
From the Editorial Board:
On December 25 it will be two years since the death of Vadim Genrikhovich Knizhnik at the age of only twenty five

(February20,1962-December25,1987). Vadim Knizhnik tackled many problems in theoretical physics, but he became widely
known through his work in the new field of string theory. The Belavin-Knizhnik theorem established the connection between the
string-theoretic approach of A. M. Polyakov and complex geometry, thus achieving a union between modern field theory and
contemporary mathematical ideas.

This review is essentially a presentation of this theorem and of its immediate consequences which have provided the basis for
many of subsequent researches. The review is based on lectures given by Vadim Knizhnik in the spring of 1987 at the first
Republican School of Young Scientists, held in Kiev at the Institute of Theoretical Physics of the Academy of Sciences of the
Ukrainian SSR. The results reported in these lectures have since become classical and have frequently been rederived and
presented again by other methods. However, the original version remains one of the clearest and most accessible for those
embarking on a study of string theory. For specialists, Sec. 12 and IV will be of particular interest: they describe constructs that
were left unfinished by the author and should lead to interesting developments.
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The evaluation of multiloop amplitudes in the theory of closed oriented bosonic strings is reduced
to the problem of finding the measure on the moduli space of Riemann surfaces. It is shown that
the measure is equal to the product of the square of the modulus of a holomorphic function and
the determinant of the imaginary part of the period matrix, raised to the power 13. A consequence
of this theorem is that the measure can be expressed in terms of theta-functions. A variant of the
holomorphy theorem, in the form of Quillen's theorem, is used to evaluate the dependence of the
determinants of the Laplace operator on a Riemann surface on the boundary conditions. When
the Riemann surface is represented by a branched covering of a plane, the measure is expressed in
terms of the coordinates of the branch points, and to each branch point there corresponds a vertex
operator. The measure is the correlation function of these operators, and this can be used to
represent the sum over all the higher loops as the partition function of a certain two-dimensional
conformal field theory.

1. INTRODUCTION

The theory of quantum strings has attracted consider-
able attention in recent years. This has been due to the re-
markable results of Green and Schwarz' who showed that
superstring theory provides a basis for a self-consistent theo-
ry of quantum gravity with acceptable phenomenological
properties. The most popular candidate for a theory that
unifies all interactions is the heterotic string model2 with the
symmetry group E8XE8 in 10 dimensions, six of which are
compactified on the Calabi-Yao manifold.3

To be sure that superstring theory is self-consistent, we
must verify that there are no divergences in any of the per-
turbation theory orders. One-loop calculations1'2 and cer-
tain qualitative arguments4 support this proposition, first
put forward in Ref. 1, but a complete proof is lacking for
multiloop diagrams (it is still lacking65-^.). It may well be
that a more complete understanding of the structure of mul-
tiloop corrections would lead to progress in the solution of
other problems, as well. As we shall see, hopes in this area
rest largely on the fact that the multiloop amplitudes are
exceptionally beautiful objects, and their theory makes use
of a wide range of physical and mathematical ideas. With

increasing energy, the unification of interactions is in one
sense accompanied by the unification of ideas.

This review describes many of the results obtained in
this area for the simplest model of closed oriented bosonic
strings (ESVM).

In the geometric approach, the/i-loop scattering ampli-
tudes of closed oriented bosonic strings are sums over closed
oriented surfaces of genus p (with p handles). It will be
shown in Sec. 2 that, for the critical dimension D = 26, the
summation reduces to integration over moduli space Mp of
genus p Riemann surfaces, and our task is to describe the
analytic properties of multiloop amplitudes as functions of
coordinates on Mp. It is precisely these properties that deter-
mine the structure of divergences in the theory.

We shall see later that these analytic properties are very
simple. The amplitudes are constructed with the help of mer-
omorphic and even rational functions on Mp. The formula-
tion of the problem and the result can be stated more precise-
ly as follows. In Polyakov's covariant geometric approach,5

the sum over surfaces is the sum over topologies (of genus
p), internal metrics gab (£), and imbeddings X^ (£) of the
surface with coordinates £ l>2 into 73-dimensional flat space-
time. When D = 26, the conformal anomaly is found to can-
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eel,5 and the full quantum symmetry group becomes the
product of the Weyl group Conf (S) (conformal transfor-
mations gah (|) -»A(£)gu/, (£) and the group of general coor-
dinate transformations Diff (5) of the surface S. Thus, for
each p, we have to integrate over the orbits of the group
H = Conf (5) X Diff (5) in the space G(S) of all metrics on
S, i.e., over the factor-space G /H = Mp. This space is called
the moduli space of genus-/? Riemann surfaces, and, as was
shown by Riemann, its dimension is finite and equal to 0 for
p = 0, to 2 forp = 1, and to 6p — 6 for/>>2. Teichmuller et
a!.6 have shown that Mp has a natural complex structure.
More than that, Mp is an algebraic manifold.7

Let j>!,..., J»3P _ 3 be some complex coordinates on Mp. For
D = 26, the sum over genus-/? surfaces then has the following
form after the volume of the gauge group has been extracted
(cf. Sec. 2):

(1.1)
dv A do.

dv = dyl A. . - . A dy3p-3,

Af,

where Wis a function of the coordinates y,,yr The natural
question is: how does the complex structure on Mp manifest
itself in the analytic properties of W(y,,y,)l We recall that
the one-loop calculation (p = 1) gives8

(1.2)

where y = exp (2-trir) and T (the ratio of the periods of a
torus) runs over the fundamental region of the modular
group SL(2,Z). Formula (1.2) suggests that these proper-
ties may turn out to be relatively simple forp > 1, as well. The
measure in (1.2) is, to within a power of the logarithm, the
square of the modulus of the analytic function of y that has
no zeros anywhere and has a second-order pole at y = 0 at
which the torus degenerates. We find that, forp > 1, the mea-
sure has almost the same properties9:

A) (1.3)

where F(y) dv is a holomorphic (3p — 3,0)-form with nozeros
on Mp and T is the period matrix of the Riemann surface with
coordinates y ,y , ..... y3p_3,y3p_3 on Mp .

B ) the form F(y ) dv has a second-order pole at infinity D
of the space Mp at which the surfaces degenerate".

This pole leads to the divergence in (1.1), and its pres-
ence is closely related to the fact that the ground state of the
bosonic string is a tachyon. These results are reviewed in
detail in Section I, and were originally obtained by A. A.
Belavin and the present author in Ref. 9.

It is readily shown that conditions A) and B) define the
form F(y)dv uniquely to within a constant factor. In partic-
ular, this enables us to express F(y) for p = 2, 3, and 4 in
terms of the Riemann theta-functions. These results will be
presented in Sec. 6 together with the necessary information
from the theory of automorphic Siegel forms. Moreover,
Beilinson and Manin succeeded in using properties A ) and
B ) of the measure to express it in terms of theta functions

and Abelian differentials for arbitrary/; (Ref. 1 1 ). An alter-
native derivation of this result is given in Sec. 7 and is based
on the theory of analytic fields on Riemann surfaces, con-
structed in Ref. 12.

In Sec. 4 we determine the order of a pole by means of a
direct estimate of functional integrals, but A. Beilinson and
V. Drinfeld have told us that Mumford's theorem7 and the
results reported by Wolpert13 on cohomologies Mp can be
used together to determine the order of a pole on the assump-
tion that F(y) is meromorphic on Mp and has no zeros or
poles on Mp . Further details can be found in Sec. 5 which
gives a precise mathematical formulation of the results.

In classical mathematics, Riemann surfaces are regard-
ed as branched coverings of the complex plane. The param-
eters y, are then the complex coordinates of some of the
branch points. The corresponding calculations, based on the
representation of a branch point by a vertex operator,14 are
given in Sec. 9-12.

The appearance of the complex-analytic structure in
string theory is closely related to the conformal invariance
and the cancelation of the gravitational anomaly separately
in right and left moving sectors of string excitations.'5 The
product F(y) (F(y)) is then the contribution of right (left)
excitations to the measure. Three anomalies, namely, con-
formal, gravitational, and analytic, cancel simultaneously.

1. A THEOREM ON HOLOMORPHY

2. From the sum over surfaces to integration over moduli
space

According to Ref. 5, the sum over surfaces is defined by

(g) exp (- S [*>, gab]),

(2.1)

where gab ( J") is the internal metric on the surface with co-
ordinates !",, £2, and Xfl (£) determines the imbedding of the
surface into Z>-dimensional space-time; S is the Nambu-
Goto action

5 = (2.2)

We shall put D — 26 in the discussion given below. The inte-
gration measure in (2.1) is defined in terms of intervals in
the fundamental space

(2.3)

form dv

cb, (2-4)

compatible with it, where en = £22 = 0, en — — £21 = 1.
The harmonic coordinates z,z are connected with this com-
plex structure, where z is determined from the solution of the
Beltrami equation

Each metric determines the volume
= g>/2dg ' A d£ 2 and the complex structure

,b dz . dz
J g —~~ — i ^—^—

dl" d\a
(2.5)

In terms of these coordinates, the metric assumes the confor-
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mal form

g = g = p (z, z) dz dz, p = £>«>. (2.6)

For infinitesimal conformal <p — cp + 8<p and general coordi-
natez-»z + £(z,z) transformations, the variation of the met-
ric s

8g = p&ydz dz -+ pd e (dz)2 +pde( dz)2,

p5$ = p8cp + d (p e) + d (p e),
, = _

~~ d

and its length is the sense of (2.3) is

(2.7)

(2.8)

where d2£ is understood (here and henceforth) as being
//2dzAdz.

To extract from (2. 1 ) the volume of the gauge group of
general-coordinate and conformal transformations, we
must5 pass from integration over Dgab to integration over
D<p and Ds. Since cp is a scalar and £ a vector, it follows that
for these fields the intervals in function space are

( 2.9 )

(2.10)

= J p (6cp)2 d2g, | e p = J e e P
2da£.

From (2.8) and (2.9) we find that2'

grt = det (— p-2dp d) Dq>D & Dg&

where Dg^ft represents integration over the directions in the
function space of metrics that are orthogonal to the varia-
tions (2.7). To show that such directions exist, consider an
infinitesimal variation of the metric <5g* [not to be confused
with Sg from (2.7)]

6g* = 6cp"p dz dz + f (dz)2 + / (dz)2.

From the orthogonality condition

we then find that

(2.11)

^ / ^ e d2£ = 0

(2.12)

Variations of the metric that are orthogonal to the gauge
group, i.e., satisfy (2.12), are called holomorphic quadratic
differentials. It is known that on a surface of genus />>2, the
complex dimension of a linear space Fof such differentials is
3/? — 3 ( 1 for/? = 1 and 0 forp = 0). Thus, integration over
Dgah is integration over the finite-dimensional space Mp of
complex structures of Riemann spaces of genus/? (moduli
space) that is related to variations of the metric of the form
of (2.12).

The complex-analytic coordinates in Mp are introduced
asfollows.6Wetakethebasis/(z)(dz)2(/= l,...,3/>-3) in
Fand its dual basis

T|'<«, z)-|r ( /=! ..... 3p-3)dz

in the space of the Beltrami differentials3'

(2.13)

Any complex structure /close to /C0) that is compatible with

the metric pdzdz can then be parametrized by the complex
parameters .y, ,...,ytp , and is compatible with the metric

= p\dz+ yrfdz p = p d u du, (2.14)

where the coordinate u is determined from the Beltrami so-
lution

—
dz

(2.15)

and is a holomorphic function of ys (Ref. 6).
The conditions given by (2.13) define ijk to within the

total derivative

Ti*-»-Ti* = ti* + a8*, (2.16)

but the complex structures that correspond to 8ykrjk and
8yk f}k and are infinitesimally close to /(0) are found to coin-
cide. The arbitrariness in (2.16) is fixed by the orthogonality
of the metric (2.14) to the variations (2.7), which leads to
the choice

(2-17)

so that

(2.18)

We now substitute (2.18) in (2.10), perform the Gaus-
sian integration over DXfl (£) in (2.1) (taking into account
the zero mode X(°\^) = const), and extract the infinite
volume of the group of general coordinate and conformal
transformations of JDeD<p. The problem then reduces to the
evaluation of the following integral over the moduli space
M,p'

= &Q, exp W (yit yt) (det NJ'13, (2.19)

det N,

where A^ = — pf }dp 'd is the Laplace operator acting in
the space of they-differentials, i.e., tensors ^ + ... + (z,z), that
transform like (dz) ~'

W)ap = $ p'-'&'W d2?, (2.20)

and is a matrix of the scalar products of the zero modes <f>^
of the operator A^ . We note that det./V, does not depend on/?,
and det/V _ , is absent from (2.19), since A _ , does not have
zero modes for/?>2. Because of the cancellation of the con-
formal anomaly,5 the product of the remaining terms in
(2. 19) is also independent ofp and is therefore a function of
y,,y, alone. This can be verified by means of the formula5'16

ln ?! v = r- f• det Aft_y 6n J

where A^ = 1 if Ak has no zero modes. The expression given
by (2.21) contains f>w instead of the usual 24ir, since

2 +d2
2).

