the behind-front
flow identified as a sector III in Fig. 2. In the remaining
range of angles defined by Eq. ( 1 1 ) ,

the normal to the front 3 drawn through the point O ( Fig. 3 )
does reach the sector III, in contrast to the case described by
Eq. (16), but nevertheless does not cross the region of be-
hind-front flow for the front 3, i.e., the region between the
front 3 and a tangential discontinuity (sector III* in Fig. 3).
Perturbations from the sector III* do not reach the point O
and, consequently, its motion and the state of matter at this
point are not linked causally to the parameters of flow in the
sector III*. (It should be noted that the normal to the per-
turbed shock-wave front 2, drawn through the point O, does
not pass for any orientation of the front 3 through the region
of the behind-front flow for the discontinuity 2, i.e., it does
not pass through the region behind the front 2 and a tangen-
tial discontinuity. This is due to the fact that the wave 2 is
always of the departing type. It appears as a result of the
action of an external perturbation source on the shock wave
1.)

This violation of the causal linkage of the motion of the
fronts 2 and 3 at the point O with behind-front flow results in
immediate decay of the wave configuration first specified in
the form shown in Figs. 2 and 3 or in the form of the solution
(8): a rarefaction wave travels from the point O within the
sector III, but the fronts 2 and 3 become bent, incident and
reflected waves are formed by a shock-wave discontinuity,
etc. This can be demonstrated by considering, for example,
the problem of realization of the solutions of the type given
by Eq. (8) or equivalent solutions for the configurations of
three waves (Figs. 2 and 3) from the point of view of stability
of such solutions. It is shown in Ref. 16b that a local pertur-
bation of these solutions with departing waves, i.e., within
the range of angles given by Eq. ( 1 1 ) , occupies a region in
the vicinity of the point O (Figs. 2 and 3) and this region
increases with time so that the orientations of the fronts dif-
fer increasingly from the unperturbed orientation.

It is important that the intensity of a perturbation does
not increase indefinitely with time and if the original recti-
linear front 3 and the corresponding rectilinear part of the
front 2 are of limited extent, then the rarefaction waves trav-
eling from the region of behind-front unperturbed flow from
left to right (Fig. 3) eventually result in complete decay of
the wave 3, which represents a perturbation of the initial
shock wave. However, in the case of a three-wave configura-
tion with the arriving wave 3, i.e., when 0 < 7 < yw a pertur-
bation of the original configuration localized in the vicinity
of the point of intersection of the fronts grows with time so
that the configuration of waves with sufficiently extended
rectilinear sections of the fronts approaches the initial one
(in the vicinity of the point O). Variants of such perturba-
tions and their qualitative evolution are shown in Fig. 7.

The results of a qualitative analysis of the stability of the
solutions are in full agreement with the above conclusion
that there cannot be any spontaneous waves which are not
due to an external action or steady-state perturbations of the
front of a shock wave with acoustic waves of the type ( 8 )
emerging from the front throughout the angular range given
byEq. (11).

The nonphysical nature of the solutions given by Eq.
(8) in the case of spontaneous departing waves means the
loss of validity of the conclusion of the linear theory of stabil-
ity that corrugated perturbations of the front of a shock wave
are steady-state ones in the range of the values of the param-
eter L described by Eq. (7) .

The problems of the meaning of an infinite reflection
coefficient and the meaning of the solution (8) with depart-
ing waves and whether it has physical application, as well as
the stability of a shock wave in the range defined by Eq. (7) ,
will all be discussed in the next subsection.

1.7. Nonlinear analysis

Limiting transition pr—Q for solutions in the form of
weak and strong families. Physical meaning of the solutions
(8) with departing waves.

An analysis of the reflection of weak perturbations by a
shock wave front carried out in the quadratic approximation
in Ref. 12 demonstrated that in the case of a given sufficient-
ly low amplitude of the pressure pr of the incident wave in
the vicinity of a resonance angle y = ym there are two solu-
tions for the reflection coefficient x. We shall call them weak
and strong families of solutions, by analogy with the familiar
results for the reflection of a wave from a rigid wall.1'2 In the
case of the weak family solution when pf -> 0 the pressure pr

of the reflected wave tends to zero asp*/2 in the vicinity of the
angle yres. As 7 moves away from ym, the weak family solu-
tion approaches the corresponding result predicted by the
linear theory. The square-root dependence of pr on pf dem-
onstrates stability of a shock wave in the range defined by
Eq. (7) against the fairly weak perturbations arriving at the
front of a shock wave at angles close to the resonance value.

FIG. 7. Propagation of a weak wave 3 perturbed in the vicinity of the point
O: 1) front of a shock wave (apart from a weak kink at the point O); I)
region of flow ahead of the front of a shock wave .The indices 1-3 label the
times t,, t2 = t, + A/, and f3 = t, + 2A«. The rectilinear parts of the wave
3 in cases a and b represent an arriving wave, whereas in case c they
represent a departing wave. The dashed lines are nominal continuations of
the rectilinear front of the wave J. A symbol 3, is used for a reflected wave
(shown in Fig. 7c on the right above the point O labeled by primes: O '2 and

1000 Sov. Prtys. Usp. 32 (11), November 1989 N. M. Kuznetsov 1000



Infinitesimally small perturbations reflected from the front
of a shock wave do not result in a finite change of the wave
intensity. The amplitude of a reflected wave becomes infini-
tesimally small and only the order of smallness is modi-
fied.61 This result allows us also to understand the solutions
(8) with departing waves. In the approximation linear inpr

the original cause of a perturbation may be a wave arriving at
the resonance angle. Its intensity is proportional to p2

r and,
consequently, it is outside the scope of this approximation,
as are all other nonlinear effects. The causality effect is ab-
sent in the linear approximation, but it does exist in reality
and if the cause disappears ( / > r — 0 ) , so does the conse-
quence ( p,. — 0).

Obviously, a weak external perturbation which is qua-
dratic in terms of the pressure of the departing waves, may be
also in the form of waves incident on the front of a shock
wave at the appropriate resonance angle from the side of
flow ahead of the front. In this case a departing wave is
formed as a result of refraction of the incident wave (an
analysis of the refraction of sound by the front of a shock
wave is made in Ref. 11 using the linear approximation).

In the strong family solution the value ofp, is indepen-
dent of pf in the limit pf-*0 and it does not reduce to the
results of the linear approximation for angles of incidence far
from a resonance. If pr = 0, this solution corresponds to a
three-wave configuration with a weak departing wave. The
dependence of the angle y f°r this configuration on the pres-
sure/? of a weak departing wave 3 (Figs. 2 and 3) is described
by the equation 4>(Y) + ap = 0, which reduces to Eq. (9) at
p = 0 (the coefficient a in the above equation depends on the
thermodynamic properties of matter1 2) .

The solution (8) with departing acoustic waves can be
regarded as the limiting case of the strong family solutions
(for example, as an appropriate superposition of three-wave
configurations in the limit pf =0). However, since in this
limit there are no arriving waves, we face again the problem
of causality of the solution. In the more general formulation
this is the problem of the physical meaning of three-wave
configurations not only in the limit/;, ->0, but also in the case
of a finite intensity of a weak departing wave.

