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Recent experimental and theoretical investigations of frustrated triangular-lattice
antiferromagnets are reviewed. An analysis is made of phases with different structures: partly
disordered and double incommensurate states, helical configurations, triangular
superstructures, etc. These phases appear because of an instability of the conical high-
symmetry point in the Brillouin zone as a result of the dipole interaction, or they may be due
to other factors. An analysis is made of magnetic transitions belonging to new universal classes
as well as Berezinskii—-Kosterlitz—-Thouless transitions with an exponential decay of
correlations in the low-temperature phase. The chiral symmetry and the associated problem of
transition accompanied by simultaneous ordering of discrete and continuous components of
the order parameter space are considered for triangular antiferromagnets with different spins.
The spectrum of collective modes of some incommensurate structures is analyzed.

1. INTRODUCTION

It is well known that frustration effects play an impor-
tant role in various magnetic systems. In particular, triangu-
lar-lattice antiferromagnets are a typical example of such
frustrated spin systems. Recent experimental and theoreti-
cal investigations have made it possible to establish that they
manifest many properties which do not agree with the cur-
rent models of nonfrustrated materials. This difference is
manifested primarily by a wide range of phases and phase
transitions, which is the result of a strong degeneracy lead-
ing to a high sensitivity of such systems to various perturba-
tions.

For example, measurements of thermal and magnetic
properties' and neutron diffraction investigations® of the
triangular antiferromagnet RbFeCl; have revealed that in-
stead of a direct transition from the paraelectric to the com-
mensurate phase, there are two intermediate (on the tem-
perature scale) incommensurate phases. Moreover, these
very interesting results have revealed a new incommensurate
structure in which the periods of the two magnetization
components are incommensurate with the lattice period and
in relation to one another. As pointed out by Shiba,? incom-
mensurate phases in frustrated antiferromagnetic RbFeCl,
appear because of a new mechanism which is due to an insta-
bility of the high-symmetry conical point resulting from a
weak dipole interaction. This instability of the conical point
can be induced by an external field*® even in the case of such
triangular magnetic materials as CsNiF,, CsFeCl;, and
CsCuCl;, when in H=0 there are no incommensurate
phases or where they appear due to a different mechanism. *

In the case of other substances, such as transition metal
halides,'®!' the experimentally observed behavior is differ-
ent: The modulated-phase period increases with the tem-
perature T of a sample and a transition takes place to a com-
mensurate intermediate state. The point of transition
between different ordered states can then vary in a wide
range of temperatures 7 both under pressure'? and because
of partial replacement of some nonmagnetic ions with oth-
ers."’ The nonlinear mechanism of the variation of the struc-
ture wave vector with 7, related to a generation of higher
harmonics, is not observed in the case of these materials, but
in their case it is important to allow for the thermal renor-
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malization of the exchange constants,'* which leads to an
increase in the mode period with temperature. '®

Frustrations in rhombohedral antiferromagnets are
possible both in one plane and in a third direction. If frustra-
tions exist simultaneously along all three directions, then
systems of this kind (for example, the B phase of oxygen)
have helical structures exhibiting continuous degeneracy in
respect of the wave vector direction and magnitude. ***

Ising frustrated antiferromagnets CsCoCl; and
CsCoBr; exhibit anomalies of physical properties at two
temperatures.'®'” Calculations carried out using the mean
field approximation'® and also the cluster variational meth-
od'® demonstrate that one of the magnetic sublattices is dis-
ordered in an intermediate state. The Monte Carlo method
has been used®>*' and it has been found that such partly
ordered states are described by a mode with a phase which
varies randomly in space and in time. These results can ac-
count for the considerable fluctuations of the magnetic
structure with time exhibited by CsCoCl, crystals. '

Coupling between transverse components of the spins
in Ising-like Heisenberg antiferromagnets stimulates order-
ing of the magnetic sublattices. Therefore, cooling of these
compounds induces order of the longitudinal components of
the spins in all three sublattices. Moreover, further cooling
ensures additional ordering of the transverse components. *
It is interesting to note that in the limiting case of 7= 0 we
can expect nontrivial degeneracy of the ground state: The
angles between the three magnetic sublattices may vary but
the total angular momentum can still remain nonzero (and
direction-degenerate); this state is not disturbed even by lin-
ear excitations.

In isotropic and XY-like antiferromagnets the angles
between the sublattices are fixed and amount to 120°. The
compounds with 120° structures have been known for some
time.?>** Nevertheless, some new and interesting results ob-
tained recently for these systems (characterized by an ex-
tremely simple fundamental interaction) have not been
mentioned in any reviews. The properties of the phases and
the nature of the ordering process in these structures is in
many respects unusual, as found—for example—in the case
of two-dimensional frustrated antiferromagnetics with the
Heisenberg or XY spins. Thus, in the case of an isotropic
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Heisenberg antiferromagnet a phase transition occurs even
in zero external field, and in a low-temperature phase the
spin correlations decay exponentially (in the same way as in
a high-temperature phase). These two phases are distin-
guished qualitatively by Kawamura and Miyashita?? in
terms of a vortex function introduced by them: This function
is an analog of the Wilson loop in the problem of quark con-
finement in the lattice gauge theory.?>*° Interesting experi-
mental data on such systems have been obtained recent-
ly*'-* for a series of VX, compounds (where X = Cl, Br, I).
Triangular XY antiferromagnets are characterized by con-
tinuous and doubly discrete symmetries. Nevertheless, in
zero magnetic field these systems exhibit in practice a single
continuous transition because the interaction between two
possible types of topological defects (walls and vortices) re-
sults in coalescence (or at least extreme proximity) of the
critical points corresponding to the Ising and Berezinskii~
Kosterlitz-Thouless transitions.

Quantum effects are very important in frustrated spin
S = 1/2 antiferromagnets. Back in 1973 Anderson demon-
strated*’ that a magnetic quantum liquid may exist in Hei-
senberg antiferromagnets and the ground state of this liquid
can be regarded as representing an ensemble of randomly
distributed singlet pairs on a triangular lattice. Recent ex-
perimental investigations of a sample of NaTiO, con-
firmed*® the absence of ordered states and phase transitions
in systems with . = 1/2. In the case of Ising-like Heisenberg
antiferromagnets (S = 1/2) there are spin configurations
analogous to the classical ones and they exist in a certain
range of external fields,*” whereas in the case of XY antifer-
romagnets the correlation function shows a gradual decay at
T = 0 (Ref. 36).

Recent experimental and theoretical investigations
have enabled us to understand many interesting and unex-
pected properties of the systems under consideration with a
distinguishing feature of a high sensitivity to the type of in-
teraction (this is due to the frustration effects). We shall
first consider the likely structures and the behavior of the
spectrum of collective modes in systems with the dipole in-
teraction (Sec. 2). The substances with intermediate phases
which can be described in terms of the conical point instabil-
ity include AFeCl, compounds (A = Rb, Cs, T, NH;); in
the case of these compounds the triangular lattices are
formed from ferromagnetic chains and the exchange interac-
tion within these chains is much stronger than the antiferro-
magnetic interaction between them. An instability of the
high-symmetry point may also be observed in substances
formed from antiferromagnetic chains. However, in con-
trast to those with ferromagnetic chains, the dipole interac-
tion is now an order of magnitude less,*® so that the tempera-

ture ranges where incommensurate phases are observed (if -

they exist at all) are much narrower. In Sec. 2 we shall con-
sider in detail all possible phases of compounds RbFeCl,
and CsFeCl;, and also of compounds isomorphous with
them, such as CsNiF, and CsCuCl;.

Then, in Sec. 3 we shall consider frustrated antiferro-
magnets exhibiting a planar helical (spiral) state. In the case
of rhombohedral antiferromagnets of the NiBr, type the
state with a spiral appears only at low temperatures, whereas
in the intermediate range there is a commensurate antiferro-
magnetic state. In the case of other rhombohedral com-
pounds (of the 8-O, type) a commensurate intermediate
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state is absent and a state with a spiral exists throughout the
temperature range below the point of transition from the
paraelectric phase. At these intermediate temperatures there
is a continuously degenerate state with inequivalent spirals,
whereas at low temperatures where quantum fluctuations
are important, there is a state with a fixed wave vector of the
spiral.’” The same Sec. 3 deals with Ising frustrated antifer-
romagnets in the presence of additional exchange interac-
tions between the second-nearest spins (CsCoCl,,
CsCoBr;). Ising frustrated systems may also have triangu-
lar-superstructure states.’’

Transitions with all possible types of symmetry break-
ing in two-dimensional triangular antiferromagnets are con-
sidered in Sec. 4. The latter include both Heisenberg para-
magnets of the VCI, type with S = 3/2, as well as magnetic
substances such as NaTiO, and LiNiO, with .S = 1/2. They
all exhibit an extremely weak interplanar exchange interac-
tion. The results of theoretical investigations are compared
in this section with the available experimental data for a
planar quasi-two-dimensional antiferromagnet CsMnBr,
(Ref. 111). The review ends {Sec. 5) with a brief discussion
of future research trends.

2. INCOMMENSURATE STATES DUE TO THE DIPOLE
INTERACTION IN TRIANGULAR ANTIFERROMAGNETS

2.1. Instability of the conical high-symmetry point of
triangular antiferromagnet RbFeCl,. Phases with a double
incommensurate structure

Incommensurate magnetic structures usually appear in
crystals with competition between the positive and negative
coupling of the nearest to the second-nearest spins or when
the lattice symmetry admits the existence of the Lifshitz in-
variants in the expansion describing the free energy.”® How-
ever, frustrated triangular lattices may ferm modulated
phases due to a new mechanism related closely to degener-
acy of the conical high-symmetry point X in the Brillouin
zone.>® In the case of frustrated antiferromagnets of the
RbFeCl, type the degeneracy at the high-symmetry point K
may be lifted because of the dipole interaction.? This gives
rise not only to simple incommensurate phases, but also to
phases with an unusual double incommensurate structure
found experimentally in RbFeCl; (Refs. 1 and 2).

The compound RbFeCl, is an hexagonal magnetic ma-
terial with the crystal structure characterized by the space
symmetry group D ¢,. The Fe? * magnetic ions with XY-like
spins are situated along the ¢ axis giving rise to a triangular
lattice. An exchange antiferromagnetic coupling J,, is estab-
lished along the chains of these compounds, whereas a
weaker antiferromagnetic coupling J, applies between the
chains. The antiferromagnetic interaction in a triangular lat-
tice gives rise to a 120° structure consisting of three magnetic
sublattices (Fig. 1a). If we allow for the dipole forces, even
when they are much smaller than the exchange couplings J,
and J,, such a structure should not form at the temperature
T, of the transition from the paraelectric phase: quite differ-
ent spin configurations appear instead of it at intermediate
temperatures 7.