3. Holomorphy of F(y) (Ref. 9)

We shall now show that exp W(y,y,) in (2.19) is the
square of the modulus of a holomorphic function of y,. This
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will involve the evaluation of the variation of W(y^y^) for an
infinitesimal variation of the complex structure generated by
a variation of the metric of the form

r = P h (y) (dz)2 +1 (y) (dz)2], ^ (y) = .̂ (3.1)

The function exp W (y, ,J, ) is the square of the modulus of a
holomorphic function if and only if the second variation of
W does not contain the terms 7777:

0,,0,-W-O. (3.2)

A tedious quasiclassical calculation9 shows that

6 8 In - ̂ -h - = - -Si- f p-2 (Sf df + f'f dd In p) d2!,
" " deity, det A^., 6* J

if

= o,

so that, if we recall (2.19), we find (3.2). The analytic an-
omaly (3.3) cancels and

exp I (3.4)

Moreover, it follows from (3.3) that any expression of the
form

n del' Ay

det ty • det ty

"i

(3.5)

will be the square of the modulus of a holomorphic function
on Mp, provided that

2Cytt, = 0. (3.6)
i

We therefore conclude that, to within (det N,) ' 13, the
measure (2.19) is indeed the square of the modulus of an
analytic function, provided the basis ̂ '' in the space of the
holomorphic 1-differentials is chosen to be a holomorphic
function of yt. The latter can be achieved as follows. Let us
choose on a genus-/? surface 5 a symplectic basis of 2p closed
orientable uncontractible paths a,,bt,i = \,...,p, so that

,"ay = bi»bi = 0 (/^= /, a,°by = 6,-y), (3.7)

where a°b is the algebraic number of intersections (intersec-
tions are taken into account with natural signs). We know
that the space of holomorphic 1-differentials (Abelian dif-
ferentials of the first kind) has the complex dimension p, and
we can take in this space a basis <y, = $'' (z)dz of normal-
ized differentials such that

(3.8)

(3.9)

The matrix

T,-y = <b COy

is then called the period matrix of the surface S. In this basis,

(tf i)*y = ̂  J o>* A % = Im T*/. (3.10)

Substituting this in (2.19), and recalling (3.4), we obtain
(1.3). The fact that F(y) is holomorphic and has no zeros
then follows from the fact that the regularized determinants
in (2.19) should not vanish on nondegenerate surfaces
(since the number of modes for each is constant: one in A0

and none in A , ), or become infinite. In principle, (3.2)
does not preclude the possibility that F(y, ) in ( 3.4) acquires
a nonzero phase on a path y in Mp and is thus not a function
on Mp , but on a covering of it. However, if F(y)d Fis a mero-
morphic form [which we shall prove by proving B ) ] , then 7
should be uncontractible. However, we know that there are
no such paths: H^(Mp,1) = 0(/?>3) , so that this possibility
can be excluded. This proves property A) formulated in the
Introduction.

We note that, soon after the publication of our pre-
print,9 a more detailed discussion of the connection between
proposition A) and the index theorem for a family of opera-
tors and the critical dimension 26 was given in Refs. 10 and
17. In addition, it was noted in Ref. 10 that (3.3) was a
special case of the local variant of the index theorem ob-
tained in Ref. 18.

Let us now briefly consider the connection between the
holomorphy of thejneasure and conformal invariance. The
second variation 88 W of the effective action of ghosts and
fields Xt, can be expressed in terms of the correlation func-
tions for the energy-momentum tensor operator Tab

(3.11)

The naive conservation law yields B _ T+ +

= d+T __ =0, so that, to within zero modes,
(T + + (£)T __ (£ ')) = 0. Because of conformal anomaly,
this is not valid separately for ghosts and fields X^ , since
(T+ _ >^0, d_ T+ + = -<?+ T+ _ . However, for
Z> = 26, the anomaly cancels, so that (T+ + (g)
XT __ ( | " ' )>=0 to within the zero modes. When the lat-
ter are included, we again obtain (3.3).

We now turn to an analysis of the behavior of the mea-
sure at infinity D of the space Mp , at which the surfaces
degenerate, and prove proposition B ) .

4. Singularities at infinity of moduli space and divergences9

In this Section, we shall be dealing in detail not with
determinants, but with functional integrals. We shall exam-
ine the divergence of the integral

dQ [^(pexp^^dcpatpd^)]1

, /y)

(4.1)

where <p is a complex scalar field, e is the complex vector
field of ghosts, yj is a basis in the space of holomorphic qua-
dratic differentials, related to the deformations of the com-
plex structure

dz

by

(4.2)

(4.3)
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o n
FIG. 3.

specified in the neighborhood of the given complex structure
dzby expression (4.2). The scalar product is

(4.4)

Formula (4.1) is also valid for p = 1. The measure in Zp

diverges in two cases.
Case I. A surface of genus p degenerates into two sur-

faces of genus q and q — p, respectively, with punctures at
which the two surfaces are glued together. The manifold of
such surfaces in moduli space Mp will be denoted by

Case II. A surface of genus p degenerates into a genus
p — 1 surface with two glued points that are the residues of a
degenerate handle (Fig. 2). In Mp, such surfaces lie on a
manifold that we shall denote by D(}. Let us find the codi-
mensions, i.e., dimMp — dimZ>,,, of the subspace Dq and />„
in Mp . We shall use the fact that the complex dimension of
the moduli space of a surface of genus p> 1 with n marked
points is 3p — 3 + « [2« coordinates of points on a polygon
on the LobachevskiT plane, + (6p — 6) parameters of the
polygon] , so that the dimensions Dq and Z><, are given by

dimD, = 3<7 — 3 + l + 3 ( p — <?)— 3+1 =3p — 4,
dim D0 = 3 (p — 1 ) — 3 + 2 = 3p — 4.

(4.5)

Hence all the Dtl have a complex codimension of 1 in
M f , and actually augment the moduli space of the nonsingu-
lar spaces Mp to the compact space Mp. To analyze the be-
havior of the measure in Zp in a neighborhood
D = DH U D | U... U D | p/21, let us choose a coordinate y, in this
neighborhood across D, and y2,...,y^p_ , along D, so that D is
specified locally by

«/,(/>) =0. (4.6)

We shall examine the measure as a function of y, for fixed
j>2 v-O'.v - 3 • It can be shown that, in the neighborhood ofy t ,
a conformal transformation of the metric can be used to con-
vert a degenerate neck into a very long cylinder (Fig. 3). To
show this, let us take the coordinate r,0<r< T along a cylin-
der of length T. When 7>>1, the multiplication of the flat
metric of the cylinder by the conformal factor
/I = exp( — IT) + exp(2r —IT} converts it into two disks
that have unit radius and are joined at the centers by a neck
of radius e ~ T= \y, < 1. More precisely, the complex struc-
ture of the degenerate surface near the narrow neck is the
same as the neck of the hyperbola uv = y, in C2 that degener-
ates into two planes at y^. u = 0 and v = 0, which intersect

0_0

FIG. 2.
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transversally at the point u = v = 0. The metric g = \du/u\2

transforms the neck of the hyperbola into a cylinder of
length r~ln(l/ | j>,|). Actually, u=0 and y = 0 are the
equations of the surfaces into which the original surface de-
generates. This representation is convenient for the analysis
of asymptotic behavior. We recall that the measure in Zp

does not depend on the choice of the conformal metric.
In both cases, the surface Sp will be considered as being

the result of gluing together the cylinder and one (case II) or
two (case I) disks (Fig. 4). The coordinates (r,a) on the
cylinder K will be chosen as shown in Fig. 5. The surface
from D corresponds to T^ oo, and it is precisely this limit
that will be of interest to us here. It will be clear from the
ensuing discussion that the "natural" coordinate is

(/!=exp[—(r + i6)l, (4.7)

where 8 is the angle of rotation of the right-hand edge of the
cylinder K relative to the left-hand edge when the gluing to
the disk is carried out.

We must first evaluate the functional integrals. We start
by imposing the boundary conditions on the contours F,, F2

and F,, F4, then evaluate the integrals for the given bound-
ary conditions, and finally multiply them together and inte-
grate over the boundary conditions. In case I, we have for
scalars

/„ = Dcp exp / — J dcp dcp d*£) = § Dcp (0, a) Dtp (T, a),
\ sp

c exp (— vt [cp (0, a)] - v, [cp (T, a)]) G [9 (0, a), cp (T, a)],

(4.8)

where

exp (— vl [<p (0, 0)]) = ^ Dcp exp ( —
condition W.o)

f* / .1 , _ V

G = j Dcp exp — J dcp dcp do dt .

<r(r,o)

Similarly, we determine exp( — v2[<p(T,a)]) and
exp( — v}[tp(Q,cr)<p(T,(r)]) in case II. The same applies to
ghosts, except that the action is fpdsdgd2^ and not

(4.9)

Sincep = 1 on the cylinder K, we find that G is the same

FIG. 4.
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FIG. 5

for both scalars and ghosts:

G [q> (0, a), <p (T, a)] = exp (- Scl [cp (0, a), cp (T, a)])

X(detDir A,,)'1, (4.10)

where 5c) acts on the solution of the Laplace equation
= 0 with boundary conditions

(4.11)

<p(0, a)=

and detDir A0 is the determinant of the Laplace operator on
the cylinder K with Dirichlet conditions at the edges. Simple
algebra then leads to

x e x p -

Thus, in case I, we should find the asymptotic behavior for
T-* oo of the following expression:

/„ = TT (1 - e-*"T2 $ H DV. (0) D'cp,,
n=i rz=— oo

xexP(--M<Pi(0)]-Scl HMO), q»n(r)] — »•
(4.13)

As T-+ oo , we can neglect in Scl the terms that tend to zero,
provided only that this does not give rise to an additional
degeneracy of the quadratic form v,+Scl + v2, i.e., to inde-
pendence of q>,, (0) or gp,, (T).

It is clear from (4.12) that

~l \ <p0 (0) - ep0 (T) |2 cpn (0) |"

(4.14)

where the ellipsis represents exponentially small terms. We
have retained T ~]\<p0(Q) — (p0(T)\2 because there are sca-
lar zero modes on F, and F2, and y, and v2 do not depend on
qp0(Q) and q>0( T). The exponentially small terms can be ne-
glected if v , does not become degenerate on any vector of the
form

on r,. Let us now imagine that the cylinder K extends to
infinity on the right (r>0), and the metric on it is e ~2r =p*
and not unity. In terms of the coordinates

u = exp [—(T + ia)] == e~z

the cylinder 0<<7 < ITT, 0<r is the circle | u \ < 1 with constant
unit metric

p'dz dz = | u |2 d In u d In a = du du.

The surface V, is sealed by this circle and becomes the com-
pact surface Ff of genus q> 1.

The solution £> * can be extended to the cylinder while
maintaining its holomorphy:

q>' (T + fa) = 2 an exp [B (T + to)].
n<o

Consequently, a holomorphic function (p * that is not a con-
stant exists on the surface Vf. However, it is known that
such functions do not in fact exist, and this contradiction
proves the original proposition.

The conclusion therefore is that the form v, does not
have zero vectors such as

Similarly, v2 does not have zero vectors such as

and the exponentially small terms can indeed be neglected in
Sci . Consequently,

(4.15)

As expected, we are left with the integral over the zero mode,
i.e., the volume of the "Universe". Next, let us suppose that
the integral is equal to unity. We are thus left with

(Ha D,; ?=^0). (4.16)

Let us now consider the integral over the ghosts:

/! (T) = $ De exp (— j p dl 3e d"g) . (4. 17)

The only difference as compared with the scalars is that we
need not retain |e0(0) - £0(T) 2/T'm (4.10) in Scl , since
tff * does not have zero vectors of the form

and v2 on a vector of the form

We shall show that this is actually the case. Let us suppose
that the opposite is true. In that case, there is a solution (p * of
the equation ~d<p = 0 that assumes the form

(«<0 and not n <0 as in the case of scalars!), whereas vf*
does not have zero vectors of the form

2 W*.
n>o

To show this, let us again assume the opposite, as in the
scalar case. A solution £* of the equation de = 0 then exists
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on F, and can be extended to the cylinder K by means of the
holomorphic function

nsjo

However, E is now a vector and not a scalar. In terms of the
coordinates u the solution

e' (u) = e' (z) ̂  = - e' (z) u = - 2 anu>~-

vanishes for u = 0. Consequently, the nonconstant holomor-
phic vector field s* (z) exists on the sealed surface V*. How-
ever, we know that such fields do not exist if the genus q of
the surface V* is greater than or equal to unity. Moreover,
when q > 1, no holomorphic vector fields exist, and for q = 1
there is one holomorphic vector field that does not vanish
anywhere. Hence we conclude that i>f' has no zero vectors of
the form

2 ane
ina.

Since, in this case, we need not retain the term
:£n(0) -e()(T)\2/T inSc, in (3.10), the entire leading part
of the dependence on T is determined by the cofactor
detD i rA,,(DinG:

7_i (T) |r 7-V/« (on D» 0). (4.18)

On the other hand, the ratio of the functional integrals in the
measure Zp exhibits the following behavior:4'

'TV (on D,, (4.19)

Case II can be treated in exactly the same way, except
that F3 is now sealed by two discs, one on the right and the
other on the left. The only difference is that now, and in the
case of the scalar fields, we can neglect the term
|^o(0) — tpa(T) 2/T in 5C,. This is so because, in D3, it is
only the sum (pt>(Q) + tpn( T) and not <pn(Q) and <pn( T) sepa-
rately that is the zero mode (as was the case for i>, + v2 in
case I).

We therefore conclude that, in case II, we have
7,,~/_ ,, and the ratio of the functional integrals is

(on
r-»x>

All that remains is to evaluate the form of the volume

3P-3dQ
,. /,)

(4.21)
(=1

We shall do it by exploiting the fact that the variations of Tis
related to a Beltrami differential that is constant on K. Actu-
ally, a variation of the complex structure generated by this
differential dz— dz + adz may be looked upon as the trans-
formation z->z = z + az that converts the rectangle
0<cr<27r, 0<r<r(z = T + /o-) into a parallelogram. _The
new value of the coordinate ( T + iS)/2m in the space Mp is
the complex ratio of the periods of this parallelogram

7(2ni)
T
2m

aT
ni

and hence a = D(T + iS)/2T. Consequently, the coordi-
nate y, = T + iS in moduli space Mp corresponds to the Bel-
trami differential 77' = 1/2T, since the shift by dj>, in Mp

corresponds, as we have shown, to the following variation of
the complex structure:

dz -*• dz + dj/jVdz.

From (4.3) we find that the quadratic differential5' /, on K
is equal to unity. The coordinate^, is directed across D. The
remaining quadratic differentials can be chosen so that
(/•>/i) ~ 1 and tne corresponding coordinates are directed
along D. In that case,

det (M
dQ dj/t A

det(/,, T

dTd6
dQ n =

i A dyt

e*_

T
f/! A d</i A

I2 In ( I / I !/i
(4.22)

where

«/! = e-£ = exp [— (T+t6)].

