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The purpose of this review is to show how the development of ideas regarding classical
fluctuations in a system of charged particles initially led to an understanding of the nature of
collective collisions of particles, transition scattering, and transition bremsstrahlung and also to
an understanding of why the cross sections for emission and scattering in a system of many
particles are fundamentally different from those for individual charged particles. It is then shown
how the development of these concepts and their generalization to the relativistic and quantum-
mechanical cases necessarily lead to the appearance of collective radiative-resonant interactions.

I. INTRODUCTION

A fully ionized plasma is the simplest system of charged
particles which are interacting with each other and with
fields in accordance with the known laws of electrodynam-
ics, which may be regarded as classical in a certain approxi-
mation but which in a more rigorous treatment would gener-
ally have to be regarded as a quantum electrodynamics.
Accordingly, there are both classical and quantum fluctu-
ations in such a system. Taking an average over fluctuations
leads to a determination of macroscopically observable
quantities. The development of modern plasma physics has
actually taken the path of simplifying the averaging methods
and working toward a deeper understanding of the basic
physics of collective processes.

In speaking of collective processes one usually has in
mind both the changes which occur in the cross sections for
various processes due to the presence of the ensemble of par-
ticles, on the one hand, and the excitation of nonequilibrium
collective fields and other perturbations, on the other. The
former are related to the "dressing" of particles and to the
appearance of elementary excitations for which dressed par-
ticles serve as an image. A well-known example is the Debye
screening of charges which are inserted into a plasma from
the exterior. If we are dealing with the plasma particles
themselves, in a situation which is far from equilibrium, we
are faced with the question of how each particle participates
in the Debye screening of the other particles while at the
same time is one of the charges whose field is screened by the
other charges. This question can be answered on the basis of
a more detailed analysis of fluctuations. In a plasma which is
homogeneous on the average (i.e., after an average is taken
over fluctuations), there is actually no field of the particles;
such a field may be "manifested" only through fluctuations.
The collective processes in a highly nonequilibrium system
may be both regular and fluctuating (the description of col-
lective fluctuation fields will be discussed below), and the
changes caused in cross sections by collective effects arise
both for interactions of the particles with external fields and
for interactions of the particles with collective perturba-
tions.

If, for example, we are discussing scattering of such col-

lective fields by particles we must bear in mind that the parti-
cles participate to some extent in the production of the fields
and also in the Debye screening of the particles, while at the
same time they are the particles which do the scattering. The
only principle for drawing a distinction in this case is based
not on particles but on motions: fluctuating and average. It is
this distinction which makes it possible to introduce the con-
cept of dressed particles or excitations as entities which can
be described by distributions averaged over fluctuations.
One might think that a dressing of particles would be charac-
teristic only of condensed media. However, it can be seen in
the example of an extremely low-density plasma that this
naive expectation is wrong. For example, the cross sections
for the scattering of waves whose lengths exceed the Debye
screening length are always fundamentally different from
the cross sections for scattering in vacuum (by a "bare"
charge). The screening radius increases in a simple way as
the plasma becomes more rarefied (i.e., as its density de-
creases ), and this assertion becomes valid for longer waves
as the density decreases.

Taking an average over fluctuations leads to certain
equations for average quantities. In general, this circum-
stance does not pose any difficulties to reaching an under-
standing of the situation. However, in addition to the formal
side of the question, the result itself and its physical interpre-
tation are also important. This interpretation points to a fun-
damental change in the cross sections for average quantities.

Bogolyubov's method of a chain of correlation func-
tions1 actually reduces to the derivation of an equation for
these averages. However, in the voluminous literature on
this problem, which includes numerous monographs, an ex-
ceedingly cumbersome mathematical procedure is used. To-
day that procedure can be simplified to an extreme degree.
The derivation of the Landau-Balescu collision integral2^1

takes only a few lines (see the discussion below and also
Refs. 18 and 24). Below we will use a generalization of Refs.
18 and 24 to the relativistic quantum-mechanical case).

It was because of the cumbersome mathematical meth-
od which has previously been used that it was not possible to
go into a more detailed analysis of the problems of collective
effects in plasmas. This was true not only for processes in-
volving the collisions of particles but also for processes in
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which collective fields participate. Some examples are tran-
sition scattering5'6 and transition bremsstrahlung,6"9 in
which the picture of dressed particles is verified most clearly;
in particular, one can clearly see the physical reason for the
radical change in the scattering and bremsstrahlung cross
sections for particles in a plasma. An important point is that
the very concept of elementary excitations (or dressed parti-
cles) arises automatically as a result of a rigorous averaging
over fluctuations through the use of a perturbation theory in
the fluctuating fields. The effects of quantum fluctuations in
nearly classical systems, which stem from virtual transverse
fields in a system of many particles,10 play a special role. The
latter may transfer energy from certain particles to others.
Among the interactions of this sort are the radiative-reso-
nant interactions which result in an additional exchange of
energy and momentum between particles in the presence of
very nonequilibrium collective fields,11 along with the (nat-
urally small) radiative corrections to the interaction of par-
ticles with these collective fields. The exchange of energy
and momentum between "different" particles may become
the predominant process,12 instead of amounting to correc-
tions (although it still retains the small factor e2/fic), if the
density of the particles of one species involved in this ex-
change is predominant. (See the discussion below; crudely
speaking, the density ratio n0/nf must "make up for" the
small value of e2/-Kc.)

In discussing these quantum fluctuations we need to
bear in mind that the particle distribution must be averaged
not only over the fluctuations of the particles but also over
the "zero-point" fluctuations, as in quantum electrodynam-
ics (QED). We are of course thinking of noninteracting par-
ticles or, more precisely, a description of the process in the
interaction picture. When the interactions are taken into ac-
count, the quantum fluctuations in a system of particles are
naturally different from the zero-point fluctuations and de-
pend on the density of particles. This part of the quantum
fluctuations turns out to be responsible for the additional
exchange of energy and momentum between particles as
they interact with collective fields.

In an interaction of this sort, collective quantum effects
(an exchange of energy and momentum which depends on
the density of particles) thus have an effect on the interac-
tion of the particles with the collective fields. Since the gen-
eral methods of fluctuation theory (including quantum fluc-
tuations) have been cumbersome, it was not possible for a
long time to carry out calculations on such interactions,
which can apparently be manifested in many laboratory ex-
periments and in astrophysical observations.13"15

Our purposes in this review are partly methodological,
specifically, to present an extremely simple approach to the
construction of kinetic equations, averaged over fluctu-
ations, for the dressed particles of a plasma. The relations
which we use here reproduce the known procedures which
have been used by Klimontovich and, to some extent, by
Silin4 for collision integrals16 and by Sitenko18 in a descrip-
tion of fluctuations in situations with nonlinear interactions.
Using some general and simple arguments, we will derive the
existing results in a few lines. The simplification of the deri-
vation makes it possible also to discuss some questions which
are not reflected in Refs. 16-18 and, furthermore, to offer a
simple interpretation of the results, including such results as
the place of transition scattering and transition bremsstrah-

lung in modern plasma physics. It was pointed out already in
Refs. 19 and 20 (see Ref. 21) that the total cross sections for
the scattering by dressed plasma particles must include both
ordinary Thomson scattering (on the one hand) and transi-
tion scattering and the interference of the two (on the oth-
er). Particular emphasis was placed in Refs. 19 and 21 on
induced scattering, for which a description can be derived
through a statistical averaging of the nonlinear equations,
without any need to resort to the theory of linear and nonlin-
ear fluctuations. The scattering probabilities found from in-
duced processes have also been used in calculations on spon-
taneous scattering (i.e., on the scattering which is usually
discussed in the case of low intensities). An independent
method for calculating transition scattering processes, based
on nonlinear plasma currents, has also been offered.21-22

The scattering in a homogeneous medium, however, is a
scattering by fluctuations, as we know quite well.23 To illus-
trate the use of the simple methods for calculations on fluc-
tuations, we will show below that the spontaneous scattering
by fluctuations is described by the square of the sum of the
amplitudes for transition and Thomson scattering. In other
words, transition scattering can be derived rigorously in the
theory of fluctuations. It is also possible to offer a different
interpretation of this result in terms of dressed particles: The
scattering by the fluctuations of a unit volume of a plasma
occurs in the way that it would if the dressed electrons and
ions were scattering independently (here we mean the elec-
trons and ions whose fields are screened by the Debye
sphere). The number of dressed electrons and ions in a unit
volume is equal to the number of (real) electrons and ions in
a unit volume of the plasma. From the scattering standpoint,
the plasma volume is filled in a sense by classical quasineu-
tral atoms whose electron clouds (the Debye screening
spheres) are produced by dynamically free plasma electrons.
It is clear that the Debye spheres themselves are produced by
the same electrons (and, in general, ions) of the plasma, so
that a real electron plays two roles: a scattering center and an
element of a Debye sphere. It is in this manner that the pic-
ture of dressed particles actually emerges. The dressed parti-
cles themselves are described by a distribution function aver-
aged over fluctuations.

An important point is that the same picture appears for
processes involving the collisions of particles and brems-
strahlung processes, i.e., the emission which occurs during
the collisions of particles. The bremsstrahlung of a unit plas-
ma volume which arises because of fluctuations is equal to
the sum (interference is taken into account here) of ordinary
and transition bremsstrahlung.7 The latter is none other
than the transition scattering of a virtual photon of the col-
liding particles into a real photon. This statement means that
the picture of dressed particles is completely "workable"
again in this case. After discussing these examples we will
discuss quantum-fluctuation effects and the transfer of ener-
gy and momentum between particles as a result of the effect
of thess fluctuations on the interaction of particles with col-
lective fields. We will generalize the simple equations of clas-
sical fluctuations, discuss methods for taking averages over
quantum fluctuations, and report the results of a calculation
of the quantum fluctuations in a system of many particles
which are interacting with collective fields.

We need to point out that in this discussion we are using
a rather profound idea which was pointed out by Kadomtsev
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in a 1964 review24: It is possible to take classical "zero-
point" fluctuations into account correctly while taking the
average of a one-particle distribution function which obeys a
collisionless kinetic equation. This classical limit of the fluc-
tuations in a quantum-mechanical treatment actually fol-
lows from the "zero-point" fluctuations of particles, but the
result, being purely classical, has a very simple interpreta-
tion in terms of the classical fluctuations of independent
events (in this case, of noninteracting particles).

2. FLUCTUATIONS OF INDEPENDENT FREE PARTICLES

We first consider the classical limit. We denote by/p kifl)

a one-particle distribution function which describes the dis-
tribution of particles with respect to the momentum p and
with respect to the 4-momentum transfer k = {k,<a}:/p (r,t)
= Sff,k,u exp[/kr — uot ]dkd(a(frtklil also has the meaning

of Fourier coordinate and time components). Each of the
particles is moving freely, and the function/„ is uniform, on
the average, over space and time. Microscopic motion lead
to a dependence of/p on k and a>, and they give rise to fluctu-
ations. We set

(2.1)

(2.2)

where 4>p is independent of r and t. Equation (2.2) is a con-
sequence of the general Liouville theorem in the absence of
fields. The presence of a field causes interactions. In a first
approximation, these interactions can be ignored. For sim-
plicity, we assume that there are no external fields.