One can describe a thought experiment, causally fully
justified, in which such three-wave configurations could be
realized. We shall consider an infinitesimally thin flat piston
sliding freely along the plane of a tangential discontinuity
(sector III in Fig. 3). In the plane of the figure this piston is
in the form of an infinitesimally thin needle (shown dashed)
with one of its ends supported at the point O. The pressure on
both sides of the needle is the same and the needle has no
influence on the flow anywhere with the exception of the
singular point O. The length of the needle is unimportant.
The orientation of the needle in the system of coordinates in
which the point O is at rest and, consequently, the velocity of
the needle in the laboratory coordinate system are governed
by the parameters of a three-wave configuration (calcula-
tions of a configuration carried out in the linear and quadrat-
ic approximations are reported in Refs. 12 and 18).

The solution with departing acoustic waves, obtained in
the linear theory of stability of shock waves, can be repre-
sented by a superposition of such three-wave configurations
with infinitely thin pistons (the piston thickness should then
be of a higher order of smallness than the distance between
neighboring pistons).

Thus, when the inequalities of Eq. ( 7 ) are satisfied, we
can identify three types of process accompanied by steady-
state [in a coordinate system traveling together with the
front and with the velocity of Eq. (15) along the front] "rip-
ples" on the surface of the front of a shock wave and by
acoustic waves departing from these ripples. Each of these
processes represents an external perturbation of the front of
a shock wave which is not revealed explicitly in the linear
approximation.

In connection with the meaning of the solutions of the
(8) type discussed above we must mention another well-
known example of how the solution of hydrodynamic equa-
tions with a shock-wave discontinuity is valid (i.e., has a
physical meaning) only in the presence of an external cause
which is not reflected in the equations themselves or in the
boundary conditions. We have in mind the solution for what
is known as weak or "undercompressed" detonation.29a--'l> A
spontaneous detonation is known to travel at the Jouget ve-
locity D = D,, but the solution of the equations of hydro-
dynamics and the conservation laws for a shock wave admit
the possibility of other velocities: D>DS for the same
boundary conditions imposed on the flow at y = + 0 0 ,
where y is the coordinate measured from the front of a shock
wave along the lines of flow. The solution corresponding to a
velocity D>DS becomes physically meaningful and de-
scribes a real process if matter is "ignited" not by a shock
wave but by some other initiator such as an electric dis-
charge or focused light traveling along matter at a given ve-
locity D. The energy and momentum contributed by such
initiators are negligible and are ignored in the equations of
hydrodynamics. An initiator simply sets the velocity of
propagation of the process which would have been impossi-
ble (noncausal) in its absence.

The waves arriving at angles close to the resonance val-
ue71 may also be of noise (fluctuation) nature, but a pertur-
bation of the front of a shock wave by such waves and the
formation ("generation") of reflected waves ceases after the
disappearance of the cause, i.e., after decay of the incident
wave.

These results demonstrate stability of a shock wave
against fluctuation-type perturbations in the range defined
byEq. (7) .

However, in a fuller analysis of the problem of stability
of a shock wave against relatively small perturbations in the
range of values of the parameter L given by Eq. (7) we must
tackle also the following problem. A small perturbation of
the behind-front flow which is of finite extent along the coor-
dinate^ and is characterized by a pressure pr, which may be
random or created deliberately by an external agency,
catches up with the front of a shock wave at an angle close to
the resonance value and is reflected from it in the form of
acoustic and entropy waves of lower order of smallness
( ^Pt/2) • ' 2 The interaction of these waves creates an arriving
wave of higher order of smallness ( ccpf). Its reflection can
again reduce the order of smallness to p\/2 and so on. The
question is whether such a multiple reflection process is
characterized by divergence of the perturbation amplitude.
This question can be answered by considering two different
types of an initial arriving perturbation.

1. A perturbation (at a pressure/),.) is a wave oriented at
an angle so close to the resonance value that the reflected
acoustic and entropy waves are characterized by a lower or-
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der of smallness pY~. An arriving wave created by the inter-
action between these waves is characterized by an order of
smallness p f . However, this new wave is oriented along a
direction which is far from the resonance. (The orientation
is governed by the law of specular reflection of an acoustic
wave from an almost plane entropy inhomogeneity and the
equality of the angle y to the resonance value ym would be
an unlikely accident.) Reflection of such a wave from a
shock-wave front does not alter the order of smallness of a
perturbation and, consequently, this process of successive
reflections of a perturbation decays with time.

2. An initial perturbation is not of "single-angle" nature
and represents an integral superposition of plane waves with
different orientations (i.e., it is a Fourier integral with re-
spect to the wave vector k). The amplitude of the pressure of
partial waves which have the moduli of the wave vectors
lying within an infinitesimally small interval d/o is in this
case proportional to dk (i.e., it is also proportional to the
differential dy) and, consequently, this amplitude is infini-
tesimally low. The amplitude of a wave reflected from a
shock wave front is characterized everywhere, with the ex-
ception of only the resonance point y= yrm, by the same
order of smallness as the incident wave and can be described
by12

71/2 ^ (-y,)
- = — 1h /v \ d pi,2a

(17)

f and yt are the values of the angle y for the incident
and reflected waves, respectively; a is a coefficient with a
value which is unimportant in the subsequent discussion.
The dependence of the function i/> on y and on the param-
eters representing the thermodynamic properties of matter
and the shock adiabat is given in Ref. 12. From our point of
view the only important property of this function is that it
vanishes only at the resonance reflection angle y,. = yr.rcs.
Then, in the vicinity of the point yT ,.„ we have

£(Yr) = COnst • (Yr — Yr.res).

The pole y = y, in Eq. (17) does not result in divergence of
the integral pressure pr of the reflected waves because of
their interference. Consequently, in calculation ofpr the in-
tegral should be the principal value:

X *(T,J "p,
J t(Vr) dYf

It therefore follows that in case 2 a perturbation reflect-
ed from the front of a shock wave does not alter the order of
smallness and, consequently, the process of multiple reflec-
tion of perturbations decays with time.

According to Ref. 31, the arriving waves generated by a
nonlinear interaction between departing waves may, for a
certain form of the shock adiabat from the range defined by
Eq. (7), result in unlimited amplification of perturbations of
the shock wave front.8' However, this result applies to mon-
oharmonic waves of finite amplitude incident at the reso-
nance angle (and not to the "white noise" of the fluctuation
type). A nonlinear analysis given in Ref. 12 shows that the
interaction of weak waves of finite amplitude, alternating in
sign in respect ofpf and incident at the resonance angle, with

the front of a shock wave does not reduce to a simple configu-
ration of four waves (incident and reflected weak waves,
unperturbed and perturbed shock waves; see Footnote 6).

The above analysis completes the proof of impossibility
of existence of spontaneous (not induced by an external
agency) steady-state perturbations of the front of a shock
wave with acoustic waves of the type described by Eq. (8)
emerging from this front and traveling within the angular
range y(t < y < n.