The surface D is specified by the equation >>, (D) = 0. This
coordinate is acceptable since, as we can see from (4.12), the
ratio of the determinants can be expanded into a series in
y , ,>>,, and the divergences that appear to be exponential in
terms of the coordinates y,,.., are in fact terms raised to a
power.

Collecting (4.19)-(4.22) together, we find that the
asymptotic behavior of the measure in the neighborhood of

is

(4.23)
det (/,, f,) I !/i I4

and in the neighborhood of 7J>0

dQ ,13
'o

I0i
-^e'T- (4-24)

To find the order of the pole of the form F(y)dv from
(1.3) and (3.4), we need only estimate the period matrix
(3.25) in the neighborhood of the surface D. In case I, in

(4.20) which the surface splits into the two surfaces Sq and Sp _, of
genus q and p — q, respectively, we find that the p holomor-
phic 1-differentials w, transform into the holomorphic 1-
differentials co'a,a = l,...,q on S9 and (o'p,/3= \,...,p — q on
Sp _,. The period matrix f then assumes a block form, and
det Im r(y) has a finite limit as .Vi-»0. Therefore, in the
neighborhood of Dq,q^Q, we have

det Ini i (y) \y,-a <* det Im f' • det Im T", (4.25)

where f (f") is the period matrix of S g ( S p _ q ' ) , Hence, to
estimate the period matrix in case II, i.e., for a degenerate
handle, we take the basis of cycles (3,2 3) so that the cycle ap

runs across the cylinder K, as in Fig. 4 (case II), and the
cycle bp runs along the cylinder. We now choose the coordi-
nate z = T + iff on K (see Fig. 5). From the relation

= 6,7
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and the holomorphic condition dco, = 0 it then follows that,
when 7"> 1, all the differentials other than <ap decay expon-
entially on the cylinder

( i= l , .... p — 1),

and o)p = 1/2 vri for \,T — r> 1. Hence, the only diver-
gent element of the period matrix for !F-> oo is

and, in the neighborhood of Z?0, we have6'
i

det Im T l̂ -s.,, <* T = In
10i I

(4.26)

Substituting (4.25) and (4.26) in (1.2), and comparing
with (4.23) and (4.24), respectively, we find that the form
F(y)dv has a second-order pole on D:

F (j/) dt) I^-M) « y-ad jh A d u n . (4.27)

We have therefore proved property B) of the measure, for-
mulated in the Introduction.

We shall now show that the condition for the absence of
zeros in Mp and the asymptotic behavior (4.27) define the
formF(y)dv uniquely, except for a constant factor. Actual-
ly , the ratio of any two forms F' and F ^satisfying these con-
ditions is a meromorphic function on Mp that does not van-
ish or become infinite anywhere except, possibly, for
intersections of the components Da of the surface D [i.e.,
points at which the coefficient in front of y{~2 in (4.27) can
have a singularity]. Hence, it follows that, either
F'/F" = const, or the manifold of zeros and poles of the
function F '/F " has the complex codimension 2 in Mp. How-
ever, we know that the manifold of zeros and poles of a non-
constant meromorphic function on a compact algebraic
manifold has the complex codimension 1. This means that
F'/F" = const.

The asymptotic behavior of (4.23) and (4.24) has a
very simply interpretation. If we look upon string theory as a
theory of an infinite number of interacting particles, then K
in Fig. 5 can be interpreted as the propagator in the represen-
tation of the proper time T, and the integral of the measure
over Tcan be written in the following form in case II:

(4.28)

where the sum is evaluated over all particles corresponding
to different excited states of the string (pM is the momentum
in the loop). For large T, small /^ are significant in the inte-
gral with respect to momenta in (4.28), and the measure in
(4.28) has the asymptotic form

(4 29)

from which it follows that the main contribution to the inte-
gral in (4.28) for large Tis provided by tachyons and mass-
less states

dTT .-0/2 (4.30)

We now recall that, in a closed bosonic string, the ground
state is a tachyon20 with m^ = — 2 (in our normalization)
and the excited states have m2>0 (multiple! of massless ex-
citations containing the graviton gf", the tensor A I/I"I

( and
the dilaton <t>). Since D = 26, we then find from (4.30) that

which is identical with ( 4.24 ) . We note that, when D > 2, the
massless states do not contribute to the divergence of the
integral (4.30).

In case I, the particles propagate between vertices Vl

and V2 (see Figs. 4 and 1 ) with zero momentum, and instead
of (4.30) we have

z?-1 ~ ^ dr (4.31)

so that the main contribution to the divergence in (4.31) is
again associated with a tachyon and has the form

which is identical with (4.23). However, it is clear that, in
this case, there is also a divergence associated with the mass-
less dilaton (g1'" and A '''"' are not created from vacuum),
which evidently leads to the renormalization of the slope of
the Regge trajectory.

The order y of the pole of F(y)dv is therefore

(4.32)

To conclude this Section, we note that a similar method
of estimating functional integrals and of analyzing diver-
gences was used in Refs. 21 and 22 in which it was based on
the Selberg trace formula.

5. Measure in a bosonic string and Mumf ord's theorem

In this Section, we examine the mathematically rigor-
ous formulation of the above results, and consider their rela-
tion to Mumford's theorem.7 It follows from (2.19) and
(3.4) that F(y) is not a function but a section of a line bundle
.E1 above Afp (i.e., the complex dimension of a fibre is equal to
unity). More precisely, F(y) is the contribution to the mea-
sure due to left excitations of the string

F fo) = det d^. (det 5.)- (5.1)

where ds acts in the space of /-differentials and det dt is a
section of a line bundle23 with a fiber generated by the vector

A ... A < A <#-" A A

in which ̂ ° is a basis in the space Kerc^ of holomorphicy-
differentials and O ,̂1 ~n is a basis in (Cokeroj,)*;=;Ken?1_y.
Thus, E is the tensor product of two line bundles over Mp

£ = /C®rls, (5.2)

where K is a bundle of 3p — 3,0 forms with fibers generated
by the vector dv = dyl A ... A dy3p _ 3 , and A is a bundle of
modular forms with fibers generated by <a, A ... Atop where
{&>,} is a basis in the space of holomorphic 1 -forms. We have
chosen it just as at the end of Sec. 3. The bundle /i is nontri-
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vial because the basis of cycles can change as we circulate on
a closed curve g in Mp. The section of F(y) is well defined
only when the gravitational anomalies cancel24 in (5.1).
This does actually occur,'5 and the condition for the cancela-
tion of the gravitational anomaly is in fact equivalent25 to the
condition for the cancelation of the conformal anomaly in
the ratio detA , /det'A0.

The theorem7' proved by Mumford7 by evaluating the
characteristic class c, (E) of a bundle E states that this bun-
dle is trivial on Mp (in particular,this reflects the absence of
topological obstacles to the cancelation of anomalies).
Moreover, it also follows from the evaluation of c, (E) that a
section of F that is holomorphic and does not vanish on Mp

exists in E and has a second-order pole at the infinity D.
Moreover, the Wolpert theorem13 on the independence of
components D{},...,D\p/2\ of infinity D in the group
H^ s (Mp,Q) of homologies of Mp enables us to conclude
that any holomorphic section E that does not vanish on Mp

differs from F by a constant factor. As noted by Beilinson
and Drinfield, the square of the modulus of the section of F
can be used to determine the measure on Mp:

dti = d v A d v \ F (y) [2 (det (co,, eo,))-», (5.3)

where

(co,, co,) SSL ̂  (0,-A <•>/,
- J

and det(ci)j,(i)j) is a natural Hermitian matrix on /I. In the
basis chosen at the end of Sec. 3, it is identical with det Im T.
Comparison of (5.3) with (2.19), (3.4), and (4.27) shows
that it is precisely this measure that arises in the theory of
bosonic strings. We have thus proved the following theorem:

Theorem.1' The integration measure in the theory of
closed oriented bosonic strings is the square of the modulus of
the global, holomorphic, and nonzero on Mp section of the
bundle K®A. n, divided by the thirteenth power of the natu-
ral metric on A.

Since the holomorphic structure on the moduli space
arises from an algebraic structure, any holomorphic object
upon it, e. .g., the section of F that arises in string theory, is an
algebraic object (in accordance with the GAGA princi-
pie27).

Our results are naturally generalized by the following
conjecture.

Conjecture.9 Multiloop amplitudes (and not only vacu-
um amplitudes) in any conformally invariant string theory
(such as the bosonic string in D = 26 or the superstring in
D = 10) can be expressed in terms of algebraic objects
(functions or sections of holomorphic bundles) on the mod-
uli space of Riemann surfaces.

Quantum geometry is therefore the complex geometry
of the space Mp.

II. EXPLICIT FORMULAS FOR THE MEASURE IN TERMS OF
THETA-FUNCTIONS

We showed above that summation over closed oriented
surfaces of genus />>2 (which determines /"-loop vacuum
amplitudes in the theory of bosonic strings) reduces for the
critical dimension D = 26 to integration over the space Mp

of complex structures of Riemann surfaces of genus p. We
have investigated the analytic properties of the integration

measure as a function of complex coordinates on Mp. The
measure multiplied by (detlmf) ' '3 (t is the period matrix)
is the square of the modulus of a function that is holomor-
phic on Mp and does not vanish anywhere. This function has
a second-order pole at the infinity D = Mp/Mp of the com-
pactified moduli space Mp. These properties define the mea-
sure uniquely to within an arbitrary constant, and this en-
ables us to construct explicit formulas for genus/7 = 2, 3, and
4 in terms of theta-functions.

6. The measure forp=2,3,4

In this Section, we reproduce the formulas for the mea-
sure with/? = 2 and/? = 3 that were reported in Ref. 28, and
will formulate a conjecture about the form of the measure for
p = 4 (Refs. 9 and 29). The direct evaluation of the measure
for/? = 2 is given in Sec. 11. Simple formulas for/7 = 2 and
p = 3 can be written down because, in these cases, we have
an explicit parametrization of the space Mp by the period
matrices, which we shall now describe.

On an arbitrary Riemann surface Sp of genus p in a
symplectic basis of cycles (closed paths) a,,b(j= \,...,p,

a,°a/ = b{obj = 0 (i=£j, ai°bj = 6(/), (6.1)

which was introduced at the end of Sec. 3, and the related
basis of holomorphic 1-differentials o>, such that

co = (6.2)

(6.3)

(6.4)

we can construct the period matrix

Trt = (T £0*,

%

satisfying the Riemann relations30

T(* = TO,-, Im t>0 .

These relations ensue from

co A w/ =

where <o and co' are arbitrary holomorphic 1 -differentials,
and from the fact that the norm of the nonzero differentials co
is positive:

The Torelli theorem states that a complex structure is
uniquely determined by the period matrix to within a diffeo-
morphism. Thus, complex structures can be parametrized
by the matrices T. However, an infinite number of matrices r
can correspond to a given surface. Actually, the basis {a,,6,}
is not uniquely determined by ( 6. 1 ) . We can find another
basis

a\ = Cikbk + Dikat,, (6.5)

that will satisfy (6.1) if the integer matrices^, B, C, and D
satisfy the conditions

ABT — BAT = CDT — DCT = Q, ADT—BCT=\, (6.6)

i.e.,
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Af=

The group Tp is the Siegel modular group of degree/). Under
the transformations (6.5), the basis of differentials (6.2)
becomes

from which we find that the period matrix in the basis (6.5)
takes the form

T' = (Ai -(- B) (Or + D)~l. (6.8)

Thus, to avoid including the same surface more than
once, we must confine our attention to the factor space

where 5ffp denotes the space of all the symmetric p Xp ma-
trices with positive-definite imaginary parts and is called
Siegel's upper half-plane. The group Tp acts upon it by the
transformations (1.8). The manifold <&p has the complex
dimension p(p + l)/2 that is equal to the dimension of the
space Mp for/) = 1, 2, 3. Actually, <&>p and Mp coincide in
these cases. Thus, finally, for/) = 1,2,3, the space Mp can be
parametrized by matrices covering the fundamental region
<Sp of the group F^ in Siegel's upper half-space 3Vp.

It follows from (1.13) for/» = 2 and 3 that the measure
should take the form28

J fr^-i 2

(det Im t)- ( 6.9 )

It can be shown that the natural modular-invariant measure
on ©p is

dn,p = TT -i- d ikl A dr*y (det Im t)"""1.

In addition, it follows from (6.6) that

det Im T' = | det (Ci + D) |~2 det Im T. (6.10)

Hence, the condition that the measure in (6.9) is the mea-
sure on @p, i.e., it is modular-invariant, takes the form

>(T), k=l2 — p (6.11)

[forp = 3 this formula must be made more precise; see be-
low]. Next, the form n^dr,., has a first-order pole on the
component D0 of infinity (Imr,, -> oo), and a zero of order
p — 2 on the component D, for which r assumes a block form
(for/) = 2, 3 there are no other components). It therefore
follows from property B) of Section 1 and (6.11) that^(T)

is a parabolic modular form of weight k = \2— p on <Sp,
which has a zero of order/? on £>,. The function r that trans-
forms in accordance with (6.11) and is holomorphic on 3Vp

is called a modular form (of Siegel) of weight k on <Sp. The
weight k must be even for odd p. The modular form that
vanishes on D0 is called parabolic. If, on the other hand, p
and k are odd, the form must be determined by further multi-
plication by the character of the group Tp, since r' does not
change and the right-hand side of (6.11) changes sign when
the signs of A, B, C, and D are simultaneously reversed.