The one-particle distribution function /„ (r,t) is found
by integrating the distribution function of the variables of all
the particles over all the variables except those of the given
particle (p,r,r). Equation (2.2) then naturally arises. In
Fourier spatial components, Eqs. (2.1) and (2.2) take the
form

</P.k>=<Dp6(k). (2.3)

According to general considerations, the fluctuation
correlation function (<5/p>k>(U<5/p.>kW ) in a steady-state,
homogeneous medium should be proportional to
<5(k + k')8((o + (o'). Furthermore, the distribution func-
tions for different values of p should be totally uncorrelated
(there is no interaction). In other words, the correlation
function should contain 5(p — p'). Finally, by virtue of
(2.3), it should contain 8(co — kv):

(6/p,k,co6/p',k',w)

= |8/|56(p — p')6(k + k')6(co+co')6(a> — kv). (2.4)

In order to determine \Sf\\ it is necessary to use the
theorem25 from statistical physics which states that the aver-
age fluctuation of the square of the number of particles,
(aN 2 ) , in a volume Vis equal to the average number of parti-
cles, (N ) , in V, As these particles we adopt particles with a
momentum p. We take the volume to be a cube of side L; we
expand all functions in Fourier series, and we take the limit
L — oo . Under the normalization condition

*L r ^ ""=,„, (2.5)

where n is the density of particles, we then find \8f | p =
i.e.,

<6/,.k6/p< ,k<> = M (P - P') 6 (<o - kv) 6 (k + k'\
(2.6)

This extremely simple expression actually makes it pos-
sible to describe the entire rich set of collective processes and
fluctuations in a system of classical charged particles which
form a plasma.

It is possible to find a quantum-mechanical generaliza-
tion of (2.6) and to find (2.6) from it in the classical limit. In
the second-quantization representation of 4>p, this is the
average of the occupation number of the particles of momen-
tum p over a statistical ensemble. The occupation numbers
themselves are known to be defined as the vacuum expecta-
tion values (0|...|0) of the operator ap

+ap, where |0) is the
vacuum state, and the operator Sp

+ creates a particle (av is
the operator which annihilates the particle) with momen-
tum p:

(2.7)

The first (outer) angle brackets here correspond to a statisti-
cal average, while <0| and |0) correspond to the final and
initial vacuum states. In other words, we are taking an aver-
age over both the statistical ensemble and the vacuum fluctu-
ations in (2.7). In the discussion below we assume that spe-
cifically this type of averaging is carried out for the
quantized operator quantities. We will omit the double angle
brackets from the expressions, and we will also omit the 0 for
the vacuum state. In other words, we rewrite (2.7) as

= <ap-.flp> dp', <ap-'ap)=<I>p6(p-p'), (2.8)

where the 4>p are simply the corresponding occupation
numbers or, more precisely, their averages; over the statisti-
cal ensemble.

Clearly, both (2.6) and (2.8) hold for any distribu-
tions. In other words, we are not restricting the discussion to
equilibrium (e.g., Maxwellian) distributions.

We can introduce the particle operator in the momen-
tum representation, V. For free particles (fi = c = l )we can
write

Yp(0=ape~'e|>', (2.9)

where ef is the energy of the particles [in the general relativ-
istic case we would have £•„ = (p2 4- m2) I / 2 , but in the non-
relativistic theory here we have ep = m + (p2/2m), or
£•„ = p2/2w if we discard the constant phase factor
exp( — imt) from (2.9)]. By virtue of p = p' we have

= £ and

<DP = (2.10)
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It is convenient to introduce the Wigner operator
(fi = C= 1):

(2.11)

(2.12)
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The only distinction between (2.12) and the classical
expression, (2.3), is the operator sign on the left side of
(2.12).

We introduce the fluctuation operator

It is easy to see that this operator satisfies the following equa-
tion by virtue of (2.9) :

a c?
"a70'p- t> k -e_ k)6jFp.k (0 = 0.

Under the condition k^p we have

•(t-.

and Eq. (2.14) becomes the same as (2.3). A solution of
(2.14) is

6fp,k (0 = 8/p,k (0) exp [ -1 (E k - e k) t], (2.15)

ka K — ( a ka

+ e ' k ) .

(2.16)

(2.17)

We can now find the expectation value which we are
seeking:

= 6(co — e k +8 k)6((i>' — e k'p+_ p -_ p^

(2.18)

Since the only nonzero expectation values are those corre-
sponding to the case in which there is a creation operator on
the right and then an annihilation operator (if we are work-
ing from right to left), by breaking up the expectation value
of the four operators into products of paired expectation val-
ues (this approach naturally presupposes that the free parti-
cles are statistically independent, as is assumed in the classi-
cal derivation ) and by noting that we have k ̂  0 and that the
operator av + k/2 commutes with ap

+_ ̂  and af _ k/2 , we find

ka k a , k-a , k < > — <a ka_ p*_ p _ _ p'+_ p__

(a ka+,

(2.19)= <D k ( l — <D k )8(p-p')6(k + k').
-

Here we have used (2.8) and aptop + apapt = <5(p-p').
We now assume 4>p •<!, and we ignore <t>p in comparison
with unity. By virtue of the 5-function in (2.19), we easily
see that one of the <5-functions in (2.18) becomes

We thus find17

= <D jL6(p-p')6(k + k')6(co —e L + 8 O, (2.20)
p i pl"> *- a
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which serves as a generalization of classical relation (2.6)
[under the condition k<%p, (2.6) follows from (2.20) ].

It might appear at first glance that here we have not
made use of the relation (8N2) = (N), which is used in the
classical derivation. However, this relation itself is actually
derived by a method which is analogous to our breakup of
the complex expectation values into paired expectation val-
ues in the quantum derivation.

We have one more comment. It concerns the meaning
of the quantum-mechanical operator <5/in comparison with
the classical operator Sf. This meaning is not particularly
transparent. It turns out, however, that we do not even need
such an interpretation, since we are actually interested in
only observable quantities, and for a system of particles for
which the fluctuations correspond in a first approximation
to fluctuations of free particles (and this is the case for weak-
ly interacting particles which make up a plasma under the
condition nd ] > 1), the observable quantities which are of
interest are expressed in terms of expectation values of qua-
dratic combinations ofSf, and they are given in terms of an
observable quantity, the expectation value of the probability
for observing particles with a momentum <!>„, by relation
(2.20).

Actually, the subject of this analysis will be not perfect-
ly free particles but particles which are interacting weakly
with each other. When the interaction is taken into account,
*„ (t) is a more complicated function of the time than (2.9)
is. This function in (2.10) will yield a quantity 3>p which
depends on t. An important point is that the meaning of
(2.10) as the expectation value of a probability is preserved
when we take interactions into account, if the operator <PP

+

is a particle creation operator (with the interactions being
taken into account), while *Pp is an annihilation operator.
The quantity <I>P has a completely specific and observable
meaning. For this reason, the observational meaning of the
operator <5/may even not be of much interest to us, if the
final relations contain <!>„, provided that we can write dy-
namic equations for S/or/ (taking the interactions into
account) or provided that we can express <5/( with the inter-
actions being taken into account) in terms of <5/(0> for free
particles and use (2.20) in taking the expectation value of
the expressions for <5/(0). Either approach can be taken: We
can either write an equation for 8£ on the basis of Schro-
dinger equations, or we can use an S matrix and the interac-
tion picture.

That digression was necessary in order to illustrate the
fundamental role played by relations (2.20) for the entire
procedure used below to calculate the average characteris-
tics of the plasma and to illustrate the point that the quan-
tum-mechanical description of the fluctuations actually re-
quires knowledge of the expectation values of the operators
Sf, which actually play the same role as the fluctuation part
of the distribution function for a classical description.

If we wish to describe the system of particles in a relati-
vistically invariant way, we must introduce some positive
and negative energies. For spin-1/2 particles, the operators
*„ have spinor indices a. It is thus convenient to introduce
the Wigner operator not as in (2.11) but in the form

(2.21)

V. N. Tsytovich 914



This expression differs from (2.11) in that we have assigned
spinor indices a and fS to the operators * and *P+, and we
have also taken half the sum of ̂ the expressions which are
found by interchanging $ and * + . For k/0, * and * +

anticommute. In the case k = 0, definition (2.21) is conven-
ient in the sense that in the absence of particles the vacuum
expectation value of (2.21) vanishes.

The 4-current density is expressed in terms of/in the
following way (for the metric gu = 1, g44 = /', y^ = {y,/3},
where y and /? are Dirac matrices):

(2.22)

For free particles we then find the charge density

Sp</p.k>=<Dp6(k). (2.23)

The quantity <I>p thus describes the difference between the
numbers of particles and antiparticles, although this point is
of minor importance, since we can introduce occupation
numbers for both positive and negative energies.

The operators W can be classified^on the basis of the sign
of the energy, A = + 1, by writing <PA. The quantity /will
then have the two indices A. and A. ':

where yU = + 1 is the projection of the spin onto p, and u^
is a bispinor. If the particles are unpolarized, then we have

- P') = <Kp6w.6 (p - p'),

"+l.|i ~|i "-1,1* tIM-
Op = Of, Of =0_p. (2.25)

The operators which project onto positive and negative ener-
gies, A* = Ap, are introduced by

(2.26)

If we assume that there are no positrons, we find from (2.24)

==0, (2.27)

Ap
+/5— Ap~/? = l,SpAp

+/7Alternatively,
= 2,SpAp~/7 =

SpAp-p/ = (<&;-

Sp /=Sp(APP -

assuming
— 2, we find

SpApp/==(«D;

-p) / = « - «D;) 6(k).

l)6(k), (2.28)

(2.29)

We will assume below that there are no positrons (<&~ =0).
The constant terms in (2.28), i.e., the — 1 on the right side
of (2.28), reflect the unobservable vacuum parts. These
terms cancel out in the observable final quantities, such as
Sp(/), the permittivity, and the equation for 4>. For this rea-
son, we will retain in the expressions written below only the

terms which are proportional to 4>p ; in certain cases we will
also be discarding terms which are quadratic in 4>p ( we will
thereby be ignoring degeneracy).

Actually, by repeating the derivation of (2.20), but
with a spinor operator in (2.21), and by using (2.24) and
(2.26), we find

(A*_

x(A

k + e._

kp)a.p6(p-p')6(k-l-k')6(co-e k — e_ p, _

(2.30)

(2.31)

Other combinations contribute nothing if there are no posi-
trons (<I>~ =0). Fluctuations also occur at frequencies far
from the actual frequencies of collective modes or the fre-
quencies of photons; i.e., (2.31) describes fluctuations not
with a real pair production but (in many cases) a virtual pair
production. With regard to the projection operators in
(2.30) , we note that they are completely understandable and
reflect the same properties as in (2.27). An extremely im-
portant point is that the spinor indices on these operators are
intermingled, and for this reason the virtual processes are
coupled. A relativistically invariant analysis of fluctuations
is also possible for particles of other spins. We will not write
the corresponding relations here, in order to avoid a further
complication of this discussion (for spin 0 see, for example,
Refs. 18 and 26).