However, it is important to note that, in spite of the
stability of a shock wave in the region defined by Eq. (7)
against thermodynamic types of noise, the range (7) is still
special in the following respects. As pointed out already (see
Footnote 6), a regular reflection of a weak perturbation by
the front of a shock wave is not always possible. A weak
compression or rarefaction [depending on the sign of the
coefficient a in Eq. (17)] wave of finite amplitude pf inci-
dent on the front of a shock wave at an angle y is separated
from the resonance value by a sufficiently small amount
A 7 = 7,.,., — Y (the higher the value ofp{, the greater can be
the difference A^),1 2 results in a qualitative modification of
the shock wave: this wave decays into a wave of a very differ-
ent intensity and into other elements (components), by
analogy with the decay of an arbitrary discontinuity. In oth-
er words, a shock wave defined in the range (7) is unstable
against small perturbations of special type in the form of
monochromatic finite-amplitude waves incident at a near-
resonance angle.

A second special property of shock waves in the range
(7) is anomalously strong amplification of certain compo-
nents of the noise background incident at angles close to
resonance angles of reflection or refraction. Consequently,
such components are special compared with other random
perturbations.

1.8. Stability of a shock wave sustained by a piston

We shall conclude our analysis of the problem of the
hydrodynamic stability of shock waves by considering the
interaction of a shock wave with a piston. Strictly speaking,
this is outside the scope of the present paper and it represents
the problem of stability of flow characterized by shock waves
(see, for example, the collection of papers listed as Ref. 32).
However, under conditions typical of investigations of shock
waves and in the case of different physicochemical processes
occurring in shock waves some form of a piston is often used.
For example, in shock tubes the role of a piston may be
played by a dense driver gas; when a wave is generated as a
result of impact of the investigated material against a mem-
brane with a high acoustic rigidity the membrane itself acts
as a piston. Finally, anybody moving in a medium at a super-
sonic velocity can be regarded as a piston of finite transverse
dimensions for a departing shock wave. Therefore, the prob-
lem of stability of a shock wave sustained by a piston can be
justifiably considered as belonging to the theory of stability
of shock waves.

The problem can be formulated as follows. Let us as-
sume that a given constant velocity u of a flat piston corre-
sponds to a specific velocity of a shock wave generated by
this piston. Let us also assume that the velocity of the piston
changes instantaneously by a small amount Su. A weak
planar perturbation generated in this way catches up with
the shock wave, is reflected by it, is then reflected by the
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piston, and so on. We have to consider whether this process
of multiple reflections is converging, i.e., whether it creates a
new steady-state motion in which the shock wave velocity
differs from the initial value also by a small amount. An
analytic solution of this problem is given in Ref. 23, whereas
a graphical variant of the solution is provided in Ref. 33. The
answer to this question follows also from an analysis of mul-
tiple reflections of a perturbation by parallel fronts of two
plane shock waves moving in opposite directions.34 The so-
lution is in the form of an inequality imposed on the param-
eter L [see Eq. (4) ] and can be formulated as follows. The
process of multiple reflections is convergent if L < 1, but di-
vergent if

1-3*1, (18)

i.e., a wave sustained by a piston is stable when L < 1 and
unstable when the opposite inequality is obeyed.9'

The condition (18) is no as difficult to satisfy in prac-
tice as the second inequality of Eq. (6), but this has not yet
been done. The possibility of satisfying the criteria of insta-
bility is considered in Sees. 5 and 6.

Numerical modeling of the process of the interaction of
a shock wave with a piston and the associated instability of
flow in the case of a special theoretical model of the equation
of state, leading to parts of a shock adiabat with L > 1 and
also with L > 1 + 2Ma2, are given in Ref. 36.

2. POSSIBLE STRUCTURAL INSTABILITY OF A SHOCK
WAVE

2.1. Introductory comments and a brief summary of the data
on a structural instability of shock waves

As pointed out in Sec. 1.1., the problems of instability of
the structure of shock waves are of interest basically in the
solution of those problems in which we have to know the
characteristics of flow on a small scale comparable with the
size 8 of a relaxation layer in a shock wave. In Sec. 4 we shall
deal with those exceptions when the structural instability
and the nature of flow behind the front are mutually related
at distances large compared with 8.

The hydrodynamic conditions of instability of shock
waves [Eq. (6) ] or even the less stringent conditions [Eqs.
(18) and (7) ] for an unstable interaction of a shock wave
with a piston and for resonant reflection and refraction of
sound, respectively, are usually difficult to satisfy because
the required thermodynamic properties of matter are diffi-
cult to establish (Sec. 5). Therefore, for a long time the prob-
lem of a possible instability of a shock wave has been regard-
ed as largely academic from the practical point of view:
shock waves employed in practical applications are as a rule
stable.10' Moreover, even detonation waves characterized
by a strong positive feedback between the intensity of a
shock wave initiating heat evolution and the rate of heat
evolution are stable on a large scale. Only very fine special
investigations carried out in the fifties (see monographs list-
ed as Refs. 30 and 38) have established that detonation
waves stable on a macroscopic scale have often a nonlaminar
"pulsating" structure. When the compression created by a
detonation wave is sufficiently high, these structural fea-
tures of its front disappear. These observations together with
other extensive experimental evidence that shock waves are
structurally stable have been used even in approximate esti-
mates of the degree of compression of detonation waves at

which the pulsating structure disappears.39

However, accumulation of experimental data on the
propagation of strong shock waves in various media exhibit-
ing complex relaxation processes (vibrational relaxation,
chemical reactions, shock and radiative processes resulting
in electron excitation and ionization) have revealed some
deviations from a simple stationary structure of the waves
characterized by a homogeneity along directions parallel to
the wave front and by monotonic (and in some very rare
cases weak nonmonotonic) changes in the density and pres-
sure along the lines of flow. The nature of such deviations
varies within wide limits ranging from one-dimensional se-
quences of maxima and minima of the density along the lines
of flow40"43 to a radical modification of the structure41'42'44'
49 and its "turbulization" manifested by a random distribu-
tion of dark and bright spots which are visible when the front
is viewed from the end of a shock tube in very strong shock
waves (as reported for rare gases argon and xenon49). These
papers were only a few selected from a large number of ex-
perimental reports. Some original experimental data and a
bibliography of the subject can be found in Ref. 48.

2.2. Theoretical considerations concerning structural
instability of shock waves and some tasks for the future

The intensities of a shock wave required for the observa-
tion of qualitative changes in the pattern of behind-front
flow, given in Sec. 2. L, vary within wide limits depending on
the investigated gas and other experimental conditions.
There is no doubt that we are dealing here with a variety of
different phenomena and much experimental and theoreti-
cal work is needed to identify the causes and mechanisms
underlying them.

First of all, it is important to establish in what cases can
we expect an intrinsic instability of a wave structure and in
which cases the sources of the observed perturbations are
some boundary effects which simply imitate an instability.
In view of technical difficulties such an analysis is frequently
not carried out. However, there is some experimental evi-
dence of the boundary effect. There are reports50'53 of a
strong chaotic perturbation of the front of a shock wave due
to the familiar Rayleigh-Taylor instability54'55 of a contact
discontinuity representing a contact surface which separates
the driver and driven gases in a shock tube50 or which is
created by exploding a condensed explosive material in a
gaseous medium (a cylindrical charge is exploded in air ar-
gon, or xenon as reported in Refs. 51-53).''' As the front of
a shock wave moves from the contact surface, the intensity
of perturbation of the front should decrease. However, when
a contact discontinuity becomes turbulent sufficiently rapid-
ly, the perturbations arriving from this discontinuity may
still deform significantly the front of a wave at the moment
when it is recorded with measuring apparatus.