In fact, below the instability point 7", the wave vector Q
of the condensing mode corresponds to the smallest eigen-
value of the Fourier component of the interchain exchange
and dipole interactions
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Ay (Q) =7(Q) Bas+ Do (Q) 5 (2.1)
here,
J(Q) = — 2J,[cos (Qa) + cos (Qb)
+ cos(Q (a—h))] (1 <0), (2.2)

where a = a(1,0,0) and b = a(1/2,v3/2,0) are the funda-
mental translation vectors in the basal plane of the hexagon-
al lattice. A minimum of the function J(Q) occurs at a point
K in the reciprocal lattice space and this point corresponds
to Q = Qi =(47/3a,0,0). Contrary to J(Q), calculations
of the dipole tensor D,,; (Q), carried out by the Ewald meth-

od,’® show that after expansion as a series near the point X it

contains terms which are linearin q =Q — Q,:

Du=v4(§—n¢.), Duy=1mg, (2.3)

[ys = (guy)?/a’ & and 7 are numerical constants depend-
ing on the lattice constants c and ¢; D, differs from D,, bya
change of the sign in front of the term containing g, ]. There-
fore, the smallest eigenvalue A _ (Q) of the matrix 4,5 (Q) is
localized not at Q = Q,, but in the vicinity of the point XK.
The eigenvalues A | (Q) of the matrix (2.1) are shown in
Fig. 1b: two potential surfaces A | and A _ intersect at the
conical point K." Figure 1c shows the equipotential lines of
the lower branch near the point X, as well as the spin polar-
ization along the contour shown by the dashed curve. Mini-
ma of A_(Q) are located at three equivalent points®® with
the value Q = Q,, where the eigenvectors are polarized par-
allel to the wave vectors of the q =Q, — Q, type. The
points at the minima are separated from one another by a
barrier and the maximum value of the barrier height is found
at saddle points where ¢, = |Q, — Q, |. At these points we
have a different situation: the eigenvectors are polarized or-
thogonally to vectors of the q, type. The presence of such
singularities in the spectrum of A_ (Q) not only makes pos-
sible formation of a longitudinal modulation wave with q,
below the instability point of the symmetric phase 7', but
also allows formation of an additional transverse wave q, at
lower temperatures, when the value of the average angular
momentum becomes quite large.
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An increase in the ratio ¥, /|J,| shifts the position of Q,
in Fig. ic from the point K to the point M, which corre-
sponds to the antiparallel orientation of the spins.

We shall now consider consecutive phase transitions
applying the Landau expansion to the free energy, accurate
to within terms of the fourth order in respect of the magneti-
zation M, (a =x, p):

F= j dR [g ;ﬂ Ma (R) g (—iV) My (R)

\2
+6 (I M| 6>0). (2.4)
Since in the case ¥, € |J’| the wave vector lies in the vicinity
of the point X, it is convenient to express M, in the form

M. (R) =1, (R)exp(iQ.R) +cc. (2.5)

where the complex variables ¢, are the components of the
order parameter. After substitution of Eq. (2.5) into Eq.
(2.4), the free energy can be expressed in terms of ¥, as
follows®®:

r‘=5 dR {2‘, Vo Gap (Qe— V) ¥ + 14 e " 4| by [P
R G,ﬂ

208 ¥ 0 (2.6)
where a,,(Q) =4, (Q) +aTb,, is the reciprocal sus-
ceptibility tensor (a > 0). An analysis of possible structures
on the basis of Eq. (2.6) shows that cooling induces consecu-
tive phase transitions to three different states. First of all, at
an instability point T, of the magnetic phase a partly ordered
state appears: It has one spin component and is character-
ized by

Py (x) =, exp (iq1x),

| o) =[a (T, —T)(126) 1]/, 2.7
o_2m
4 YA

FIG. 1. a) Ground state of a triangular antiferromagnet, 120° struc-
ture. b) Eigenvalues 4 , (Q) of the potential surface in the vicinity
of the high-symmetry point Q, . ¢) Equipotential lines representing
A_(Q); Q, and two other equivalent points correspond to the min-
imum of A_(Q). The arrows on the dashed contour indicate the
spin polarization.*®
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At lower temperatures—below a point T,—the ther-
modynamic state has two ordered spin components. In this
case we can expect not only a longitudinal modulation wave,
but also a transverse wave ) = @ ¥ exp(ig3x), where

| ol |2 = — [3ay, (Qz) — 2a:x (Q,)} (206) 2.

[The amplitude @{” of the longitudinal wave y?
= @  exp(ig’x) is obtained after replacing the subscripts
x,yand 1,2 in Eq. (2.8) with y, x and 2, 1, respectively.] In
the state characterized by g% and 43 the two spin projections
have different periods and these periods are incommensu-
rate with the lattice period and also relative to one another.
This type of magnetic ordering is new and it reflects the an-
isotropic nature of the dipole interaction (and also the fact
that the double incommensurate structure could not exist in
principle without an instability of the conical high-symme-
try point induced by the dipole forces).

At even lower temperatures, when a critical point T is
reached, there is finally a transition to a commensurate 120°
state; in this three-sublattice state the complex amplitudes
are related by ) = + iy?.

It follows from neutron diffraction investigations® of
RbFeCl, that it exhibits three phase transitions at 2.5, 2.35,
and 1.95 K, and that the spin polarizations of two incom-
mensurate structures agree with the above theory. At 2.5 K
the experimental values ¢, = ¢? for the longitudinal modu-
lation wave amount to® 0.16 g ~ !, whereas the values of g,

= g9 for the transverse wave are’ 0.11 ¢~ ' at T=2.3 K.
These results are close to the theoretical values®: ¢% = 29v,/
3|J;] = 0.18a~ ! (we are assuming here that y, = 0.027 K,
Ji=—05K,7=5)and ¢ =0.15a"".

(2.8)

2.2. Amplitude and phase modulations. Collective modes in
RbFeCl,

In an intermediate state, when only one spin component
is ordered, the period of the longitudinal modulation wave
and its sinusoidal profile are not affected by cooling. How-
ever, after transition to a state in which both spin compo-
nents are ordered, the experimental results reported for
RbFeCl, indicate a temperature dependence of the wave
vectors of the modes.? The mechanism responsible for the
temperature dependences is the interaction of the longitudi-
nal and transverse modes, which lowers additionally the free
energy. The nonlinear relationship in Eq. (2.6)—represent-
ed by the cross terms (¢299°)% and (¢2'¢2)’—leads to a
change from a purely sinusoidal structure to a soliton one on
increase in the intensities of the induced harmonics. The re-
sultant configurations are characterized not only by a spatial
variation of the phase, but generally also by spatial changes
in the amplitude of a nonlinear wave.”

The general solution of the equations obtained on vari-
ation of F can be obtained by analogy with Refs. 57-59,
where investigations were reported of higher harmonics of
incommensurate magnetic structures induced by an external
field or by uniaxial anisotropy. In the temperature range
T, < T<T, this solution is of the form™:

Ph(x) = e9r @l (x), W (x) = ey (v),
N (2.9)
0 (x) = 3 qg” exp[—2mi(q, + g2) ¥),

ma==N
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where the amplitudes of the harmonics @ (™, as well as the

a

wave vectors ¢, and g,, are found by minimization of F:

(0)* H(0)*
G = — e, 9y U~ gl
’ . L Y R )
Aoy (2Q,—Qy)
202 g

gl P

9, =4, — (91 — G5 (2.10)

Similar expressions for @ {™ and g, are obtained after re-
placement of the subscripts x, yand 1, 2 in Eq. (2.10) with y,
x and 2, 1, respectively. Cooling reduces the values of the
wave vectors ¢, and ¢,, as indeed confirmed experimental-
ly,> and the rate of reduction increases if the dipole forces
increase. Figure 2 shows the phase and amplitude of a longi-
tudinal wave ®? (x) in the case when §,=¢,/¢% = 0.5. The
dependence of the phase on the spatial coordinate x can be
described by a step function and is similar to the depen-
dences reported for other physical systems.®> Domain
walls (solitons) are then due to a change in the phase and in
the amplitude. In the region of domain walls the amplitude
decreases following a small peak. Within the domains them-
selves the state is practically commensurate. The wave peri-
od, governed by the distance between the domain walls, is
7/(q; +4,). A similar soliton form is exhibited by the
phase and amplitude of the transverse wave ®, (x).

We shall consider the temperature dependence of the
collective modes for two different incommensurate states.
Since near the phase transition point the modulus of the vec-
tor of the local magnetic moment is not conserved, the dy-
namic properties of the system are governed not only by
precession, but also by vibrational motion.®*®! The contri-
bution of the latter type of motion may give rise to new
branches in the collective mode spectrum (the case of a ho-
mogeneous antiferromagnetic resonance is discussed in
Refs. 80 and 81 and helical structures are considered in Ref.
66). The vibrational and precession parts of the kinetic ener-
gy K are described by terms which are, respectively, qua-
dratic and linear in terms of £, (Ref. 81), where
E. (R =1, (R,2) — ¢S (R) represents small deviations
from the equilibrium states, which are dependent on the spa-
tial coordinates and time. However, in the limit of strong
anisotropy, the precession is suppressed.®® Therefore, it is
clear that the precession should be suppressed also in
RbFeCl, because of the planar configuration of the spins
(XY-like spins), so that the behavior of the collective modes
is governed by the vibrational motion and the kinetic energy
of such motion is-given simply by

K=n(aR (&P + & 1),

where u is the effective mass of fluctuations in the case of
such vibrations. The dynamic behavior of the quantities £, is
described by complex-conjugate equations

(2.11)

where L = K — Fis the Lagrange function.

In the temperature interval T, < T < T, where the in-
commensurate structure is described by just one component
[#° (x) = @, exp(ig)x)] different from zero, the Lagrange
equations (2.11) are™:
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FIG. 2. Spatial dependences of the phase and amplitude of a fongi-
tudinal modulation wave ®%(x) = A(x)exp[if(x)] when §,=¢q,/
g} = 0.5 (A is the amplitude corresponding to a commensurate
120° state).

v
g 204)%

P'ga + 2 Aop (Qr — V) & 4 4b(3 — 28,4) @oe E;
B

+ 8b(3 — 28,4} | Po |* £ =0. (2.12)
The system (2.12) contains a periodic coefficient in front of
&* [or in front of £, in the second pair of equations, which
are complex conjugate to Eq. (2.12) ], which however disap-
pears if we use the transformation £, — £, exp(ig%x). Intro-
ducing the Fourier components &, (k,w) in equations of the
(2.12) type, we find that the expressions for the four eigen-
frequencies at k, = 0 are found easily and this corresponds
to vanishing also of the off-diagonal components a, in Eq.
(2.12). 1t follows that the equations for the longitudinal £,
&* and transverse £, £ components of the fluctuations be-
come decoupled.

The spectrum of the collective modes for purely sinusoi-
dal states ¢° (x) is shown in Fig. 3a. The frequency spectrum
o(k), wherek = Q — (Q, + q¢), does not have discontin-
uities. In view of the invariance relative to an arbitrary
change in the initial phase in ¥ (x) = |@,|exp (igix + a)
the excitation of one of the branches of the longitudinal com-
ponents (w2 _ ) in the vicinity of k, = 0 is a phason: At the
point k, =0 the frequency of the branch w2 _ vanishes
(Goldstone mode) throughout the temperature range where
an equilibrium state with the longitudinal modulation wave
¥ (x) can exist. The frequencies of the other branch (w2, )
increase as a result of cooling (amplitudon mode—see Refs.
67 and 68). An increase in k, causes the two branches to
intersect a phase (soft) mode @) of the transverse compo-
nents £, and £ *. At the point k, = ¢} + ¢3 (i.e., when Q,

= @0, — 4> in the initial system of coordinates) the soft
mode becomes unstable at 7= T, in this case there is addi-
tional compensation of the transverse modulation wave
¥ (x).