3. SEPARATING OUT THE COLLECTIVE FIELDS

To explain the fundamental points, it is convenient to
use the example of purely electrostatic fields. When fields
are present, the classical equation for the distribution func-
tion of the particles of species a is written in the form

(3.1)

div E = 4n (3.2)

These equations are found from the Liouville equation for
the exact many-particle problem through an integration
over all the variables except the variables of the given parti-
cle a, which are designated p and r. The fluctuations of the
particles are thus taken into account.

We assume for simplicity that there are no regular
fields; i.e.,

E='6E, <E> = 0. (3.3)

The fluctuations of the free particles discussed above
occur as they would if these particles had no charge and
produced no fields. Actually, this is not the case, and the
particles cease to be completely independent by virtue of the
fields. In a collisionless system (or, more precisely, in a colli-
sionless zeroth approximation), however, the correlations
through the fluctuating fields are weak, and the relations of
the preceding section of this paper hold in a first approxima-
tion. It follows from the Poisson equation, (3.2) (and, in
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general, from Maxwell's equations), that fluctuations in the
number of particles [on the right side of (3.2)] automatical-
ly cause fluctuations in the electric fields also. This is in a
sense a trivial point if the particles have charges. However,
the fluctuating fields also change the fluctuations of the par-
ticles according to (3.1). It turns out that these additional
fluctuations are indeed relatively small and that the condi-
tion under which they are small in the absence of collective
fields is the condition that collisions be of minor importance.

First, however, we need to introduce collective fields.
We take the average of Eqs. (3.1) and (3.2), and we calcu-
late average equations from (3.1):

\

(3.4)

(3.5)

(3.6)

The collective fields may be regular, but they may also
be random. The simplest case is that of linear collective
fields. However, nonlinear collective fields, both regular and
irregular, are also possible. At first we restrict the discussion
to linear random collective fields.

We introduce

«««*
i (co — kv) dp

We then have SEk = 8Ek (k/k),

(3.7)

(3.8)

(3.9)

(3.10)

where e'k is the linear longitudinal dielectric constant, which
is determined from the regular distribution function

' 4lt

Transformation (3.7) thus makes it possible to derive an
equation for the fluctuations in which the right side contains
only terms which are nonlinear in SE [since <5/Ea(L) is pro-
portional to <5E, and it is div D which appears in the Poisson
equation, not div E as in ( 3.5) ] . We define the linear collec-
tive field as the partial solution of the homogeneous version
ofEq. (3.9):

(3.12)

We denote this field by SE". An important point is that this
field is, like <5/(0), a solution of the homogeneous equation.
Since the field amplitude is arbitrary, and the field is ran-
dom, the correlation function on its right side is arbitrary:

— (3.13)

This relation serves as a definition of \E w | \ . It should be
compared with (2.6), where 8(co — kv), like S(£l

k) in
(3.13), is a solution of the homogeneous equation, and
S(k + k ') in both relations is a consequence of the spatial
homogeneity and the steady-state nature (over time) . Final-
ly, \E™\2

k in (3.13) and<£p in (2.6) are arbitrary distribution
functions of the particles and waves. Furthermore, for
greater clarity we can also introduce in ( 3. 1 3 ) the number of
quanta of the waves of random field (3.13).

We write the field energy:

-1 (2n)8

Here we are using

dot (0=0)1,

(3.14)

(3.15)

This energy can also be written in terms of Nk, the number of
photons (occupation numbers), of longitudinal waves

r-J.
(2n)>

We thus have

and relation (3.13) can be written in the form

(3.16)

(3.17)

(3.18)

Again, we wish to stress that singling out the linear col-
lective fields is not the only possibility here. If the collective
fields are strong, their nonlinear interaction must also be
taken into account, generally speaking. In addition to the
collective field (which are assumed here to be random),
however, there are also fields .due to the fluctuations of the
particles, <5/(0), as we have already pointed out. We denote
them by SE<0). In the simplest case, in which 8f(m appears on
the right side, we can write

4n y f
a. J

(3.19)
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According to linear equation (3.9), the solution con-
sists of the solution of the homogeneous equation, SE", and
that of inhomogeneous equation (3.19): SE = SE™ + SE10).
We wish to stress this point specifically in connection with
the assumed linearity of the collective fields.

For nonlinear fields the result might be different. We
can illustrate this point at a qualitative level by singling out
on the left side a term which is nonlinear in the fields:

ik (ei + 6* {6E}) 6E == 4n 2 *a f -̂ 7- dp +. . . . (3 .20)

Here we have already separated out a nonlinear term which

V. N. Tsytovich 916



is functionally dependent on 8E from the right side of (3.9).
We have moved it to the left side in the form of the operator
£%. On the right side we have written a first term which is
linear in <5/(0) and which does not depend on SE; however,
there are of course also some terms which are linear in <5/(0>

but which contain certain terms which are linear and nonlin-
ear in SE, as can be seen from (3.10).

The collective field might be defined as the nonlinear
field which satisfies the equation

{6£w}]=0. (3.21)

Linearizing (3.20) with respect to 8E(0\ we then find

L6E«" = (el + It {6£w}) 6£(0) 6£<0)

This equation is of course different from (3.19). It
shows that the fluctuating fields SE<0) which stem from fluc-
tuations of particles in the presence of strong, nonequilibri-
um collective fields generally change in form [ terms which
are nonlinear in SE™ and which are of the same order of
magnitude as those which are incorporated on the left side of
(3.22) must of course be taken into account on the right
side]. In several cases, however, despite the fact that the
inverse operators on the left side of (3.22) and on the left
side of (3.11) are different from each other, integrals of SE(0)

over k appear in the final results, and the terms which are
nonlinear in L ~' can be treated by perturbation theory.

This is the situation, for example, in the case of a weak
turbulence of collective nonlinear fields 8E", in which, de-
spite their (weak) nonlinearity, we can use perturbation the-
ory for the fluctuating fields SE(0). In this case, however, we
can work from (3.19) as an approximation and deal with all
the nonlinear terms in (3.9) and (3.10) by perturbation the-
ory. In general, however, it is correct to state that the field
fluctuations caused by the particle fluctuations may be al-
tered substantially by collective fields.

Below we will take a special look at this case in connec-
tion with the so-called quasilinear description of collective
fields. At this point, we instead recall the method for deriv-
ing a very simple quasilinear equation from (3.11). We sub-
stitute SE = 8E" into (3.4), and as <5/we use 8f(L)a with
SE = SE":

ao"
i (<o — kv) a p

(3.23)

Here we have

d/ dt dr

(3.24)

This equation shows how <!>£ varies under the influence of
8EW . This circumstance, like the nonlinearities discussed
above, should alter the fluctuating fields of the particles. The
effect does not reduce to simply a change in 4>° in (2.6) with
4>° = 4>p (/); there are also some additional electromagnetic
fluctuations, generally of a quantum nature. With this cir-
cumstance in mind, we carried out a corresponding general-
ization of the equations for the fluctuations of the particles to

the quantum case in the preceding section of this review. The
analogy between the nonlinear variation in the fluctuations
of the type described by (3.22), on the one hand, and the
appearance of additional fluctuations due to the quasilinear
time dependence, on the other, is of course rather superficial.
An important point is that both depend on the amplitude of
the collective fields, and the change in the fluctuations due to
the presence of collective fields is a common feature.

It is also a simple matter to single out the collective
fields in a quantum system. It is sufficient to write an equa-
tion for the^ operator/and Maxwell's equation for the field
potentials A^ with a current yM:

(3.25)

An equation for/ for the spin 1/2 case is found from the
Dirac equations for the operations for the operators * and
from definition (2.21):

- id - kt>
-M*. (')?!_ k,k (/));i>-r,k,

k (0 = YAn (0-

(3.26)

Once these equations have been written, we actually do not
need to repeat the procedure which we have described, since
it is the same as that for (3.1). Everywhere below we will
assume that the collective field 8E" is classical, but we will
also take quantum-mechanical eifects into account in the
fluctuations. In the simplest case of collisions of particles,
quantum effects may influence the expression within the
Coulomb logarithm, but when there is a quasilinear interac-
tion the fluctuations of higher order in e2 diverge in the clas-
sical limit, while in the quantum limit they introduce finite
observable effects.

4. LANDAU-BALESCU COLLISION INTEGRAL

We begin this analysis by completely ignoring the col-
lective fields: 8E" = 0. We are then left with the fluctuations
in the particles themselves. On the right side of (3.4), which
is an equation describing the average distribution <££, we
need retain only the terms which are quadratic in <5/(0). It can
be seen from ( 3.9 ) that even in the first approximation SE is
linear in <5/(0). We can thus replace SE in (3.4) by SEm:

(4.1)

For S fin ( 3.4) , the term which is linear in <5/(0) is, according
to (3.7),

a/?.. • (4'2)
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Substituting these expressions into (3.4), we find18'24
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—- + v —r*- = — e« fdt dr J \
„ f dftdft, , a

— 2 **• J ̂ r (k *

to — kv -*"J 2nWt4

dkdp' /,. a

. — kv')
co — kv \ ap

6 ( k ( v — v ' ) )

dfi l4.kvl2

X k -L
In the latter equation we have used the relations

T 1 S / I \Im = — no (co — kv),
co — kv

_ = __
4 i4 i 2

(4.3)

(4.4)

which give us respectively the first and second terms of the
last equation in (4.3), which is none other than the well-
known Landau-Balescu collision integral3 [if we ignore
(el — 1) in (4.3), then (4.3) becomes the Landau collision
integral2].

The collision integral is thus derived on a single line.
This entire derivation is simply the quintessence of numer-
ous studies. Equation (4.3) contains only average distribu-
tion functions, which appear not only in biquadratic combi-
nations but also in the screening factor 1/|£|2. This factor
describes dynamic screening during collisions. The phrase
"dynamic screening" applies here because the frequency co
in e is not zero (a zero value would correspond to static
Debye screeening). It instead has the value

co = kv (4.5)

or, in a quantum description, co = ef — ev _ k. This expres-
sion describes energy conservation at a vertex (Figs. 1 and
2). At the other vertex (Fig. 2) we have ca = ep. + k — £„•
~kv'. Together, these two conservation laws give us

kv—kv' = 0. (4.6)

Relation (4.5) does not express the condition for (Vavilov-)

FIG. l.
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FIG. 2.

Cherenkov radiation; it instead gives the frequency of a vir-
tual photon. The interaction in (4.3) is described as a colli-
sion through a virtual longitudinal wave. Its Green's func-
tion l/ke'k also appears in (4.3).

The physical content of ( 4. 3 ) , on the other hand, is very
important. It is that taking an averge over fluctuations leads
to the concept of dressed particles, which are now described
by the average distribution function <!>£.

Since k/fc is a unit vector ( a direction vector ), and since
the component of k parallel to the velocity, k\\ =k(v — v')/
| v — v' | , vanishes according to ( 4. 3 ) , we see that the integra-
tion in (4.3) reduces to an integral over the momentum
transfer which is transverse with respect to v — v', i.e., kx :

This integral diverges logarithmically; this is the so-called
Coulomb logarithm. The divergence at the lower limit is eli-
minated by screening, i.e., by the quantity \e'vta \

2 in (4.3),
while that at the upper limit is determined by quantum
effects (provided only that the condition fi/mv^e2/mv2 or
e2/fiv •< holds) . At large values of the transverse momentum
transfer, the quantum nature of the fluctuations comes into
play.

