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The macroscopic electrodynamics of time-dependent coherent processes in active media is
reviewed. Dicke super-radiance in the two-level model and cyclotron super-radiance in a model
consisting of an electron beam in a magnetic field are investigated. Similar phenomena in other
media are discussed. Particular attention is devoted to polarization waves, i.e., a type of normal
wave that coexists with electromagnetic waves and in many ways determines the character of
coherent effects. Super-radiance is considered as a dissipative instability of negative-energy
polarization waves, which occurs in an active sample as a result of losses by emission of positive-
energy electromagnetic waves into the ambient space. The method of phenomenological
quantization is developed for unstable modes in active samples, and directly describes the
quantum-mechanical properties of collective excitations. The procedure is used to analyze
macroscopic quantum-mechanical fluctuations of super-radiance.

1. INTRODUCTION. CONTINUUM ELECTRODYNAMICS AS A
METHOD OF DEALING WITH PROBLEMS IN QUANTUM
RADIOPHYSICS AND OPTICS

1.1. Collective coherent processes in active media

Classic textbooks on macroscopic electrodynamics'"6

are mostly devoted to transparent or absorbing equilibrium
media. On the other hand, the enormous interest in wave
instabilities in modern physics, i.e., in the physics of lasers,
nonlinear optics, electronics, solid state physics, plasma
physics, and astrophysics, has gradually identified the fun-
damentals of the general electrodynamics of nonequilibrium
media. Our review is concerned with that part of the electro-
dynamics of active continuous media that deals with coher-
ent processes in media consisting of excited particles (mole-
cules). Until quite recently, this part of electrodynamics was
essentially confined to processes that were slow in compari-
son with the relaxation times in the medium, and it is only
now that the concepts and methods of macroscopic electro-
dynamics, including the phenomenological approach, have
began to permeate research into fast transient processes oc-
curring faster than energy ( T } ) and phase ( T 2 ) relaxation
in active particles of the medium, i.e.,

A«T-,, T,_. (i.D
In contrast to slow processes, described by the inequality
opposite to (1.1), such coherent processes cannot be de-
scribed by rate equations with time-dependent radiation in-
tensity and time dependent stimulated transition probabili-
ty. In this respect, collective processes involving a large
number of particles of the medium are particularly interest-
ing. Dicke super-radiance was among the first of these pro-
cesses to be predicted and discovered experimentally, and a
considerable proportion of the present review is devoted to
the methods of macroscopic electrodynamics as applied to
this phenomenon.

The microscopic method, which starts with the quan-
tum electrodynamics of cold field modes and individual mol-
ecules in vacuum (Sect. 1.2), can in principle take into ac-
count all the effects of the interaction between molecules and
the field. In particular, this applies to effects due to the spa-
tial inhomogeneity of radiation and the internal energy of
particles in the active medium.13b However, considerable

difficulties are encountered in the transition from micro to
macro characterization of the relevant processes, and a num-
ber of simplifications and approximations have had to be
resorted to. The direct numerical method of investigation is
difficult to use as a basis for developing physical ideas capa-
ble of describing and explaining these phenomena. Neither
approach can reveal the place of different collective coherent
processes in quantum radiophysics and optics in the overall
picture of unstable wave processes, or point to analogous
processes in other branches of physics.

The macroscopic approach of continuum electrody-
namics simplifies the solution of these problems and often
provides a unified physical interpretation of the phenomena
under consideration.'' It effectively utilizes the concepts of
permittivity, dispersion, anisotropy, energy-momentum
flux, normal waves (modes), phase and group velocities,
and convective and absolute instabilities in problems of
growth rate, the sign of energy, and the linear and nonlinear
interaction between waves. It does so by applying, whenever
possible, the Hamiltonian method, the method of Green's
functions, the phenomenological quantization of collective
excitations in the active medium, and so on. Problems treat-
ed by the continuum electrodynamics of active media also
include the reflection, refraction, and propagation of normal
waves in inhomogeneous and time-dependent media, the
emission of radiation by particles moving in such media, the
scattering of waves, the van der Waals interaction, and the
different processes that occur in cavity resonators and wave-
guides filled with active media. The lack of the usual general
phenomenological relationships for the active media has
meant that models of such media have had to be introduced.

In this paper, we shall review the results achieved in the
macroscopic electrodynamics of coherent processes (above
all super-radiance) by using the very popular two-level mod-
el of a medium (Sects. 1-6) and the model consisting of an
electron beam in a magnetic field (Sect. 7). Similar pro-
cesses in other active media will be briefly reviewed in Sect.
8. Our presentation will focus on the concept of polarization
waves, i.e., a particular type of normal wave that coexists
with normal electromagnetic modes in an active medium
and in many ways determines the picture of collective coher-
ent processes and super-radiance.
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1.2. Quantum electrodynamics of cold modes and individual
molecules in vacuum

Consider a sample of volume V that consists of two-
level molecules with concentration N. Transitions between
energy levels 1 and 2 of a molecule are characterized by a
frequency co0 and dipole moment d. In the microscopic ap-
proach,5'9'21 we directly take into account the interaction of
each of the molecules (/ = \,2,...,NV) with each free-space
modegk(r) = (2w^cVft>k?^)1/2ekexp(/Tcr) of frequency «k

= <a(k), wave vector k, and polarization unit vector eklk
(the quantization volume is ?^-» <x> ). The dynamics of the
molecules + field system is determined by the Hamiltonian

H =

( 1-2)

^ ys.
via Heisenberg equations of the form MG /dt = i[H,G ].
Hence, the photon creation and annihilation operators (ck

+

and ak ^and the operators for the excited states of the mole-
cules (RI+ and/J;_ ) obey the equations

(r/) d, (R,. - Rt-), (1.3)

df

, d/Aj

-f #,_) d,A,;

(1.4)

(1.5)

where d, (R/ + + R, _ ) = d, is the dipole moment operator,
A, = 2k (akgk + 2k

+ g*) [ r = r, is the vector potential opera-
tor at the point occupied by the /th molecule r,, and

(1.6)

is the electric field. According to ( 1.3) and (1.4), there is a
linear relationship between the field oscillators and the mo-
lecular polarization oscillators, i.e., they are partial and not
normal. The variation in the operator for the half-difference
between the populations of the /th molecule, RI3, which is
described by (1.5), characterizes the nonlinear relationship
between these oscillators. The creation and annihilation op-
erators satisfy the canonical commutation relations

= \ak, flk-] =0, (1-7)

(1.8)

and the field operators commute with the molecular opera-
tors 8,r is the Kronecker symbol).