In a new state with a double incommensurate structure
the mode spectrum is of the band type and it has discontinui-
ties at the wave vectors k, = n(q, + ¢, ); this spectrum is
obtained because an unavoidable periodic coefficient now
occurs in the transformed Lagrange equations (2.11),1i.e.,in
the equations” where the substitutions &, =&, e?*, £,
—&,e~ """ are made. This situation resembles systems in
which modulation of a homogeneous state appears because
of the competition between the exchange interactions. In
systems of this kind the mode spectrum is also of the band
type but only for one of the two main modulated structures
which is a simple helix and exhibits a longitudinal spin wave
(LSW), namely for the last LSW structure of Ref. 66, where
however—in contrast to the structures considered here—

discontinuities in the spectrum are due to the single-ion ani-
sotropy.

The spectral pattern of a double incommensurate struc-
ture is shown in Fig. 3b using the extended Brillouin zone
scheme. In view of the invariance of the changes in the initial
phases, the dispersion curves for both components of the
order parameter now contain two Goldstone modes. A nu-
merical investigation of the spectrum of the collective modes
carried out using finite-difference relationships for the coef-
ficients in the Bloch function®® shows that a reduction in
8, =q,/q° and 8, = ¢,/q> increases greatly the discontinui-
ties at the edges of the first Brillouin zone; also within the
first zone at §, =&, = 0.65 the frequencies of the two lower
modes approach zero throughout the interval
0<k, <¢g; + ¢q,, which is due to a reduction in the interac-
tion between solitons as a result of an increase in the dis-
tance. These modes represent vibrations of domain walls;
they are analogous to the modes of a zero-gap branch in the
case of systems investigated earlier.***> The upper modes in
the first Brillouin zone correspond to vibrations of the thick-
ness of domain walls.

The frequency spectrum of RbFeCl, was first described
in Ref. 82. The neutron scattering measurements reported
for the intermediate phases were in qualitative agreement
with those calculated and plotted in Fig. 3.

2.3. External-field-induced sinusoidal phases in RbFeCl ;-
type compounds (CsNiF;, CsFeCl; CsCuCl;)

A magnetic field H, applied in the plane of the triangu-
lar lattice, deforms the surface of the eigenvalues 1, (Q).
Depending on the orientation of H, the nature of the equipo-

FIG. 3. Spectrum of the collective modes. a) Purely sinusoidal
incommensurate structure when only one of the spin compo-
nents is ordered (the continuous curves represent frequencies
with different values of k, when k, = 0 and the dashed curves
correspond to k, #0); A=A —-(Q;)—4A—(Q)
= (n74)*%J,| is the depth of the potential well. b) Double
incommensurate structure with simultaneous ordering of both
spin components in the case when §, =68, = 0.97.
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FIG. 4. a) Phase diagram of RbFeCl, (Ref. 56) when the field
is applied along the y axis; the continuous curves represent
second-order transitions, whereas the dashed curves corre-
spond to first-order transitions; C is a commensurate state
(120° structure), I/C, is an incommensurate state (with a lon-
gitudinal modulation wave characterized by ¢, ), IC, is a dou-
ble incommensurate structure (with longitudinal and trans-
verse modulation waves characterized by ¢, and g¢,,
respectively), Pis the paramagnetic phase . b) Phase diagram
of CsNiF; (Ref. 4) (with the field H parallel to the x axis); Cis
a commensurate state with an antiparallel distribution of the
spins; /C is an incommensurate state with a modulation wave
vector ¢, .

.tential lines shown in Fig. 1¢ changes in such a way that any
state with the point q on the dashed contour becomes stabi-
lized.*® For a fixed direction of the field, the stabilization of a
given point is governed by the spin polarization, which ro-
tates smoothly in the case of displacement along the dashed
contour. Therefore, if H is parallel to the y axis, a state with
q, becomes stabilized and, vice versa, when the field orienta-
tion is parallel to the x axis, the state with q, becomes prefer-
able. In finite fields the states with q; and q, are in the form
of a fan structure, because (in addition to sinusoidal waves)
the constant component of the magnetization is also in-
duced. If H is sufficiently high, a modulated state is possible
also at T=0. Figure 4a shows the phase diagram of
RbFeCl, for a magnetic field applied along the y axis®®; the
line of transitions between different incommensurate phases
includes a tricritical point. The 7-H phase diagram is in
qualitative agreement with the experimental data® the fan
structure is observed in strong fields, whereas the double
incommensurate structure is observed only in weak fields.

In the case of the hexagonal magnetic compound
CsNiF; (which is isomorphous with RbFeCl;) the experi-
mentally detected® ground state is a structure with an anti-
parallel orientation of the spins in the basal plane (one of the
three equivalent states with Q,, is shown in Fig. 5a). An
important role in the formation of this structure is played by
the dipole interaction,” because in the case of CsNiF, the
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value of ¥, is of the same order as J,. Cooling induces a
transition from the paramagnetic state to a state with Q,,
which is realized in this compound immediately without the
formation of an intermediate incommensurate phase. How-
ever, in an external field H, oriented along the x axis, a mod-
ulated phase may appear and it has a wave vector Q,. The
change in the spin structure on increase in H is shown in Fig.
5bfor the case when T = 0. Infields lower than H, thereisa
two-sublattice state with a nonzero component of the spin
not only along the x axis, but also along the y axis; when a
field reaches the critical value H;., a transition to a fan
structure involves an abrupt change in the homogeneous
magnetization. At finite temperatures the phase diagram has
the form shown in Fig. 4b.

The ground state of another isomorphous crystal
CsFeCl, differs from that of RbFeCl, because it is nonmag-
netic since the single-anisotropy represented by the param-
eter D = 15.8 K (Ref. 71) is larger than the intrachain ferro-
magnetic coupling constant J, = 7.4 K (Ref. 71); in this
case the interchain antiferromagnetic coupling constant is
J; = — 1.8 K. Neutron diffraction studies of this crystal
have demonstrated that in an external field parallel to the ¢
axis there are Bragg peaksat 7= 0.7 Kif H> 3.8 T In fields
above such critical values there are incommensurate phases
(analogous to the phases reported in Ref. 2 for RbFeCl; in
H = 0) with their wave vectors Q close to the high-symme-
try point K. Cooling destroys the satellites near the high-
symmetry point K and a 120° structure appears in the mag-
netic field. These effects can be explained”* allowing for the
correlation effects leading to a situation that in a field ap-
plied along the ¢ axis the conical high-symmetry point be-
comes unstable. In the random-phase approximation the re-
sults of calculations of the critical fields” are in good
agreement with the experimental data.’

X-ray and neutron diffraction investigations demon-
strate clearly that the hexagonal crystals of CsCuCl; un-
dergo a structural phase transition”" 7" associated with a he-
licoidal displacement of the Cu®* ions at 423 K. Below the
transition point from the paramagnetic phase (10.7 K) the
antiferromagnetic interaction between the chains in
CsCuCl; induces a triangular (120°) magnetic structure in
the basal plane and a strong exchange coupling within the
chains, together with a weak anisotropy described by the
Dzyaloshinskii interaction, gives rise to a helical structure
modulated along the ¢ axis.”® Therefore, in contrast to
RbFeCl,, this particular magnetic crystal has no sinusoidal
structure because it is suppressed by the dipole mechanism.

For arbitrary relationships between the dipole and the
Dzyaloshinskii interactions, the latter described by

FIG. 5. Spin structures of incommensurate and
commensurate states of CsNiF; (Ref. 4): a)
ground state in zero field; b) states in different
fields H along the x axis (7= 0).
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#p = D) Di;[S:Sl:
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(because of the crystal symmetry the vector D,; has only one
component D), the presence of a given structure which ap-
pears at an instability point 7, of the symmetric phase de-
pends on the relationship between the intrachain and inter-
chain exchange constants J, and J,. The eigenvalues of the
Fourier components of the total Hamiltonian have the fol-
lowing form in the approximation quadraticin q = Q — Q,,
(Ref. 78) (it is assumed here that the constants ¢ and ¢
amount to unity):

he(Q=CHJogz + % J\q% & [(Weg L) + (2Dg,)2?,
(2.14)

(2.13)

where Cis a constant which depends on the exchange param-
eters Jy, J,, and ¥,4; D= |D{,, || Hence, it is clear that if
D =0, aminimum of the function A _(q) occurs on a circle
¢} =q2 + ¢} = (29v4/3J,)?, where g, =0. An allowance
for the terms which are cubic in q in Eq. (2.2) for J(Q) lifts
the continuous degeneracy of A_ around Q,, so that—as
expected—there are three equivalent points q, shown in Fig.
1b. Conversely, if ¥, = 0, then a minimum of A _ (q) is ob-
tainedwheng, = D /J,,q, = 0.Figure 6ashows the range of
existence of various phases which appear below the transi-
tion point T,. For a fixed value of J, / |/, | a specific spin
configuration is formed and the nature of this configuration
depends on the ratio D /nv,. If the inequality *’

D >( Jo )l/z
vy~ \314i|

is satisfied, a sinusoidal wave in the basal plane does not
condense: instead, a helix with a modulation period along
the ¢ axis is observed. The condition (2.15) is obeyed well by
a crystal of CsCuCl,, since according to the experimental
data reported in Refs. 77 and 79 this compound is character-
ized by Jo/|J,| =8, D /ny, =20.

In the case of those compounds which satisfy the in-
equality (2.15), a helical structure may not appear at allin a
magnetic field.® At values of H above the critical the field
induces an unstable conical high-symmetry point, which is
manifested by a shift of the curve in Fig. 6a in the direction of
the helical phase. Consequently, the existence of a sinusoidal
wave with a modulation period on a triangular lattice be-

(2.15)

J A
T7,1

3ot

&
207 I/
c AL N
as €
g
7
0 1 2 3sny " r
a b

FIG. 6. a) Range of existence of incommensurate phases which appear as
a result of instability of the paramagnetic phase of CsCuCl, (# = 0); IC,
is a sinusoidal incommensurate structure in the basal plane and ICy, is a
helical structure with a modulation period along the c axis of the hexagon-
al lattice. b) Phase diagram of the same compound.
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comes possible below the temperature of the transition from
the paramagnetic phase. The critical value of the field in the
basal plane is then

H=2|JlIL Dr (g’
¢ NN

Estimates based on Eq. (2.16) obtained for a CsCuCl, crys-
tal give H, =~0.3 T, which is in agreement with the experi-
mental values. However, further cooling makes the sinusoi-
dal state (in an external field H > H,) thermodynamically
unstable at the temperature 7= T, below which the free-
energy minimum corresponds to the helical phase.®® There-
fore, for the compounds satisfying the inequality (2.15) we
can expect, depending on temperature, two different incom-
mensurate phases: a helical one with g, #0 and a sinusoidal
one with g, #0 (Fig. 6b).

} (2.16)

3. STATES OF THE PLANAR SPIRAL TYPE AND
TRIANGULAR SUPERSTRUCTURES

3.1. Hellcal configurations in transition-metal halides and in
compounds similar to the g phase of solid oxygen

In some transition-metal compounds, such as the rhom-
bohedral antiferromagnet NiBr, (with the space group
D3,), thermal fluctuations induce a transition of a helical
structure to a commensurate intermediate state.’”'* Reso-
nance measurements have established'' that such centro-
symmetric compounds exhibit a modulated structure as a
result of competition between the exchange interactions of
different signs. Villain'* used the example of classical planar
spins on a square lattice to demonstrate the importance, in
the temperature-induced changes of the wave vector, of the
structure of the thermal renormalization exchange con-
stants due to the interaction between spin waves. Such renor-
malizations occur even in the self-consistent harmonic ap-
proximation with a temperature-dependent effective
Hamiltonian. In the case of the XY spins this approximation
is equivalent to a variational procedure® applied to the prob-
lem of a nonlinear response of a two-dimensional isotropic
nematic; the results reported in Ref. 88 agree or are close to
more rigorous results by Berezinskii’® obtained for the same
physical problem.