For nonrelativistic quantum-mechanical particles we
can use the Schrodinger equation in the p representation

(4.8)

and the equation for the operator /p?k given by (2.11),

dt

dk' qv (/) ;-_ k_ k_k k, (0 qv (0 J = 0.

(4.9)

We then find

(4.12)
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Going through the same procedure as in the derivation of
(4.3), we find

f dp> dk

X 8 (ep — 6p_k — 8p. + 8p'_k). (4.13)

After an expansion in the momentum transfer k, this expres-
sion gives us (4.3).

In taking the classical approach, we can restrict the dis-
cussion to the interaction through a virtual longitudinal
wave only in the case of nonrelativistic particles. For relativ-
istic particles we have to allow for the circumstance that the
Lorentz force appears in the complete equation for <5/lo) and
that for the fluctuating fields we must write Maxwell's equa-
tions with the current determined by <5/<0). Going through
this procedure, we find the Belyaev-Budker collision inte-
gral27

dt
,

dt
(4.14)

where (d^/dt)1 is given by (4.3) and describes a process
which occurs through a longitudinal virtual wave. The
quantity

££V,
dt }

SS f dp 'dk /,, d \ Ikv]«6(k(v-v ' ) )
e«e«' J (5^J lk liT] j *• - <*)« <kv i-

dp dp'

describes a process which goes through a transverse virtual
wave.

In the general—relativistic and quantum-mechani-
cal—case we can find a generalization of (4.13) and (4.15)
from (3.26), (3.25), (2.30), (2.31), and (2.29), taking ac-
count of processes which go through the longitudinal and
transverse virtual waves. For the discussion below it is suffi-
cient to write Green's functions for the corresponding
waves. For the transverse virtual wave these functions are

l

(4.16)

The second of these functions corresponds to a virtual pair
production; the first can be written in the following form in
the limit of a large momentum transfer k, with e'ke

2 | k |

~ 1

(4.17)

We have written these relations in order to show the
structure of the incoming Green's functions and of the trans-
verse fields, which will appear below for other processes.
Another motivation has been to show that processes with
virtual pair production appear in the collision integrals. An
important point is that it is technically a straightforward
matter to derive even expressions (4.15) by the procedure
described above, whose usefulness is thereby demonstrated.
On the other hand, incorporating quantum effects is not, as
it might appear, a matter of dealing with certain subtleties:

These effects play an important role here. For example, one
could use (4.15) to find the absorption of electromagnetic
waves due to collisions, by calculating the perturbations 5<I>
due to collisions and the wave field. However, the direct
process for absorption is bremsstrahlung, whose maximum
frequencies are determined by exclusively quantum effects
in the case of fast particles. The quantum effects must there-
fore be taken into account in a system of charged particles.

We will be interested below in the changes which occur
in the fluctuations because of the1 collective fields. First,
however, we will conclude the discussion of the overall pic-
ture of the classical fluctuations, which lead to a clear phys-
ical model of the dressed particles, which is manifested in the
writing of a collision integral. It turns out that this picture is
completely valid for other processes also.

5. FLUCTUATIONS AND TRANSITION SCATTERING

Let us examine scattering effects. We assume that we
have a collective longitudinal field 8E™. We assume that the
scattered field is also longitudinal, 8E". In fluctuation theo-
ry, we can single out scattering processes which are propor-
tional to \E™\2

k if we collect all the terms which contain the
^-function characteristic of scattering. By virtue of the con-
servation laws in the elementary scattering event (ft = 1),

ep + (Bk = ep- + tOk-,

(4.15) We have the 5-function

8 (ep cok-).

(5.1)

(5.2)

(5.3)

Along with the terms which are proportional to the
field intensity |£'w|£, the collision integral has terms which
are proportional to the intensity of the scattered field, |£w \.
These terms describe induced scattering. All these terms can
be derived, but the important points can be demonstrated by
simply discussing spontaneous scattering, which is propor-
tional to the intensity of the initial scattered field, \E™ 2

k.
We begin with the classical description, in which case

(5.3) becomes

8 (wk — kv — (Ok- + k'v)> (5.4)

and our starting point is the system of equations (3.9),
(3.10).

We assume that the Cherenkov condition does not hold
for the scattered wave {&>k,k}: &>k ^kv. For the scattered
wave, this condition again should not hold; i.e., we should
have «k =£ k'v. Otherwise we would have <yk = kv according
to (5.4), in contradiction of our assumption. We rewrite our
initial equation, (3.4), in the form

do>
(5'5)

We will not go into the procedure for singling out the terms
which leave only (a) a spontaneous scattering which is lin-
ear in \EV\\ and (b) a transition scattering, without taking
into account ordinary Thomson scattering. We will simply
give the recipe, which shows what we need to take into ac-
count in order to derive the result we are seeking. To test the
validity of this recipe we must ensure that none of the other
terms make an additional contribution to the process of in-
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terest. However, this circumstance would mean deriving a
general result, which would be overly complex. We will leave
that to the reader. The general result contains both ordinary
and transition scattering and the interference of the two;
furthermore, it contains induced scattering as well as spon-
taneous scattering.

Here, then, is the recipe for deriving the terms which
contain only the spontaneous transition scattering:

1) In place of 8f^ik. in (5.5) we must use the zeroth
approximation 8f£k

a.
2) On the right side of (3.10), we retain only the term

with Sf°(L); i.e., we write (3.9) in the form

, (5.6)

where
c co vi a f dp 1SM'=-2*Mk-k1iir6Jw^

i
kv

* ki-Erdp I co — % — (k — kj) v

(5.7)

3 ) We are left with only quadratic combinations of <5/(0)

and 8E *. This procedure is carried out in the following way.
Relation (5.5) already contains <5/<oi, so in 8E we need to take
into account only the term which is linear in 5/<0). The quan-
tity <5/lo) itself can appear only through 8E [see (3.19)].
However, after substutiting one of the fields, 8E (0), and the
other field of the scattered wave, 8E" , into (5.6), we find
zero in (5.5), since we have (8E* ) = 0. It is necessary to
integrate (5.6) with a virtual field (which we denote by
8E"):

( 5.8 )

where

6£L*. =
i(co — c

x J . (5.9)

4) After substituting (5.9) and (5.8) into (5.5), we
need to use relations (2.6) and (3. 18), derived above, for the
expectation values (<5/(0))2 and (8E* )2.

5) Finally, we need to make use of the condition that
there are no Cherenkov resonances in the nonlinear re-
sponses Sk _fc | . We will make use of that condition in the fol-
lowing way. By virtue of ( 3. 1 8 ) we have k2 = — &,; i.e., the
result will contain Sk,ki and Sk _ ku _ ki . According to ( 5.7) ,
the latter resolution has the form

:>*-*„-*, = —
-"i y e» f dp __ !
-kjf P J (2n)» (co-o>1-(k- k1)v)

dp
(5.10)

In deriving (5.10) from (5.7), in making the substitu-
tion &j-» — /Cj, ( /Cj = {k2,fi)j}), we replaced the factor I/
(&>! — k,v) by — l/((0i — ktv). This replacement is valid
only in the absence of a resonance, iw^kjV, since in the
presence of a resonance the quantity l/((ol — k,v + /O) be-

comes — !/(&>] — kjV! — /O); i.e., the sign of the imaginary
part changes. Taking this circumstance into account, and
also taking into account the circumstance that a resonance in
the scattering is not forbidden in either (5.10) or (5.7) {i.e.,
the denominator l/[o> — co — (k — kjv] may vanish}, we
find the rigorous relation

(0 — CO,
' h

la
(5.11)

This relation is derived in the following way. The de-
rivatives (k^/dp) in the first term in (5.7) and (k — k,)^/
dp) in the second are taken by parts (on the left); i.e., (5.7)
is written in the form

dp f
(2n)8 L (co- ^(k-kjv)

(kk.)

(5.12)

The derivatives (k,<3/5p) in the first term in (5.10) and
(k<? /^p) in the second are taken on the right, and the result is
written

^k-kt.-k,
(2n)' oj-m-Ck-

— kv)2 ap

(co — kv)a (cot — 1
m

(co — kv) (&>! — kiV)

k
l dp

(5.13)

In the first term in (5.13) we have subtracted a term with
(kjd^/dp), and we have added the same term to the other
terms; the denominator o> — o)l — (k — k,)y then cancels
out. Already from (5.13) and (5.12) we see that these ex-
pressions are identical if we take (k<9 /t?p) in the last term by
parts (on the left).

To derive a final result, which describes the principal
scattering process, our only remaining task is to collect all
the expressions, using (5.11) in order to express Skki in
terms of Sk . In the result we need to make the substi-
tutions /c-»/c — &!,&,-> — kt.

As a result, (5.5) acquires a relation

.£**• 6 (co -«,, - (k - k,) v) ag iC^ (5.14)

(this relation is written out with all the factors a bit further
on). It is important to emphasize here that only Im( l/£k),
which contains two <5-functions, contributes to (5.14):

n (6 (co — cok) — 6 (co + cok))

(5.15)

Precisely the same two 5-functions are in the expression for
|£w|fci , which is proportional to

6(co + cok,). (5.16)
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Scattering corresponds" to combinations of frequencies
co = <ak, tal = okl and a> = — eak,(ol — — a>k. In the sec-
ond case we can make the substitution k[-» — k, and
k-» — k. According to (5.14) (5(«k — «k| — (k — k,)vwiH
appear in the result; this is precisely the 5-function describ-
ing scattering which we have been seeking. The result also
contains

Sk,k,

(4V

The latter expression can be rewritten in the form

A_* * I K,K\ ^^ f)

:H— + -nn 2

•u _4(lm-^M . 1(5.17)

The imaginary parts Skiki and e'k _ ki in the last term in
(5.17) contain the integral

5dp'6(cok-cokl-(k-k1)v').

Because of the <5-function in (5.14), they are proportional to
5((k — ki ) (v — v')), and when we make the substitution
k — k,-»k they are proportional to 5(k(v — v ' ) ) - This S-
function is characteristic of collisions. Terms of this type
thus make contributions of the order of (SE^/Sirnmv2 to
the collision integral.

If we collect all the terms of this type, we can put them
in the collision integral. It turns out (curiously) that all
these terms combine into an integral of the previous type
(Sec. 4) with 4>p, in which corrections ~ |£" |2 are taken
into account. For this reason, we need consider only the first
term in (5.17) below.

Note that in this derivation we have also discarded
terms with induced transition radiation (more on this be-
low), which are also proportional to the first power of Nkl

[but which contain derivatives <?<J>P /dp, not 4>p, as in result
(5.18) just below]. This final result is

dt
-+v p 0>

5r dp

324 IS,
i — k j |

(5 .18)

This result is surprising in two regards. First, the square
moduli of the complex quantities which appear in ( 5 . 1 7 ) are
interpreted as the square moduli of the probability ampli-
tudes for the process, and (k — kj in (5.18) is interpreted
as a quantity which is proportional to the momentum which
is transferred to the particles in the course of the scattering.
So far, we have not used quantum-mechanical ideas any-
where.