It is pointed out in Ref. 49 that the crisis phenomena
observed through a side window in the case of propagation of
strong shock waves in xenon and argon41'42 may be due to
the appearance of a precursor in the form of products of
evaporation of the walls of a tube heated by radiation. The
characteristic features of the structure of a shock wave in-
cluded also complex wall wave configurations formed under
certain conditions56"58 and other effects of the interaction of
a flowing gas with the wall of a shock tube. The formation of
vortices in Freons behind a curvilinear front of a departing
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shock wave flowing around a blunt body and the likely tran-
sient perturbations of the front5'' must also be distinguished
from a structural instability of the front.

In view of insufficient experimental data on the struc-
tural instability of shock waves, it would be highly desirable
to investigate this topic from the general scientific point of
view and also with a view to practical applications.

We shall now consider briefly the theoretical ideas on a
possible structural instability of shock waves and we shall
outline some tasks for the future.

The example of a combustion wave is used in Ref. 60 to
show that weak waves which have1 a very large (compared
with the mean free path of molecules /) relaxation zone, due
to macroscopic dissipative processes of viscous flow and
conduction, are structurally stable. A viscous density jump
in strong shock waves of size comparable with / cannot be
described by the equations for the mechanics of continuous
media. From the microscopic point of view such a structure
is not stationary: Molecules in this structure undergo ran-
dom motion and we can speak of the average stationary con-
ditions. The scales of microscopic inhomogeneities in a den-
sity jump of a strong shock wave are comparable with /.
Averaging over a macroscopic region containing an enor-
mous number of molecules results in manifestation of micro-
scopic inhomogeneities only in the form of fluctuations
which are much larger in the structure of a jump than under
thermodynamic equilibrium conditions,'1' M but are never-
theless very small compared with thermodynamic and gas-
dynamic properties of a macroscopic region. The influence
of such small fluctuations on the flow on a macroscopic scale
are important only in those cases when the flow is unstable.
This is possible if the hydrodynamic stability criteria are not
satisfied (so that decay of a shock-wave jump into other sta-
ble elements or components is possible-see Sec. 1.3.). How-
ever, if according to the hydrodynamic criteria a shock wave
is stable (which is usually true), an instability of the struc-
ture of a shock wave on the macroscopic scale is possible
only in those cases when relatively slow relaxation processes
occur in a shock wave and these are responsible for the mac-
roscopic size or length 8 of the relaxation zone (these pro-
cesses include vibrational relaxation, chemical reactions,
impact and radiative excitation of electrons, and ioniza-
tion).

An instability can grow if there is a positive feedback
between the kinetic factors or between hydrodynamic and
kinetic factors. The mechanisms of a positive feedback (or at
least some of them) are known for detonation waves.

One of the reasons for an instability of a plane front of a
detonation wave is as follows. The hydrodynamic theory of
one-dimensional steady-state adiabatic flow predicts that
the pressure along the lines of flow should decrease (in-
crease) if the flow is accompanied by exothermal (endother-
mal) reactions. Behind the front of a detonation wave the
reactions are exothermal (heat is evolved) and the pressure
decreases. This falling pressure curve, considered as a func-
tion of the distance y from the front of a shock-wave discon-
tinuity, begins at the pointy = 0 and terminates at the acous-
tic point (Jouget point )1'29"'3a38; this curve is frequently
called a chemical peak.

A small random increase in the pressure in some section
of a tube of flow adjoining the front of a shock wave of a
detonation system shortens the heat evolution time in this

flow tube (we shall call it the central tube) and results in a
faster fall of the pressure in a chemical peak. Almost
throughout the falling part of the chemical peak the pressure
in the neighboring flow tubes is higher than the pressure in
the central flow tube, which results in compression in this
central tube and an increase in the energy carried by it. This
may be sufficient for further acceleration of the exothermal
reaction and reduction of the size of the chemical peak in the
central flow tube, etc. A qualitative approximate criterion of
the existence of such a positive feedback, sufficient for the
development of an instability, was obtained by Shchelkin'^
(see also Ref. 66 for refinement of this criterion and Ref. 67
for a qualitative analysis of the mechanism of fluctuations of
a detonation front). It should be stressed that the main "ele-
ments" of this instability mechanism are the existence of a
chemical peak and a sufficiently strong reduction of the ex-
tent of this peak on increase in the shock wave intensity.
Qualitatively similar criteria follow from a linear theory of
stability of a detonation wave68'6'' and from an analysis of the
stability of a detonation wave considered in the one-dimen-
sional approximation.70

However, in contrast to a detonation wave, a feedback
between the hydrodynamic and kinetic processes in a shock
wave is usually negative: instead of a fall of pressure typical
of a detonation-wave chemical peak, the pressure usually
rises in the relaxation zone of a shock wave and this is due to
the endothermal nature of the irreversible processes. The
exception to this "rule" is represented by the cases of non-
monotonic absorption of heat which may occur in principle
when several irreversible processes appear in a sequence.
Then, in some parts of the relaxation zone of a shock wave
instead of the usual reduction in the energy of the transla-
tional degrees of freedom of a gas there is an increase in this
energy which creates a structure representing a detonation-
wave chemical peak. However, the pressure at the maximum
of such a chemical peak is known7 1" to exceed the pressure
in the equilibrium zone behind the front of a shock wave only
by an amount of the order of 1 %. Such a weak chemical peak
is clearly insufficient for the appearance of a positive feed-
back of the detonation type and for an instability of the wave
structure irrespective of the actual dependences of the rates
of relaxation processes on the shock wave intensity.

A much higher (by about an order of magnitude)
chemical peak was reported in Ref. 74 when calculations
were made of the structure of a strong shock wave in xenon
(for the Mach number range Mas20-40). According to
Ref. 74, this result is due to accumulation in the wave struc-
ture of high concentrations of diatomic ions Xe2

f in excess of
the equilibrium value. However, the treatment in Ref. 74
suffers from two inaccuracies: at the investigated intensities
of a shock wave

1) the data on the cross section of the two-channel reac-
tion

• XeJ + e,
Xe + Xe—

Xe+ + Xe + e,

apply in reality mainly to the second reaction channel;
2) the enthalpy of the vibrations and rotation of the

molecular ion Xe2
+, assumed to be (5/2)kT in Ref. 74, is

strongly overestimated because at the investigated tempera-
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tures kT, which are 2-2.5 times higher than the dissociation
energy D of the Xe, ion. the vibrational and two rotational
degrees of freedom of this ion have a total energy close to D.
i.e., 5-6 times less than ( 5 / 2 ) kT. Introduction of appropri-
ate corrections reduces a chemical peak to values of the same
order of magnitude as in the cases mentioned above ( ~ 1%)
or suppresses such a peak completely.

The following general conclusions can be drawn about
this detonation-type structural instability. No structures
with a sufficiently clear chemical peak of shock waves have
been found so far. Such structures are theoretically possible,
but their manifestation in a shock wave requires a large sepa-
ration on the time scale between high-energy relaxation pro-
cesses of which fast should be endothermal and slow exoth-
ermal. These requirements are almost mutually exclusive,
suggesting that structures of this type can be only a rare
exception.