In the case of easy-plane magnetic materials we can ex-
pect quantum fluctuations to reduce further the wave vector
of the modes. Therefore, in contrast to classical planar
spins'* (and similar systems®®) it is necessary to write down
the temperature-dependent harmonic Hamiltonian in terms
of two (canonical) variables 6; and s; which represent the
generalized coordinates and momenta®*®°;

T = D) (ax |0 |2+ b | st ).
k

The fluctuating quantities 8; and s? represent small devia-
tions at a site / of, respectively, the azimuthal angle @, of the
spin which deviates from the thermodynamic-equilibrium
values of the phases of the helix Q-R; and of the spin projec-
tion S7 which deviates from the constant component of the
spin m along the field applied parallel to the ¢ axis, i.e.,
6, =¢; — QR;, st =857 — m;a, and b, are the variational
parameters.

The wave vector of the helix Q, the constant component
of its spin m, and the parameters g, and b, are found from a
system of equations obtained as a result of minimization of

(3.1
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the free energy'® carried out using the test Hamiltonian of
Eq. (3.1):
S TRy sin(QRy) =0, m=-—H

e 2D+7Ti—1, "

ax=(T5—T5) (sz_mz__Nﬂqui,p)), (3.2)
<

b = 73—Jk+D: 715( =%(-7;1+k+ -TQ—k);

here, D is the anisotropy constant of the easy-plane type
(D> 0); N is the number of spins; J, = Ei_j.7,.j exp(/kR;)
are the Fourier components of the exchange constants renor-
malized by thermal fluctuations:

'J?f=ijexp[—N-1§<|ekl2>(1—e""“"")}. (3.3)

The correlation functions of the fluctuating quantities in
Eqgs. (3.2) and (3.3) are obtained allowing for the zero-
point vibrations as follows:
®, ®, (2] (2]
82 =ﬁcth 2—; sk 2 =¢cth-2—;:
[@ =2(a, b, )""? is the spectrum of spin waves].
In the case of NiBr,-type compounds the exchange in-
tegral for the nearest spins J, on a triangular lattice is posi-
tive, whereas for the second- and third-nearest neighbors the
exchange integrals J, and J, are negative (Fig. 7a). More-
over, the exchange integral for the nearest spins in the neigh-
boring layers of the rhombohedral lattice is also negative
(J' <0).Sincethetriangular lattice plane in NiBr, coincides
with the easy magnetization plane, in systems of this kind the
wave vector of the helix is in the plane of polarization of the
spins (planar spiral state). Figure 7b shows the dependence
of mon T for NiBr,: It is similar to the dependence found
experimentally.” A graph of the dependence of Q on T for
two initial values ("= 0) of @y = [2(4[J5| — J,)/3J,]11/?
amounting to 0.07 and 0.1 is plotted in Fig. 7¢ for J, =0.
The resultant curves allow for the thermal and quantum
fluctuations of both & and 5*. An increase in H reduces the
temperature range of existence of this spiral structure (this
follows from a comparison of the lower curves plotted for
Q, = 0.07); this reduction in the temperature range on in-
crease in the field along the ¢ axis is due to an increase in the
phase fluctuations because of a reduction in the spin projec-
tion in the basal plane. However, an increase in the inter-
planar interaction increases the range of existence of the in-
commensurate phase (which in turn follows from a
comparison of the upper curves representing the case when
Qo = 0.1). These dependences are in qualitative agreement
with the experimental data reported in Refs. 9, 10, and 13.
At T =0 the renormalization of the exchange integrals in
Eq. (3.3) is entirely due to quantum fluctuations: the value
Q = Q,decreases both on increase in D and on increase in H.
If the wave vector of the helix is sufficiently small, the exter-
nal field can destroy the helical structure even at 7= 0.
The stability of the incommensurate states depends
strongly not only on the dimensions of space, but also on the
nature of the lattice (triangular or square) on which spins
are distributed in the layers of a crystal, because the spec-
trum of long-wavelength fluctuations may be very different
for the states formed on these different lattices. For example,
in the case of layer triangular-lattice systems the long-range
order is observed (in contrast to square lattices) along cer-

3.4)

878 Sov. Phys. Usp. 32 (10), October 1989

FIG. 7. a) Constants of the exchange interactions between the spins on a
triangular lattice. b) Temperature dependence of the magnetization m
along the ¢ axis of the rhombohedral lattice (weak fields); J,/J,
= —0.255, J'/J, = — 0.1, D/J, 0.05. c) Temperature dependences of
the wave vector of a planar spiral (D /J, = 0.05); the continuous curves
apply to the field # =0 when J'/J, = — 0.1, whereas the dashed curve
corresponds to H /J,§ =0.01andJ'/J, = — 0.1, and the chain curve cor-
responds to H =0and J'/J, = —0.15.

tain directions, whereas along other directions the correla-
tions decrease in accordance with a power law."

The competition between the exchange interactionsin a
rhombohedral crystal can in this case be solely due to the
presence of a coupling between the nearest spins: the cou-
pling is antiferromagnetic J, ( <0) in the basal plane and
interplanar J' (of any sign). For 0 < |J'| < 3|/,|, the state
with the minimum energy is a helical configuration of spins.
Moreover, the ground-state energy is continuously degener-
ate relative to the wave vector Q. of inequivalent helices
differing from one another in respect of the orientation and
of the value of @, itself. If [J’| €3|J,|, the equipotential lines
of the degenerate states represent turns on the surfaces of six
cylinders. In the three-dimensional Q space these cylinders
have identical radii 2|j’| /v3a, wherej = J'/J |, and the same
heights 67/c; the axes of these cylinders are parallel to the ¢
axis. These axes intersect with the 0, , O, plane (the coordi-
nate axes are oriented so that @, is parallel to the translation
vector @ of the triangular lattice) at six equivalent sites
(0, + 47/3a), ( + 27/V3a, + 27/3a). Near one of them (0,
4m/3a) the equations for the degenerate values of Q, are**

. i L‘QZ
Ql=— /N T
V 3a 3
Z

y 4 Qf/ [Q:,(

e 0 L 2L cos —2 (3.5)
Q. 3a + V 3a 3
MLl

Ifj” = 0, the ground state reduces to a 120° structure without
any dependence on the spin orientations between the differ-
ent layers. However, in the case of even infinitesimally small
but finite values of j', we find that Q, is degenerate and a
phase dependence is observed for neighboring layers. If
li'| =1, the cylinders transform continuously into prisms
with a triangular base (projections of the lines of degeneracy
on the Q,, Q, plane are plotted in Fig. 8 for different values
of /'). When the values of /' lie within the range 1 < |/'| <3,
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FIG. 8. Projection of the lines of degeneracy onto the Q,, Q, plane plot-
ted for different values of j/ (Ref. 48): A) f =0.15; B) j = 0.5; C)
JS=08D)/=LE)j=12F)j/=2G)J' =28.

the equipotential lines consist of seven parts. In the limit
|/'| =3 the radii and heights of the cylinders (of the central
one and of the six other cylinders consisting of one-third of
the cylindrical surface) tend to zero since for |/'| = 3 we can
expect a homogeneous state corresponding to the point
Q% = Q% =0, as well as six other points equivalent to the
first one. However, the value of ¢, depends on the sign of j':
if / = — 3, then Q% =0, and conversely if /' =3, then
QL =3n/c

It is interesting to note that the projections of the lines
of degeneracy on the @, , Q, plane resemble a pattern of the
distribution of the effective exchange field created by ions
with the reversed spins in the “mixed” state, observed in
strong magnetic fields, of antiferromagnetic FeCO,, as re-
ported by Dudko et al.** Moreover, they resemble also the
lines of force of incommensurate structures in dipole sys-
tems with a weak exchange interaction.*?

In the absence of anisotropy the spin-wave spectrum
contains a soft mode for all the values of Q,, along a line of
degeneracy. The presence of a “soft line” destroys the long-
range order at any finite temperature.*® However, it is found
that an allowance for the zero-point vibrations lifts the con-
tinuous degeneracy of the ground state relative to Q, and
leaves only a discrete state.* Therefore, even in the isotropic
case the quantum effects restore the long-range order. Nev-
ertheless, at sufficiently high temperatures when the quan-
tum fluctuations are unimportant, the state of the system is
similar to the state with “degenerate helices.” In fact, recent
calculations®” demonstrate that quantum fluctuations in-
duce a phase transition in systems of this kind; a state with
inequivalent helices then appears in the intermediate phase.

An example of a rhombohedral system which can mani-
fest these properties is the S phase of solid oxygen.?*®* An
analysis of thermal and magnetic properties of this com-
pound led Loktev®® to put for the first time the hypothesis
that the magnetic structure of -0, represents a three-sub-
lattice noncollinear {canted) antiferromagnet. The 8 phase
of oxygen represents a molecular crystal which is a planar
(XY) magnetic material with the dominant antiferromag-
netic coupling J, between the O, molecules in the basal plane
and a weak coupling J’ between the planes.*® Neutron scat-
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tering experiments carried out on polycrystalline sam-
ples®*? revealed a wide peak in the vicinity of the high-sym-
metry point Q, correspondingtoa 120° structure. The width
of this peak is independent of temperature, and it follows, as
demonstrated by the calculations in Ref. 48, that it is gov-
erned by the minimum and maximum values of Q_ for “de-
generate helices.” The limits of the temperature of the tran-
sition to a state with a fixed wave vector of the helix, i.e., toa
state where quantum fluctuations‘are important, shows that
in the case of S oxygen we have T, = 14 K (Ref. 37). How-
ever, at this temperature the rhombohedral lattice of the 8
phase is unstable: Instead a monoclinic lattice (a phase) is
observed between 0 and 24 K.

3.2. Triangular domain superstructures. Partly disordered
states in CsCoCl; and CsCoBr;

In this subsection we shall consider Ising spin systems
with triangular lattices. We shall first assume that a triangu-
lar lattice is formed by chains (it is hexagonal) and the inter-
action within the chains is ferromagnetic (J,> 0). In an ex-
ternal field the ground state with nonzero exchange
constants J, and J, (J, = 0) was reported in Refs. 93 and 94.
In the case of frustrated Ising systems when the antiferro-
magnetic coupling (J, <0) is established between the near-
est spins on a triangular lattice and the second-nearest spins
are characterized by J, 20, the phase diagram is of the kind
shown in Fig. 9. At zero temperature, depending on
h=H/|J||anda = J,/J,, we can expect six different phases
with the unit cells (and their designations) shown in Fig. 9;
two configurations (3 X3 and 3X 1) are energy-degenerate:
the degeneracy is lifted if we assume that, for example,
J3#0.