If we introduce the probability for transition scattering
£0p(k,k,)/tf, and note that the momentum of a particle
changes by fi(]s. — k, ) in the course of the scattering, accord-
ing to the quantum relations, we can easily find an expres-
sion which describes the change in the particle distribution
due to spontaneous scattering:

dt
+

dr

- o&ftk-nk, (k, kj <Dfrtk..ftkj JVkl dk —i-
(2it)8

a
~~¥

(5.19)

Approximate inequality (5.19) corresponds to a small value
of the momentum transfer, with fi dropping out of the result.
The probability is thus

32«»lS». f c |»«(<D-a) 1 - (k-k1)v)

I k - kj |a I ej^ |2 (dej[/da>) de^/
OH=<okl

(5.20)

This expression is exactly the same as that which was origin-
ally derived in Ref. 6. The quantity \/fi has of course has
been introduced in the definition of the probability. It is im-

portant to note that the final result, (5.18), is purely classi-
cal, as is (5.20).

Second, there is the extremely curious point that the
nonlinear vertex Sktki and £l

k_kl have imaginary parts,
which arise from <5(<yk — wk] — (k — k,)v) and $£, i.e.,
which correspond to scattering processes. We have of course
put the result in a form which contains only the moduli of
Skiki and^i _ ki, but even without this step the corresponding
expressions would contain Im Sk:ki and Im £k_ki, which
are proportional to <5(wk — wkl — (k — k^v). The prob-
lem is completely self-consistent here: The particles are scat-
tered, and in the course of this scattering they generate a self-
interaction which is responsible for scattering (part of the
reason for the generation of this self-interaction is that the
scattering is determined by not only the imaginary but also
the real parts of Skiki and e'k _ *,) . We wish to stress that •fc"
in e'k _ ki and S kikt may describe the same particles as are
described by «J>J[ in (5.19).

Here we are seeing a new feature, which goes beyond
what has been known previously for transition scattering
proper. Transition scattering was treated in Ref. 6 as a scat-
tering by a test particle in a medium with a given permittivi-
ty. Now, the distribution of the particles which are scattered,
<t>p, appears both in (5.19) and in characteristics of the me-
dium, S^ki and e'k_ki. In this sense, the result in (5.20) is
more general than that which was derived in Ref. 6. Correc-
tions to the particle collision integral of course also arise.
Incorporating more of the terms which have been omitted
from the original equation leads to (in addition to transition
scattering) ordinary Thomson scattering and an interfer-
ence of the two scattering processes. The final result contains
the square modulus of the total scattering amplitude.

In order to carry out these calculations it is sufficient to
use in (5.5) an expression for the field which refines (5.6).
For this purpose we need to incorporate on the right side of
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(3.10) a term with Sf, by making the substitution
<5/= Sfm + <5/(1), where(5/(1)is given by (3.10),inwhich5/ls
replaced by Sfm. In place of (5.6) we find

4"

f S/k
J

y ,
e"

kl dk,

2n
ike'

k _«
'

(2n)» (co - kv) M»

(5.21)

We can set 5£yt| and 5 2̂ equal to the BE * in the last term.
We need to substitute the next-to-last term into the second
term; only then do we set SEk equal to SE *. The last term in
(5.21) describes Thomson scattering, and the next-to-last
term describes an interference between Thomson scattering
and transition scattering.

Incorporating induced processes leads to terms propor-
tional to Nk . It is of course simpler to immediately write the
final expressions, which contain the total scattering proba-
bility u)p0t, on the basis of quantum considerations than to
derive this equation through the averaging procedure de-
scribed above (ft = 1 ) :

& kl-kl

dt dr

- J K" (k,

- Nki (Nk SffWu]} dki dk

0' (k, kj) (*,

(2n)«

. , ( 5 .22)

With Nk = 0 this equation becomes (5.19).
We turn now to the quantum-mechanical generaliza-

tion of the results derived above. Curiously, a quantum cal-
culation based on Eqs. (4.10) and (4.9) and relation (2.20)
immediately gives us the first of relations (5.19) for sponta-
neous processes; when induced processed are taken into ac-
count, it gives us the first of relations ( 5.22 ) . The probability
for the transition scattering [see (5.20) ] includes the quan-
tities e'k_kt, which are given by quantum-mechanical
expression (4. 12), and SMi , which is determined by the cor-
responding quantum generalization of (5.7), which can be
found by perturbation theory from (4.9). [The fields^ are
assumed to be classical here; this assumption is legitimate if
their 4-momenta k, are small (&, </?), but the frequency are
momentum k = {k,ta} of the scattered wave are arbitrary. ]

Finally, the 5-function in (5.20) is replaced by the
corresponding "quantum-mechanical generalization"
S(ea — 6>! — ft~l(ev — £f — #k + #kj)). Admittedly, un-
der ordinary conditions the probability for the emission of
frequencies a> of the order of ef/ft (in which case quantum
effects must be taken into account) is extremely small for
longitudinal waves, if such a process is possible at all (if
(Dk ~<ope, the plasma density must be very high; only in this
case would co^ be of the order of even me1/ft).

This situation is possible for electromagnetic (trans-
verse) waves. This approach was taken in Ref. 28 to derive a
quantum theory for transition scattering into electromag-
netic waves and in Ref. 29 to derive a quantum theory for
transition radiation (through a summation of the transition-
scattering processses at those harmonics into which the
"step" in the permittivity decomposes).

Finally, we need to say a word about a term correspond-
ing to eal = — cokl ,co = cok and a = eok, a>l = <ak which we
discarded in the derivation of (5.18). That term will contain

6 (wk-f ci)kl — (k + k1)v). (5.23)

In general, that term should not be discarded; it describes the
simultaneous emission of two photons and their absorption.
In several cases, these processes are important, especially if
one of the photons has a low frequency. In contrast with
(5.22), the quantum equation is

DC

- (Afk + 1 ) (JVk|

(5.24)

In the classical limit the induced processes are also described
by a diffusion equation [except that (kt — k , , )(kj — ktj)
is replaced by ( kt + k ,_, ) ( kj + ktj ,) ;ff cancels out because
bothJVki andA^ are proportional to 1/^5]. For spontaneous
processes, two terms with Nki and #kj, which contain
k, + &, , in place of k, — ku (or &u — k,), also arise; here
again, one ft from fcu + k, is canceled by one N. Interest-
ingly, yet another spontaneous term, independent of N^,
arises. This term will be of a purely quantum nature even in
the limit k^p. From (5.24) we find

dt dr

A ( 5-25 )

The intensity of the spontaneous emission from an individ-
ual particle also contains ft:

zquant /« • ^ ok dkj .- *)£\
p (K, KI) . (D.2OJ

This circumstance was pointed out in Ref. 27, where a calcu-
lation was carried out in the classical limit for u>pquant, the
probability for a two-photon Cherenkov emission, and
where this effect was analyzed in detail.

It is worthwhile to recall that the calculations on both
the scattering and the two-photon emission started from the
assumption that a single-photon Cherenkov process is for-
bidden by conservation laws. If it is instead allowed, the qua-
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silinear interaction will be the predominant process, and the
scattering will always amount to a small correction. This
circumstance is intuitively clear from the situation that the
oscillations of a particle in the field of the scattered wave are
usually small, and if there are many scattered waves (a ran-
dom field) then in going from one resonance to another par-
ticle will ultimately not spend much time in the field of a
given harmonic. If, on the other hand, the field of the scat-
tered wave is monochromtic, then the changes in the velocity
of the particle due to the wave drive the particle away from
resonance in a finite time. An exact theory for scattering in
the case of a quasilinear Cherenkov interaction is being de-
rived with allowance for turbulent renormalizations; i.e, a
Cherenkov field is turned on in the zeroth approxima-
tion.24-31-33

These renormalization processes are important if the
scattering is intense, in which case the linear permittivity e'k
is replaced by the nonlinear response £% when the collective
field is singled out in (3.9). This nonlinear response stems
from transition scattering processes, i.e., is proportional to
E w |'. In other words, we are dealing with a discrimination

of nonlinear collective fields.34

It is not by chance that the virtual field 8E"k arises in
calculations on transition scattering. The quantity Sk<k> de-
scribes the vertex representing an interaction of three fields
(Fig. 3). It contains the two variables k and fc,, since the
third is determined unambiguously by the conservation
laws. Its 4-momentum is k — A:,. This is a virtual field, and
the diagram of the transition scattering is as shown in Fig. 4.
The square of the Green's function l/|k — k , | f j k _ t i natural-
ly appears in (5.20). For transverse virtual waves, their
Green's function, [(k — k , ) 2 — (<o — col)

2e'k_ki ]~\ cor-
respondingly arises.

6. FLUCTUATIONS AND TRANSITION BREMSSTRAHLUNG

We can show that in emission involving fluctuations
there is an effect which stems from the transition scattering
of virtual waves into real waves (along with the well-known
ordinary bremsstrahlung, which is the Thomson scattering
of virtual waves into real waves). Figure 5 shows the corre-

•*-*,
\

FIG. 4.
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FIG. 5.

spending diagram of transition bremsstrahlung. All the
wavy lines here may correspond to both longitudinal and
transverse waves, in any combinations (i.e., to both real and
virtual waves).

To illustrate the fundamental points it is most conven-
ient to consider the case in which all the waves are longitudi-
nal. In this case we can work from (5.5) [i.e., from (3.4) and
(3.9), (3.10)]. We now assume that there is no collective
field $£". We accordingly write relation (5.8) for&E1™, and
we write

This component was previously discarded, since our pur-
pose was to derive the response which was linear in |.Ew|Jt,
but in that case 8E "k would have been quadratic in 8E ", and
the result would have vanished by virtue of the independence
of the averaging over the fluctuations of the fields, 8E ", and
the fluctuations of the particles. Actually, the argument was
simply the principle of selecting effects in such a way that we
would be left with a ^-function associated with the scatter-
ing. When we move away from that case, we should take
8E (0) into account in ( 6. 1 ) . If both fields in ( 6. 1 ) are equal to
8E (0>, the result is zero, since the expectation value of the
three fields is zero. For 8E "_ k{ we now write, in place of
(5.9),

6EL*

(6.2)

From this point on the calculations are the same as
those for transition scattering, except that the expectation
value (8E<0))2 here must be evaluated through the sole use of
(2.6) for the averaging over particle fluctuations. We find

-qv'-(k-q)v)

1 S k,ak;q.qV 0" <Da

'k-q.lk-qlv 1
P'. (6.3)

The meaning of (6.3) is obvious: This is the friction force
created by the transition bremsstrahlung of the wave k, a in
a collision of particles a and a'; l/|k — q|^_ q, ( k_, ) v and

,' correspond to the Green's functions of the two
longitudinal virtual waves in Fig. 5; and
8(cak — qv' — (k — q)y) describes energy conservation in
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the elementary event of the transition bremsstrahlung. The
arguments at the vertex S are also clear from the diagram in
Fig. 5. The two particles a and a' are of course equivalent, as
can be seen by changing the notation: q-»k — q. We can
write relation (6.3) in the form

J
(6.4)

where o)°-°' is the probability for the bremsstrahlung, which
is precisely the same as the expression derived in Refs. 6 and
7 by a different method.

Incorporating the other terms with Sf(W [see (5.21)]
leads to ordinary bremsstrahlung in the classical limit (Fig.
6) and to an interference of the ordinary bremsstrahlung
with the transition bremsstrahlung. Incorporating trans-
verse waves leads to the entire spectrum of possible brems-
strahlung processes, while incorporating \Ev\2

k does the
same for induced bremsstrahlung processes. The transition
bremsstrahlung is thus manifested as a necessary component
of the volume emission from a plasma due to fluctuations.