In the quantum-electrodynamic approach, the individ-
ual molecules and cold modes of free space are not directly
related either to the geometry of the macro system or the
collective excitations within it. In this approach, it is diffi-
cult to take account of diffraction effects and variations in
field, polarization, and inversion over the specimen, 13b so
that one has to resort to some form of the "mean field ap-
proximation"10"18. Nevertheless, the approach is very widely
used in quantum radiophysics and optics, and has led to a

number of new important results. For example, the evolu-
tion of induced intermolecular correlations during the spon-
taneous formation of a super-radiant state by photon ex-
change was examined explicitly in Ref. 21.

1.3. The semiclassical approximation. Normal waves in a
medium

A different approach is employed in macroscopic elec-
trodynamics. Here we start with the semiclassical equations
for the interaction between the field and the continuous me-
dium, i.e., the classical Maxwell equations, and the equa-
tions for the mean polarization & and population difference
AJV = N2 — N\ per unit volume that follow from the quan-
tum-mechanical description of the two-level medium:11'22

,
at

at

dt

4n

^ = _. (Atf - AJVP) 771

(1.10)

(1.11)

Possible resistive dissipation due to the conductivity a of the
"background" medium is taken into account in (1.9) (for
bounded samples, there are similar diffractive losses; see
Sects. 3.1 and 4.2). The coupling coefficient between the
polarization and the field in (1.10) is given by the square of
the "cooperative" frequency of the medium2'

C 0 " \ *• * *• ^")

In an inverted medium we have AAT> 0 and <y2 < 0. As a rule,
in real samples, the cooperative frequency is low as com-
pared with the transition frequency, i.e., |<yc | <<y0.

The usual procedure is to employ the rotating wave ap-
proximation (R W A), ] 2'23 i. e., the equations are truncated at
high optical frequency co0. The resulting Maxwell-Bloch
equations for the slowly-varying population difference AJV
and the complex amplitudes of the field E and polarization P
have the following form in the case of plane waves
ooexp( — io)0t + ia>ff/c):

(1.9')— + c — + 2no 1 E = 2nito0P,
dl dz '

dt

dt
7' 4-lm(E'P)/r1. (1.11')

The derivation of these equations is discussed, for example,
in Refs. 13-15 and 20. The semiclassical equations describe
only quantities averaged over the ensemble, or over a ma-
croscopically large volume, and do not directly include the
quantum-mechanical fluctuations. However, phenomeno-
logical second quantization of these macro equations offers
an effective method of analyzing quantum-mechanical fluc-
tuations that does not require direct solution of the original
microscopic equations (see Sect. 5).

We emphasize the classical origin of not only the Max-
well equations (1.9), but also of the equation for the popula-
tion difference (1.11). The latter describes the variation in
the energy density fe0A7V/2 in the medium that is due to the
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work done %d3P/dt by the electric field $ on the current
density d3P/dt and the effect of the pump fe0A7VP/2. The
quantum-mechanical properties of molecules determine
only the specific constitutive equation of the medium (1.10);
in the two-level model, it takes the form of the equation for
the damped oscillator excited by an electric force. The initial
conditions for the field and the polarization, which are deter-
mined by the quantum-mechanical fluctuations in the ab-
sence of the microfield, are also of quantum-mechanical ori-
gin. In all other respects, the evolution of macro observables
(fields, polarizations, energies, etc.) of systems consisting of
a large number of particles is described by the classical elec-
trodynamics of continuous media, as expected for a macro-
scopic specimen in the presence of a large number of pho-
tons.

For slow processes obeying the inequality opposite to
(1.1), e.g., for quasistationary generation in lasers, we can
transform from the semiclassical equations (1.9) - (1.11) to
the simpler and easier to interpret rate equations12'22"27 by
neglecting the intrinsic space-time dynamics of oscillations
in the polarization of the medium. However, for fast coher-
ent processes (1.1), which include super-radiance, this sim-
plification cannot be justified.

According to (1.10), the linear response (for <yc

= const) to the harmonic field

Q, rel. units

ig = — E exp (— HO/ -f ikr) + ( c.c.) (1.13)

in an infinite two-level system is characterized by the suscep-
tibility

£-! = — co^JiKco + iT,1)2 — co?]}-1. (1.14)

For the permittivity, which is related to^(«), we find near
resonance that

e (to)

-+-

+ 4nX

o1 — QC [2co0 (to — w0 -f- 1771)]'1, to « a>0.

(1.15)

This expression determines the properties of normal
waves, i.e., the harmonic eigensolutions of the linearized
equations of electrodynamics in the medium. '~5 The disper-
sion relation satisfied by <a(k) for transverse and longitudi-
nal normal waves in an isotropic medium is defined by the
following two equations:

c*k- (EJ_k),

(Eflk).

(1.16)

(1.17)

It is precisely these normal waves (photons in the medium)
that constitute the collective excitations. In solid state phys-
ics they are called polaritons ( lumoexcitons ) and plasmons.
A significant point that must be noted29 is the qualitative
difference between normal waves in highly inverted ( — <y2

>47"2~2) and uninverted or weakly inverted ( — co2
c

2) media. The last case usually occurs in lasers.
Strong inversion in gases or solids has been achieved only
very recently, e.g., in super-radiance experiments. The quali-
tative change in the spectral, energy, and other characteris-
tics of normal waves in highly inverted media, including the
appearance of negative-energy polarization waves, is re-

FIG. 1. Super-radiance from the 2 — 1 transition of frequency a>0 and
radiated power Q^Sspom •

sponsible for the observed properties of collective coherent
processes. This will be discussed below.