At an interface between the 3X3 and 2X?2 phases,
where the condition H = 2J, — 6J, is satisfied, we can find a
domain wall within which the energy vanishes. In the pres-
ence of a domain wall within the 3 X 3 structure the energy of
its formation (per unit length) is*":

Eps =§(~H+2J1_6J2). (3.6)

The continuous lines in Fig. 10a represent the only domain
walls which have zero energy at the interface between the
3X 3 and 2 X 2 phases. This periodic distribution of the walls
gives rise to commensurate higher-order structures in such a

FIG.9. Phase diagram at temperatures close to absolute zero, showing the
Ising spins on a triangular lattice (A = H /{J,|, @ = J,/J,). The unit cells
of the spin structures for each of the phases in the ground state are shown
directly in the figure; the open circles and the black dots represent S = 1
and S = — 1, respectively. The 3 X 1 and 3 X 3 phases are energy-degener-
a‘e.94,103
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FIG. 10. ) Triangular domain superstructure with
Q = 4/11; the domain walls are represented by con-
tinuous lines. b) Phase diagram for J, = 1717 K,
H=235K,and J, +J, = —0.275H (Ref. 51).
Here, T'is in kelvin.

way that they form a triangular domain superstructure. Fig-
ure 10a represents a long-period structure with Q = 4/11
(4/11 structure) for which the largest value of the Fourier
component (with the exception of the constant contribu-
tion) is localized at' + @ K, with Q@ = 4/11, where K, is the
reciprocal lattice vector; we can see from the figure that the
2 X 2 structure is realized partly near the points of intersec-
tion of the domain walls. In general, different triangular su-
perstructures can form with @ = n/(3n — 1), wheren =1,
2,3, ... . In terms of this notation the 2 X 2 structure is char-
acterized by @ =1/2 (n=1) and the 3 X3 structure by
Q = 1/3 (n = o). The energy of such states per one site is

E (n) =E (o) + mEDB,
where E(0) = —Jy— (H +J, — 3J,)/3 is the energy of
the 3 X 3 structure. All the spin configurations characterized
by Q=n/(3n—1) are degenerate when H =2J, — 6J,
(Epg = 0). We note that the additional energy due to the
intersection of domain walls also vanishes in fields H which
correspond to the interface between the 2X2 and 3X3
phases.

If T 0, we can expect triangular superstructures to be
stabilized by an increase in entropy. If, moreover, directly
below the transition point of a paramagnetic phase the stable
structures are described by the wave vector + QK with
cos 2mQ = — (J, + J,)/2],, ie., if Q corresponds to the
maximum value of the Fourier component of the exchange
interactions J(Q), we can expect such modulated states to
become stabilized in a wide range of temperatures.

Minimization of the free energy

=— S IR RY(SR) (SR

R.R

(SR
\' M (x)dx,

(]

—H (SRY+TY (3.8)
R R

written down allowing exactly for the intrachain interaction
(on the assumption that |Jo|> [J;],[J,|) where M ! is the
inverse function of

M (x) =shx.[exp(—2|J,}T-") +sh?(x) ]2, 3.9)

has been carried out for the structures with @ = n/(3n — 1)
and for those with Q = m/I(n, m, and / are integers). Figure
10b shows the phase diagram obtained as a result of numeri-
cal calculations (n=1, 2, ..., 7 and «o; m <I<14); in the
shaded region there are structures with Q =n/(3n — 1)
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characterized by n>8. The dashed line in the same figure
corresponds to zero of the free energy of domain walls. At
T #0 the 3 X3 structure is still degenerate with the 31
structure. The state with Q = 5/13 is observed at sufficiently
high temperatures. This is due to the fact that this state does
not belong to the class of degenerate states characterized by
@ = n/(3n — 1). Naturally, other structures not considered
in numerical calculations can also appear. However, their
existence is for these reasons possible only at high tempera-
tures.

Near the critical point an analysis of the structures car-
ried out on the basis of the free energy written in the form of
the Ginzburg-Landau expansion shows that if 0~ 1/3, we
still have a lattice of domain walls where the 3 X 3 structure
is obtained.

Equation (3.8) can explain, for example, the main
mechanism responsible for the existence of a modulated
structure in such a compound as superionic conductor -
LiAlSiO,. This compound has a hexagonal lattice and the
sites in this lattice may be occupied by Li. Neutron-diffrac-
tion experiments®*°® have shown that in the case of Al and Si
layers alternating along the c¢ axis the ratio of the probabili-
ties of finding Li in the Allayers differs from the correspond-
ing probability for the Si layers and the two probabilities are
in the ratio 1/3. The disordered Li atoms form stable states
as a result of cooling. For example, in the commensurate
state we can expect the 2 X 2 structure in which every second
site on a triangular lattice is occupied by Li and a modulated
phase exists in the intermediate range of temperatures 7.
The experimental data for 8-LiAlSiO , agree with the results
obtained for Ising systems. In accordance with the experi-
mental observations, we must postulate here the presence of
a field which alternates in sign from one layer to the next, as
well as the presence of an intrachain antiferromagnetic cou-
pling. The Hamiltonian corresponding to Eq. (3.8) satisfies
these requirements if we make the transformation
S(i,R)— ( — 1)'S(4,R), where i labels the positions of the
spins along the ¢ axis. Since, moreover, the interaction
between the Liions is of the Coulomb nature, it is natural to
assume that the coupling between the spins in a triangular
lattice is antiferromagnetic. If the ratio J, /J, is sufficiently
large, it follows from Fig. 10b (where the values J, = 1717
K and H = 23.5 K areselected in order to apply the theory to
B-LiAlSiO,), we can expect a transition from the 2 X2 to a
modulated structure on increase in temperature, which is in
agreement with the experimental results.

The interaction between the second-nearest neighbors
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on a triangular lattice in Ising magnetic materials CsCoCl,
and CsCoBr, is ferromagnetic (J, <0, J, >0) so that a
v3 X V3 structure becomes stabilized in the ground state: this
structure has three spins in a unit cell (Fig. 9). At finite
temperatures such antiferromagnets exhibit'®'” two phase
transitions and in the case of CsCoCl; they occur at T
=21.3K and T, = 9.2 K (Ref. 16).

The self-consistent equations for the three magnetic
sublattices (Fig. 11a) are

(8.2 =M(L.),

where the arguments L, of the function M of Eq. (3.9) are
given by:

L = -Z{Tu(sg) + (Sa) + 22 (S),

(3.10)

L= %((Ss) + {8 + 20.(Sy)),
Ly= LS + (Sa) +20(5)
(2 =J,"4)).

The system of equations (3.10) predicts a sequence of
phase transitions. At low values of |a| there are three or>
dered phases®: partly disordered (PD) characterized by
(S)) = — (8,)#0, {S;) =0 (Fig. 11b); a three-sublattice
ferrimagnetic phase (3FR) characterized by (S,), (S,),
(S;) #0; a two-sublattice ferrimagnetic phase (2FR) char-
acterized by (S,) = (S,) >0, (8,) <0. Lowering of T gives
rise to PD— 3FR — 2FR transitions. In the case of moderate-
ly large values of ||, only the PD and 2FR phases exist and
any transition between them is of the first order. Finally, if
|a| is large, only one ordered phase 2FR remains.

The paramagnetic state (P) is unstable compared with
PD or 2FR at the point T = T, as deduced from the equa-
tion'®

311 Lol

P (I—2a) exp =
In turn, the partly disordered phase is unstable at T= T,
and we have

I. (3.11)

I el
3 7. exp ——-—TD 1. (3.12)

If the 3FR phase is stable, then 7, = T, and this is the point
of a second-order transition from the PD to the 3FR state.
However, if a first-order transition takes place from PD to
2FR at T = T,, then T, is higher than T,. The phase dia-
gram for arbitrary values of T, [ which correspond to specif-
ic values of J, in Eq. (3.12)] is presented in Fig. 11c. The

values T, = 21.3 K and J, = 75 K represent CsCoCl;. As-
suming also that in the case of CsCoCl, we have
a~ — 2% 1073, we find that the results predict two phase
transition points, which is in agreement with the experi-
ments.

A qualitatively similar result was obtained by the clus-
ter variational method in Ref. 19. The Monte Carlo method
used in Refs. 20 and 21 predicted that the intermediate phase
in CsCoCl; and CsCoBr; should be described by
(§;) xcos(Q, ‘R; + a) with a phase a = a(R;,r) varying
at random in space and time. The phase a changes little in-
side a domain, but it varies rapidly in domain walls. A reduc-
tion in temperature reduces the fluctuations of the phases, so
that only the 2FR phase exists at the transition point. These
results can account for the observation, at moderate tem-
peratures, of large fluctuations in time of the magnetic struc-
ture of a CsCoCl, crystal reported in Ref. 16.

4. PHASE TRANSITIONS IN TWO-DIMENSIONAL
FRUSTRATED ANTIFERROMAGNETS

4.1. Phase diagram for Ising spins on a triangular lattice

In two-dimensional Ising antiferromagnets, where the
interaction is limited to the nearest neighbors on a triangular
lattice, spin ordering is greatly weakened because of the frus-
tration effects. A system of this kind then shows no phase
transition at any finite temperature.®®'® However, an
allowance for the interactions of the second-nearest neigh-
bors stabilizes the spin state and the system undergoes a
phase transition similar to that expected for the ferromagne-
tic XY model when the field breaks the sixfold symmetry. '°!

If H 0, the transition between the ground states on a
triangular lattice may appear because of the formation of a
local spin structure in the initial phase and this structure is
similar to that in the adjacent phase. Domain walls responsi-
ble for the formation of such a local structure can be found
along lines 4, C, D, E, and G (Fig. 9), which separate the
adjacent states in the phase diagram. The appearance of such
walls in critical fields does not require additional energy. In
the case of lines B and F in Fig. 9 such zero-energy walls
cannot form because of the specific geometric nature of the
spin structures of two adjacent phases.

A phase diagram can be constructed for finite tempera-
tures if the free energy of domain walls .% is calculated by
the interphase configuration method. ' The easiest to find is
the line of transitions between the 2 X 1 phase and the para-
magnetic phase when the values of a( = J, /J, ) lie between
0.2 and 1. Since in this interval of a the 2 X 1 adjoins the 2 X 2
phasein the diagram representing the ground states (Fig. 9),

7o
20+ FIG. 11. a), b) Magnetic ordering in CsCoCl,
and CsCoBr, at temperatures T< T, (a) and 7T,
- < T< T, (b); the plus and minus signs represent,
5L - respectively, the up and down spin orientations;
2FR - an empty circle represents a disordered state in
o the c.hain. ¢) Phase diagram. Here, T, is 21.3 K
10 F o and it is assumed that J, = 75 K, which corre-
3FR 7y sponds to the experimental values of CsCoCl,.
7, The dashed curve represents a first-order transi-
5 . ., A5 tion and the continuous curve represents a sec-

0 5 10 5 20 ond-order transition.'®
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FIG. 12. Initial boundary configurations between two 2X 1 (a) and two
2% 2 (b) phases. The open circles and the black dots represent the S'= 1
and S = — 1spins, respectively; the continuous lines are domain walls the
dashed lines are the columns labeled from 1 to 2N; the chain line repre-
sents the unit cells in a local spin structure of the adjacent 2 X2 (a) and
2% 1 (b) phases.

we can expect a domain wall (representing the initial bound-
ary configuration in the 2 X1 phase) to have in a field A,
= 2(1 + a) a local structure with zero energy of the 2 X2
phase. Figure 12a shows such an initial configuration which
is zigzag-shaped; it is described by {m,,n, } = {0,0,0,0,...},
where m, and n, are integers related to ther columns 2k — 1
and 2k, respectively (the valuesof kare 1,2, 3, ..., N). The
new boundary configurations can be obtained by shifting the
boundary line in the columns 2k — 1 and 2k upward or
downward by rotating a certain number of spins m, and n,.
Each such configuration is described by a set of integers
{m,, n, } with the sign governed by the shift of the boundary
line relative to the initial line (where the minus sign corre-
sponds to the downward shift). The boundary conditions
are assumed to be periodic: my_ , =m, and ny, , = n,.