7. ZERO-POINT FLUCTUATIONS IN THE QUASILINEAR
INTERACTION OF RESONANT FIELDS WITH PARTICLES

As has already been mentioned, the literature reveals a
great deal of interest in processes associated with scattering
in the presence of resonant fields or, more precisely, nonlin-
ear interactions of such a type that the resonance condition
holds approximately for all waves (if this condition holds for
the scattered waves). An expansion in the wave amplitudes
is inappropriate in the resonance region in this case, and all
effects amount to corrections to the quasilinear interaction
which are not analytic in ((SE* )2)/4irnT. Theories of this
type are called "turbulent broadening of a resonance."22 The
basic idea of these theories is that collective modes near the
resonance which are already nonlinear are adopted as the
initial modes. This approach makes it possible to construct
an analytic theory without an expansion in < (SE™ )2)/4irnT
(admittedly, only within the resonance32). An analysis of
that sort completely ignores the zero-point fluctuations of
the particles, <5/(0) (Sec. 2). When the method described
above, involving the sequential expansion of a collision inte-
gral in SE and Sf, is used, it is completely reasonable to ask
about the effect of the particle fluctuations Sfm on the quasi-
linear interaction.

We need to begin with the simplest problem, in which
( as is frequently the case experimentally ) the number of res-
onant particles, <&£, is small, and we seek only the result
which is linear in the number of particles, <!>„. In this case it
is of course necessary to solve equations for the field; the

Green's functions of the longitudinal fields and, in general,
of the transverse fields are involved. In an analysis of longi-
tudinal fields it is necessary to use relation ( 5.5 ) . In order to
derive an expression which is linear in <$>%, it is necessary to
incorporate in Sf* (a) terms which are proportional to
<5/(2)~<5/(0) (8EW )2alongwith$£(0), (b ) terms whicharepr o-
portionaltoS/11-.?/'0^ and (8fw)28E» along with 8E-
m~8E" and 8E" 8fm (products of the first and second
terms of these expansions appear), and (c) <5/(0) along with

Calculations show that, according to the equation for
longitudinal waves in (5.5), all these corrections cancel out
exactly, and their net contribution is zero. It is apparently
for this reason that the effect of the "zero-point" fluctu-
ations in the quasilinear interaction did not attract attention
for a long time. It turned out that transverse corrections had
to be taken into account only for relativistic particles, and
that case did not attract much interest (just as the collision
integral with an interaction through a virtual transverse
wave is not used much, since it is important for relativistic
particles, and for such particles collisions of particles with
each other are not as important).

As it turns out, the zero-point fluctuations actually af-
fect the quasilinear interaction only when relativistic effects
and transverse virtual waves are taken into account (the re-
sult depends explicitly on the velocity of light). In several
cases these fluctuations play a very important role.

In discussing transverse fields it is necessary to solve not
the Poisson equation but the complete Maxwell's equation,
and in a collision integral of the type in (5.5) it is necessary
to consider, along with the electric field, the term with the
magnetic field (the Lorentz force). In this case the result is
not zero; furthermore, the result diverges in the wave
numbers of the virtual transverse fields. They are deter-
mined by the Green's function

q2-[(qv)"/c2]e'
(7.1)

q,qv

Since large values of q are dominant here (the integral over q
diverges), we will ignore polarization effects, i.e., set e' = 1,
for simplicity. We are thus solving Maxwell's equations in
vacuum. There is no need here to single out transverse col-
lective modes (as in Sec. 3), since we are assuming that there
are no transverse waves. The resonant fields 8E™, which
contribute a quasilinear interaction in the first approxima-
tion, are assumed to be longitudinal in the corrections to the
quasilinear interaction which we consider. With e' = 1, the
Green's function (7.1) can be written in the form (c = 1)

1 ll
2q \q — qv q — qv/

(7.2)

Since the integration runs over all virtual q, by using the
replacement q-> — q one can arrange events such that the
result contains

1
1(1 —

(7.3)

A direct, purely classical calculation yields10'11'35'36

a, ~f"<D?. (7.4)

where D ?•' is the ordinary quasilinear diffusion coefficient
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[see (3.24)], given by

(7.5)

and the "corrections" for the particle fluctuations are

-6((o —kv)
J k*(q-qv)

qv

((kq)-(qv)(kv))(A(tv[qv]]/ (7.6)

9irp
x ' i n_.

(7.7)

The quantity F( can also be put in a form which contains
the Green's function (7.3). However, since F6 contains an
integration over all q, we have taken an average over the
angles q and v in (7.7).

Note that the corrections for fluctuations contain, in
addition to a diffusion, a friction force [as Landau collision
integral (4.3) does].

The divergence of the type

in (7.6) and (7.7) suggests a contribution from a renormal-
ization of the mass (the part of it associated with the trans-
verse virtual field). However, a calculation shows that (7.6)
and (7.7) contain effects beyond these. Specifically, the re-
sult (7.6) contains nonzero terms with 8Ew~SE"Sfm, i.e.,
with the field generated by both the resonant fields and the
zero-point fluctuations. They describe a change in the reso-
nant fields due to the fluctuations of the particles. There are
also terms which describe changes in the fluctuations of the
particles due to the presence of resonant fields.

To some extent, this mutual effect is similar to the radi-
ation corrections in the case in which a particle which has
emitted a virtual transverse photon interacts with a resonant
field and then absorbs the virtual photon which has been
emitted. In the case at hand, however, all the fluctuating
currents contain integrals over all particles, and it is not
clear whether another particle can absorb a photon. This
effect is then distinct from the simply radiative corrections
to the interaction of individual particles with external fields.
It is necessary to carry out a quantum-mechanical calcula-
tion with renormalizations; this can be done correctly only
in relativistic quantum theory.

The renormalization procedure is the standard proce-
dure.37'38 Relations which we have already written, (2.30)
and (2.31), which describe zero-point fluctuations in a sys-
tem of relativistic, quantum, spin 1/2 particles, can serve as a
starting point. As the equation for 8fvM it is necessary to use
a generalization of Eq. (4.9) found from the Dirac equations
for $„:
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dt

-?p.k(0(-v(p -{
= e('dk1dk26(k — k! — k2)

3k(0 = Tn2k.,i(0; (7.8)

where yM = {^,10} are the Dirac matrices.
We expand the final result, which contains

\E™ |2((5/(0))2, in k^p, assuming that the resonant fields are
classical and that only a Cherenkov resonance ev — ev _ k

— ca = 0 is possible for them — not a resonance involving
pair production, ev +ev + k — <a=£Q. The final result
IS 11.10,35,36,39-41

dt

— R-p.p*q

|6 co — k

fUL-k-
dp J \

(2>i)»

dp

(7.9)

where

Sp v-
q (gvl

q2

(7.10)

I *' is a quasilinear operator, and A,,* are the projection oper-
ators, introduced above, which project onto positive (nega-
tive) energies.

Note that (7.9) contains, in addition to terms propor-
tional to <I>p, terms with <b% + „ . They of course do not require
any renormalization. A renormalization procedure has al-
ready been carried out in (7.9); it has resulted in changes in
specifically the terms containing <I>°. It is easy to show that
these terms no longer have divergences as q— oo , as was the
case in (7.6) (Ref. 12). We should point out that a conver-
gence occurs only if, among all parts of the Green's function,
only those combinations which are written in (7.10) con-
tribute to the result. In speaking of "parts" of a Green's
function we mean that (7.2) contains \/(q — qv) and I/
(Q 4- qv), which are reduced to (7.3) by the replacement
q -> — q only in the nonquantum limit. In the quantum case,
combinations of the type

could arise; the second "part" of the Green's function is no
longer reduced to the first part by the replacement q-» — q.
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Furthermore, the expression l/(£p + q +£„ + |q|) might
appear along with l/(£p + q +ef — |q|). These terms with
the "other" parts of the Green's function do indeed appear in
all the intermediate (and rather complicated) results, but
the coefficients of those "parts" which are not given by
(7.10) are strictly zero in the final form. Also strictly zero
are the coefficients of the set of other terms of the type
l/2£p (ev + q ± ep ± | q |), etc. The final result is expressed in
terms of the one function /fp p + q, given by expression
(7.10).

The circumstance that it is possible to write the result in
the compact form in (7.9) and (7.10) might constitute an
"esthetic" criterion for the validity of the result.

The terms with 4>p + „ of course do not diverge as q-» oo,
since we have 4>p + q -> 0 in this case. Such terms are explicit-
ly related to the momentum transfer (and thus the energy
transfer) from certain particles to others. This circumstance
answers the question which was raised above about the ab-
sorption of a virtual photon. This photon is indeed absorbed
in this system of particles, but not necessarily by the same
particle which emitted it. Incidentally, the indistinguishabi-
lity of particles is a necessary consequence of the quantum-
mechanical treatment. The transfer of momentum from cer-
tain particles to others, however, is a completely observable
process; in particular, a large number of relatively low-ener-
gy particles might transfer energy to a small number (rough-
ly speaking, several) high-energy particles.

An expansion in q in (7.9) is impossible in principle,
since the integral converges only for large values of q. We
can discuss only the form of the integrand in (7.9) at small
values of q. Only in this limit do 4>p and its derivatives ap-
pear [cf. (7.6)].

The result of the expansion is

dt
«a f
8n J

|£W|1*

: ^ - ' I l k -
dp dp

+ (kir

+
G =

i t/ \ s*k — |G
dp

•i [qv]'

dp

ao
"dp"

,-LV 6(co-kv) , (7.12)

92(|q|-qv)2

This result is very similar to (7.6), but not exactly the same,
since a renormalization has been carried out in (7.12), but
not in (7.6) [and since in the classical expression (7.6) it is

not clear how we would carry out such a renormalization at
all]. More precisely, in the classical expression (7.6) the
renormalization is not an unambiguous procedure. Only in
the framework of quantum electrodynamics37 does this pro-
cedure become unambiguous (it is also unambiguous within
the framework of the quantum kinetics with which we are
concerned here). From (7.12) and (7.6) we can find the
correct form of the classical limit of the radiative-resonant
interactions, with renormalizations. Accordingly, (7.12) is
the correct expression for the integrand in the effects which
stem from the influence of the zero-point fluctuations on the
quasilinear interaction. Incidentally, (7.9) incorporates, in
addition to the <5/<0) effects, zero-point fluctuations of the
electromagnetic field. Specifically, we know from quantum
electrodynamics that these effects are of the same order of
magnitude (see Ref. 37, for example, for a proof).

Note that (7.10) contains specifically the Green's func-
tion of transverse virtual fields incorporting virtual pair pro-
duction [the second term in (7.10) ]: that Green's function
whose square appears in the relativistic quantum-mechani-
cal collision integral.

This result is not surprising, since the collision integral
also describes the transfer of a virtual photon but contains
the square of a matrix element, while (7.9) should corre-
spond crudely to the product of the Cherenkov-radiation
matrix element (Fig. 7) and the matrix element associated
with the emission of a resonant photon and a single exchange
of virtual momentum in the system of particles [Figs. 8(a)
and8(b)].