We shall complete our discussion of the instability
mechanism due to a chemical peak in the relaxation zone of a
wave by noting that a positive feedback exists in this mecha-
nism in the case of a stationary (or a quasi-stationary) struc-
ture of the perturbed region of flow. Therefore, the charac-
teristic size of inhomogeneities which can make this
instability mechanism effective should be sufficiently large
to establish a quasistationary structure during the existence
of a perturbed flow region. The experimentally observed cel-
lular structure of the front of detonation waves corresponds
to the required scaling conditions and this is in qualitative
agreement with the above model of a positive feedback
between the kinetics of chemical reactions and the hydro-
dynamics of flow in a detonation wave. However, we cannot
exclude the possibility that there may be also other effective
mechanisms of a positive feedback between the kinetics and
hydrodynamics which can have a smaller scale compared
with the characteristic scales in space and time needed to
establish steady-state flow in the relaxation zone of a wave.
Such an instability mechanism would clearly be limited by
more stringent conditions imposed on the dependences of
the rates of chemical reactions on the wave intensity, but it
would not be related to the presence of a chemical peak and
may act even if the alternative instability mechanism dis-
cussed above is absent. Investigations of the criteria of a re-
laxation instability of this type in shock waves would be of
considerable interest.

Another structural instability may be due to the exis-
tence of singularities in a system of equations describing
physicochemical relaxation processes. Changes in the pres-
sure and volume along the Rayleigh-Michaelson straight
line during relaxation then provide only a background repre-
senting an additional condition of the same type as, for ex-
ample, the condition that a process should be isobaric or
isochoric. We have in mind here a possible instability of the
solutions of the relaxation equations manifested by a strong
"divergence" of phase paths (including also the initial data
of the integral curves) as a result of small perturbations.
Such paths are located near separatrices of singular points of
a system of equations.

Thermodynamic properties of all substances and the
properties of all the relaxation equations describing the rela-
tively slow transition of a system to an equilibrium state are
such that integral curves emerging from a small region near
one common initial point (at the initial moment in time

t = 0) converge again in the limit; — oo in a small neighbor-
hood of a certain point in the phase space corresponding to
an equilibrium behind the front of a shock wave. This is a
fairly stringent limitation for this type of "divergence" of
paths. However, in principle, this is still possible.

An analysis of the singularities and the field of integral
curves of a system of relaxation equations is very difficult
because of the multidimensional nature of the phase space
and because of the nonlinearity of the equations. The prob-
lem requires further study in the case of specific problems
and a search should be made for general relationships.

It should be pointed out that the attempts (sometimes
found in the scientific literature) to investigate the stability
of the solution of a system of equations describing the struc-
ture of shock waves by linearization of perturbations and by
solution of the secular equation for the eigenfrequencies us-
ing instantaneous (local) values of the coefficients in such
equations (i.e., by a method which is valid in the case of
linear equations with constant coefficients) are not self-con-
sistent and may yield fundamentally wrong conclusions.

In classification of the singularities of the structure of a
shock wave one should allow also for the possibility of alter-
nation of several maxima and minima of the pressure, den-
sity, or other variables representing the regular structure of a
wave. A regular quasisteady structure (with decay of oscilla-
tions on approach to a thermodynamic equilibrium) can be,
unless it is due to the wall effects, the result of reproducible
alternation of endothermal and exothermal relaxation pro-
cesses from one experiment to another.

According to Ref. 43, a structure with several oscilla-
tions of the density and concentrations of the components
was observed in the course of propagation of a shock wave in
gaseous NO2 (when the initial pressure was 0.25-4.5 Torr
and the temperature was T2 = 2600-3000 K). It was as-
sumed that these oscillations were due to a positive feedback
between the rate of dissociation of the NO: molecule and the
vibrational energy £ of the NO2 and O2 molecules influenc-
ing this rate. Accumulation of the energy E occurred as a
result of a secondary exothermal reaction

NO:+O->-NO+O2.

However, other authors (Zuev, Tarasenko, and Tka-
chenko") failed to observe oscillations in the wave structure
in analogous experiments. Further experimental and theo-
retical investigations are needed before a clear idea of the
structure of a shock wave in NO, can be provided.

3. STABILITY OF A SHOCK WAVE PROPAGATING IN A
PREVIOUSLY EXCITED SUBSTANCE

3.1. Thermodynamic-equilibrium excitation

A hydrodynamic structural instability of a shock wave
may be due to the action of external energy sources resulting
in thermodynamic-equilibrium or selective excitation of the
degrees of freedom of molecules ahead of the front of a shock
wave or behind the front. A thermodynamic-equilibrium ex-
citation of a substance ahead of the front of a shock wave
does not give rise to any fundamentally new aspects of the
wave stability. Such excitation is simply one of the methods
of establishing an initial equilibrium state which gives rise to
a family of adiabats instead of one shock adiabat. The prob-
lems of stability associated with a possible form of such adia-
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bats and with the characteristics of the structure of shock
waves propagating in a substance under thermodynamic
equilibrium conditions are discussed in Sees. 1 and 2.

3.2. Nonequilibrium excitation

Relatively new results on shock waves were provided by
a series of investigations on the passage of shock waves
through matter disturbed previously from its thermodynam-
ic equilibrium state by some external energy source (electric
discharge, infrared laser radiation, etc.) acting homogen-
eously along directions parallel to the plane of the front.12'
Nontrivial experimental results can then be obtained if a
shock wave strongly accelerates the relaxation process. Oth-
erwise either relaxation occurs before the arrival of a shock
wave or the region of constant flow behind the front of a
shock wave can be too large and, therefore, unattainable in
the case of typical experimental scales. However, when this
condition applies, a substance subjected to a preliminary ex-
citation is similar to any other substances which are in a
metastable state of thermodynamic nonequilibrium and, in
principle, capable of detonation.7'1 Strictly speaking we are
then dealing with such an adiabat for equilibrium states in
the front of a wave which is of detonation rather than shock
type. In contrast to a shock adiabat, it does not (in particu-
lar) pass through the point representing the initial state of
the investigated substance.'

An equilibrium detonation adiabat and a shock adiabat
corresponding to the state of matter compressed at a density
jump, but still "frozen" in respect of all the degrees of free-
dom (except translational and rotational), usually satisfies
the hydrodynamic stability conditions of Eq. (5). However,
a structural instability of such quasidetonation processes is
very probable. In theoretical estimates of the range of the
parameters representing a nonequilibrium state ahead of a
wave and its intensity (degree of compression), in which the
wave is structurally unstable, we can use criteria derived in
the theory of stability of detonation waves. However, in each
specific case it is difficult to find the limits of such a range of
parameters because of the difference between the real relaxa-
tion processes and those simple models of the kinetics of heat
evolution which are used to obtain the stability criteria for a
detonation wave.

4. INTERRELATIONSHIP BETWEEN HYDRODYNAMIC AND
STRUCTURAL STABILITIES OF SHOCK WAVES

It follows from Sees. 1 and 2 that in an investigation of
the stability of a shock wave as a whole it is usually sufficient
to consider separately the hydrodynamic and structural
aspects. Thus, if a wave is unstable in accordance with the
hydrodynamic criteria of the linear theory, it is pointless to
consider the stability of its structure (because there is no
wave). However, if a shock wave is stable in accordance with
the hydrodynamic criteria, the structural "pulsations" do
not disturb this stability because on a large scale such pulsa-
tions decay as a result of dissipative friction and heat transfer
processes. However, strictly speaking, this last conclusion is
not always true. There are at least two cases when a hydrody-
namic instability develops from a structural instability or
when they are closely related representing one unified prob-
lem.