The space of modular forms on @p has been well studied

for/) =1,2. For/) = 1, all the forms are linear combinations
of forms of weight 4 and 6, and their number is given by

(6.12)

where d2k (p) represents the number of linearly independent
modular forms of weight 2k on <Bp. The situation is similar
for/) = 2, but is somewhat more complicated.31 If we confine
our attention to forms of even weight, we find that there are
four main forms of weight 4, 6, 10, and 12:

The expressions for the main forms are given in Ref. 31 in
terms of the Eisenstein series and theta-constants. It is also
shown in Ref. 31 that there is a unique parabolic form of
weight 10. It must therefore be identical with x\a m (6.9)
and have a second-order zero on /),. This can be readily
verified with the aid of the following formula:31

(T), (6.14)

where the theta-constants are defined by

8m (z; T) = S exp \ni (n + ^-\ t (n + =£-
„ — irP «- \ / \

= - i + . , (6.15)

= em (0; , m = (m', m"),

and the components of the vectors m', m" assume the values
0, 1. The quantity

m'-m"(mod2) (6.16)

is called the parity of the characteristic m, and the product in
(6.14) is evaluated only over even characteristics. For genus
p, there are 2"- ' (2" + 1) even and 2"~ ' (2" - 1) odd char-
acteristics. If e(m) = 1, then Om (0,r) = 0. It follows from
(6.14) and (6.15) that, as T12^0,

2" exp [2m (TU + TM)] (j (6.17)

as required.
We shall now show, following Ref. 28 (see also Ref.

32), that the form x i o (r) has no zeros inside <S2. We shall do
thus using the following formula for the fermionic determi-
nant9'33 proved in Sec. 7:

detm di/, • (det d0)
!/a = 6m (T) (6.18)

where detm51/2 is the determinant of the Dirac operator act-
ing on the space of left-handed Weyl fermions "living" on Sp

and satisfying the periodic (antiperiodic) boundary condi-
tions on complete cycles c, for m,' = 1 (0) and cycles 6, for

| det 5. pS- det'

(detImT)(Jpd»E)
(6.19)

A more precise definition is discussed in Sec. 7.
It follows from (6.18) and (6.19) that 0m(r) vanishes

on surfaces S2 on which d 1/2 acquires zero fermionic modes
with boundary conditions m, i.e., when holomorphic 1/2-
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differentials with the characteristic m exist on S2. According
to Riemann's theorem on singularities, the parity of the
number of such ^-differentials is the same as the parity e( m)
of the characteristic m. Moreover, for a general surface, their
number is e(m). Thus, the vanishing of 6m (r) fore(m) =0
on the surface S¥ signifies that at least two holomorphic
1/2-differentials ^ , (z)(dz)1 / 2 and </s(z)(dz) l / 2 with the
characteristic m exist on S f . Moreover, we know that the
holomorphic /'-differential on a genus-p surface has
2/'(/> — 1) zeros. Hence, the meromorphic function
/(z) = i/>l(z)/i//2(z) exists on the surface S* and has one
zero and one pole. It follows that S * has genus 0. This con-
tradiction demonstrates that Om(r) has no zeros for
e(m) = 0 inside ©2. The absence of 1/2-differentials with
even characteristics also follows from the fact that any ge-
nus-2 surface is a hyperelliptic curve

• (z - a.) (6.20)

in C2 = ( y , z ) , and it is readily verified that there are exactly
six holomorphic 4-differentials

(6.21)

(one for each of the six odd characteristics).
Let us now turn top = 3. The measure

T T d T y

now has a pole of order 1 on D(l and a zero of order 1 on Z),.
Moreover, as noted above,the form ^, of weight 9 can be
determined only with values in the character of Pv On the
other hand, the usual complex-valued form of weight 18 is

V1 = Yla f ft ~>~>\At| Ala' {\}.££ )

It must have a zero of order 2 on D(} and of order 6 on Z),.
This form exists and is given by'4

X l 8 = T T 9 - n ( T ) , (6.23)
m

where the product is evaluated over all the 36 even charac-
teristics. However, x\v. vanishes not only on Z>() and />,, but
also on the manifold D, of hyperelliptic surfaces inside ©,
(Ref. 8). Actually, on the genus-3 hyperelliptic surface

(6.24)

there are in addition to the 28 fermionic zero modes

(6.25)

(one for each of the 28 odd characteristics), two modes

Mp = zyw (6.26)

with the same even characteristic, the particular value of
which depends on the choice of the basis of cycles (6.1) on
the curve (6.24). Hence, x\s does indeed vanish on Z>. and,
in terms of the coordinates^, of Sec. 2, this is a second-order
zero. Conversely, if the form jlg vanishes on the surface S*,
then there are on S* at least two holomorphic 1/2-difFeren-
tials ^(0) and ^< u with the same even characteristic, and
their ratio/(z) = i/rm/i/r( ' ' is a meromorphic function on S1 f

with two zeros and two poles, i.e., S f is a two-sheet covering
CP1. Consequently, S? is a hyperelliptic surface.

We conclude that Xix vanishes in the interior of
@3 = M3 on hyperelliptic surfaces and only on such surfaces.
In terms of the coordinates;', of Sec. 2, this is a second-order
pole, and the root j9 = x\g2 can be extracted. We still have to
demonstrate that, in terms of the coordinates^,, the measure
11̂  ; dT,j has a zero of order 1. To show this, let us take the
following basis of holomorphic quadratic differentials on the
surface (6.24):

/* = z*-'̂ 2 (d z)2 (* = 1 5), /« = y'1 (d 2)2 (6.27)

and the metric pdzdz that is symmetric under the transfor-
mation y: (y,z)v. ( — y,z). We can then take 77'' to be odd in y:

Tj8 = const • (6.28)
pd zd z

Moreover, the Abelian holomorphic differentials o>,
= 4>, (z)dz are linear combinations of

dz_ zdz z * d z

y ' y ' y

It then follows from (6.28) and from the formula

?!£*=_ f (Tfcofl) A <i>b, (6.29)

which is valid for any genus, that

so that, having taken yh(D, ) = 0, we find that

(6.30)

Consequently, the measure

dy1 ... dye (6.31)

is holomorphic in>>, in the neighborhood of Z) . , and does not
vanish, as expected from the main theorem of Sec. 5. The
integral root-type singularity that appears for p = 3 in the
measure (6.9), (6.22), and (6.23), naively contradicts the
holomorphy proved in Sees. 1-5 and is due to the fact that
M, does not cover G3 smoothly in the neighborhood of the
manifold of hyperelliptic surfaces ( of symmetry y) . We have
thus demonstrated the validity of (6.9), (6.22), and (6.23)
for the measure in the case of genus/? = 3. We note also that
the analytic properties of the forms j,0 and J I K were investi-
gated by Igusa31'34 by other methods.

The explicit formulas given by (6.9) and (6.19), (6.23)
are usefully augmented by the formulas for the tachyon scat-
tering amplitudes.9'29 This involves the evaluation of the
Gaussian integral5

f D *„ exp (- 1 f
J \ n J

f «<P (ip^
1J

detjV,,\3

A'

x n
(6.32)
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where X'J, (£) is a solution of

Because of the conservation of momentum
N

S nM. == 0
rk '

(6.33)

(6.34)

the solution (6.33) can be readily expressed in terms of the
theta-functions (6.15):

A'

x?i (I) =•—2 '/* ['n I e"> (z (?) -z (E*);T) I2

*=i
+ 4JiIm(z(g)) ' (ImT)-1Imz(i*)] , (6.35)

where w is any odd characteristic. The argument z(£) in
(6.35) is equal to the integral of the vector w = (ea,,...,caf )
from among holomorphic Abelian differentials, evaluated
over a path joining the point J" to the fixed point J",,

z(s) = (6.36)

By regularizing the function (6.35) at£ = £A as in Ref. 5, we
find that the dependence on p in (6.32) cancels out on the
mass surface p~ = 2, and after some simple algebra the factor
K ( f t ; r ) reduces to the form

<: T) = f f[ |v«m A v j j . & j n i f c / i , (6.37)
/ = 9m (z,v; T) exp [— n Im z^. (Im t)"1 Im z,-/],

where z,; =
the form

— z(£;) and the 1-differential vl, (g) has

(6.38)

The expression given by (6.37) does not depend on the
choice of the odd characteristic m, and can be substituted
into the measure so as to obtain the amplitudes

AP (Pi . . . P,v) dQ\F(y) |2 (det Im x)'13 K(p, ... VN; T).

(6.39)

For/? = 1, we can use (6.37) and (1.2) to reproduce a well-
known result.8

We now turn to the case/? = 4. The complex dimension
of @4 is greater by one than the dimension of M4, so that a
single relation is available for the matrix T. It is called the
Schottky relation35 and is the condition for the vanishing of a
certain parabolic form JK of weight 8:

•MT) = O. (6.40)

Strictly speaking, Schottky showed that any matrix r of a
genus-4 Riemann surface satisfies (6.29); the reverse propo-
sition was proved only relatively recently in Ref. 8 which
gives the formula for J8 in terms of Qm (r). The results of Ref.
36 enable us to formulate the following conjecture:9'29

Conjecture 1. The measure for/) = 4 is

Z4=

* res (drJg1 (T)) A res (dr^1 (T)) (det Im T)-".

(6.41)

7. Analytic fields on Riemann surfaces and the Beilinson-
Manin formula

We showed in Sees. LA and I.B that the measure in
string theory can be expressed in terms of the holomorphic
objects det 5,, i.e., sections of determinant bundles over Mp,
and that the evaluation of the measure is thus reduced to the
problem of constructing such sections. This occurs because
right and left excitations of two-dimensional quantum fields
do not interact with one another. This enables us to extract
in a consistent manner the chiral (analytic) sectors of these
excitations, the structure of which we shall examine in detail
in this section, following Ref. 12. To formulate the problem
more precisely, let us consider a two-dimensional surface 5
with coordinates £ ',£: and metric gah (£). Let us introduce
on this surface certain analytic coordinates z,z, in terms of
which the metric assumes the conformal form

got, (?) d£"dS* = p (z, z) d z d z,

and let us examine this set {^<J)} of fields of spiny 01 y'-differ-
entials which transform as follows under analytic replace-
ments of the two-dimensional coordinate z on the surface 5:

0 ( / , / ) • (7.1)
\ u ^ /

The two anticommuting fields <$>w and (f>(' J} can be used to
construct the action25

5,. = f <{>(i-» df> d z A d I, d = 4r,
J az

(7.2)

where, in general, the integral is evaluated over a surface 5 of
genusp. In the discussion that follows, we shall always con-
sider that/>>2.

Formally,the free energy of this system is given by

F, = — In det d, (7.3)

where the subscript y on d signifies that d acts on they'-differ-
entials, and our main problem is to find the explicit formula
for Oj . In actual fact, for eachy we construct a section det 3,
of the corresponding determinant bundle, such that any con-
formally invariant product of these sections has neither ze-
ros nor poles in the interior of Mp . Because of this, the for-
mulas obtained below can be used to evaluate the
conformally-in variant products (3.5) and (3.6) and, in par-
ticular, to evaluate the measure in the theory of bosonic
strings

(7.4)
,=1

F =d

Actually,there is as yet no satisfactory quantum-field
definition of detd, that could serve as the starting point for
an evaluation, so that the formulas given below must be
treated more as definitions than equations. Nevertheless,
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they seem to us to be very instructive, and can be used to
evaluate such quantities as F(y) in (7.4); they provide the
connection between the quantum field theory of ./'-differen-
tials (7.1), (7.2) and the geometric approach of Quillen23

and Fallings.37 We shall see later that the formulas obtained
by Beilinson and Manin arise naturally in our approach. Our
strategy will be to start with representations of quantum
field theory and elucidate the properties that any reasonable
expression for det3, should have. We shall then construct
the simplest form with such properties and verify it in certain
special cases.

We begin with j < 1 and try to introduce the formal
definition

det dj = ^ D q> D f exp ( f 9 df d z A d z) (7.5)

where/and <p are, respectively, they- and (1 —y)-differen-
tials. Of course, this formula cannot be correct because d/
has HJ = (2/ — !)(/> — 1) zero modes, i.e., holomorphic j-
differentials/, (z) (dz)',.../„ (z) (dz)'. We must extract their
contribution from (7.5) and write

det d =
</ (* , ) . . . / ( z n / . )>

(7.6)

where the matrix |[/) (z*) || contains the element/ ( z k ) on the
intersection of the /-th row and fc-th column, and

(7.7)X 5xp C <f> df d z /\ d z.

To ensure that (7.6) does not depend on the choice of
z,, the correlation function (7.7) must be antisymmetric in
all the z;; it must also be a holomorphicy'-differential for each
z,. However, we know that, because of the gravitational
anomaly,-4 it is impossible to construct the correlation func-
tion (7.7) so that it does not depend either on the choice of
the coordinates at other points on the surface or on the
choice of the conformal metric p. This follows from the fact
that, according to Ref. 24, the variation of F-t for a small
general coordinate transformation has the form

8eFj = —i- f p-^ (ps) (A In p) i d z A d z, (7.8)
24lt J

Thus, Fj depends on the complex structure x of the surface S,
the conformal metric p upon it, and the choice of the analytic
coordinate z: Fj = F/ (X,p,z). In the discussion that follows,
we shall not consider the general case of arbitrary X,p,z, and
will confine our attention to the dependence of F} on X and z
for a certain fixed conformal metric p —p.. The most con-
venient choice is

P, = |v,(2)|4, (7.9)

where y. (z) is a holomorphic 1/2-differential (fermionic
zero mode) and the asterisk represents its boundary condi-
tions or characteristic (determined below). The important
point for us is that, in general, v. has exactly/? — 1 zeros of
order 1, which we shall denote by R}...RP_, :u. (/{,.) = 0.

For the matrix (7.9), the variation of Fj given by (7.8)
has the form

y = C, J f 8' (/?,-) + 2 8 (/?,) = CA In f[ v2, (/?,),

5ev, (z) = edv, + -i- (de) v, (z),

so that

detd/fX, P,,zl =

(7.10)
(7.11)

, p.,/|. (7.12)

Thus, del <3, transforms as the product ( — 2C,/3) of
differentials at the points /?,-.

The last condition for det 5, can be stated by saying that
it should not depend on the coordinates yt on the moduli
space Mp .