The arbitrariness of assertions regarding any products
of matrix elements can be seen from the circumstance that
the fluctuations are described only by operators; i.e., we are
dealing with only operator vertices, which appear in Lagran-
gians, not their combinations which have been constructed
by a graphical method in accordance with the S-matrix rules
[as in Figs. 8(a) and 8(b)]. The quantity <I>p is defined as
the vacuum expectation value of the corresponding combi-
nations of operators.

We recall that although actual pair production does not
occur in this process the general relativistic definition of 4>p

contains Sp/= Sp(Ap
+/?/— A ~ / 3 f ) , i.e., gives us the dif-

P-1

FIG. 8.
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ference between the numbers of particles and antiparticles,
which is of course conserved. The number of particles is also
conserved in (7.9).

Introducing p' = p + q, we rewrite (7.9) as

d0° —• /2'<Kp
dt

I
from which we find the conservation of na = fQ>gdf(2ir) ~3:

-̂ - = 0. (7.14)

Collective effects thus also play a role in processes which
correspond to the known radiation corrections for individ-
ual particles.

8. S-MATRIX METHOD

In a discussion of the role played by fluctuations in the
quasilinear interaction, the virtual fields q actually appear as
vacuum fields (the difference between the permittivity and
unity and the Green's function has been ignored), and the
longitudinal resonant collective fields are assumed to be sim-
ply given fields (external fields). In this case, however, we
can treat these problems by the standard S-matrix procedure
and thus shed some light on the role played by collective
effects in (7.9) (i.e., on the role played by the terms with a
momentum transfer from certain particles to others).

In addition to the quantized fields we introduce a classi-
cal random longitudinal field, described by the potential
qp £ (<5E* = — ikqp *). This field (with k <p) may satisfy the
Cherenkov condition

ep -h — u=0, (8.1)

so the matrix element of the 5 matrix of first order in the field
(in contrast with the electromagnetic fields in vacuum) is
not zero:

dt'. (8.2)-^A J <pk.

The field q>k is turned on adiabatically at t = 0.
The probability for Cherenkov radiation is42

<-i £*< 1
i j?w ia

1 V (* '* At, I ,.+1'lt'+fi+1'|i 12= -r 2j ., Ak • I "a-* "«.p-k I
II M / t) "•

x exp[—i(a> —
I

+ exp[i(co — e p

r I £ W I
J I" (ep — Ep_k — co)

Here we have used the relation
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exp [«(<*> —e P 4

f exp [— it' (}i> — Ep —
0

S I ..-H.M.'+.-H.H |2
I "a.P "a,p-k | ,

(8.3)

Ifi 'li
ft2

Using

sin xt c . ,>- JIO (x)
x

1-WC

(8.4)

(8.5)

and

f ' H .M»,p «a,p-k |

= — (8Pep-k + /n2 + (o(p - k))) == <V*. (8-6)
2e_eii_i.

we find

(8.7)

We cannot go any further in the calculations with the 5
matrix; i.e., we can either derive an equation for 4>£ directly
from its definition or postulate a relationship between $£
and wv on the basis of physical considerations. Incidentally,
these two paths lead to the same result for the quasilinear
equation. We write (postulate) a balance between the direct
and inverse processes as follows:

dt

where

dk

(2n)3

dk

(8.8)

(8.9)

An expression for w, (k) can be written easily on the basis of
(8.7).

Using (8.8), and taking half the sum of the expressions
with the replacement k^—k (and using |£w|2_fc

= |£'w|i),wefind

dt
= JKa \ dk [6 (epfk — ep — <

— 8 (Ep — ep_k — CD) (d»p — Op*. (8.10)

Equation (8.10) is a relativistic quantum-mechanical
generalization of quasilinear equation (3.24). It contains
only the Cherenkov 5-function, because in (8.2) we have
retained only the states with positive energy (the states p and
p — k have been assumed to be positive-energy states).

It is not difficult to derive an equation to describe pair
production in the general case in which the following reso-
nance occurs:

+6p4.lt — (0 = 0. (8.11)

A requirement here is that the field SE * can satisfy condi-
tion (8.11). We will not write out the corresponding rela-
tions, under the assumption that condition (8.11) does not
hold.

From (8.10) we can derive (3.24), by means of an ex-
pansion in &</?. The terms which are linear in k vanish by

\E"\l = \ 2_k. The first term invirtue of the relation
brackets in (8.10) differs from the second in that p has been
replaced by p + k; i.e., in the first approximation in the ex-
pansion in k, the result reduces to the application of an oper-
ator (k<?/<?p) to the second term, which is in turn propor-
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tional to the following quantity in the first approximation:

aP /
i
In a first approximation for w^_ k we can then ignore the k
dependence: w^_^ su)p

0
p = 1. We then immediately find

Eq. (3.24).
The S' matrix method has the advantage that a standard

renormalization procedure can be used. It is thus possible to
ifind corrections to wr for the radiation corrections [Fig.

To find now an equation for 4>° we are obliged to postu-
late a balance equation. We have no ground for making such
a postulate, since in that approach, when the ensemble of
particles is taken into account, only the ordinary radiation
corrections are considered; collective effects involving a
transfer of momentum from certain particles to others are
lost [Fig. 8(b) ]. The result is curious if only because it lets
us see just what is lost in the process. We have42

d<Dp
At " P

J - dk k > - kv) <D» (k JL p,q dq.

(8.12)

It turns out that (8.12) contains Rff + q, which is the
same quantity as in the correct expression, (7.9); the order
of magnitude in (8.12) is the same as in (7.9), There has
simply been a certain "redistribution" of terms, and in addi-
tion (and quite naturally) only the function 4>p appears (not
<t>p + q, with a transfer of momentum to other particles). A
redistribution of "this" type also occurred for transition
scattering in the case in which the scattering by the cloud of
the ion was of the order of the Thomson scattering by elec-
trons. Actually, the scattering was caused by electrons, but
by those electrons which also belonged to the cloud, so the
cross section for scattering by an ion turned out to be of the
order of the Thomson cross section for electrons. Here again
there was a "redistribution," but in this case a redistribution
of the momentum transfer. One might say that distribution
of this sort are consequences of the long-range nature of
Coulomb forces and, in the relativistic case, of electromag-
netic forces (the Breit interaction or the interaction of the
current of particles). In terms of the momentum transfer in
virtual processes, this situation is completely understand-
able, since the products of matrix elements of the types in
Figs. 8(b) and 7 require, for the appearance of a 5-function
of the type in ( 8 . 1 ) , that a virtual line of the particles in Fig.
8(b) lie close to the mass shell, while the rest of the diagram
be close to the diagram for simply an interaction of particles
(Fig. 2), which is a long-range effect. We should reiterate
that essentially all quantities are operators in a description of
fluctuations and that these arguments are simply explana-
tions.

Incidentally, the long-range nature of the interaction is
supported directly by result (7.10). In the Iimit0-»0the first
term in (7.8) tends towards oo as 1/g3; i.e., the integral over
q is dominated by small values of q. In the terms with 4>p. , on
the other hand, the quantity q is determined by the difference
between the momenta of the two particles which are giving
up and acquiring the momentum q,q = p' — p, as in the case

of the ordinary Coulomb or Breit interaction. It is the fact
that the terms with 4>£+q = 4>£ in (7.9) and (7.10) contain
Rv,v,q + „ = Rpl9, which points out this circumstance. One
might say that the appearance of 4>£ is the result of a sum-
matiom over all possibilities for obtaining photons by "dif-
ferent" particles of the distribution 4>£ with the absorption
at one particle with a momentum p [the integral over
P' = P + Q or over q in (7.9) ]. A summation of this sort is a
consequence of the theorem for combining probabilities.

The S matrix method can also be used for a rigorous
derivationof kinetic equations (7.9). Here it is sufficient to
use the operator representation39

and to find

(8.13)

. (8.14)

This approach is convenient in that it uses standard renor-
malization procedures. All the quantities in (8.13) and
(8.14) enter through Lagrangian operators, and in this sense
the assertion above regarding the role of fluctuations is more
apparent. Actually, diagrams have to be constructed for the
quantity <!>£, which is an average over the vacuum and over
the statistical ensemble of the operators defined above.

Denoting by Sa) the rth order of the expansion of the S
matrix in the field, we see that the following approximation
is sufficient for deriving a quasilinear equation:

At
= iSp J dq'

(8.15)

From (8.15) we find Eq. (8.10), without making any
further assumptions regarding the nature of the balance
equation.

To derive fluctuation corrections we need to use the
approximation42

<S(1H6/P°VS(3)> <S(aH6/p°.VSw».

(8.16)

Jn this case we should retain in (8.16) only terms of order no
higher than \E™\\. This approach leads us39 exactly to Eqs.
(7.9). We have one final comment, which concerns the
structure of (7.9). The diagram in Fig. 8(a) with two incom-
ing lines can obviously be understood in an operator sense in
the expression for 4>p in (8.14), as in the case of the diagram
in Fig. 8(b). In Fig. 8 (a), only a partial pairing of the inter-
nal operators has been carried out. Consequently, all ends in
4>p are ultimately paired through <5/p

0). The operator in Fig.
8 (a) corresponds to a definite term S<3), while the diagram in
Fig. 8(b) correspond to5'll>;i.e.,itis contained in the third or
fourth term in (8.16). It gives us

The operators af are closed through &S/P
0). The result in

(8.17) is of course proportional to 4>°_q; i.e., it describes an
effect with a transfer of momentum to other particles. An
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important point is that the square matrix element for Fig.
8(b) would contain the product 4>^ and <£"_,. The product
of the diagrams in Figs. 8(a) and 8(b), in contrast, should
also contain a term which is linear in <$>%, since the diagram
in Fig. 7 contains only a single incoming line, i.e., either 4>°
[if we add to Fig. 8(b) the same diagram, with an initial
momentu of p ] or <!>£_ q.

9. ELECTROMAGNETIC FLUCTUATIONS IN A SYSTEM OF
PARTICLES WHICH ARE INTERACTING IN A QUASILINEAR
FASHION

We will show that the momentum transfer in fluctu-
ations occurs through fluctuation electromagnetic fields.
Although this would seem to be a trivial point, a calculation
of the energy of the fluctuations of electromagnetic fields of
very high frequencies in the presence of a quasilinear interac-
tion sheds light from yet another angle on the collective ef-
fect described above, in which momentum and energy are
transferred from a large number of low-energy particles to a
small number of high-energy (possibly very-high-energy)
particles. If the energy of the electromagnetic fluctuations in
a system of particles is not zero, if there are even fluctuations
with very high frequencies, and if the energy of these fluctu-
ations is furthermore a function of the time, this energy
would have to be transferred to particles of one sort or an-
other. In speaking of fluctuations in a system of particles
which are interacting in a quasilinear fashion, we mean that
we are considering (for simplicity) only very high-frequen-
cy fluctuations, i.e., fluctuations for which the refractive in-
dex is essentially unity. We are of course discussing only
those fluctuations which are proportional to the number of
particles which are interacting in a quasilinear fashion (the
zero-point vacuum fluctuations do not vary in time, and no
energy can be taken from them). We find the energy of the
fluctuations by a perturbation theory in the approximation
linear in the number of particles, 4>p, but in the general rela-
tivistic and quantum-mechanical case.