The energy of the initial configuration is
E,=—2(2/,+27,+ H)N (4.1)

(the condition E, = 0 describes the expression for the criti-
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cal field at zero temperatures). The energy of an arbitrary
configuration with the set {m,, n, }, relative to E,, is given
by

N
BE = —J, 3, 16" (e, 1) + € (ns, mee),

k=1

(4.2)

where

er(m, n) =2(|n—m—1}—1) +2a(|n—m|—1) + h(n—m),
e (n, my=2(|m—n+1|—1) +2a(|m—n+2|—1)
—h(m—n)

(h = HIJ)). (4.3)

We shall now introduce the transfer matrix T, with
the elements

T = i expJ, (e (m, n) -+ e (n, m")) T™].

Ne=—co

(4.4)

Using the properties of the translation symmetry of the
transfer matrix T, = T,, . 1w 41, We can readily calcu-
late its maximum eigenvalue 4, =27 _ _ T, and the
free energy of interphase configurations % = E,— TNIn
A max - Assuming that ¥ = 0, we obtain the following equa-

tion for the phase transition line!%*:

(a,+b-)(a_+b,)=1, (4.5)
where
- exp (— 2a/l)
=T 1 —exp[— (2+20+h)y1)
b. —__ exP(— @R =T
=T l—exp[—(@+2a +m)i]’ EAN

The line representing the boundary of the 2 X 1 phase is cal-
culated from Eq. (4.5) for @ = 0.5 and 1, and is represented
by curve 1in Figs. 13a and 13b.

At finite temperatures we can readily find also the line
of the transitions between the 2 X2 and 1 X 1 phases. In the
phase diagram of the ground states these phases are adjacent

FIG. 13. Phase diagrams for different values of a. Curves 1-6 repre-

sent transition lines between ordered states in the paramagnetic

phase.’® The results of numerical calculations carried out by the

Monte Carlo method are shown for the values @ = 1 and 2.5 (b,
) d).IOS
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on the high-field side. On the other hand, on the side of the
low fields & the 2X2 phase adjoins the 31, 2X1, and
v3 % V3 phases (Fig. 9). However, at lower critical fields the
initial zero-energy boundary configurations exist only in the
form of a local spin structure analogous to the 2X1
phase; Fig. 12b shows such an initial configuration charac-
terized by {m,,n,}={0,0,00,.}, with the energy
E,= (2J, + 2J, + H)N. In the case of an arbitrary configu-
ration the relative energy AE given in Eq. (4.2) by the terms
with ¢* and e” is now described as follows:

er(m, n)y=2[{n—m+1|—4(n—m)]
+2al|n—m|—4(n—m)]
+h(n—m)],
e*{n, m)=2(|m—n|—1) +2a(|m—n—1|—1)—h(m—n).
(4.6)

Since, as before, the transfer matrix with the terms given by
Eq. (4.6) has translational symmetry, the free energy of a
domain wall can be found analytically. Consequently, the
equation for the transition lines can be represented in the
form'”

[a L bexp (;i)] [a + bexp (%)J == exp [ﬂl—j—%)—] , (4.7)

where

— &P [— (4 4 42 — h)/2f)
1 —exp [— (6 6z —hy/t}’

exp (— h/2¢)
Tl —expi(2+2a—h)t}

The lines of the transitions of the 2 X 2 phase calculated from
Eq. (4.7) for four different values of a are shown in Fig. 13
(curves labeled 2).

In the phase diagrams of Figs. 13¢c and 13d we also find
the phase transition lines (curves 3 and 5) which correspond
in the initial 2 X 1 phase to other types of boundary configu-
rations, namely the configurations with the local spin struc-
ture V3 Xv3 and with the 3X 1 phases. Curves 4 and 6 in
these figures are plotted for the case when initial v3 X v3 and
3X 1 phases have boundary configurations with a local spin
structure analogous to the 2X 1 phase. Since for all these
domain walls the elements of the transfer matrix have no
translational symmetry, the 3—6 phase transition lines have
to be found numerically. The maximum eigenvalue 4, was
calculated in Ref. 104 by the process of truncation of the
T.,.» matrix of infinite dimensions.

The results obtained by the interphase configuration
method'®* reproduce correctly the phase transition lines 4,
C, D, and E for the ground state (Fig. 9) and there are no
stable commensurate phases at any finite temperature on
these lines. Initially, this is a consequence of the geometric
nature of the local spin structure of a domain wall and is
independent of the calculation details. On the other hand,
since at 7 = O there are no energy domain walls on the phase
transition lines B and F, both phases are stable. Figures 13b
and 13d show, for the sake of comparison, also the results of
numerical calculations carried out by the Monte Carlo
method.'® It is clear from these figures that the phase dia-
grams found by the method of Ref. 102 are in good agree-
ment with the Monte Carlo results. However, there are sig-
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nificant quantitative differences and this is clearly due to
lack of allowance for the influence of the boundary configu-
rations of finite size.

The phase diagram for the simpler case when H >0, J,
> 0 (a <0) can be found in Refs. 19 and 106-108. We shall
conclude by noting the following: the problem of the possi-
bility of existence of a partly disordered phase in two-dimen-
sional systems is discussed in Ref. 109. In the mean field
approximation such a partly disordered (PD) phase was
predicted close to the critical fields 2, = 2(1 + a) between
the 2X 1 and 2 X 2 phases. However, it is well known that if
fluctuations are large, the mean-field approximation can
give even a qualitatively incorrect phase diagram, as in the
case of two-dimensional systems with frustrated
bonds.'®”*1® Therefore, a better understanding and refine-
ment of the phase diagram will require further investigations
of this topic by more rigorous methods.

4.2. Phase transitions in Heisenberg antiferromagnets on a

triangular lattice (anisotropic and limiting isotropic cases)
In the case of two-dimensional (2D) anisotropic Hei-

senberg ferromagnets described by the Hamiltonian

= —1, D) (SISt + SISL)— 1, D SiSta,  (48)
T r

the coupling between the xy spin components (J, #0) sti-
mulates ordering of the sublattices and induces (in contrast
to the above case of pure Ising triangular systems with an
antiferromagnetic interaction only between the nearest
spins) a phase transition at T" 5£0. Moreover, ifin J | = 4J,
the coefficient A4 is greater than unity, there may be two con-
secutive phase transitions one of which is associated with the
ordering of the S* spin component and the other with the
ordering of $* and §”.

In the case of an Ising-like Heisenberg antiferromagnet
(A>1) the ground state represents three noncollinear
(canted) magnetic sublattices lying in the same plane and
this plane is oriented in an external field H = (0,0,H) in
such a way that it includes the z axis (vertical position).
Such a system exhibits continuous degeneracy in respect of
rotation of the plane by an angle ¢ about the z axis. In the
plane itself the state with the minimum energy is described in
the classical case of three sublattices by equations of the
type“

cos 6, (sin 8, 4- sin 8;) = A sin 8, (cos B, - cos ;) — %h sin 6,

(4.9)

where 6, are the sublattice angles in the range [0,27];
h = H/|J, |. The other two equations are obtained from the
above by cyclic permutation of the indices.

We shall first consider the case when H = 0. Then, out
of three equations of the (4.9) type, only two are indepen-
dent so that orientation of one of the subiattices &, is arbi-
trary. For each value of 8, the other two sublattices become
aligned in a nontrivial manner: the angles between the differ-
ent sublattices have different values which vary with 8,. This
situation resembles degeneracy of the ground state of a di-
pole system on a square lattice where again orientation of
one of the four magnetic sublattices is arbitrary and the other
three become aligned in a certain manner.'?' By way of ex-
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TABLE I. Chiral symmetry and local order parameter of triangular antiferromagnets with

different spins.

Spin Chirality Local order parameter
Ising-Heisenberg* Sy Si% Sy
Heisenberg® S, P3=S3/Z,

XY (Refs. 38-42) Z; Zy X8,

ample of stable states we can give the following solutions of
equations of the (4.9) type: 1) (6,,0,,0;) = (0,0,7 + ),
wherecos 0 =A4 /(1 + A4);2) (6,,0,,65) = (7/2,0,37 — 8),
wheresin # = — 1/(1 4 A). In both cases the ground-state
energyis E,= — (1+4 +A42)/(1 + A). An examination
of these two degenerate solutions shows that in the first case
the angles between the sublattices are 8, 7=, and 7 — 6,
whereas in the second case these angles are 7/2 — 8, 7 — 6,
/2 + 26, 1.e., they are indeed generally different and vary in
an inequivalent manner. The system has a total angular mo-
mentum M, the orientation of which in the vertical plane is
arbitrary and its modulus also decreases on reduction in A4
and it vanishes for the isotropic case when 4 = 1 (this repre-
sents a structure with the 120° configuration of spins which
remains unchanged also when 4 < 1). The states with non-
collinear spins can be represented conveniently by what is
known as the chiral vector''®

k= ?]2/—5([51, S21 - [Sar S5l + S5, Si1),

where S|, S,, and S, are unit vectors of the spins at the ver-
tices of elementary triangles (the vertices 1, 2, and 3 are
labeled clockwise; the modulus of the Vector k vanishes
when any two magnetic sublattices are parallel, but it is
equal to unity for the 120° structure).

The ground state with two independent parameters ¢
and 6, is characterized by a degeneracy space ¥ =5, XS,
which is not affected even in the harmonic approximation. **
On the other hand, a continuous degeneracy in respect of the
angle 8, cannot be realized at T #0 because of the different
(Z5 XS, ) symmetry of the Hamiltonian of Eq. (2.8).?

Numerical calculations carried out for finite tempera-
tures showed that the specific heat has anomalies at two
points (for 4 = 2 these points are T', = 0.9(/,| and T, = 0.3

(4.10)

/3
1]
51

~

0.5

FIG. 14. Phase diagram of triangular 2D antiferromagnets with an aniso-
tropic exchange interaction (based on Ref. 44); in the limit 4 — o the
ratio is 7, /A = 0 (limiting case of an Ising system).
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I/11). Below the first transition point 7', only z components
of the spin become ordered (this transition breaks the sixfold
symmetry, so that the effective symmetry of the intermedi-
ate phase becomes S, ). In this state (7, < T < T, ) the two
sublattices of the spin structure become oriented opposite to
the third, so that the net spin moment is zero. In the low-
temperature phase (T < T,) the fluctuations of ¢ are sup-
pressed and correlations of the xy components of the spin fall
in accordance with a power law. The chiral vector k for this
phase is finite. In fact, numerical experiments** have re-
vealed a steep rise of k at the transition point 7= T, [thisis
theS — R, transition accompanied by the disappearance of
free Z vortices; R, is a straight line corresponding to a one-
dimensional translation group 7°(1) ]. The chiral symmetry
and the local order parameter of triangular antiferromag-
nets with different spins are given in Table I.