An important property of ( 7.6) is that it depends on the
choice of the basis {/ } in the space of holomorphicy'-differ-
entials, in agreement with Quillen's definition of det dt as the
section of a determinant bundle on Mn (Ref. 23: see Sec. 5).
For arbitrary j, there is no special basis {/)} with the excep-
tion of the casey = 1 for which there is a normalized basis of
1 -differentials {&»,-,/= 1, •••>/>} introduced in Sec. 3.

It is precisely this basis that is convenient for the defini-
tion of det 5,,:

\ DcoDfpffl (2,) ... (o (2 ) <p (2) exp I (odcpd z /\ d
-^ - - - '-

del | «,(*,.)
(7.13)

where the/? 1 -differentials co(z, • ) and the scalar q>(z) appear
because we have three zero modes <u and one zero mode cp\
q>(£,} = const. Moreover, it is assumed that (7.13) is inde-
pendent of z. We note that, in relation to the transformation
(6.5)-(6.7), the expression given by (7.13) behaves as a
modular form of weight 1.

The simplest formulas are obtained not for the det 5,
themselves, but for the combinations

Xy = detd/-(detdf f l )
L (7.14)

It follows from the foregoing discussion that A/ should be a
— (2/— 1) 2-differential with respect to conformal transfor-

mations at the points R,, and a modular form of weight 1/2
with respect to Pp or, more precisely, with respect to the
subgroup P,, that conserves the characteristic v. (z) in
(7.9). Moreover, for half-integral j, there are 1~r different
boundary conditions, and /ty must depend upon them.

All that remains is to explain how we can parametrize
these boundary conditions and introduce the final concepts
and notations that are necessary for constructing the formu-
la for AJ. We shall do this by considering, for a given
j 6 Z + (1/2), a meromorphicy-differential/and its formal
sum (f)

i k

where Q, (Pk) are the zeros (poles) of/(z) of order ni (mk).
Let us also consider a point Q on the surface S and define the
map

"I'
(7.16)

of the surface 5 into the complex torus J = CP/ZP $ rZp,
where the period matrix r is denned by (6.3).
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An important property of (7.15) is that

(7.17)

does not depend on the choice off, and (/) = 0 for 7 = 0
(Abel's theorem). Hence it follows that

2 ( f ) = 2 / k (inJ), (7.18)

where the Riemann constant is k = (a>) for an arbitrary
meromorphic 1-differential co and, consequently,

(7.19)

where the components of the p- vectors m',m" are either 0 or
1. The set of 22/) different pairs (m',m") =m, called the char-
acteristics of /, parametrizes invariantly all the possible
boundary conditions on / The number e(m)=m'-m"
(mod2) is called the parity of the characteristics. Ify> 1, it
follows from the Riemann-Roch theorem that the number of
holomorphic y'-differentials does not depend on m and is
equal to n,• = (2j — 1) (p - 1), but fory = 1/2 the situation
is rather more involved. In the latter case, we know from the
Riemann theorem on singularities'8 that the parity of the
number of holomorphic 1/2-differentials, where
« 1 / 2 (m) = e(m) for a surface of general position. We recall
that, for odd characteristics m, the holomorphic 1/2-differ-
entials, v,,, (z) can be constructed explicitly:

vjl(z) = em.(0)l-(z), (7.20)

where the Riemann ^-function was defined in Sec. 6 and

(7.21)
dz.

Everything is now ready for Aj. Fory' e Z + ( 1/2), we
propose the expression

...V1(zn/)

(7.22)

where the asterisk represents an arbitrary odd characteris-
tic, (y. ) = R, + ... + R/: .. , , m is the characteristic of fj,
and

\ t , - z » ) ) , (7.23)

function of the exponents of the free scalar <p on the surface.
This follows from the corresponding formula of Sec. 6:

\ \ V *)\ '
/.

x exp — 2n

Xlm(z j (7.24)

We now turn to the examination of the different special
cases. First, consider y' = 0. In this case, (7.13) and (7.23)
assume the form

xe.(z-z1-...-zp (7.25)

We now use the fact that (7.25) is independent of z, z, and
substitute zp =z, z, =R/,i= \,...,p — 1. Hence

(detd0)° det ||» (z) «(/?!
(7.26)

This expression does not depend on z and looks like a direct
generalization of 9 \ to p = 1. As explained above, «>(/?/)
appears in (7.26) as a consequence of the gravitational
anomaly which does not appear for/? = 1 because, according
to (7.9), p* = const and the right-hand side of (7.8) vanish-
es. By combining (7.22) and (7.26), we can also obtain for-
mulas for the det 5y themselves.

Another interesting and important case isy = 1/2. For
even characteristics, we have

e(m) = (7.27)

and for odd m

= v^ (?) em.iO>, (2), e (m) = 1 , ( 7.28 )

in which the two zero modes in (2.28) appear because the
action Sl/2 = fi/idi/dz A dz contains two different fermionic
fields of spin 1/2, namely, i/> and ifi, and each of them has the
zero mode vm (z). The following expression for the correla-
tion functions of the fermions ^ and ^ can also be readily
obtained. For any m,

/
TT

_

d0= T7 (6,,/co, (z,) 6.,

By using known analytic properties of the ^-functions,38 we
can readily verify that (7.22) satisfies all the conditions enu-
merated above.

Fory' e 1, the expression is the same, except that m be-
comes *.

Formula (7.23) can be directly generalized to the case
of correlation functions. This can be done by associating
each additional pair/(z), O(z') in (7.7) with operators
v2J- l ( z ) Vi(z),vy2J(z') V{(z') in (7.22), and adding z - z'
to the argument of the ^-function.

We note that (7.23) is the chiral part of the correlation

Ki

(7.29)

The determinant of the Dirac operator, given by (7.28), is in
agreement with the expression in Refs. 9 and 33 and can be
derived as follows.12'3940

Starting with the results of Sees. 2 and 3, we write for
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I f D»|!D\f exp [ (l/2iti) C\f3\fdzdz11*
I T , 12 I .' I J M

(det Im t)1/2 f Dtp exp f I dcpdqidz A dz)
J \4ni J /

where <p is a real scalar field. For a small deformation of the
complex structure

dz -*• Az = dz + T|dz

the variation of A ,/2 is

l / P -\ ifit, ln/-1/2 = -f I r\Td~' A <te ;• "( tr [(Im Tj'^r],
2m \J / 4i

(7.30)

where 7*s 7"+ + is the left component of the energy-mo-
mentum tensor of the fields ^J,ip, and <p:

/ T*\ _ /T^(l/2)\ /T* \ /^ 7 3 1 ̂

The first term, T ( l / 2 > = (\/2)((di/>)rf> - ipdif;), is the ener-
gy-momentum tensor of the fermions ^,^, and the second
term, T("} = — (1 /2— (cfy?)2, is the energy-momentum
tensor of the scalar field (p. Their vacuum expectation values
can be found by substituting the corresponding operator ex-
pansions into the two-point correlation functions

<*(*)*(*')>» =
(9, ,.co; (z) e..t 9m (z - z')

(z -

e.(z-z') em(0)

-i + (z _ z') <r<1/2) (z')> + o ((z - z')2),

(7.32)

8, (z - z')
x exp [2n Im (z — z')' (Im '1 Im (z — z')].

(7.33)

The last expression in (7.32) is the unique antisymmetric
(1/2,1/2) differential in (z,z') with characteristic in and a
pole of order 1 at z = z'; it is holomorphic in z, z' if z^z'.

Strictly speaking, (7.32) and (7.33) are valid only
when the metric p is a constant in a certain neighborhood
containing z and z'. However, the combination given by
(7.31), which we must find, does not depend on/o because of
the cancelation of all the anomalies. Comparison of (7.31 )
and (7.32) shows that

7-0 -

* (2) CD; (z) + JL (Im t)r*
2

<o* (z) .

(7.34)

Substituting this expression in ( 7.39 ) , and using the formula

(7.35)

we find that

from which (7.27) follows.
It is interesting that the expression for Tm obtained

from (7.33) contains the so-called project! ve connectivity F
(Ref. 41)

(7.36)

r = _
i2le. . ,« 2

In contrast to Tin (7.34), r(0> is not a quadratic differential
and we see from (7.36) that it transforms under the replace-
ment z-»/(z) so that it is expressed in terms of the Schwarz
derivative

» (z) = _L JZ1 _ 1 (£. J2j (7.37)

in accordance with the general rules of conformal field theo-
ry.42 The expression given by (7.36) transforms into a 2-
differential if we restore the dependence on the conformal
metric $ = Inp:

<°> = r - - - o>< (Im T^W + • (7.38)

This formula can also be deduced from the operator expan-
sion for the products of the currents a> and Bcp

^-Gj (z, z') =

0) (2,) dz,. . . w (zp J) co (z) (p (z') \

\; i. . .g)co(z p )dz p cp
«;,

(7.39)

It follows from (7.39) that Gs (z,z') is a ( 1, 0) -differential in
(z,z' ) with poles at z = z',z = |", which satisfies

, z')dz = 0, (z, z') dz = — z, z ')dz=2ni.

These conditions define (74 (z,z') uniquely:

and we find that

(7.40)

It is interesting that all the possible classical identities in-
volving the 1 -differentials can be derived by substituting the
Ward identities from the conformal theory of the fields co,<p.
For example, (7.35) can be obtained by taking the following
identity as the starting point:

= "db" ̂  § wdz(£ d<f

The two remaining examples that we need to consider
arey = 3/2 and./ = 2. Once again, we shall try to place all the
points 2, from (7.22) in the corresponding R,, and this will
yield

(m) ==
) = 0,

(m) =

(0) det-
(7.41)

(7.42)

where f is a column of 2p — 2 holomorphic 3/2-differentials
with the characteristic m, and
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Xdet-11 f (/?!> f" (/?!> f'v(/?,) f (/?,). . . f' (/Vi) f (/?^) |,

(7.43)

where f is a column of holomorphic 2-differentials.Expres-
sion (7.41) is particularly simple. It describes, for example,
the dependence of the ghost determinant in the heterotic
string on the boundary conditions that fermions must satisfy
on the world sheet. The form of (7.41) suggests43 44 that the
superstring renormalization theorems4 are a consequence of
the Riemann identity.3X (The present state of the problem is
discussed in Ref. 65-Ed.).

The formulas for det3y can be used to evaluate the con-
formally-invariant_products of different Laplace operators
Ay = —pt~ ^dp ~Jd acting on they'-differentials. According
to Sees. 2 and 3, we have

|T
,' n 2 c/«/ = o,

(7.44)
A

It follows from (7.9) and (7.22) that the product
II, (detciy )"' does not depend on the choice of coordinates at
the points R, because

This shows that there is a close connection between the can-
celation of the analytic anomaly in (7.44) and the cancela-
tion of the gravitational anomaly in Ily(detCy)"'. We shall
now show how the connection arises with the formula of
Beilinson and Manin ' ' for the measure in the theory of bo-
sonic strings. In the ESVM model, the measure is a special
case of (7.44), and we find them from (7.4), (7.26), and
(7.43) that

det9 [| to (ff1) ta" (/?,) to (RJ ... to (Rp_J \

e..i«>, <Ri))"detlf (R,) IV

(7.45)

where the holomorphic quadratic differentials/ (z) in the
column f = (/iv-,/3,, - 3 )' define the coordinates^, on Mp

that are used in (7.4) and in Sec. 2. It is readily verified that
(7.45) does not depend on the choice of the conformal co-
ordinates at the points Rt which can be defined by the condi-
tions

v'.(Ri)=l ( » = ! , . . . , P-1). (7.46)

Next, we shall try to modify the basis {«,-},{//} so that the
determinants (7.45) become as simple as possible. This is
achieved by the following choice:

<oa(R() = 8oJ («=!, . . . , p — 1), cop = v*,
£* = w*v.(ft=l ..... p),U» (/?<«) =«u (1=1,-.., P — 2),

(7.47)
/* = v.£* (ft - 1 , . . . . 2p — 2), /W< (/?*)

= 6« ( /=! ..... p-1).

The normalization conditions in (7.47) are written in terms
of the coordinates (7.46) and (7.47), and define <oa,gk,...

uniquely. Substituting (7.47) in (7.45), we obtain the Bei-
linson-Manin formula

(7.48)

where we have used the fact that the last ratio does not de-
pend on z. If, in addition, we determine v* as in (7.20), we
find that F= I , which is in accord with the Mumford
theorem7 on the triviality of the corresponding bundle on
dMp . We also note that, for p = 2, it can be shown that
(7.45 ) is actually independent of the choice of the character-
istic, and coincides with (6.9), (6.14).

We have thus constructed a conformal field theory for
analyticy-differentials on Riemann surfaces of genus p, and
the explicit formula (7.45) for the measure in string theory.
We have used the special metric p. = \v. |4, which led us to
the following fermionization rules [cf. (7.23), (7.24), and
(7.30)]:

(7.49)
vacuum)

where the fields if> and tj> are 1/2-differentials on which we
impose the boundary conditions * for jeZ and the same
boundary conditions as are imposed on /'-" for
j e Z + (1/2). We thus see that the generalization of the bo-
sonization rules for genus p>2 is not trivial. It would be
interesting to transform the above formulas to an arbitrary
metric p.

We note in conclusion that some of the formulas given
in this Section (mostly fory =1/2) were recently obtained
by several authors in connection with multiloop superstring
evaluations44'45 and with generalizations of the bosonization
formulas.46 Formula (7.27) appeared in Refs. 9 and 33 (in
Ref. 33, the dependence of the fermionic determinant on the
boundary conditions was found using a striking analogy
with the holomorphy theorem for the moduli space of line
bundles over a Riemann surface). These results were de-
scribed in the last Section. An interesting alternative ap-
proach to the evaluation of det Ay by means of bosonization
is given in Ref. 47.

8. Guillen's theorem and the dependence of determinants on
the boundary conditions

In this Section, we examine the dependence on the
boundary conditions for the determinant of the Laplace op-
erator Ay acting in the space of they'-differentials 0(z,z) on a
Riemann surface X of genus p > 0. These conditions can be
parametrized by the factors exp (2mxk ) and exp(2iriyk )
that are acquired by the field 4> in completed basis cycles ak

and bk . The space 3~ of all the possible boundary conditions
is thus at 2/>-dimensional torus with coordinates
x^xk, yk < 1. We shall evaluate detAy = detAy(x,y) as a
function on 5~ '.