We write the following expression for the energy of the
high-frequency fields:

7'-Jexp[((k-
dkdk'

8n

(t) dAk(t)

dt dt

r-
-4n f

t/

- ('')

dt' dt'

(9.1)

where the operator A is the vector potential (the Coulomb
gauge). Any operator can be written in the form
(L ) = (S +L (OI5 ), where L (0) is a noninteracting operator.
The contribution from &° is dealt with by perturbation theo-
ry. Consequently, <J>° appears as an expectation value of
(a+a) and makes the first corrections in terms of the num-
ber of particles. The operators L (0) of course do not contain e,
and in the zeroth approximation the field A is the field of the
zero-point oscillations. The result of an evaluation of ( 9. 1 )
is

W' k)
<o=|k|

Expression (9.2) thus gives us the energy of the fluctu-
ation fields in the presence of particles [the part which is
independent of 4>° must be discarded from (9.2); it repre-
sents zero-point vacuum fluctuations]. Naturally, in using
perturbation theory we can express the fields which are lin-
ear in Op in terms of the vacuum fields. The substitution
co = |k| is thus used in (9.2).

Expression (9.2) contains "pieces" of the general
expression for the permittivity (which incorporates relativ-
istic and quantum-mechanical effects), which was found
many years ago, by different methods, in Ref. 43:

«' (co, k) = 1 + e'w (co, k) + e'w (— co, k)

(9.3)

where

e«i*)(<a, k)

1 T V "'»
a

\ **

' + / k (ky) \ H_ / k (kY) \ l
P \ ̂  fc2 / f P~k I ' b* I\ K 1 \ K / J

co-Ep±ep-k
(9.4)

The expression for E' which was derived in Ref. 43 was found
by a Green's-function method, and in a slightly different
form. It is easy to verify, however, that that other expression
is the same as (9.3).

For yet another test of the results of all the calculations,
we can calculate the energy W in the classical limit, under
conditions such that there are transverse electromagnetic
waves, which are described by the number of photons,

We find

dW*

dt
f<fL(B^_(
J (2n)8 da,

de' (co, k)x '
dt

(9.5)

(9.2)

The complete expression for e' appears here, as in (9.3)—
not simply the pieces £'<+)(fi>,k) and ^""'(o.k) of this
expression. It is clear why only pieces of e' are involved in
the absence of photons: A photon must first be emitted and
then absorbed, but when photons are present there can also
be an absorption followed by an emission.

We now consider how the energy in (9.2) varies in time
because of the quasilinear variation in <$>£ in time in the clas-
sical limit. The quantity W depends on Op". However, differ-
entiating W with respect to the time and substituting d<b% /
dt from the quasilinear equation is not sufficient to describe
the entire effect.

This fact was established in the nonrelativistic, non-
quantum limit for the case of a large number of waves,
^k > 1 (by a classical approach), in Ref. 44 (see also Ref.
45). The essence of the matter is that the derivative dW /dt
found from (9.5) is proportional to N'^ and |£ w | I . In other
words, it corresponds to a nonlinear process which is pro-
portional to both the intensity of the electromagnetic waves,
~JVk, and the intensity of the resonant longitudinal fields,
|2?w|£. In the calculation of W, however, the only terms
which were taken into account in the currents j were those
linear in the amplitudes of the electromagnetic fields. In gen-
eral, j would also contain nonlinear terms, proportional to
both the amplitude of the electromagnetic field and the am-
plitude of the resonant field. This additional nonlinear com-
ponent must also be taken into account. It, together with the
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result found by differentiating W with respect to the time
(and using the quasilinear equation), gives us the conserved
numbers of electromagnetic-wave photons in the high-fre-
quency limit. To show how this result can be generalized to
the relativistic, quantum-mechanical case, we rewrite (9.5)
as

AW'-"'

At

r A'kdk ( M &>. k) . d tfde'ju, k)\
J (2n)3 \ dt "*" dw dt / |kl

(9.6)

Substituting (9.4) into the second term, using quasilinear
equation (3.24) for d^/dt, incorporating the nonlinear
terms in the S matrix in (9. 1 ) , and adding the results, we find
that the second term in (9.6) is canceled out exactly by the
nonlinear terms, and the final result is

nt.tat AW'

At At J (2x)»
— (i).

>, k)

dt

(9.7)

We note that the terms with &° are being dealt with in
first-order perturbation theory. We use the dispersion rela-
tion

(9.8)

(9.9)

In the adiabatic limit we have

dt dt

Notingthatcfcuk(f)/<fr depends on 4>°, we must set e' = lin
the coefficients of the first term in (9.9) in this approxima-
tion, but in the second term we must set &>k = |k|. We then
find cok = |k| + &ok (?) and

_d_
At

— co-
dt,* (">• k, /)

dt (0=|k|

(9.10)

so the field energy in (9.7) varies only to the extent that the
frequency varies. In other words, the number of photons,
Nk , is conserved.

We now assume JVk = 0. This is the case in which we are
interested; we discussed the case with JV"k / 0 for illustration.
Our starting point in this case should be relation (9.2) . Tak-
ing the nonlinear effects and the renormalization into ac-
count, we find41

AW•Mot

At

v r

= -- Zi n*e* J

(9.11)

Here we see the same expression for RViV + , as was found
above in Sees. 7, 8. It is easy to verify that this change in the
energy is the same as the energy which is acquired by the
particles in accordance with the first two terms of Eq. (7.9).
The last two terms of (7.9) make a contribution which is
associated with an additional change in the energy of the
longitudinal fields. A calculation of this energy leads to41

X (I? d)— - D (T)'* \ ( 912^

If the number of low-energy quasilinear particles, 4>p + q, is

large, while the number of fast particles is very small, 4>, + ,
>4>p, the generation of high-energy particles in (7.12) and
(7.9) can be described by the first term of the equation:

dp'

(2n)»
(9.13)

The asymptotic expression for Rf, p for/»>/>' and;? > m gives
us, in the isotropic case,

"'

i.e.,

d(D «4 P

~7~J '
7q,'(T dp'

(2n)«
(9.14)

We have found a specific expression for Rv,. That result,
however, is not of particular importance; what is of impor-
tance is that the integral in (9.14) depends on neither the
details of the distribution of resonant fields nor the details of
th particle distribution <&£. In other words, result (9.14) is
of universal applicability.

The energy spectrum found in the ultrarelati vistic limit,

d(I>? d<D° i
—i-~p»—L -, e«/j, (9.15)

At At e'

is very nearly the same as the observed spectrum of cosmic-
ray electrons and ions. These questions are discussed in more
detail in Refs. 12, 14, and 15. Here we would like to empha-
size that the power-law nature of spectrum (9.14) is a direct
consequence of the power-law dependence of the energy
spectrum of the electromagnetic fluctuations on the frequen-
cy <a= |k | [see (9.11)].

The total energy which is transferred to the fast parti-
cles is not large. It cannot be calculated from the first term in
(7.9) (the result diverges at small values of p); the second
term in (7.9) must also be taken into account. Assuming
that the distribution of the resonant particles p' is nonrelativ-
istic, we find

dg"
At "-FT- <9-16'

is the energy of the resonant particles. Since the average en-
ergy of the fast particles is of the order me2, their density is
smaller by a factor of I0~3v2

r/c
2 than the density of the reso-

nant particles (VT is their thermal velocity). The entire ef-
fect is therefore of the order of e^/fa, and the generation of
the tail is even weaker, of the order of e^/v^/fic3.

A collective effect of this sort, involving a transfer of
momentum and energy to the particles of a tail, is neverthe-
less important because of its universal nature and because of
the power-law nature of the energy distribution of the fast
particles. This distribution falls off fairly slowly (in com-
parison with an exponential function) with the energy, and
we can expect to see observable effects stemming from the
degradation of the plasma confinement, dragging currents,
etc.13

Finally, we should say a few words about the theory of

930 Sov. Phys. Usp. 32 (10), October 1989 V. N. Tsytovich 930



measurements as it applies to the description of particles by
means of the equations which we have been using. The quan-
tity 4>p has a completely unambiguous and measurable
meaning: the expectation value of an occupation number. At
any rate, this point is particularly transparent for noninter-
acting particles. In the presence of an interaction, the corre-
sponding generalization is <&£ = / Sp(/£k )d k. An impor-
tant point, however, is that after the interaction <t>° recovers
its previous meaning for free particles. In this regard the
appearance of accelerated particles after a quasilinear inter-
action which operates for a finite time interval is a complete-
ly clear and unambiguous prediction. With regard to 4>£
during the actual interaction with the resonant field, we note
that a theory of quantum measurements has not been devel-
oped for this case; this is a matter for future work.

10. CONCLUSION

This entire description tells us that an ensemble of parti-
cles such as a rarefied plasma behaves in a manner which is
completely different from that of individual particles. The
changes are seen as a radical change in the cross sections for
various processes, a combining of particles into particle-
plus-cloud complexes, and a transfer of energy to other par-
ticles. In our opinion, a correct description of all the pro-
cesses would hardly be possible by any approach other than
one incorporating fluctuations, as has been demonstrated.

An important point is that the diagrams which actually
arise correspond to definite expansions in charges and field
(but not to an expansion in e^n in transition scattering and
transition bremsstrahlung). The reason why such an expan-
sion is possible is that a plasma is a system of weakly interact-
ing particles, and a theory of this sort, involving an expan-
sion in fluctuation and collective fields, is appropriate for the
problem.We wish to stress that all the results are valid for a
highly nonequilibrium plasma, with arbitrary distributions
of particles, $£, and of collective fields, | E w | \.

All these results could of course have been derived by a
Green's-function method.46 However, the generalization of
the corresponding Keldysh equations46'47 to the relativistic,
quantum-mechanical case is complicated, and the use of the
diagram technique here could hardly be of much assistance
in seeing the physics of the situation, although that approach
would have been more elegant from the mathematical stand-
point. Here we have chosen a simpler method for presenting
the material.

Finally, under conditions of thermal equilibrium one
could of course use the standard Matsubara technique.48'49

In that case it is curious to note how the contributions from
the nonlinear vertices associated with transition scattering
and transition bremsstrahlung are modified (they become
thermal fluctuations). To the best of our knowledge, a refor-
mulation of the Matsubara Green's-function technique of
that sort has so far attracted little interest.

We wish to stress that taking an average over fluctu-
ations leads to a new and informative picture of a system of
charged particles. For emission, scattering and collision pro-
cesses, the system consists in a sense of "neutral atoms"
which are surrounded by dynamically polarized clouds.
Both the electrons and the ions have such clouds, and the
number of dressed particles (electrons and ions) is equal to
the number of these particles in the system. In the processes

of scattering and bremsstrahlung involving heavy particles,
the polarization of these clouds may play an important role
(transition scattering and transition bremsstrahlung), but
the recoil momentum is acquired by the "central particle"
which is scattered by them or, more precisely, by the dressed
particle as a whole. It is for this reason that the ions in a
plasma may scatter waves with a cross section of the order of
the Thomson cross section for scattering of electrons in
vacuum. In precisely the same way, the transfer of momen-
tum and energy in radiation effects may ocur to "a different"
particle, and the radiation effects in a system of charged par-
ticles may thus differ substantially from those in vacuum for
individual charged particles in external fields. Here we are
seeing a manifestation of collective processes in a system of
many charged particles.
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