1.4. Dicke super-radiance: spontaneous collective emission

Super-radiance was predicted by Dicke10 in 1954 and
was observed experimentally in the infrared and optical
ranges in gases 13-15'23'30'31

 and in activated crystals32'35; it
has also been seen in the radiofrequency range in nonequilib-
rium spin systems.169 The effect occurs in macroscopic sam-
ples with high enough concentration N of molecules that
have been inverted in a preliminary step. The internal energy
of the molecules in the sample is spontaneously emitted in
the form of a short electromagnetic pulse whose power QV
exceeds by several orders of magnitude the power transport-
ed by incoherent spontaneous radiation emitted by the same
number of isolated molecules (Fig. 1). The formation of the
phased super-radiant state of a system of molecules occurs
with a delay time td that exceeds the pulse length r by rough-
ly an order of magnitude. Initially (t-^td), the phasing pro-
cess is quantum-mechanical. However, when a sufficiently
large number of photons has been produced, the electromag-
netic field and the polarization of the medium become classi-
cal in character, and super-radiance can be treated in the
semiclassical approximation.1'14'23'27'28 When we speak of a
spontaneous process under these conditions, we have in
mind only the corresponding formulation of the problem in
the absence of the external or initial macrofield, whereas in
relation to each individual molecule we are, of course, con-
cerned with stimulated emission under the influence of the
collective, self-consistent field of all the other molecules.

We shall now illustrate the approach based on macro-
scopic electrodynamics to the description of coherent collec-
tive processes by considering the simple example of super-
radiance by a spherical particle. First, we shall show that, for
a particle of an inverted medium of small radius a<^/l0

= 2irc/co0, in which relaxation can be neglected
(r2~ ' = <r = 0), the initial high-frequency polarization
& (t = 0) grows exponentially at the rate a>" <x NV. To solve
this initial-value problem, we use the well-known solutions
of the electrodynamic problem of emission by a high-fre-
quency point dipole SPV'ma. vacuum and the electrostatic
problem of polarization of a sphere in an external field. The
former solution1 ] shows that the particle is in the quasistatic
radiation reaction field ̂ rad = (2F/3c3)rf3^Aft3, where-
as the second solution1 shows that the resultant field inside
the sphere is % = gf rad - (4w/3) &>. For dielectrics with
£$=$} = % +4irS? m electrostatics (co ̂ 0), this leads to
& = ^rad3(e - l)/47r(f + 2) and shows that the permit-
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tivity has the resonant value e = — 2 for which the sphere
can become self-excited, i.e., it can assume finite uniform
polarization in any field, however weak. If we now substitute
for the field % in the constitutive equation (1.10), neglect
the Lorentz correction to the field acting on the molecules
(see Sect. 6.1), and put SP = l/2/>exp( — mi) + c.c., we
obtain the following characteristic equation with fixed in-
version A7V for the complex frequency co = u> + ia>" of an
unstable mode in the particle: e(ca) = — 2 — 3i(o3V/2-rrc}

[ see (1. 15) ]. Its solution gives the required growth rate:

— 2n V (00. (1.18)

To determine the type of instability, we must obtain the
growth rate (1.18) by an energy method. The energy density
in the particle is determined by the well-known electrody-
namic formula for dispersive media1"3:

(1.19)
16.1 do 8n

The resonant value e = — 2 is assumed for the sphere in this
equation. As can be seen, the inverted medium has a negative
energy (because of the large negative contribution of the
energy associated with polarization oscillations), i.e., the
energy of the medium + field system in the presence of the
h.f. oscillations is less than in the absence of these oscilla-
tions. Moreover, because of the radiative loss QV
= <^rad V&£P/dt by the h.f. dipole into the ambient space,

the energy of the particle becomes more and more negative,
and its absolute magnitude increases: dw/di = — Q. This in
turn signifies an increase in the amplitude of the polarization
oscillations in the particle. Substituting the loss power den-
sity Q = «Q P |2F/3c3 > 0 into this expression, and recall-
ing that the field E ~ — (4ir/3)P is large in comparison
with Erad,we find that the growth rate a" = — Q/2co is
again given by (1.18). The instability of systems with nega-
tive oscillatory energy, which arises when this energy loss is
present, is referred to as the dissipative instability.37^^1 The
special instabilities that occur in the case of super-radi-
ance29'36 are due to the fact that radiative loss introduces
dissipation into the system.

In the adiabatic approximation, the subsequent dynam-
ics of the system, i.e., its super-radiance, is described by the
following equations:

At At fito,,
(1.20)

where the coefficient co" on the nonlinear stage is given by
expression (1.18) for the linear growth rate, in which the
inversion AJV is regarded as time dependent. The function
&N(t) decreases during this stage and then changes sign as
the molecules undergo a transition from the upper to the
lower energy level. The solution of (1.20) leads to the fol-
lowing well-known shape of the super-radiant pulse (see
Fig. 1):

Q 0W{4Tch2[(r-/d)(2T)-1irl. (1.21)

The pulse length T = \/2co" ( t = 0) = T{/NV is smaller by
the factor NV than the spontaneous emission time of an iso-

lated molecule 71, = 3^c3/4t/2tUo. Hence the maximum
power Qmax = Ha>J$Y4r is proportional to the square of the
concentration of the active molecules, N2, and exceeds the
initial level of incoherent spontaneous emission Q(t = 0)
-fooN/Ti by a factor of about NV. The power (?max

= c0o\dN\2V/3c3 is reached after the delay time td

= rln[Qm^/Q(t = 0) ] and corresponds to coherent emis-
sion by a dipole with total dipole moment of all the molecules
in the particle Pmn V = dNV. This clearly demonstrates the
coherent collective character of the process.