We know that there is a natural complex structure on
"̂. This enables us to proceed in the spirit of Sec. 3 and

evaluate det \} as a function of the complex coordinates on
3~, using an appropriate analog of propositions A ) and B ) of
the introduction concerning Quillen's theorem.23 This meth-
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od was used in Ref. 33 to find del A, (z,y) for/ = 1/2.
It will be useful to reformulate the problem in order to

introduce the complex structure on .'f correctly. In particu-
lar, we shall use the replacement

Xexp *ReJ

Z 1)

+ («/* — *m Re T,,,ft) (Im i)~ki Im f to, dz 1 ,
J

Zo J)

(8.1)

where z0 is an arbitrary point on X and &>A. is the normalized
basis of holomorphic 1-differentials. We thus reduce the
problem to the evaluation of the determinant of the operator

A,- (A) = — pi~l (d — A) p-i (d + A),

which appears in the action for the /-differentials
with charge 1 in the Abelian gauge field

A =

on .y with zero strength

(Ira

(8.2)

(8.3)

(8.4)

We now consider the space ,r/ of all fields A with zero
strength. The gauge group ,'f of transformations

— df, <p0- (8.5)

then acts in this space and is conveniently represented by the
product of the group $ (> (with single-valued functions/on
X) and the group F, by replacing (8.1) with integral xk and
yk . By definition, to each orbit of the group & in .<:•/ there
corresponds a holomorphic line bundle, and the factor space

is called the moduli space of holomorphic line bundles over
X [of degree 2j(p — 1 ) ] or the Jacobian of X. It is readily
shown that in each orbit of the group % there is a unique
representative (8.3) that corresponds to the gauge

dA = 0, yk<,l. (8.6)

Hence the space ,9 of boundary conditions coincides with
the Jacobian

As in Sec. 2, the complex structure on Jx is determined
with the aid of ^,,-in variant complex coordinates z

z l A ) = (8.7)

that uniquely map .;//#„ into Cp. The group F obviously
acts upon it by shifts of the vectors in the lattice Z'' e rIP. Itacts upon it by
then follows that

J.Y = (8.8)

Finally, J/ = Jx is a complex torus and we must natu-
rally try to elucidate the analytic properties of det A, as a
function of the complex coordinates (8.7) upon it. The an-
swer to this question is provided by the following Quillen's
theorem.

Quillen 's theorem:

66 In
det NJ (A)-detNl_j (A)

(8.9)

where Nl (A) is the matrix of the scalar products of the zero
modes of the operator df + A. This theorem can readily be
proved by a quasiclassical procedure. Using (8.7), we find
from (8.9) that

det'

det/V,. o d e t N,

= -Xj exp — — Im z (Im T) x Im z | f, (z) p (8.10)

where the constant x, depends, of course, on T, and the func-
tion /-(z) _ _

A) is a holomorphic section of the bundle det(<9y + A)
over the Jacobian J, which is determined by analogy with the
bundle det 5; over Mp, introduced in Sec. 5. Moreover, for
/7>2 andyV 1/2, the number of zero modes of the operator
dj + A ( z ) does not depend on x| z, so that

B , ) / J ( z ) vanishes nowhere ifp^2,j^= 1/2. Fory'= 1/2
and general X and z, the operator d{ n + ~A(z) does not have
zero modes, so that it is clear that the function /]/2 (z) must
vanish at points of J^ at which the zero modes appear, and
the multiplicity of the zeros must be equal to their number.
We know that if the characteristic of the 1/2-differential <pa

on which the operator d 1/2 acts ism (see Sec. 7), then the set
of these bundles is specified in J^ by the equation
0m (z) = 0, so that

B:) the multiplicity and the position of the zeros of
/,/2,m (z) and Qm (z) are found to coincide.

It is clear that, for ally, the function /J (z) is defined by
A) and B) up to a factor that does not depend on z. In point
of fact, if this were not so, the ratio of any two such functions,
other than a constant, would not have zeros or poles on Cp ,
and would have a periodic modulus, which would be in con-
flict with the maximum principle.

Explicit formulas for/) (z) can be readily constructed
with the aid of ^-functions by starting with a generalization
of (7.6) for det (dj + A). In the notation of Sec. 7, we have

( S . l l a )

for/ e Z and
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fory'e Z + (1/2), where in all the formulas for A, in Sec. 7,
the basis of holomorphic y'-differentials must be replaced
with the basis of zero modes of the operator <9; + A (z). The
common factor in (8.11) is chosen so that the constant
x = lljXj in the conformally-invariant product of determi-
nants (8.10) does not depend on r.

We emphasize that we do not need the discussion of Sec.
7 to verify the validity of (8.11) as functions of z for fixed T.
It is sufficient to verify that (8.11) does not depend on the
choice of the points zk ,z', on X, and that they satisfy proper-
ties B, 2 ) . Both facts can be readily established with the aid
of the known analytic properties of theta-functions.

Formula (8 . l ib ) assumes a particularly simple form
for;= 1/2:

= em(z)(detd0V-1/3 (8.12)

For each z = x + ry, it is convenient to introduce the char-
acteristic m(z) = l/2(y,x) and then use it to transform
(8.12) to the following form":

det,,, A1/2 (z)
def A0 (0) 1/2 (8.13)

This is in agreement with (7.27) because fermions with inte-
gral characteristic m, are the same as fermions with integral
characteristic m2 in the gauge field A ,2:

m (z ( A I 2 ) ) = m1 — m.2,

i.e..

det,nA/2 (An) = det,,,A/2 (0). (8.14)

Similarly, we can show for other half-integral values of/ that
(7.22) provide the correct description of the dependence of

on the characteristic.

III. RIEMANN SURFACES AS BRANCHED COVERINGS

In this Section, we shall use the classical idea of the
Riemann surface as a branched covering of a plane, and will
evaluate the multiloop measure of string theory as a function
of the complex coordinates of the branch points. The results
established above enable us to reduce the problem to the
study of the behavior of analytic fields on branched cover-
ings. It will be shown in Sec. 9 that a branch point in the
theory of analytic fields plays the part of a vertex operator
with simple conformal properties. This enables us to derive
explicit formulas for detA; and det<?; in the case of coverings
with the Abelian monodromy group (see Sec. 10). Unfortu-
nately, in this approach, the measure can only be evaluated
completely for p = 2 (see Sec. 11), although a number of
interesting propositions can be obtained also in the general
case (see Sec. 12; Ref. 48). The presentation given in Sec. 9-
1 1 will largely follow Ref. 15. We note that most of the re-
sults of Sections 10-11 were obtained by other methods in
Ref. 49, and the quantity det'A0 on hyperelliptic surfaces
was first found in Ref. 50.

9. Branch points as primary conformal fields

Let us examine the behavior of analytic fields on an
arbitrary Riemann surfaced in a small neighborhood J7of a
branch point of order n. The analytic coordinate y on X that
is single- valued in [/will be chosen so that the covering map

X :. CP' takes the following form in U:

z(y) = a + y". (9.1)

The metric on X will then be considered to be z-flat

«rzz = fe=0, fe-1. (9.2)

Let us label the n sheets of the Riemann surface X of the
inverse map

= (z — a)1/" (9.3)

with the numbers /"' and <p'", so that, as we circulate
around the point a in the z plane, we pass from sheet / to sheet
/ 4- l ( (n — 1) 4- IsO). We shall use the symbol Tr0 to repre-
sent a circuit around the point a. On each sheet / we consider
a pair of analytic anticommuting fields/"1 and cp '", with
spinsy and 1 —j, respectively, and action

where/"((z,z) represents the field/at the p o i n t y ( z ) on the
l-ih sheet of X.

We recall that the energy-momentum tensor of the
fields/'V (/) takes the form25

T(/) = — //"'ftp1" + ( /—!) <fmdf'\

and under the conformal transformations

these fields transform so that

The following normalization is assumed in (9.7):

/<" (z') cpM (z) ~ / (2' - z)'1 + Regge terms,

(9.5)

(9.6)

(9.7)

(9.8)

where / is the unit operator.
A circuit around a branch point takes us from one sheet

to another. This means that we must have the following
boundary conditions:

(9.9)

(We shall usually omit the argument_z of fields/, q> because,
by virtue of the equations of motion df= dp = 0, their cor-
relation functions do not depend on z.) In order to establish
what happens to the fields f('\<p ( / ) , /=0,...,« - 1 in the
neighborhood of a branch point, it is convenient to trans-
form to a basis in which the operator TTO is diagonal:

-&* SexP {- T [k

(9.10)

= ̂ r 2

where we have shifted k byj(1 — n) for the sake of conven-
ience, as explained below. It follows from (9.10) that
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— \k-
\ n

(9.11)

jia<p*=exp —
I

An important consequence of (9.11) from our point of view
is that the conserved currents

= 0 (9.12)

are single-valued functions of z in the neighborhood of a.
It is found that, for each of the currents Jk, the branch

point has the charge

r + /(!-«)
n

(9.13)

i.e., in the neighborhood of the point a, the current Jk has a
pole of order 1:

Jk (z) = h Regge terms •
2 — a

(9.14)

(We recall that this and similar relationships must be under-
stood as identities for different correlation functions.) To
elucidate the significance of these relationships, it is conven-
ient to express the operators fk ,ipk (k = 0,...,n — 1 ) in terms
of n analytic bosonic scalar fields <f>k(z)(k = 0,l,...,n — 1)
normalized so that

(9.15)

by means of the following bosonization rules:

= :

f'l
(9.16)

In terms of the fields <j>k, (9.13) and (9.14) show that the
following operator corresponds to a branch point:

(a) = : e'*^:, atf, = 2 < (9.17)

Using (9.13) and (9.16), we find that the conformal dimen-
sion A,, of the operator V q ( a ) is

*=0

Cf =(- (9.18)

where C = nC'j is the central charge of the Virasoro algebra
constructed from the Lourant components of the total ener-
gy-momentum tensor42

of the set of fields fk,<pk, k = 0,...,« — 1.
We note that the equation

(9.19)

is a consequence of the general law for the transformation of
the energy-momentum tensor T under analytic changes of

coordinates in any conformal field theory with central
charge C(Ref. 42)

Since in terms of the coordinates j> (9.3), the function T(y)
is regular as y->0, it follows from (9.20) that, in terms of the
coordinates z, T has an additional singularity at z = a:

from which (9.19) follows.
We now turn to the proof of (9.13) and (9.14). We

begin by considering the operator expansion of
f(n(z')(jp ""'(z) around a branch point:

(9.21)

where we have used (9.7) in a conformal transformation to
the coordinates y, and also the fact that the expansion is
trivial in terms of these coordinates:

(It is implied in ( 9.2 1 ) that the value of/ (/ )((y(z) ) is taken
on the sheet l ( m ) . ) It follows from (9.21) and (9.11) that

. . . (9.22)

Comparison with

/* (2') <Pm (Z) = 6ft,,,, (Z' — Z)"1 + • fk<?,n (Z): +0 (Z' - z),

for k = m leads to (9.13) and (9.14). We note that, accord-
ing to (9.17), the product fk (z')q>k (z) provides the follow-
ing contribution to the correlation function at a branch
point:

/*(z')q>*(z)V,(a)
= (z' — z)- » [(z' - a) (z - a)"1 1"<:

Xexp (i<f>k (2') — i<p,,. (z) + iqp (a)):, (9.23)

which is also in agreement with (9.22).
Formulas (9.13) and (9.17) are the fundamental re-

sults of this section.

10. Interaction between branch points in the case of the
Abelian monodromy group

We shall now apply the results of Sec. 9 to the simple but
interesting surfaces

y" = (z — at) . . . (z — CM), mn, (10.1)

for which the basis (9.10) diagonalizes all the operators fra.
simultaneously, and formulas (9.16) and (9.17) are globally
valid, i.e., they are valid on the entire surfaced. The number
of points M in (10.1) is chosen to be a multiple of n in order
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to ensure that z = oo is not a branch point.
As shown in Sec. 7, the main quantity that plays the part

of the partition function for analytic fields is the determinant
of the operator 5,, found with the aid of the vacuum expecta-
tion value (7.7) in accordance with (7.6).

_It follows from the results of Sec. 2 that the quantity
det dj can be used to evaluate the determinant of the Laplace
operator acting on the space ofy'-differentials:

det' Ay = | det dj |2 det N,- • det N,-, exp (C/SJ, (10.2)
1 /»

SL = — \ (d<f d(f + [iV() d2!, <p = In p,

where N'f = Sf,,ffid
2§ is the matrix of the scalar products

of holomorphic y'-differentials/,, in the metric (9.2), and S,
is the Liouville action5 evaluated in this metric. Since the
latter does not depend on a,-, we can readily transform
(10.2) to

(10.3)

where we have omitted a numerical (possibly infinite) con-
stant that does not depend on the position of the points a,,
and have used the fact that (7.6) does not depend on zk , z].
The operators <p (z( ) are introduced in (2.3) to the extent
necessary for the absorption of all the zero modes of the field
<p. Accordingly, «, , is the number of holomorphic (1 — y>
differentials. We also recall that

det' Ay = det' A^y. (10.4)

We now turn to the evaluation of the averages in (10.3)
in accordance with the rules expressed by (9.13) and (9.17).
According to (9.16), each field (f>k has a charge 2y — 1 at
infinity, so that the only correlators that do not vanish are
those for which the total charge of all the operators for each
field (j>k is 1 — 2y, i.e.,

d/*1 = N (/,,) — N (cp,,) = 1 — 2/ — mnqk (k = 0, 1,. . . , n — 1)

(10.5)

where N ( f k ) [correspondingly, N(<pk)] represents the
number of operators fk (q>k) in the average under considera-
tion. We note that (10.5) takes into account the fact that the
operators fk and <pk have charges Skjn and — 5k.,„ in the
field (/>„,, and the branch point has the charge qm. We note
that, by summing (10.5) over all k, we obtain the Riemann-
Roch theorem

ind(dy) = «/_«,_, = (2/- l)(p — 1), (10.6)

where

/•> = 1 — n + — mn (n — 1)

is the genus of the surface (10.1). The latter follows from the
general Riemann-Hurwitz formula which states that the ge-
nus of a Riemann surface A' that is an H-sheet covering of CP1

with branch points a,, i= \...,N of orders n, is

(10.7)

en in Ref. 5 and 25 provide a complete description of all the
correlation functions of analytic fields on the surfaces
(10.1). The determinants of the Laplace operators A, in the
metric (9.2) are then found to have the simple integral rep-
resentation (10.3) of the Coulomb gas type, which is analo-
gous to the Feynman-Fuchs integral representation of corre-
lation functions in minimal models of conformal quantum
field theory.51

In the important special case y '=l d\k>

= w(n — k— 1) — 1, and if we take (10.4) into account,
we find the following representation for the determinant of
the Laplace operator A() (see Ref. 12 and also Ref. 50):

,,<*>
--= H J rf d2zlV,

„<''!

fT (zi.k —

a<|3
(10.8)

where the infinite constant Jd2z, has been omitted from this
formula since qpn , (z) absorbs the scalar zero mode and the
average in (10.8) is independent of z (this does not actually
occur because qm , = 0 fory = 1).