1. As pointed out in Sec. 1.5., an instability boundary
deduced from the linear theory is adjoined by parts of a

shock adiabat where the criteria of Eq. (5) deduced from the
linear theory are satisfied, but a shock-wave discontinuity
can be expanded into other elements. In such cases the prob-
lem of the stability of a shock-wave discontinuity against
decay into these elements should be solved by an analysis of
the structural stability of the discontinuity.

2. There is a possible unified mechanism of the hydro-
dynamic and structural instability. Propagation of a shock
wave may be accompanied by energy losses depending on the
wave intensity and on the relaxation processes in its struc-
ture. In the case of an unbounded medium such losses do
occur as a result of, for example, escape of electromagnetic
radiation ahead of a wave penetrating an unperturbed gas.
Such radiation has a finite range at any frequency. There-
fore, if the scale of the problem is sufficiently large, there are
no losses whatever and the role of the radiation reduces to
just an additional factor of the formation of the shock-wave
structure. However, usually in the case of realistic scales of
the problem (for example, in experiments on shock tubes or
in the case of supersonic motion of a blunt body) a cold gas
ahead of a wave is practically transparent to a large part of
the radiation spectrum and such radiation escapes forward
to "infinity," so that losses do occur.

The form of an equilibrium shock adiabat depends on
the relative magnitude of the losses and if this magnitude
changes as a result of a change in the intensity of a shock
wave, then this shock adiabat may in principle have regions
that do not satisfy the hydrodynamic criteria of stability, the
criteria of stability of motion of a wave driven by a piston
[Eq. (16) ] or the conditions of resonant reflection and re-
fraction of weak perturbations [Eq. ( 7 ) ] for specific (reso-
nance) angles of incidence.

Calculations of a shock adiabat in the specific case of
hydrogen and rare gases77 have shown that radiative losses
(including part of the radiation emitted by a black body
from the equilibrium zone behind the front of a shock wave,
which corresponds to frequencies lower than the transition
frequency of an atom to the first excited state) do not result
in conditions under which resonant reflection or refraction
of weak perturbations is possible [and particularly the con-
ditions of instability given by Eq. (6) are not satisfied].
However, this is only a small proportion of the necessary
future investigations. The radiative losses generally depend
on the structure of a shock wave front, which itself forms
with the aide of radiation. The limiting case of a strong influ-
ence of radiation on the structure of a shock wave is encoun-
tered for waves with what is known as the critical or super-
critical intensity.7" However, in the case of mutual
relationships of relaxation processes in the structure of a
shock wave and the losses due to the emission of radiation
which could result in a structural or a hydrodynamic insta-
bility, it is of interest to consider also intensities which are
much lower than critical. (It is reported in Ref. 49 that the
radiation emitted by the front of a strong shock wave in rare
gases has a spotted structure.)

One should mention also that a characteristic interac-
tion of structural processes with a shock-wave discontinuity
as a whole occurs when a shock wave satisfies the conditions
of the hydrodynamic stability "at the limit," i.e., when a
small perturbation is sufficient to disturb this stability. If at
the same time the wave is structurally unstable, then these
perturbations can be structural "pulsations" that have not
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been smoothed out completely outside the relaxation zone.
In view of the chaotic nature of such pulsations, their dissi-
pation, and interference effects, the investigated interaction
of the instability mechanisms can apparently result only in
some lengthening of the region of decay of pulsations but not
in an instability of flow on a large scale. A more detailed
analysis of these processes is not essential because of the very
low probability of such a combination of the initial condi-
tions.

5. WAYS OF SATISFYING THE CRITERIA OF THE
HYDRODYNAMIC INSTABILITY OF SHOCK WAVES IN
PRACTICE

The criteria of the instability of shock waves [Eq. ( 6 ) ]
obtained over 30 years ago are still basically theoretical pre-
dictions. These criteria are not in conflict with the thermo-
dynamic inequalities, (dp/dv) / <0 and c,. > 0, but they are
nevertheless so "anomalous" from the thermodynamic
point of view, that substances have not yet been found with
the equations of state satisfying the inequalities of Eq. (6) ,
with the exception of those cases when shock adiabats have a
kink or a continuous inflection shown in Fig. 4. [In a linear
analysis of the stability in Ref. 3 it is assumed that a shock
adiabat has no inflection points, such as the point L (Fig.
4) . ] The limiting case (with a kink of the shock adiabat
shown in Fig. 4) of the inequality L < — 1 may be satisfied
by first-order phase transitions or in the case of plasticity. It
is known that in this case instead of one wave, we can ex-
pect—under certain conditions—configurations with the
main elements in the form of two shock waves traveling in
the same direction (see Fig. 21 in the Appendix). The in-
equality L < — 1 is also realized in very rare cases of a nega-
tive second isentropic derivative1: ( d ^ u / d p 2 ) , <0,provided
this inequality is satisfied in the vicinity of the ini t ial point of
a shock adiabat.

Another criterion of the instability—represented by the
second inequality in Eq. (6)—is in practice much more diffi-
cult to satisfy and this has not yet been done.

It is important to note also that the smaller values of the
parameter L within the limits set by Eq. (7) have so far been
established reliably only in exceptional cases: in a certain
range of states of a two-phase liquid-vapor system (such as
copper7'' or water x"; the stability of shock waves in gases is
discussed below in Sec. 6.1.). We recall that the values of L
satisfying the inequalities in Eq. (7) are remarkable because
for each value there is a specific angle of incidence which
ensures resonant reflection or refraction of sound by the
front of a shock wave. Moreover, the wave is then unstable
against one of the stages (compression or rarefaction) of a
resonant perturbation of finite amplitude (Sec. 1.7.). The
general nature of the thermodynamic properties of two-
phase liquid-vapor systems (see Refs. 81 and 82) allows us
to assume that the range defined by Eq. (7) exists also in the
case of other two-phase systems, such as Freons. The possi-
bility of experimental observation of resonant reflection and
other characteristics of the interaction of the front of a shock
wave with small perturbations in systems of this kind is lim-
ited because of gravitational convection (floating up of gas
bubbles) and long relaxation times (in the case of heat and
mass transfer). However, there are certain characteristic
possibilities of realization of the instability conditions [Eqs.
(6) and (16) ] or the conditions of resonant reflection of

sound [Eq. (7) ] which are not related to anomalies of ther-
modynamic properties, but are due to changes in the equa-
tions of conservation for a shock wave which are due to some
energy losses, for example, radiative losses. According to the
calculations77'81 carried out for hydrogen and rare gases
(specifically, xenon) an increase in radiative losses on in-
crease in the wave intensity does not give rise to regions of
shock adiabats described by Eqs. (6) and (7) . However, in
view of the complex dependences of the spectral coefficients
of the absorption of light on the temperature of a substance
and its density, regions defined by Eqs. (6) and (7) may
exist and the problem requires further investigation.