A reduction in A reduces the temperature range of exis-
tence of the intermediate phase (Fig. 14) and it disappears
for 4 5 1. In the isotropic limit when 4 = 1, the symmetry of
the high-temperature phase changes from Z; XS, to the
projective space P, = SO(3), where SO(3) is the three-di-
mensional rotation group. Three-dimensional (3D) mag-
netic materials with the three-dimensional order parameter
¥V ~SO(3) are well known and these are primarily UQ, and
YMnO;, and the superfluid phase (A) of *He. In the case of
two-dimensional frustrated systems considered here the
only continuous transition is of the Berezinskii-Kosterlitz—
Thouless type and it is due to dissociation (0—1 4 1) of Z,
vortex pairs. It is interesting to note that out of two types of
vortices (Figs. 15a and 15b) the main contribution to ther-
modynamics is made by those Z, structures which are
formed by rotation of the chiral vector around the core of a
vortex (Fig. 15b), because they are the ones that have the
lowest energy.''® Two such Z, vortices, separated by a dis-
tance less than the spin correlation length, are characterized
by opposite directions of rotation of the chiral vector in or-
der to reduce the energy. They are thus very similar to a
vortex—antivortex pair with opposite “‘charges’ resembling
Z vortices in XY ferromagnets.® Table II gives, for the sake
of comparison, data on topologically stable defects which
appear in various spin systems with a 2D triangular lattice.

In contrast to the S, — R, transition considered earlier,
when the spin correlations obey a power law exactly asin the
case of the ferromagnetic XY model,**"** a topological P,
—.S, transition in an isotropic antiferromagnet occurs
between two phases each of which is characterized by an
exponential falling off of the spin correlations. This can be
understood, for example,k from the point of view of chiral
symmetry, Below the critical temperature the continuous
degree of freedom of the chiral vector k is conserved and its
degeneracy space S, is identical with the space of the order
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FIG. 15. a), b) Z, structures with a vortex number 1 in 2D Heisenberg
triangular antiferromagnets; a represents a perpendicular orientation of
the chiral vector relative to the plane of the figure, whereas b corresponds
to the case when the chiral vector is in the plane of the figure (and one of
the magnetic sublattices is perpendicular to the plane). ¢c) Two ground
states separated by a domain wallin a 2D XY triangular antiferromagnet;
the plus and minus signs correspond to the values k=1and k= — 1;
k = O along the wall.

parameter of a Heisenberg ferromagnet. In the case of such a
ferromagnet the spin correlations again fall off exponentially
at any finite temperature,'"* but the Berezinskii—Kosterlitz—
Thouless phase transition does not occur because topologi-
cal excitations known as instantons (Table IT1) have only a
finite energy independent of the size of the system.

Kawamura and Miyashita demonstrated?’ that the or-
der parameter of such a system can be introduced via a vor-
tex function defined on a closed contour.” In a high-tem-
perature phase a vortex function falls off rapidly in
accordance with the area law, whereas in a low-temperature
phase it falls more slowly in accordance with the perimeter
law. This phase transition criterion resembles the criterion
used in the problem of quark confinement in the lattice
gauge theory.?**

Consecutive phase transitions have been observed ex-
perimentally in a precision study of the quasi-two-dimen-
sional Heisenberg antiferromagnet VCl, (Ref. 123). In view
of a weak Ising anisotropy this material exhibits consecutive
phase transitions at 7, = 35.88 K and T, = 35.80 K. In the
2D Heisenberg range, just above T, the line profile of the

susceptibility y(q) is close to the Ornstein—Zernike func-
tion, which confirms the presence of magnetic point defects
in the system. On the other hand, a different quasi-two-di-
mensional Heisenberg ferromagnet in the form of VBr, ex-
hibits just one transition. As in the case of numerical calcula-
tions relating to the isotropic case characterized by 4 =1,
the temperature dependence of the homogeneous suscepti-
bility near the critical point is then almost flat and isotrop-
i C.31'34

It should be pointed out here that the compounds VBr,
and VCl, are characterized by a weak interplanar interac-
tion and this results in a crossover from the 2D to the 3D
behavior with temperature. Thermal, magnetic, and neutron
diffraction studies of these compounds carried out in the
narrow 3D temperature range show that their critical behav-
ior differs considerably from that usual in the case of unfrus-
trated systems with the Z,, S,, or S, symmetry: the specific
heat of VBr, is characterized by a strong divergence'?*
(@ =0.59) and the values of §=0.20, y = 1.05, and
v.= 0.62 for VCI, (Ref. 123) are close to the critical expo-
nents of the SO(3) universal class calculated recently in Ref.
35 (Table III). It would therefore be interesting to investi-
gate the critical behavior (in the case of continuous transi-
tions) for other magnetic materials characterized by the
three-dimensional order parameter ¥'~SO(3), such as
YMnO, or the A superfluid phase of *He. The main prob-
lem in detection of new critical behavior of these materials is
the small width of the critical region. This is particularly
true of the *He-A phase with an extremely narrow critical
region'* of width of the order of  ~ 10 ~°; only a finite jump
of the specific heat has been observed experimentally®
(which represents meanfield behavior outside the interval
t), whereas observation of the expected diverging specific
heat C would require measurements of very high precision.

The nontrivial degeneracy of the ground state with re-
specttod, (when A > 1) disppearsin an external field H #0.
Depending on the value of H, four stable planar configura-
tions can be expected (Figs. 16a—16d). These configurations
satisfy the following solutions of the system of equations
4.9):

a) 0, =m, 0, = —0,=0, cosG:(A—l—%)(l 1A,

0L h < he,
b) B, =, 0, = 0, =0, hee << by
c) 6,55 0,=0,, he, <h<h,
4y 0, =0, =40, h=h,, (4.11)

TABLE II. Space of the order parameter ¥ and associated homotopic group 7,( V) for different

spin systems with triangular lattices.

12 T, (V) (V) s (V)
System Order . .
parameter Line Point Instanton
space
Ferromagnetic XY 5:=350(2) 0 V4 0
Ferromagnetic Heisenberg P 0 0 Z
Antiferromagnetic Heisenberg P, =50 (3) 0 Z, 0
Antiferromagnetic XY Z, X S Z,y V4 0
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TABLE II1. Values of critical exponents for different three-dimensional systems (values for
systems Z,, S,, and S, taken from Ref. 125).

System @ [ Y v
Ising (Z,) 0.110 0.323 1.240 0.630
XY (S) —0.008 0.346 1.316 0.669
Heisenberg (S5, ) —0.116 0.365 1.387 0.703
Antiferromagnetic Heisenberg [SO(3) ](Ref.35) 0.4 0.25 1.1 0.53
Antiferromagnetic XY (Z, XS, ) (Ref. 42) 0.44 0.22 1.1 0.52

where h, =3, h, =15[(24 -1+ [442 +44 —7)"?],
h., = 3(1 4 24). The temperature dependences of the mag-
netization curves M, (H,) and M (H,) are shown in Fig.
16(e) (on the assumption that the plane of the spin configu-
rations coincides with the z, x plane). The M,(H,) curve
exhibits “metamagnetic” behavior, in contrast to a planar
triangular antiferromagnet® in which case it should be a
straight line until M, reaches its saturation value. By analo-
gy with the Ising case,'%>'26 the M, (H, ) curve has a plateau
at a height of 1/3 of M. This plateau corresponds to the
structure shown in Fig. 16b within the range of fields
h., <h<h,_;in the isotropic limit characterized by 4 = 1 the
range h contracts to a point. The other curve M, (H,) is due
to the existence of a nontrivial degree of freedom in the direc-
tion of x exhibited by one of the states (Fig. 16¢).

The T-H phase diagram of anisotropic Heisenberg anti-
ferromagnets has been investigated before.'?”'** This dia-
gram consists of three ordered phases a, b, and ¢ (Figs. 17a
and 17b) and the high-temperature phase (c) has the Z,
X S, symmetry. In the intermediate fields, even when 4 = 1
(Fig. 17a), there may be two consecutive phase transitions,
one of which is associated with the ordering of the longitudi-
nal components of the spin and the other with the ordering of
the transverse components. The phases @ and ¢ have the
same R, symmetry, but in contrast to the phase a the chiral
vector of the phase ¢ vanishes because the two sublattices are

Mz
0.2

;.1

15 H/ll

FIG. 16. a)-d) Ground state of an Ising-like Heisenberg antiferromagnet
in different fields: a) 0<h<h,_ ;b)Y h, <h<h.;c) b, <h<h. ;d)h>h, .
) Magnetization curves in units of M plotted for the case when 4 = 2; the
continuous curve represents M, (H,) and the dashed curve gives M, (H,)
(Ref. 128).
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parallel. An increase in 4 reduces the range of existence of
the phases a and ¢ (Fig. 17b) and this range disappears in the
limiting case of a pure Ising system (Fig. 17c).

In the case of frustrated systems the quantum effects
may alter the ground state decisively and this is essentially
due to the feasibility of complete disappearance of the effec-
tive spin length. This circumstance is particularly important
in the case of Heisenberg antiferromagnets with spin 1/2,
when the ground state can be described (as suggested by
Anderson) by a model of a magnetic quantum liquid repre-
senting an ensemble of randomly distributed mobile singlet
pairs on a two-dimensional triangular lattice.** Such a
ground state is characterized by resonating valence bonds*
and it has been confirmed (at least partly) by numerical
calculations for finite systems. '?*!* Moreover, Fazekas and
Anderson'?' demonstrated that the resonating valence bond
state may be invoked conveniently even in describing the
ground state of systems with an Ising-like exchange anisot-
ropy. Thermodynamic properties of such systems are con-
sidered in Ref. 132 for the case when H = 0: in contrast to
classical systems, they do not exhibit ordered sublattices or
phase transitions. Real experiments on two-dimensional
Heisenberg NaTiO, and Ising-like LiNiO, antiferromag-
nets have also failed to reveal any long-range order*®®” (it
was found that Bragg scattering does not occur even at very
low temperatures).

The problem of the ground state of anisotropic Heisen-
berg antiferromagnets with § = 1/2 subjected to an external

Ps_r
. 04 7
a
H H
%
\b b
a
-
b c 7

FIG. 17. Phase diagrams (b and c are schematic) of two-dimensional
triangular antiferromagnets: a) isotropic case case'’’, b) anisotropic

case'?%; ¢) limiting case of an Ising system.
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field was investigated by Nishimori and Miyashita.*” They
determined the dependence of M, on H, by numerical dia-
gonalization of the spin Hamiltonian of Eq. (4.8). The re-
sults of the calculations showed that in fields H —0 the mag-
netization M, is unlikely to remain finite, which is in
contrast to the classical case. Moreover, in the range of fields
h,, <h<h., thereis a plateau (at the same height of 1/3 of
M) also in the case of a quantum system. so that in this range
of & the classical state with collinear spins (Fig. 16b) pre-
dominates. Outside the plateau the system is effectively in a
quantum state. In particular, the classical description ceases
tobe validin the range # > A, , where the transverse magneti-
zation shows no long-range order—the state with the skew
sublattices (Fig. 16¢) is suppressed—and we have every-
where M, (H,) = 0.

4.3. Phases in a triangular planar antiferromagnetic

In the case of frustrated antiferromagnets with the XY
spins on a triangular lattice we can expect not only a contin-
uous degeneracy of the ground state, but also a double dis-
crete degeneracy: the two ground states with mutually oppo-
site orientations of the wave vector Q, of a 120° structure
cannot be converted into one another by rotation of spins in a
plane (Fig. 15¢). Since the space ¥ of such systems is charac-
terized by the O(2) = Z, XS, symmetry, we can expect—
by analogy with the results in the previous section—two
phase transitions with consecutive disturbance of the dis-
crete and continuous components of the order parameter.