Let us now consider separately the case n — 2 of hyper-
elliptic surfaces defined by

y* = (z — al)...(z — 0tfl+t) (10.9)

in C2 = (y,z). The evaluation of the determinant of the La-
place operator on this surface is of particular interest not
only for two-loop calculations, but also in connection with
the correlation functions of spin operators in the Ashkin-
Teller model,50 i.e., the correlation functions of twist fields
that arise when a string extends over a Z2-orbifold.52

To evaluate det'A,,, we use (3.9) which, for n = 2, as-
sumes the particularly simple form

det' A IT d2 </ (2,) . . ./ (zp)

n P 2pta

TT(z*—z/jrr i r ' fo) nK-<
(10.10)

It is useful to transform this expression to the form obtained
in Ref. 50 in which this determinant was first evaluated. It
will be convenient to return to (7.6) which, fory = 1 and the
surface (10.9), can be written in the form

</ (zi) • • • / (ZP) «P (z)> = det d, • det | w, (z,) || (10.11)

where we have set the scalar zero mode equal to 1 and the
basis <a!,i= !,•••,/> in the space of holomorphic 1-differen-
tials has been chosen as in Sec. 6. The matrix N'{of the scalar
products of the differentials «, and «, in (10.2) is then
identical with the imaginary part of the period matrix, so
that if we apply the operator

Formulas (9.13) and (9.17) together with the rules giv-
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to both sides of (10.11) we obtain, using (10.10) and (10.2),

de td j =deta o = Ufa;—fl/)1 / 4 det/f, (10.12a)

det' A0 = 1 det K j2 TT|a; — a/I1- ' 2 det ImT, (10.12b)

where thepXp matrix K is given by

(i, / = ! , . . . , p). (10.13)

It is precisely in this form that det'A0 was obtained in Ref.
50.

Let us now consider the fields on hyperelliptic surfaces
(10.9) with half integral/ We then have the possibility of
imposing different boundary conditions on the fields/and <p:
they can be periodic or aperiodic as we cover the basis cycles
of the surface (10.9). By analyzing the order of the singulari-
ties of the fields/and <p at the branch points for different
boundary conditions, we can readily establish that the arbi-
trariness of their choice has the consequence that not only
the operators

V., (a) = exp

but also

(a) = exp <«~f*,

(10.14a)

(10.14b)

can correspond to the branch points. (We recall that
/, = exp (/<#,),<p, = exp( — <^,) , / = 0,1). The total charge of
all the operators V , ( a , ) in each of the fields <^(l,^i should
then be a number and, up to the replacement (Ao*-*<A i » w e have
exactly 22/> variants for a genus-/) surface, which is in accord
with the number of different boundary conditions.

We shall now confine our attention toy = 1/2, which
will enable us to obtain a number of identities for the theta-
functions on the surfaces (10.9). This possibility arises be-
cause of the general formula (7.27) for the fermionic deter-
minant

det,,,dl/2 • (det d0)
1/3 =9,,, (7.27')

We recall that this formula implies that there are no
fermionic zero modes (holomorphic 1/2-differentials) on
the surface. However, if such modes are present, then
det,,,(V| ^ must be determined with the aid of (7.28), which in
general has the form

= 0m,*,...*,Il/2 «*, (Zi) . . - w*,,i/2 (z,,1/a), (10.15)

where the fields/and <p have been renamed as i[> and ^. It is
clear that the number of n ,/2 zero modes of the fields if> and U
is the same. Different useful expressions for the theta-con-
stants and their derivatives can be obtained by evaluating the
left hand sides of (7.27) and (10.15) by the above methods.

We begin with the case in which there are no zero
modes. Since, fory = 1/2, the fields <j>0 and <^, have no charge
at infinity, only the averages

with equal numbers of operators V , and V do not van-
ish. Using (10.14) and {/'|/'"} to denote the corresponding
characteristic, we obtain the following expression:

(a,- -a/')18 H far— a/»)l/8 Hfa ; -—

(10.16)

Substituting this in (7.27), and using (10.12a), we obtain
the Thomie formula53

0,,-.,n - R ({lr — a,-)'•' [I far — ar ) ' / 4 > le t ' 2 A. (10.17)
; '</• r<7"

We emphasize once again that the characteristics {/' /"} ex-
haust all the boundary conditions for which there are no
fermionic zero modes.53

In order to transform to (10.15), we must consider
averages with different numbers of operators V'+ and V .
The condition that the total charge must be integral then
signifies that the difference between the numbers of opera-
tors K + and V is divided by 4. Thus, for genus/) = 2 we
have six such characteristics mk,k = 1,...,6 (cf. Sec. 6). The
fields \l> and ifi thus acquire one zero mode each. The corre-
sponding averages are

'Ml fa;
. II (Z ) I i-jk

and the identity analogous to (10.17) is

z — a:.

(10.18)

fa,- — a/)1'" det'/4 K = Qmk,i w,-(2). (10.19)

We can now use these identities to show, in the next Section,
that the Beilinson-Manin formula (7.48) for the measure in
the theory of bosonic strings with/> = 2 does not depend on
the choice of the odd reference characteristic and actually
reduces to the formulas obtained in Sec. 6.

11. Two-loop measure in a bosonic string

In this Section, we apply the above methods to the eval-
uation of the two-loop measure in the model of closed orient-
ed bosonic strings with critical dimension D = 26 (ESVM),
and show that the derived expression is identical with the
formulas given in Sec. 6 and 7 in terms of the theta-functions.
The starting point for all the calculations will be the general
relation (7.4) for a p-loop measure in which detd , and
det5,,must be determined with the aid of (7.6). When/) = 2,
all the surfaces are hyperelliptic and can be described by the
equation

;,2 /, „ \ ./, „ \ M 1 1 "Iy — \f "1,1 • • • M.Z — "6/ v l * • l >

in C2 = (y,z). The moduli space M2 can be parametrized by
the coordinates of any three branch points, for example, C3,
for fixed positions of the three remaining points. In this way,
it will be covered by the hyperplane C3 = (a,,a2,a3) a total of
6! = 720 times and, to find the partition function z2, we can
integrate over C3, having divided the result by 720. In the
metric given by (9.2), we have actually already found all the
correlators that appear in the determinants in (7.4), and all
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that remains to be done is to determine the basis of the holo-
morphic quadratic differentials /, (2) in (7.6) that corre-
sponds to the coordinates a,i = 1,2,3, and M2. It is readily
shown that this basis is

/,(z) = ( « _ « , ) - i [ . C i (i-1,2, 3),
*-. z~a«

and the determinant in the denominator in (7.6) is

da

(11.2)

= ̂ K^M)-1det-MK2/-.,r
iiTTn^;

= -p-
V

where

da 5=

3 6 3

t . . . da8, z,/ = Z; — zh akt =ak — a/,

The correlator in the numerator of ( 7.6 ) is readily evaluated
with the aid of the general rules defined by (9.13) and
(9.17). Fory = 2, n = 2, and using ( 10.5), we find that

*) r

> FT
X5/4

(11.4)

The remaining factors in (7.4) were evaluated pre-
viously in Sec. 10 [cf. (10.12) ]. Collecting all this together,
we find that

= f

pr

d%

T 7 <
*<»

det"13 Im T

a i |
II

(11.5)

where d2a = da/\da, and dK^ = dvrr A di;,,,. represents an
element of the volume of the projective group. Since the
complex structure of the surface under consideration re-
mains unaffected by a permutation of the points a,, the sin-
gle-valued coordinate in M2 that runs across the submani-
fold a i = a; of surfaces with a degenerate handle is

In the coordinates a,,ak ,y/j,k ^j nearj^ = 0, the measure in
(11.5) obviously has a pole of order 2, in accord with the
general theorem of Sec. 4.The integral in parenthesis in
(11.5) gives the required power of ln|^,y |. It is also readily
verified that the measure in ( 1 1 . 5 ) has a pole of order 2 for a
partition into two toruses.

We must now establish the correspondence between
(11.5) and (6.5), (6.14). This will be done by transforming
from the coordinates a, to rtj, i.e., by replacing the basis
( 1 1.2) in the expression for det<?_ , given by (7.6) with the
basis related to variations of T,-,-. It follows from (7.35) that
the elements of this basis are the products of the correspond-
ing holomorphic 1 -differentials

di,/, — -/ = Uicoj,, (11.6)

so that, denoting the elements of the new basis by/, where

£ = (0?, 7z = w*. 7a = Ui<°2, ( 1 1-7)
dTudT22dT12 by dr,

we find that

= dT (det I oJa (zp) 1 det 1 co« (zv) || det | coa (z6) P'1

= dT det3K ITz^' H y*(Zi) (P = 1, 2, Y = 2, 3, 6= 3, 1),
i<j i—l

(11.8)

where in the last equation we have transformed, with the
help of ( 10.13), from the basis co, to the basis of 1 -differen-
tials

«.,- = z<'-y-' (z) (1 = 1, 2).
Recalling (11.3), we find that

and (11.5) assumes the form

M,

I] a« det~w K det~13 Im T.

(11.9)

(11.10)

(11.11)

m £</

which leads to the result of Sec. 6, namely,

Finally, multiplying together the identities (10.17) for all
the ten even characteristics, we obtain

(11.12)

(11.13)

We now turn to the verification of the validity of the Beilin-
son-Manin formula (7.48) in the form given by (7.45). As
already noted forp = 2, there are six holomorphic 1/2-dif-
ferentials

(11.14)

with different odd characteristics m,,, each of which has a
simple zero of order 1 at aa. For * = ma, (7.45) assumes the
form

„. , det' |«K.)«-(«fc)l
f (y) — ; ; :TV ; • ( H . I D )

(em .i"* <aa') det II f (aa' ' (aa) ' <aa) I

We shall show that this reduces to (3.11). Thus, substituting

in (11.15), where/ andw, are given by (11.7) and (11.9),
and we have used the identity given by (10.19). Replacing
aa with z in the numerator and the denominator in (11.5),
and extracting the contribution that is the most singular for
z-»aa, we find that
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det I a) (2) o>" (2) || ~ (z — aa)~'2 • ;T(aa

det || f (z) f" (z) f 1V (?) || « (2 - aa)-
u det'3 * . - T (aa - ap),

(11-8) R

(11-17)
(Z— fl0)

-3/2

Xdet1/2

(The singularities appear at z = an because we are evaluat-
ing all the quantities in terms of the coordinates z,z, which
are singular near the branch points. ) Hence it follows that
the resultant power of z — aa in ( 7.45 ) is zero and, as z -» a(, ,
we have the finite limit

F = (11.18)

This limit does not depend on the choice of w,, (!) and, after
substitution in (7.4), gives (11.11) which in turn reduces to
(11.13). This is an additional argument in favor of the valid-
ity of (7.45) for arbitrary genus.

12. The sum of all the higher loops as a conformal field theory

Let us now consider an arbitrary TV-sheet covering X of
the plane CP' with branch points a, of order n,. For each
branch point a,, we then have, as before, a vertex operator
V(alta/) that is the product of the ghost part ^"''(0,-) and
the boson spin operator G(a,,a,) of the theory of fields X4:

V (a(, at) = V*(at) Vs" (a,-) © (en, a,-), (12.1)

but the fields </>k introduced in Sec. 9 cannot be confined
globally because the operators wa cannot be simultaneously
reduced to the diagonal form.

In this Section, we shall try to represent the sum of all
the multiloop diagrams

Z.= SZP (12-2)

as the partition function in a two-dimensional conformally
invariant field theory with Lagrangian containing the opera-
tors (12.1). In view of this, it is convenient not to transform
to the first-order formalism in the theory of the scalar field
xt,. This will enable us to avoid vacuum averages in the de-
nominator.

We begin with the transformation of the individual
terms in (12.2). It follows from (9.19) that the dimension of
the operator (12.1) is zero because of the cancelation of the
conformal anomaly in the critical dimension. However, it is
readily verified that, for example, the conformal dimension
of the integrand in (11.5) under the group of projective
transformations is 1 (in a, and a,). This increase in the di-
mension is due to the factor (11.3), and it may be shown
that, in general, its role is reduced to the fact that the opera-
tor V s h ( a j ) in (12.1) must be replaced (for/ = 2 in the nota-
tion of Sec. 9) with the operator

= :exp

whose dimension is greater by 1. We can now deal with
V K ' ' ( a , ) in (12.1) in a similar way, and to place at infinity
the operator

ASh = KN^den-^N-^N-^eN-^N-t (12.4)

with the ghost charge ( — 3, — 3) and zero dimension. The
field £ (z) in (12.4) is a ( — 1)-differential that is the conju-
gate of the quadratic differentialu)) /in (12.3). The replace-
ment of the operators Vgh of charge - 1 in the ghost field
en 2 with the operators U*h of charge 0 in the vacuum
(12.4) is as a whole analogous to the corresponding trans-
formation in the tree level amplitudes.54

Thus, in general, thep-loop measure can be written in
the form

(12.5)

where it is assumed that the covering X:. CP1 with branch
points aiti= I,...,/ is rigid, i.e.,

a) /=3p;

13) the coordinates of any / — 3 branch points locally
parametrize in Mp the neighborhood of zero codimension.