6. STABILITY OF SHOCK WAVES IN DISSOCIATING AND
IONIZABLE IDEAL GASES

6.1. Hydrodynamic instability

The shock adiabats of dissociating and ionizable gases
are characterized (see, for example, Ref. 83) by a nonmono-
tonic temperature dependence of the specific volume with
alternation of regions with negative (such as that, for exam-
ple, for an ideal gas with a constant Poisson exponent of the
adiabat) and positive derivatives (dv/dp),,. This form of
shock adiabats is due to alternate contributions (on increase
in temperature) to the thermodynamic functions of the pro-
cesses of dissociation, and of single, double, and multiple
ionization, and it is manifested increasingly strongly on re-
duction in the initial gas density."' It would seem that in
this manifold of the values of (dv/dp),, there is a real possi-
bility of satisfying the various instability criteria by varying
the parameters of the initial state of a gas and of the shock
wave intensity. However, sampling numerical calculations
demonstrate77 K4 that in all the cases discussed the shock
adiabats of dissociating and ionizable gases satisfy the in-
equalities of Eq. (5 ) , which correspond to the stability of
shock waves and the absence of resonant reflection and re-
fraction of sound by the front of a shock wave. However, in
many cases the values of L and L() are close. Moreover, in
these calculations the initial gas is assumed to be so cold that
both dissociation and ionization in this gas can be ignored.
Therefore, on the basis of these calculations we cannot say
that the inequalities of Eq. (5) are satisfied in the case of
dissociating and ionizable ideal gases in general.

Additional analytic and numerical investigations are
needed on this topic. It should be mentioned that the in-
equality L > L(} may be obeyed without the need to satisfy
(dv/dp),/ >0 (see Ref. 80). Therefore, in such investiga-
tions we cannot confine our attention to just those parts of
the shock adiabat where (dv/dp) „ > O.'4

6.2. Structural stability

Almost all the relaxation processes in shock waves trav-
eling along gases initially in thermodynamic equilibrium are
definitely endothermal. The exception to this rule is repre-
sented by some secondary reactions such as the formation of
ozone (when the molecular oxygen O2 is the initial gas), and
of H2 and C12 molecules (if the initial gas is HC1), and so on,
as well as the formation of negative ions. However, the con-
centrations of such "secondary" components in gases with
normal or low density do not exceed a few percent (and are
even less for negative ions) for any intensity of a shock wave,
and the characteristic constants of endothermal and exoth-
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FIG. 8. Configuration PKY: p, </>, <pt . (Transition from the middle
branch and the section L L * to the lower branch and the section AL .)
The configuration is stable against small perturbations.

FIG. 10. Single shock wave. Absolutely unstable shock-wave discontin-
uity. Decays to any one of two configurations (Figs. 8 and 9).

ermal processes do not satisfy those conditions under which
we could obtain a structure with a clear chemical peak char-
acterized by a density tens of percent higher than in the equi-
librium zone behind the shock wave front. Usually, the
stronger the endothermal nature of the process, the longer
the characteristic time r, of this process. However, for a
considerable degree of supersaturation of any high-energy
internal degrees of freedom of particles, leading to the for-
mation of a chemical peak, the dependence of r, on the en-
dothermal nature of the process should be opposite. The
published calculations of the structure of shock waves7'7's7

are in agreement with these qualitative ideas.
A structural instability of a shock wave in gases may

probably be associated with radiative transport and its influ-
ence on the length of the relaxation zone (see Sec. 2.2.). In
view of the scarcity of data on the spectral coefficient of
absorption of electromagnetic radiation by "hot" compo-
nents of a gas in the nonequilibrium zone of a shock wave, a
theoretical prediction of such a structural instability re-
quires solution of a number of auxiliary problems.

6.3. Shock wave in a gas which is not in thermodynamic
equilibrium

All that we have said in Sec. 3.2. on the passage of a
shock wave through a previously excited gas which is not in
thermodynamic equilibrium applies fully to a dissociating
and ionizable gas. Since a molecular gas is characterized by
several slowly relaxing high-energy subsystems (internal
molecular vibrations, chemically reacting components,
etc.), there are some interesting problems of the stability of a
shock wave in a gas in which any one of these subsystems is
excited selectively ahead of the wave. Papers on these topics
have been usually concerned with one-component diatomic
gases. The propagation of a plane shock wave in vibrational-
ly excited nitrogen and in other gases, and attainment of self-
maintained detonation are discussed in Refs. 88-91. Calcu-

lations of a detonation adiabat and of the Jouget point
parameters in the case of a gas which is not in vibrational
equilibrium are reported in Refs. 90-92. The structure of a
detonation wave in such a gas is investigated in Ref. 93. Am-
plification of an acoustic wave traveling through a nonequi-
librium diatomic gas and its conversion into a shock wave is
discussed in Refs. 94-97. The problems of the interaction of
a shock wave with inhomogeneities present initially in a gas
are treated more generally in Ref. 98.

Experimental data on the passage of a shock wave
through a previously excited gas have been obtained mainly
by excitation in an electric discharge and are reported, for
example, in Refs. 74 and 99-103.

APPENDIX. CASES OF A MANY-VALUED REPRESENTATION
OF A SHOCK-WAVE DISCONTINUITY

I. A shock adiabat with a monotonic increase in the
pressure exhibiting a section where Z. > 1 + 2Ma,

A shock adiabat of this type is shown in Fig. 5 using the
pv and pu coordinates. At the points L andZ, ' this shock
adiabat and isentropes of the S family have common tan-
gents.

A shock-wave discontinuity has a triple-valued repre-
sentation in the form of a single shock wave and two more
complex wave configurations in a section L L ' and in
sections AL and L ' B adjoining it from below and above.
An isentrope of the S family which touches the shock adia-
bat at the point L ' intersects this adiabat at the point A.
This gives the position of the point A. A shock adiabat of the
If family, drawn from L as the starting point, intersects
the initial shock adiabat at the point B.

Representations of a shock-wave jump with an intensity
(pressure p2) corresponding to sections L L ' , AL , and
L ' B of a shock adiabat:

1) PL-<P-I<PL+ (Figs.8—10);
2) PA<P2<PL- (Figs.ll, 12);
3) PL+<P*<PB (Figs.13, 14).

FIG. 9. Configuration YKY; pL , </>, <pB. (Transition to the upper
branch and the section L* B.) The configuration is stable against small
perturbations.

FIG. 11. Single shock wave. Shock-wave discontinuity stable against
small perturbations.
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Pi

FIG. 12. Configuration YKY; p, -f <p\<pli (transition to the upper
branch and the section L 'B)mp, <p,<p , ( transit ion to the middle
branch and the section L L ' ). Inthefirstcasetheconfiguration isstable
against small perturbations. In the second case the configuration is unsta-
ble since a shock-wave discontinuity at a pressure pf, lying wi th in the
range p, <P\<PI • is absolutely unstable (Fig. 10).

FIG. 17. Single shock wave. Shockwave discontinuity absolutely unsta-
ble. It decays going over to the K YY configuration (Fig. 15).

FIG. 18. Single shock wave. The shock-wave discontinuity is stable.

FIG. 13. Single shock wave. Shock-wave discontinuity unstable against
small perturbations.

PZ

FIG. 14. Configuration PKY; / > , <P)< /> , (transition to lower branch
and the section AL) or p: </>,</>, , (transition to the middle branch
and the section L L ' ). In the first case the configuration is stable
against small perturbations. In the second case the configuration is unsta-
ble since a shock-wave discontinuity at a pressure />,, lying in the range
p{ <p\<P, . , is absolutely unstable.