Thus, macroscopic electrodynamics shows that Dicke
super-radiance is based on the dissipative instability of po-
larization oscillations with negative energy.29 It will become
clear later that this is opposite to the traditional mechanism
of laser instability of electromagnetic waves in masers and
lasers, which have positive energy (w>0) and grow as a
result of negative loss (Q<0) introduced by stimulated
emission by active molecules.

More complicated wave instabilities in a distributed ac-
tive medium of size L>A0 will be discussed below, but the
essential role of negative-energy polarization normal waves
(modes) in coherent processes, including super-radiance,
will remain unaffected.

2. POLARIZATION WAVES IN A HOMOGENEOUS TWO-
LEVEL MEDIUM

Before we consider the properties of coherent processes
such as super-radiance in a bounded sample, let us examine
the solution of the corresponding initial-value problem in an
infinite medium. As a first step, let us consider normal waves
in a homogeneous medium consisting of two-level mole-
cules. These waves differ from one another by the ratio of
polarization to electric field, and also by their spectra, i.e.,
the dependence of the complex frequency a> = co' + ico" on
the wave number k = Re k.

2.1. Polariton spectrum of an active medium. Effect of
resistive losses

When kc~o)0, the dispersion relation (1.16) together
with (1.15) determine two normal transverse waves in the
two-level medium, namely, an electromagnetic wave and a
polarization wave29'36:

coc,p = co0 - IT-1 +1 [ck - co0 + l (771 - 2ita)l

x [ 1 ± {1 + a>l \ck — to0 + i (771 - 2na)p2} •']. (2.1)

In the polariton resonance region, i.e., for <u~<y() and kc
~(00, this is usually referred to in optics as the polariton
spectrum (see Refs. 2 and 36-42). Its generalization to the
case of Doppler broadening is discussed in Sect. 6.1. The
shape of the spectrum (2.1) undergoes a qualitative change
between the uninverted and the inverted medium or, more
precisely, when the inequality sign in co2, ̂  (T 2 ~ ' — 2-ira)2 is
reversed, where a2, oc — A7V (Fig. 2). The designation po-
larization wave is introduced because, for a given amplitude
of the field E, the amplitude of the polarization of the medi-
um in the polarization wave is greater (usually much
greater) than in the electromagnetic wave. It is clear from
(2.1) that, for a given wavelength A = 2ir/k, only one of
these two waves can be unstable. The maximum wave
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FIG. 2. Dispersion curves for electromagnetic
waves and polarization waves (polaritons) <ue p (k)
in uninverted (o)"f =0) (a) and inverted (b) me-
dia for r2~ ' = a = 0. Arrows show Raman scatter-
ing by polaritons.

growth rates are achieved at the line center ck (2.4) becomes^" a (AW)"2. If field dissipation in the medi-
and are given by

C.P = — TV + — (Tt' — 2na)

{l:t|l-<o?(7V-2jio-rT }• (2.2)

The usual concepts of maser (induced) instability"'12'26

refer to the electromagnetic wave coe(k) under the condi-
tions of strong relaxation of polarization and weak field dis-
sipation r2~ '> |&)c|/2>2ircr. According to (2.2), when
r2~ ' > \a)c |/2, the growth rate is given by

- — 2ncr = (2.3)

The polarization wave cop (k) is then rapidly damped out at
the rate T^1, and ceases to be of any interest. On the other
hand, the instability of the electromagnetic wave corre-
sponds to stimulated amplification of the field by practically
unphased molecules, i.e. the relatively slow and incoherent
superluminescence process that can be described by the rate
equations.

A totally different situation occurs in the case of strong
inversion and weak relaxation that is typical for super-radi-
ance : TV ' < oc 1/2 (Fig. 3). When the dissipation is small,
2ircr<T2~

 l<4\coc\/2, we have anomalous saturation of the
growth rate (2.2):.

G> = — coc -—-
2 ' ' 2

\ l /2
(2.4)

In contrast to the maser growth rate (2.3), which is propor-
tional to the inversion AJV, the anomalous growth rate28

um predominates over the relaxation of polarization ( T2 '
< 2ira) , the polarization wave becomes unstable (instead of
the electromagnetic wave) in the range 2ira < — a>l T2/4. So
long as 2-rra^\coc\/2, this instability within the line
\ck — o»0| 5 \coc | smooths the spectrum of the polarization

(k) (see Fig. 3b) and reduces the instability: at the
line center, we have

-TV (2.5)

(for 2ira^> \<oc |/2). When 2ira> 7Y ' it follows from (2. 1 ),
that the wave-number interval for which the polarization-
wave instability develops with a growth rate of the order of
the maximum value (2.2) is

-^r

~ 2"° J

(2.6)

In the above situation, the field cannot be represented
by a set of incoherent components because the process is so
fast that the width of the spectral line of the medium, T^ ' is
smaller than the minimum possible width of the emission
spectrum A« ~ max a "if> , which is equal to the growth rate of
the most rapidly growing spatial harmonic of the field (see
Sect. 3.5 for further details).

This is a convective (drift) and not an absolute instabil-
ity for — w2 r2/4 < ct)0 It is concentrated within the wave-
number interval

(2.7)

(— co? — 8no-7V)l/2

-0.01

FIG. 3. Polariton spectrum of an inverted two-level
medium in the absence (a) and in the presence of dissi-
pation (b) 2n-<7= 1CT2 &),/2~|«t |/2. The values I/
T2(i>0= 10~\ — al/caf, = 10~~' were chosen to ensure
that |<yc |/2> 7", '. Thick lines show regions of wave
instability on the dispersion curves &ij p .
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FIG. 4. Region of unstable wave numbers (2.7) for different values of
conductivity crand4j2T{~' < |<ac |. The electromagnetic wave is unstable
below the level 1ircr= r2~'; the polarization wave is unstable above this
level. Doubly cross-hatched region shows the anomalous instability (2.4).