A phase transition in zero magnetic field has been inves-
tigated on many occasions for systems of this kind.****! The
first numerical calculations reported in Ref. 38 demonstrat-
ed that the critical temperatures due to the presence of linear
and point defect systems are very similar. Moreover, further
numerical calculations®® show that, within the limits of sta-
tistical error, these critical temperatures are identical be-
cause of the mechanism of vortex distribution by domain
walls. A similar result predicting a single transition was ob-
tained also by other methods.***'

An external field applied in the plane of a triangular
lattice induces a continuous degeneracy of the ground state
in the range H <9|J,] (because the opposite inequality
H>9|J,| corresponds to the parallel orientation of the spins
representing collapsed sublattices). Moreover, if H <3|J,|
the discrete symmetry is also retained, i.e., in other words,
there are two uncoupled sets of states. However, the contin-

uous degree of freedom is not due to the symmetry of the
Hamiltonian of the system (H #0):

=—J; D|S:Sr:a — D HS;,
r r

because at finite temperatures it should not be allowed.
In the presence of a magnetic field, the symmetry group
of # in Eq. (4.12) is

G=T . Cy C™",

(4.12)

(4.13)

where T = ma, + na, and C,v are, respectively, the transla-
tion group and the point group on a triangularlattice; C &P™
is a group related to the reflection of spin relative to the
direction of the magnetic field. The Fourier component of
the spin

Yo, = N1 X S exp(— iQiR) = (0 + ity, 0, + it ))
R

(4.14)

(o), 7, and oy, 7, are, respectively, the longitudinal and
transverse components relative to the orientation of H), cor-
responding to the order parameter, forms a four-dimension-
al basis (o, 750, 71) in which the irreducible representa-
tion of the group G consists of twelve elements. However,
since matrices of such a representation have the block diag-
onal form, they can be reduced to matrices of two irreducible
representations with the bases (oy,7) and (o,,7,); in this
case the first basis admits only six different matrices, where-
as the second basis admits twice the number of matrices be-
cause of spin reflections relative to the field. An analysis of
the transformations made using the group G elements shows
that the matrices of the representations with the (o)
basis are isomorphous with the point group C,,, whereas in
the (o, 7, ) case theyareisomorphous with C, [ (C;,,Cs, )
is the representation of the initial phase].

Table IV lists all six subgroups of the group G (it is
assumed that the largest translation period is exhibited by
the /3 X3 structure); this table includes also nonzero
components of the order parameter for the various sub-
groups obtained by a group-theoretic analysis. In general,
when the spin (S), 1 X 1 translation (7), and point (P) sym-
metries break down, we can use eleven continuous transi-
tions between the various subgroups for which the represen-
tations are given in Table IV; the list of these subgroups is as
follows:

TABLE IV. Subgroups of the space group G and corresponding order parameter components of

planar antiferromagnetic systems with triangular lattices.*

Spin T . Point . Order parameter
group ranslation group group Representation
|<a|;>| lapd [(GJ_>| lev o
C, ma, + na, Ceo (Cspr Cop) 0 0 ( 0
1 ma, + na, Coo (Cyys Cyp) 0 0 & 0
C, (m-- 2n)a; + (m—n)a, Cou (Cs, Cyp) >0 0 0 0
1 (m—+ 2n)a, 4 (m — n)a, Cyo s, Cy) >0 0 | >0 0
C, (m-+ 2n)a, + (m — n)a, Cyp (C, C) =0 >0 0 0
! (m -+ 2m)a, + (m — n)a, Cp | (CuCy {ig %8 %8 >0
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]) (Cav, Cev)—*(cav, Cav)y 2) (Csvr Cev)—*(cu CZo)p
3) (Cavy Cao)—*(cn Cl)y

4) (Cn CZv;)—*(Cu Ca)) 5) (Car Cn)_’(ch Cl))

6) (C,, C.)~(C.. C),

7) (C, C)—~(C,, C)),

8) (C.wy Cav)—*(ca,lcc)y 9) (C:v, Cev)—*(ci, Ci)y
10) (C,, C,)—~(C,, C)), 11) (Cy,, Ca)~>(C,, C)).

(4.15)

Of all the cases listed above transition 1, characterized by
symmetry breaking relative to spin reflections, is unique and
in this case the order parameter of Eq. (4.14) is unimpor-
tant. Obviously, this is related physically to conservation of
the 1 X1 translation symmetry. On the other hand, transi-
tions 8 and 9 involve simultaneous breaking of two symme-
tries: either the S'and T symmetries in the case of transition 8
or the Tand P symmetries in the case of transition 9; transi-
tion 11 is accompanied by breaking of all three symmetries S,
T, and P.

A numerical investigation of the field dependence of the
components of the order parameter at various temperatures
shows that there are four second-order transition lines: two
are of the order—disorder type and the other two are of the
order—order type.*® Figure 18 shows the ranges of existence
of the various phases with nonzero components (o} and (7).
As in the case of anisotropic Heisenberg ferromagnets (Sec.
4.2), there are three ordered phases. The symmetries of these
phases are found from Table IV. In the range H<4|J,| an
ordered state is characterized by (a" ) #0 (with the chiral
parameter kK = 0) and has the (C;, C,,) symmetry; cooling
causes additional condensation to either the transverse com-
ponent {7, ) [when k& #0, representing the (C,, C,) phase]
or{o,) [k=0, (C,, C,) phase]. Consequently, if H < 3|J,],

3|§

;

3
6 )
Vo \,
N,
) 4- -
i -
3 ! N «\
A A y \7‘\/
g 2.2 74 il

FIG. 18. Phase diagram of planar antiferromagnetic systems with trian-
gular lattices®®: 1) (C,, C,) phase with the order parameter components
{0} ) #0, characterized by {7, ) %0 and by the chiral vector k 0;2) (Cs,
C,,) phase with () #0, k = 0; 3) (C,, C,) phase with {7 ) #0, o, #0,
k=0;4) (G, C,,) phase with (o, ) =0 and {7,,) =0. The arrows in
the phase diagrams indicate the directions of the transitions, the critical
behavior of which was investigated at fixed values of Hor T.
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we can expect consecutive phase transitions
(C,,,Cq,)—(C,,Cy, )~ (C,,C,), whereas in the case
when 3|J||<HS4|J,|, we can expect transitions
(C1,Ce )~ (C,,Cy, ) - (C,,C, ). These and other transi-
tions are in agreement with those deduced from the symme-
try analysis represented by Eq. (4.15).

The phase boundaries have been investigated in an ex-
ternal field on the basis of the symmetry and scaling calcula-
tions made by the Monte Carlo method in the case of
finite systems.!'®'2°  The scaling curves of the
(Cs,,Ce,)—(C,,C,,) transition when H=2|J,| and
H =3]J,| (Fig. 18) are described well by the critical expo-
nentsa = 1/3,8=1/9,y = 13/9,v = 5/6 (Ref. 39), which
have the same values as for a transition belonging to a uni-
versal class of a three-level Potts model.'** On the other
hand, the nature of the transition at the other boundaries is
quite different. For example, similar calculations of the criti-
cal exponents along the boundary representing the
(C,,,Cs, ) — (C;,C;) phase transition exhibit nonuniversal
behavior*: it is found that if H = 4|J, |, then 8 = 0.20 and
y = 1.55, whereas for T= — 0.3|J, |, we have 8 = 0.28 and
¥ = 1.45 (in both cases we have v = 1; the specific heat
shows no divergence: @ < 0). A nonuniversal behavior is ex-
hibited also by two internal phase boundaries associated
with the (C,,C,) - (C,,C,,) and (C,,C,) transitions when
an increase in the temperature from T=0.3 |/, | to T = 0.4
|/ | increases the value of 8 from 0.14 t00.21. In the case of
the last transition it is interesting to note that the specific
heat shows no anomalies on crossing the
(C,,C,,) - (C,,C,) boundary, and the homogeneous mag-
netization shows no singularities, so that the phase transi-
tion can be detected only on the basis of the behavior of the
order parameter.

An experimental investigation of a phase transition in
an external field was reported in Ref. 111 for the planar qua-
si-two-dimensional triangular antiferromagnet CsMnBr,. It
was found there that the only phase transition split into two
on application of a field H #0. The critical behavior of
CsMnBr, was also investigated recently in the 3D region of
the temperature crossover (H = 0). The experimentally de-
termined''>'"* critical exponents of this compound differ
considerably from those of standard unfrustrated systems,
but they are close to the corresponding exponents of the Z,
X S universal class calculated theoretically in Refs. 42 and
134 (Table III).

In the case of two-dimensional quantum systems with
spin § = 1/2 spin no phase transition has been found at T #0
and this is true of both the XY antiferromagnets and of the
Heisenberg ferromagnets. However, numerical results ob-
tained for the ground state®® demonstrate a falling off of the
correlation function in accordance with the power law with
an exponent 7 = 0.34.

5. CONCLUSIONS

The reported experimental and theoretical investiga-
tions of antiferromagnets with a triangular lattice have re-
vealed many interesting and very different phases and phase
transitions. The properties of the phases and the behavior of
ferromagnetic systems in the course of ordering are very dif-
ferent from conventional materials and the differences are
essentially due to the fact that the systems are frustrated.
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This accounts also for the high sensitivity of the order pa-
rameter to various perturbations. Further investigations
would be desirable to find the role of other possible factors.
One of them is the influence of impurities on thermodynamic
properties of frustrated systems. Even a slight random dis-
tortion of a triangular lattice by impurities (and the associat-
ed change in the exchange interaction constants) can have
significant effects. Another factor is the stability of a trian-
gular lattice in the presence of regular deformations. Frus-
trations in two-dimensional antiferromagnets may be al-
lowed because of distortions of an equilateral triangular
lattice to an isosceles lattice, which corresponds to an anti-
parallel configuration of the spins along one of the direc-
tions. This instability is essentially of the spin-Peierls nature,
which usually appears in quasi-one-dimensional antiferro-
magnetic systems. It would also be interesting to investigate
how the properties of a quantum magnetic liquid change in
the presence of three-dimensional effects due to the inter-
planar exchange interaction. It would also be very important
to carry out a more extensive investigation of the dynamic
properties of frustrated systems and particularly of two-di-
mensional Heisenberg antiferromagnets because their low-
temperature phase exhibits a large (though finite) length of
spin correlations. Undoubtedly, further active studies of an-
tiferromagnets with triangular lattices will yield many other
interesting results and this will help in a better understand-
ing of this great variety of the properties of these systems.
The author is deeply grateful to Yu. A. Izyumov for
discussing this review, to M. L. Kaganov, A. V. Chubukov,
and E. V. Kuz’'min for reading the manuscript and valuable
comments. It is a pleasure to thank B. A. Ivanov for valuable
advice included in this paper. Finally,  am indebted to V. A.
Ignatchenko for encouraging the writing of this review and
discussing the organization of the paper and its content.

UThe structure of such a surface is similar to the potential surface of
doubly degenerate states in the Jahn-Teller effect.****

IIn principle, in some cases an increase in the symmetry at the critical
points on the phase diagram is also possible and this is known as the
asymptotic symmetry.'"’

YIf the distance between the Z, vortices is greater than the spin correla-
tion length, this analogy of course does not apply because the spin waves
destroy all the nontopological characteristics of the vortices.
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