K

FIG. 15. Configuration KYY; p, <p\<p: . (Transition to the lower
branch and the section AL .) Stable configuration.

K

FIG. 16. Configuration KPY; pL , <p)<pa- (Transition to the upper
branch and the L + B section.) This representation of a discontinuity is
only formal^ in practice the configuration^cannot appear because the sec-
ond wave (/") catches up with the first ( Y ) .

K

FIG. 19. Configuration KPY; pt , <p\<pn (transition to the upper
branch and the section L ' B ) f i r p l <P\<P, • (transition to the mid-
dle branch and the section/. L ' ). Both representations are only formal
for the same reason as in Fig. 16. Moreover, the shock-wave discontinuity
at a pressure/), lying within the range/), <p><p, , is absolutely unsta-
ble (Fig. 17).

FIG. 20. Single shock wave. The discontinuity satisfies the stability crite-
ria of the liner theory, but can be represented in the form of a stable
configuration characterized by /> , <p\<pt (Fig. 21).

Tt

FIG. 21. Configuration KYY; p^ <pt<pL (transition to the lower
branch and the section AL ~ )orpl <Ps<pL< (transition to the middle
branch and the section L~ L + ). In the first case the configuration is
stable, whereas in the second case it is unstable since a shock-wave discon-
tinuity at a pressurep}, within the limits pL <p}<pL , , is absolutely
unstable (Fig. 17).

1009 Sov. Phys. Usp. 32 (11), November 1989 N. M. Kuznetsov 1009



FIG. 22.

II. Shock adiabat with a monotonic rise of the pressure and
a section I~I+ where L < —1

Such a shock adiabat is shown in Fig. 4 using the/w and
pw coordinates. At the points L~ andL + this shock adiabat
and isentropes of the 5 + family have shared tangents. A
shock-wave discontinuity may have a triple-valued repre-
sentation in the form of a single shock wave and two more
complex wave configurations in the section L ~ L + and in
the sections AL ~ and L + B adjoining it from below and
above. An isentrope of the S + family which touches the
shock adiabat at the point L + intersects this adiabat15' at
the point A. A shock adiabat of the H + family drawn from
the point L ~ regarded as the starting point intersects the
original shock adiabat at the point B.

Representations of a shock-wave jump with an intensity
(pressurep2) corresponding to the sections L L +, AL ~, and
L+ B of the shock adiabat:

4) PL-<P2<PL+ (Figs. 15-17);
5) PA <Pi<pL- (Figs. 18,19);
6) pL+<P2<Ps (Figs. 20,21).

In the case of a shock adiabat with a smooth inflection
(shown in the figures with a dashed section of the curve) a
shock-wave discontinuity is represented basically as shown
in Figs. 15-21. However, then instead of a KYY configura-
tions (Figs. 15 and 21), in a certain range of pressures'^
defined by pL <p2 <P* we can expect formation ofa KCY
configuration with an isentropic compression wave C (Fig.
22).

At higher pressures p2 lying in a certain range
p*<p2<p** a KYCY configuration is formed (Fig. 23).
Finally, if/?** <p2 <PB>tne wave configuration^ the same
as in the case ofa shock adiabat with a kink (KYY; Figs. 15
and 21).

1' The expression for L0 given in Ref. 3 is in error because in finding the
angular boundary between waves arriving and departing from the front
no allowance was made for the motion of matter behind the shock wave
front. According to Ref. 3, we have Z.,, = (1 - OM-, + 2M\)/
(1 -I- 9M\). The above correct expression for L0, i.e., Eq. (5) , was
obtained by Kontorovich4 and lordanski!5; see also Refs. 6-9.

21A wave adiabat linking the initial and final states in a system of waves
without contact discontinuities (including an isentropic compression
wave) and propagating in the same direction was considered in Refs. 19
and 20.

31 The case of nonmonotonic variation of the pressure is discussed at the
end of Sec. 1.6.

4) We can show that in the case when L > 1 + 2Ma2 the amplification of
the perturbation amplitude and phase reversal may occur, by analogy
with Eq. (14), also in the case of oblique incidence ofa perturbation on
the front ofa shock wave.12

5) An interpretation of the instability criteria of Eq. (8) in connection with
an analysis of the motion of a shock wave along a tube of variable cross
section can be found in Ref. 1.

" For a fixed difference y — ym and a sufficiently large amplitude of the
incident wave a regular reflection is impossible for one of the phases
(compression or rarefaction) of the wave; see Ref. 12.

" The energy of a fluctuation wave is proportional to Ay and it vanishes
for the waves which are emitted at an exactly defined angle y.

81 It was assumed in Ref. 31 that the primary perturbation is a departing
wave. Independent motion of such a wave along a shock-wave front does
not satisfy the principle of causality. A physically correct formulation of
the problem now requires specifying the primary perturbation in the
form of arriving waves. However, mathematically speaking, the direc-
tion of travel of the initial perturbation (toward the front or away from
it) is of no fundamental importance in studies of the nature of a feedback
between the front of a shock wave and the flow behind it.

11'The derivative du/d/>2 vanishes at the point Z. = 1. I fL> 1 the inequali-
ty du/dp2 <0 is obeyed. Hence, and also from the observation that the
region of the anomalous form of the shock adiabat (in particular, the
region where L> 1, i.e., where du/dp, <0) is very limited, it follows
that any one value of u, taken in the section of the adiabat where L > 1,
corresponds to at least three values of p2 (Ref. 35). Two of these values
(minimal and maximal) correspond to stable flow, and the third to
unstable flow. It is this value ofp, which is located in the section of the
adiabat with L > 1.

l o > Special experiments on reflection of light by the front ofa shock wave37

have demonstrated that the front is free of at least those inhomogene-
ities which are of the order of, or greater than, the optical wavelength.

'"It should be pointed out that at the high shock wave intensities which
were attained in the experiments reported in Refs. 51-53, "turbuliza-
tion" of the front may be influenced by perturbations of the contact
surface and by intrinsic relaxation processes associated with the radia-
tive transfer.

12) We shall ignore here the shock waves with spatially inhomogeneous
initial states.

13) In the case of shock adiabats of condensed media it is usually found that
(dv/dp) „ > 0; the part of the adiabat with a positive value of (dv/dp) H

is obtained by specially preparing the initial material in the form of a
porous substance or a foam. A natural substance of this kind is, for
example, snow which is a porous variety of ice. The nonmonotonic
pressure dependence of the compression, associated with the successive
collapse of electron shells of the atoms, is achieved also on compression
of nonporous monolithic substances. However, then one needs enor-
mous pressures of the orders of tens of megabars.*5

14) The proof that the inequality L > — i cannot be disobeyed by an ideal
gas subject to single ionization is provided in Ref. 86 without allowance
for bound excited states of atoms or ions for all reasonably realistic
parameters of matter (temperature and density) ahead of a wave.

"'Usually kinks of a shock adiabat are observed in the case of relatively
weak compression when a shock adiabat differs little from an isentrope.
The point A is then close to a kink.

"" Calculations of the pressures p* and/)** are reported in Ref. 18.

FIG. 23.
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