It is clear from Fig. 4 that, when 4^/2T2 ' < \coc\c an in-
crease in the conductivity a in the range 2mr> J2~' is ac-
companied by expansion of the interval (2.7) in which the
polarization waves are unstable, which differs from the ma-
ser instability of electromagnetic waves for 2ira < T2~'. In
other words, as dissipation grows, we have instability in the
line wings \ck — ta0\^\cac\ (see Sect. 2.3). The polarization
waves do not play an appreciable role in most lasers. The
point is that lasers employ cavity resonators with a high
quality factor q, so that 2ira-=ea0/2q < T2~ ' and, according
to (2.3), generation occurs for a relative low level of inver-
sion coc | <27V'. for which weakly damped polarization
waves do not exist. Certain quantum oscillators employing a
high degree of inversion24'43'44 and low-Q resonators q
5 7T

2w0/2. are an exception. Examples include molecular-
beam masers (NH3) as well as gas (He-Xe) and chemical
(HF) continuously operating lasers. Other examples in-
clude pulsed lasers that employ metal vapor (Cu) and
pulsed molecular lasers using a high-pressure gas (> 0.1
atm) and exploiting vibrational-rotational (CO2-TEA),
electronic vibrational (N2) , and excimer (Xe2) transitions.
For such systems, |d>c | Jb2r2~' , so that the corresponding
generation dynamics, including stochastic generation, is
largely determined by coherent processes involving polar-
ization waves. However, the part played by these waves in
this situation has not as yet been analyzed.

2.2. Observation of the polariton spectrum

Intensive experimental studies of polaritons began after
the advent of the quantum theory of exciton-photon cou-
pling in solid state physics, although the first attempts were
based on the classical theory of the dispersion of light.2'8'45"*8

For a long time, these experiments were concerned exclu-
sively with absorbing crystals. The spectrum was examined
by both optical (interference, reflection, luminescence) and
nonoptical techniques (neutron scattering, electron scatter-
ing, etc.) Raman scattering of laser radiation («L) into the
Stokes radiation (<us) with the generation of polaritons
(cop), which was developed in the 1970s, has been particu-
larly effective (see Fig. 2a).

Direct observations of the polariton spectrum of active
media in which time dependent coherent processes are tak-
ing place have not as yet been carried out. This has been due
to the following factors.

First, a high concentration of active molecules is neces-
sary if the polariton effect is to be produced, since the coop-
erative frequency must be greater than the linewidth, i.e.,
\o)c > 2r2~'. If this were not so, the spectrum would not be
very different from the partial-wave spectrum. In crystals, in
which the interaction between the particles is strong, this
condition could not be satisfied until the 1980s when experi-
ments on super-radiance in diphenyl containing pyrene,32

KC1:02- (Refs. 33 and 34), Nd:YAG and ruby35 at low tem-
peratures were carried out.

Second, the above condition is more readily satisfied,3'
for example, in the case of super-radiance in cesium vapor.14

However, studies of polaritons in gases were greatly delayed.
The first paper, published in 1967, on excitons in gases48 did
not elicit a notable response. Evidently, in the case of gas
electrodynamics, the use of the analogy with ordinary phon-
ons or excitonic polaritons in crystals was impeded by the
absence of translational invariance and the fact that polari-
tons in a gas, due to electron transitions in free molecules,
were unusual. It is only in the last few years that the idea of
polaritons in gases, and also in glasses and amorphous mate-
rials, has begun to emerge45'46 and is being used in practice.
The parametric polariton laser employing sodium vapor is
an example.49

Third, fast detection is essential because the shape of the
polariton spectrum changes as the nonlinear stage of nonlin-
earity is reached in a time ~td,\/a>",p. Measurement of the
parameters of ultrashort small-area pulses, transmitted by
an active medium,35 is a promising method (see Sect. 3.6).
Ultrashort pulses have long been used in the spectroscopy of
absorbing media,47 e.g., for the direct measurement of pico-
second lifetimes of polaritons, using coherent Raman scat-
tering,50 and also for the determination of the group velocity
d(op/dk of polaritons in crystals (CuCl, CdS).51

2.3. Negative energy of polarization waves

We shall show that, just as in the case of a particle (see
Sect. 1.4), polarization waves in a distributed inverted medi-
um have negative energy and their instability is dissipative.
29'36 According to (1.9) and (1.10), the rate of change of the
total field and polarization energy density w for A./V = const
is determined by the relaxation of molecular polarization,
resistive dissipation, and the inhomogeneity of the energy
flux: dto/dt = — Q — c d\\[$,3S ]/47r, i.e.,

dt 4.T
(2.8)

Hence, if we know the susceptibility ̂  (1.14), we can find
the average energy per h.f. period and the inhomogeneous-
wave power loss in the active medium:4'

Q = 11E I" [0 +

co |2 + w; + 77") I x (co) |2] exp (2o>7),

rr|cox(co)|2]exp(2co"0.

(2.9)

(2.10)

Using (2.9) and (2.1), we can verify that a polarization
wave in an inverted medium with &>2 < 0, has negative energy
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wp = w(ap ) <0. Hence, when energy is removed by field
dissipation, and Qp = Q(cop ) > 0, the field amplitude must
increase (the growth rate is (0p = — Qp/2wp > 0), i.e., the
polarization wave exhibits dissipative instability.5'

The energy of the electromagnetic wave, on the other
hand, is positive: we = w(a>e ) > 0. Its maser instability (a>"
= — Qc/2wc >0; Sect. 2.1) arises as a result of negative

loss: Qe = Q(a>e ) < 0. In an uninverted medium, the energy
and loss are positive for both waves,2'3 and there is no insta-
bility.