Moreover, it would be desirable for the integral in
(12.5) to be evaluated over C' 3 , i.e., so that, as in the case
of p = 2,

7) the map C' ' = (a,,...,a, , )^Mp is a finite-sheet
covering.

It is clear that conditions a) and 13) are not satisfied'"
for an arbitrary covering X. However, it turns out that the
ghost charge is not conserved in this case and the average in
(12.5) vanishes! To show this, consider the current

N-i
j =2 :pg<*>: . (12.6)

* -o

In general, this is the only current that does not vary as we
circulate around the branch points:

na.J = J, i = 1, . . ., /.

Using (12.3) and the results of Sec. 9, we can readily show
that the charges of the operators A "''( oo ) and f/K / ' (a ,) for
this current are — 3 and 1 — (3/2)(n, — 1), respectively.
The total charge Q should be equal to — 3N, from which we
find that

(12.7)

This was derived using the Riemann-Hurwitz formula
(10.7).

Thus, only the averages (12.5) corresponding to rigid
coverings do not vanish. This suggests that the sum of multi-
loop contributions can be represented by the partition func-
tion of the conformal field theory with action

SN = Sff + V ̂ ^ (a< fl) d'a •
Ja=i

in which operators

(12.3) a (a, a) = Ue (a) f7gh (a) @ (a, a)

(12.8)

(12.9)
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with different a correspond to different types of branch
points on the jV-sheet surface. It is readily shown that the
number d( N) of these types is

— - -- ,
f-' ft! (N — k)
16=0 * '

since substitutions corresponding to the operators jfa that
take us once round the point a should contain exactly one
cycle. The term 5 ij" describes the free action of ghost fields
and Xt, on each of the TV sheets in the metric (9.2), and the
term InA ff( oo ) describes boundary conditions imposed on
the ghosts: the total charge Q in the current (12.6) must be
— 3N. The adjustable parameters A,, play the part of cou-

pling constants. Their values will be discussed below.
By expanding (exp( — 5|V ) ) in A,, , we obtain a sum of

terms of the form given by ( 12.5) but, in addition to the rigid
simply-connected coverings, terms will now appear corre-
sponding to multiply-connected coverings.121 Moreover, the
genus of the simply-connected coverings is limited:
/7<2Ar— 2. Both defects can readily be removed. All that
needs to be done is to replace at oo A Kh with F,v, which
corresponds to a branch point of order N (this enables us to
avoid multiply-connected coverings) and confine our atten-
tion to the sector with the ghost charge

= 2—3 (12.10)

in the current (12.6), and then proceed to the limit as
N-> oo. Clearly, the operators <J>,(,/;) corresponding to branch-
ings of the same order « should have equal coefficients A,,.
We can therefore seek Z, in the form

Z, = \\rnZ (N),

VN (oo)
Q 2-3/V

a , ,(12.11)

where in the last line the sum is evaluated over all the opera-
tors corresponding to branchings of order n. This expression
readily transforms to

z = f DXp nV*'j >De<*> Aeh (oo) C <[)« (a, a) d2a

x exp -Si?' - J X,, (N) <l>"" (a, a) d*a , (12.12)

from which it follows that all possible terms (12.5) are
found to arise when (12.11) is expanded in A,, (N), and only
those that correspond to rigid coverings do not vanish (!)
and are automatically simply connected.

It is readily shown that the expansion has a finite num-
ber of nonzero terms for each N. They do not contain any
operators 4>< n ) with n>N, and all coverings have the genus

.̂ Hence, the equation

(12.13)

contains N — 1 conditions on the N — 1 parameters An (N)

with 2<«<./V. It is natural to suppose that these parameters
are uniquely determined by these conditions, and that
(12.11) must therefore exist.

We have thus obtained the following result.
The sum of all the higher loops in the theory of closed

oriented bosonic strings is equal to the limit as 7V-> oo of the
partition function of the two-dimensional conformal field the-
ory with the action

S,v = lnVj V(oo) (12.14)

and boundary conditions (12.10) when the parameters
A,, (N) are specially chosen.

It would be interesting to investigate the properties of
the theory (12.14) for W— oo. It is quite possible that, in this
limit, the model contains nonperturbative phenomena, e.g.,
operators <t>cusp that correspond to branch points of order oo
on the Riemann surface of the function y = In z. Logarith-
mic divergences, discussed in Ref. 4, ensure that the model
(12.14) has a nontrivial renormalization group that leads,
apart from the renormalization of the constants A,, (N), to
the appearance of new operators in the action that corre-
spond to double points, and so on. Moreover, it may well be
that a new type of divergence is associated with the appear-
ance of the operators 4>CUSp as AT— oo . If an analogous phe-
nomenon were to be discovered in a superstring, this could
signify the instability of flat 10-dimensional vacuum.

IV. CONCLUDING REMARKS

I should now like to say a few words about results that
have not been covered by this review. The general trend of
our discussion has been that, having derived the general
theorem on holomorphy in Chapter I, we used this in
Chapter II to consider analytic fields and beyond. Having
fixed the coordinates on Mp, we calculated the measure. If
we parametrize Mp by the matrices T, the measure is ex-
pressed in terms of theta-functions, and the problem of find-
ing Zp reduces to the problem of characterization of period
matrices of Riemann surfaces (Schottky's problem; see Sec.
6 ) . This problem was recently solved by Mulase and Shiota5h

who proved the validity of the Novikov conjecture that
T e ,%"p is the period matrix of the nondegenerate Rie-

mann surface of genus p if, and only if, there exist vectors
a,,a2,a, e (7 , a, ̂ 0 and a quadratic form

Q(t)= &/«/, Q*/SC

such that, for any E, e Cp, the function

t (t) = exp \Q (t)\ 90 (fa + *2a2 + t ( IV. l )

istheT-functionoftheKadomtsev-Petviashvili(KP) equation
[ r ( t ) must not be confused with the period T-matrix\], i.e., it
satisfies the equation

(D1+3D1—D1DS)T.T = 0,

where
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with string theory are discussed in greater detail in Ref. 57.
We note that there is another method of expressing the

measure in terms of theta-functions.sx It relies on the results
of Ref. 37. An interesting interpretation of these formulas
was proposed in Ref. 47 in terms of the non-Abelian bosoni-
zation on a Riemann surface of arbitrary genus.

The holomorphic coordinates on Mp were introduced
in a different way in the present paper. Complex structures
were parametrized by the coordinates of branch points. It
has been found41* that the evaluation of the measure in this
case necessarily involves the methods of the theory of holo-
nomic quantum fields.59 These methods were developed in
Ref. 59 for the Riemann problem on the construction of the
matrix coefficients At of the linear equation

dY_

dz
Y (IV.2)

with given monodromy matrices A/,

•-Y(z)Mi, (IV.3)

where Y(z) represents the fundamental matrix of the solu-
tions of (2) .

This connection arises as follows. Consider the Green's
function for analytic fields/and <p with spinsy" and 1 — y o n a
surface X specified in the form of a covering of the z-plane
with branch points a/, i = I,...,/:

Ffc" (z, z0) = (z0_z) /<p<*> (z0)/«'»)(z) H Vqi(a)\

(IV.4)

(k, m = 0 N—l)

where the upper index on the fields <p and / represents the
number of the sheet and the operators Fq (a, ) correspond to
branch points as in Sec. 9 and 10. We assume, for the sake of
simplicity, that the charges q, are chosen so that

[not to be confused with the r-function in (I V.I)!] .
It is clear that, for the function (IV.4), the matrices M,

in (IV.3) are permutation matrices and do not depend on z(}

and a, :

dMt dM{

dzn da.
(IV.6)

The function dz Y- Y ' is an analytic function of z with poles
of order 1 at the points a, and a zero at infinity, i.e., it satisfies
(IV.2) with certain ,4, =A,(zu, a,...aA,)• Condition (IV.6)
and the normalization condition

Ykm(z0, z0) = 8km

lead to the relations

(IV.7)

The conditions for the consistency of (IV.8) and (IV.2) lead
to the Schlesinger deformation equations (see Ref. 59)

d/4,, = 2 I A-,., A , , | r f l n
k

( IV.9)

where

0 .
dz0 £ dat

On the other hand, by substituting the operator expansion

T (z0)) + 0((z- 20)
2)

(IV. 10)

(z - z0) (j

in (IV.4), we can express in terms of the coefficients At the
average energy-momentum tensor ( T ( z H ) ) whose residues
at z,, = a, are equal to4:

d l nT(a , ... a;)

On integrating the latter, we obtain the remarkable results of
Ref. 59:

d l n T ( a j . . . f l / ) = a,,) (IV. 11)

The r-functions (IV.5) and, in particular, the/>-loop mea-
sure in (12.5), are thus expressed in terms of the solutions of
the deformation equations ( IV.9 ) . The complete description
of the boundary conditions for these equations is still lack-
ing, as is the elucidation of the connection with the results of
Section II. At any rate, it is clear that, for monodromy gener-
ated by permutation, the r-functions (IV.5) are theta-func-
tions, by analogy with (I V.I) .

Finally, there is one other method of parametrizing Mp,
which specifies the Riemann surface in the form of the fun-
damental polygon Fof the Fuchs group F C SL ( 2,R ) with 2p
generators a,, bt e SL(2,B) and the relation

(IV.12)

The coordinates in Mp are the 6p — 6 real parameters of the
group F, and the determinants and the measure are ex-
pressed in terms of these parameters with the help of Sel-
berg's zeta-function. The basic formulas used in this ap-
proach are:

(/ = 2, 3,...),

[dt\ =

dza
(IV.8)

where in the first formula the product is evaluated over ail
the primitive oriented geodesies y of length lr (the corre-
sponding elements y e T are not powers of any other ele-
ments from F ) , and the metric in A,- has a constant negative
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curvature in the upper Labachevskii half-plane on which
SL(2,R) acts. Geodesies of length /, in the measure [dr],
taken from Ref. 60, do not cross one another, but are other-
wise arbitrary.

The angle v, parametrizes the surfaces obtained by cut-
ting the original surface along the geodesies /, and regluing
after rotation through the angle v,.

The approach leading to (IV. 13) has been used by nu-
merous authors; details can be found in Refs. 10 and 61. In
our view, the only defect of the beautiful formulas given by
(IV. 13) is that they express the measure in terms of the real
coordinates on Mp (or, more precisely, on the Teichmuller
space 3~ that is its covering). The simple complex-analytic
structure of the theory is then hidden, which is a serious im-
pediment to its study when superstrings are considered. We
have not discussed multiloop amplitudes in the theory of
supersymmetric and heterotic strings because existing re-
sults (at the beginning of 1987-.Ed.65) seem to us to be mere-
ly preliminary.

The author is indebted to the L. D. Landau Institute of
Theoretical Physics of the USSR Academy of Sciences in
which the results presented in this paper were obtained.

ADDENDUM FROM THE EDITORIAL BOARD OF USP. FIZ.
NAUK

This review was not prepared by its author specifically
for publication in Uspekhi Fiz. Nauk. This is why its format
is unusual: it does not contain the traditional introductory
discussion of physical applications of string theory and of its
position in modern theoretical physics. The most popular
application of string theory is still the quantum theory of
gravity, i.e., the realistic unification of all fundamental inter-
actions. The reason why the theory of strings is capable of
solving this problem is discussed in the popular articles of
Ref. 62.

A thorough account of the classical period of the devel-
opment of string theory (1968-1985) is presented in the
monographs of Ref. 63 (see also Ref. 64).

1' After D is added to Mp, it becomes a compact algebraic manifold'" Mp.
2 'In our case of genus (p>2), the operator p 2dpd does not have zero

modes and the usual prime on the determinant can be discarded.
"The Beltrami differential is defined as the quantity r/(z,z) whose con-

nection to the complex structure J( t]) is given by the following expres-
sion for the metric matched to 17: g ( t ) ) = |dz + i?dz|2.

4> The case of genus zero f* (sealing with a disk) has been examined by
Polyakov to whom the present author is indebted for an explanation.
The quantity /<, > is then independent of T.

"We recall that (4.2) and (4.3) define the directions of T;'and of the
corresponding coordinates Syt in Mp in terms of the basis/J.

" In this case, the degenerate surface can be imagined as being of genus
p — 1 with two punctures R and Q. The cycle ap runs around one of
them and the cycle bp joins them. The differential cop is a renormalized
Abelian differential of genus 3 with poles at R and Q. A detailed discus-
sion can be found in Ref. 19.

7) Manin26 has noted the puzzling coincidence between the number 13 in
Mumford's theorem and 26/2 in string theory. I am indebted to him for
drawing Ref. 7 to my attention.

"'Forye l/2ZitisOfor/<0, 1 for/ = 0, p for/ = l.and (2/- \)(p- 1)
for/> 1.

"We note that^ with the definitions we have adopted, we have

101 We recall that, in terms of the notation of Sec. 9,

JV-l

that the definition of operators (2.13) involves the fields/1 *', e"' only
on those sheets k that are glued at the branch point a,.

"' As far as condition f) is concerned, it is definitely not satisfied for/>>24
because Mp is then irrational.55 Fortunately, condition jO is not essen-
tial. The situation described below, in (12.14), presupposes the exis-
tence of a finite-sheet covering Mf ->C3p ~3. This is not forbidden by the
general theorems.

'2' It was assumed in the derivation of (12.7) that the covering was singly-
connected, i.e., that X was one surface and not two.

= «i/» 2j 8 '
*=0

where e(k} denotes the ghost field on the k-th sheet of X. We also note
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