The reason for negative energy becomes clearer if we
turn to the Hamiltonian h of the system, i.e., the total energy
density of the medium and of the field in the nonlinear case
A7V ̂  const. We shall use the following law of variation for
the Bloch vector that follows from ( 1. 10) and ( 1. 1 1 ) 12:

-1, (2.1 D
where the dot represents partial differentiation with respect
to time d/dt. To be specific, we shall consider a lossless in-
verted medium, and assume that t < T, i2 , a~ '. The length of
the Bloch vector is then conserved: S = AJVBd, and inver-
sion is expressed in terms of polarization as follows:

\N = A#B {1 - [^ + (&O'I (AAWr2}'73. (2.12)

Eliminating AJV from (1.10) with the aid of (2.12), we write
the equations for the transverse field and the polarization in
the Lagrange form

_d_ _di_ _d_ _a/ __ ^L = n
"*" d'A dz dA' M ~ '

_d_ _dl__ _d_ _a/ __ *_ = n
d df dP

g — arcsin •

dt

<?r. P2, W (2.13)

where ATVis given by (2.12), & = — A/c, ISI = rot A and
the one-dimensional problem is being considered for the
sake of simplicity. The prime represents the differentiation
d /dz. The canonical variables other than the vector poten-
tial A(z,t)=ql and induction @(z,t) = &+ktr&>

= _ 477-cp, (linearly polarized for the sake of simplicity)
are taken to be q2= & (z,t) and p2 = — (fi/2d)
X arcsin{ &> [«0( A7V Bd 2 - ^2) l / 2 ] ~'}. We thus find that
the Hamiltonian for the molecules + field system does not
contain their binding energy & %', and is given by

:co0A/V. (2.14)

In addition, the basic equations (1.9)-(1.11) lead to the
expression for the rate of change of the energy density in the
general (lossy) case:.

|
r

In the linear approximation, in which d(AN2)/dt
&.N/dt, this result leads to (2.8) by virtue of

(2.11) and if we take into account the possible arbitrariness
in the choice of the origin for the wave energy. In an inverted
medium, it is precisely the "linearized" and "shifted" energy
of the waves w (2.9) that can become negative. Actually,
according to (2.12), oscillations in the polarization of in-
verted molecules (^ ̂ 0; ^^0), can only be produced by
partially taking the molecules from the upper to the lower
state (A./V < AJVB). When &NB = N, all this is obvious be-
cause the molecules can acquire h.f. polarization
$(C\rf>i)*er(C2\lj2)d3T only in the mixed state ^=C,^,
+ C2if>2> f°r Q.2 7^0, 'n which both levels are populated. If

this removal of energy from the upper level results in fields of
moderate energy, which occurs in the case of polarization
waves, then negative work is done on the medium as a whole,
and the medium acquires negative wave energy. In an unin-
verted medium, on the other hand, the polarization and the
field are produced by taking the molecules from the lower to
the upper level, thus communicating positive energy to the
medium. The result is that the wave energy becomes posi-
tive.

2.4. Absolute instability in a conducting inverted medium.
Plasma-dipole resonance

The dissipative instability of polarization waves can be
used to generate radiation not only under convective condi-
tions (Sect. 2.1), but also under absolute conditions when,
despite the absence of reflections, the dispersive spreading of
a wave packet and its nonuniform amplification are found to
compensate convective drift.52 A homogeneous inverted me-
dium then becomes formally "opaque" (Re£(&/) <0),and
strong field dissipation ensures that the group velocity is
small: \dco'p/dk \<^c.

The criterion for absolute instability can be formulated
as follows37'38: at the point &)a at which the two roots k(a>) of
the dispersion relation c2k2 =ta2£(<a) that correspond to
counterpropagating waves are found to coincide, we must
have a>'a = Im a>a > 0. This corresponds to the crossing of the
ordinate axis in Fig. 4 by the instability (2.12) (k\ < 1) and
to the growth rate

= — 2JKKQ2
+ — ?7 0. (2.16)

fto)0 (A/V —

27\ 4ir
(2.15)

The permittivity of the "background" medium was taken
into account in this expression for <y^ by replacing unity in
(1.15) with £0. The attainment of absolute instability is fa-
cilitated by £0 < 1 and by choosing the optimum conductiv-
ity <7opt x £0 <y0/4ir. When e0 < 0, so that the opacity of the
phonon medium precludes the polariton resonance c2k2

zzEg&o, absolutely unstable longitudinal and long-wave
(&-»0) transverse polarization waves are found to grow
with a growth rate ca'^, which is greater than the growth rate
of the convectively unstable waves with k ^0.

Absolute dissipative instability can probably be at-
tained when there is a strong inversion of rotational molecu-
lar transitions in a partially ionized gas,6) in which case we
have the plasma-dipole resonance a>n^ct)L

= (4irNce
2/mc )1/2 in the far infrared. Here, the conducting

background medium is replaced by the low-temperature
(r~!03 K) plasma in which £0(o>) = I — (a)2

L/co2) and
4irff~vei ~10Ar

e7'~3/2<<yL (for electron and ion concen-
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trations Ne ~N{ 5 1017 cm 3 and degree of ionization equal
to 10 ~2-10 ~7). Allowance for the additional plasma disper-
sion £0 (co) is equivalent to the replacement c2k -> c2k 2 +co\_
in (1.16). Thus, when \e0 -41, the absolute instability of
waves with k~Q replaces the convective instability in the
region of the polariton resonance k^coo/c, and becomes the
dominant process. Its growth rate eo'^ is a maximum for co\.
= o)l 4- TV2 and is given by (2.2). Estimates show that the
condition for absolute instability — co2, > 8ircr/T2, is satis-
fied when the relative inversion is AJV/JV £ (10~ l a N f )

I / 2 .

2.5. Birefringence and polarization of waves in an
anisotropic medium

The concept of normal waves in a medium arises natu-
rally in the analysis of the polarization properties of radi-
ation in anisotropic (including active) media. '~3 Their ani-
sotropy £rS(a>) may be related, for example, to the back-
ground medium (crystal32"35), a polarizing pump,'4'53'54 or
the anisotropic distribution of the population difference
A7V(e) between the active molecules over the orientations of
the dipole moments d = rfe; |e| = I. In the last of these, we
need the tensor generalization of the cooperative frequency:

e) d2 e (7, 8 = x, y, z).

(2.17)

In general, the polarization and dispersion of normal
waves is determined by the set of equations1'2

0,

and the Fresnel dispersion equation det(ArS) —0. In the
absence of spatial dispersion, these lead to two values of the
refractive index n, 2 («) for transverse waves with different
polarization coefficients Kl2=iEy/Ex= — /ctg(0 + /0),
which determine the ratio of semiaxes of the polarization
ellipse, tanh 6, and the angle <p between its principal axis and
the y axis:

th 6 = - 4 Re K • (I K — 1 1 + 1 K + 1 1)'2,

I)'1].
(2.18)

The result is that, according to the dispersion relation
«2«2

2(<u) = c2k 2, which replaces (1.16), there are two dif-
ferently polarized electromagnetic waves <u< 1 ) > ( 2 ) - ( f c ) and
two polarization waves a>£1)i(2) (£). Birefringence and polar-
ization of radiation have been examined in detail for quasi-
stationary boundary-value problems, '~3 including the linear
interaction between waves in inhomogeneous media55 and
the transformation of the polarization ellipse in isotropic
media with nonlinear anisotropy, due to, for example, the
reorientation of molecules, the degeneracy of levels, and the
nonisotropic saturation of AJV(e) (Refs. 54, 56, and 57). A
number of experimental and theoretical publications have
appeared on time-dependent polarization effects accompa-
nying the propagation of picosecond pulses in passive me-
dia.54-56

The analogous range of problems for coherent and
time-dependent processes in active media that involve the

participation of polarization waves is only just beginning to
be investigated. As an example, let us consider super-radi-
ance based on the two-level transition/-*/, that is degener-
ate in the componentsyz of the total angular momentum/.
Suppose that the anisotropy is determined by a polarized
pump pulse that determines the density matrix p(t = 0) of
the coherent mixture of Zeeman sublevels | jjz) of the upper
state by populating them from the lower state53 with angular
momentum/":

x,i/y — 1 +
.4no *>«{+ Re£/-h[(C+ + C_)

co* [ Im U ± i I (C+ — C_)/2] }
(2.19)

i I //*>' (ii* I P (t = o) I //,>,

2)

2 |p"(f = (2.20)

In the above presentation, we used the standard expan-
sion of the dipole moment operator d = rf+1e+l + </ _ i e _,
in terms of circular polarizations e ± , = ip (x° ± iy°)/j2.
According to (2.19) and the equation for the field of normal
waves I.sArSEs = 0, super-radiance develops on the linear
stage with birefringence

2 / \ * i • 4JICT C1.2

1>a co (co -f- iT1"1)2 co2

r> r- n- \^_ i *-*— *-<•

which corresponds to the presence of waves with two polar-
ization ellipses A"u =/(«2,2 — ea)/exy. When
(C+ — C_2) + 4\U\2^0, one of the waves predominates
and has a high growth rate. This has been observed in an
experiment53 with Rb gas and a linearly polarized pump
eLlz°, using the/" = 1/2 level and the working transition
/= 3/2-/ = 1/2) (C± = 5/48, U= - exp(2/a)/16, and
a is the angle between eL and the axis x°). In these expres-
sions S2, = 4S2

2 and super-radiance is always linearly po-
larized in the direction of eL. Moreover, there is no anisotro-
py for the/ = 1/2 -./ = 1/2 transition (C± = 1/6, U = 0):
The directions of the orthogonal polarizations of normal
waves can be chosen arbitrarily, and their growth rates are
equal. This degeneracy enables us to explain the fluctuations
in the polarization of super-radiance observed in this case53

(see Sect. 5.3).

3. DISSIPATIVE INSTABILITY IN THE PROBLEM OF
UNIDIRECTIONAL SUPER-RADIANCE

The electrodynamic picture of Dicke super-radiance
(Sect. 1.4) and the associated phenomena in inverted two-
level media are presented in Sects. 3-5.

3.1. Evolution of a packet of unstable normal waves and
their Green's functions

We begin with an analysis of super-radiance in the one-
dimensional model of a plane layer whose normal is the z axis
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and whose thickness in the z direction is L >/l = 2-ir/k.
More precisely, we shall confine our attention to the propa-
gation of plane waves ( 1 . 1 3 ) in the direction of the positive z
axis14'23'27'58'59 and postpone the discussion of counterpropa-
gating waves to Sect. 3.7 and Sect. 4. In reality, the one-
dimensional model works best in the case of a cylindrical
sample with a small Fresnel number F = S /AL 5 1 , where S
is the cross sectional area (iz). According to this model,
super-radiance can be described by the unidirectional Max-
well-Bloch equations ( 1.9' )-( 1.11') in which the distribut-
ed dissipation a includes resistive absorption and difFractive
"leakage" of radiation through the side surface of the sample
(crdiff ~cA/6irS) (Refs. 14, 23, 60), thus specifying a uni-
fied dissipation scale LCT = c/2-ircr. Their general solution on
the linear super-radiance stage ( for which AJV = N) has the
following form for arbitrary initial conditions: P(z,t = 0)
= P0(z)6(z), E(z,t = 0) = £0(z)0(z) where the field

E(z = 0,t) = E-m ( t ) 6 ( t ) is assumed to be incident from the
left on the surface of the medium (z = 0).

£(z, 0 =

+ \£in(n<r l 7~0 / r '~

/n ~ 1 2 \ 1
_Lk ( / _ / ' ) 2 | - U/ ' j

V /• /

-z', t)dz',

(3.3)

De.p(z,/) =

where, for unstable e andp normal waves, the Green's func-
tion is ,

T, La cT,

tQ*
H — O (ze 12c

(3.4)

fi-

in which ze = ct — z, zp = z. Obviously, in the absence of
polarization relaxation ( T ̂  ' = 0), and for o)"p > 0, the in-
stability is absolute independently of the field dissipation a:

De,p(z, t) — >oo,
(— *oo

since 4(£)~(exp£)/(27r£) l / 2 . If, on the other

hand, TV l^0, the factor exp( — t /T2) is found to suppress
the growth of the Green's function for times
= SllT2

2::/4c:

i ^ '^~

~'/T! I ^o (2/) exP I (z — 2/) ( ~ ) an^ trie instability becomes convective.37'™
J L \ C7~2 ^O ' J

e(7-—)/„(?') dz'

+ E0(z-ct)e

/) exp

(3.1)

where Hc = (87rc?2Ar(y0/^)1/2>0 is the cooperative fre-
quency «c in a medium that is completely inverted at t = 0,

£' = (IVc){(z-z')[c?-(z-z')]}1/2,f =t -(z/c),0
is the Heaviside step function, and Ik represents the modi-
fied Bessel functions. The length of the sample does not ap-
pear in the solution when there are no reflections; it simply
defines the right-hand boundary of the medium: z — L. Dif-
ferent special solutions of (3.1) are discussed in Refs. 14, 15,
42, and 61.

To explain the instability in the inverted medium, con-
sider the amplification of a packet of normal unstable waves
of a given type, in which the field amplitudes and the polari-
zations are related by the following expression for each
Fourier harmonic q = i[k — (CL>Q/C) ]:

po (q) = E0 (q) (Pe,P (q) + cq +

Pe.p (Q) = — I (0>e,p (k) — G>0).

2JTCT) (2nuo0 (3.2)

According to the Fourier-Laplace method, the packet
evolves for Ein = 0 in accordance with the following law:

3.2. Absolute and convective instability of polarization
waves

We must now examine the propagation of a packet of
dissipatively unstable polarization waves for 2ircr>T^~t.
The initial <5-pulse PoS(z) corresponding to the polarization
Green's functions (3.3) and (3.4) and the field

30

Ef(z, 0= \' P0(z')D'p(z-z', t)dz',

exp(—L+-L-JH ' T, ̂  cr, L

Mi)

(3.5)

is converted into an amplified pulse propagating with the
group velocity vb =c[l — v(\ + i^)~1/2]/2, where v
= (27TO- - T2~ ' )/nc. The pulse is illustrated in Fig. 5. The

field maximum at ZE occurs in advance of the polarization
maximum (zp ) by an amount proportional to the cooperat-
ive length7' of Arecchi and Courtens62 Lc = c/flc. More
precisely, zp ~vrpt - [3Lcv/2(l + v2) ] and ZE-ZP

sZ-c/d + v2)1'2 for rnc >2(1 + v2)"2.
Polarization waves with negative energy density w < 0

have a positive energy flux density: S2 = c\E \2/8ir >0. It
would appear that the energy of a packet of such waves
should propagate in the opposite direction to that of the
phase velocity, i.e., in the direction of the negative z axis,
since the average velocity of the energy flux is negative:

843 Sov. Phys. Usp. 32 (10), October 1989 Zheleznyakove/a/. 843



12

t/T,

FIG. 5. Evolution of a <5-pulse of unstable polar-
ization waves in accordance with (3.3)-(3.5) in
the case of absolute instability ( T f ' = 0,
(7 = 0, til = 10) (a) and convective instability

_= 40). (b) The following notation is employed:
P = c /><„ E = cE. /4m<oHP,,.

_

t-r:

wdz

However this conclusion is not correct because dw/dt
+ dS2/dz + Q = 0, and the energy center zw of the packet

in the active medium obeys the more complicated equation

w
-— = Vw + 7 (Zo, — Zo), Zw = -
at

\ zw d z ^ zQ d z
— OC —OO

, ZQ =

\ wdz
—ot.

(3.6)

\ ivdz

In the polarization wave, the center of losses ZQ, deter-
mined mostly by field dissipation, propagates in the direc-
tion of the positive z axis with the velocity of light c, and
travels in advance of the center of energy zw, determined
mostly by oscillations in the polarization of the immobile
medium. The result is that y(zw —zQ)>0, and this leads to
a positive rate of transport of the energy of the packet. For
large times, the latter is equal to the group velocity da)'p/dk
at the line center.

For an arbitrary initial distribution P0(z) in a finite lay-
er 0<z<L , the evolution of the packet is described by a
convolution of P0(z) and the Green's functions (3.3)-(3.5).
When the dissipation is large, La <LC , cT2, and (z^-La ) the
main contribution to the convolution for ct >z, L 2

a/z, c/a'p,
is provided by the neighborhood of the extremal point z'0=z
— (ctL ^/4L I ) . So long as ZQ > 0, the amplitudes of polar-

ization and field in the packet are determined by the ampli-
fied signal arriving at a given point z from the "source" point
Zo, and slowly traveling from left to right with the group
velocity8' vgr xcL 2

a/4L 2
C <^c/2:

0, (3.7)

£p (z, /) = 2it/(o0c-1L0P0 (z;) exp (aty).

When f>f C T = 4zL 1/cL 2
a, and the "source" point z'0 on the

left-hand edge of the layer (z'Q = 0) has been reached, the
space-time evolution of the packet has an asymptotic behav-
ior determined by the "boundary source" P0(0) :

n = - /
rT

(3.8)

Thus, after a certain instant of time, the field and the polar-
ization follow the same law of evolution at all points in the
active medium, and this law does not depend on the initial
(smooth) distribution PQ(z).

3.3. Self-similar description of the oscillator regime

We now turn to the nonlinear stage of super-radiance.
We consider a short sample (L^LC), initially without dissi-
pation or relaxation: a=T\2 =0. In accordance with
(2.12), the transformation to the polar Bloch angle <p

P = — t'dA'sincp,
d dt

(3.9)

enables us to reduce (1.9')-(1.11') to the sine-Gordon equa-
tion

dzdt
4 * 1 C

•t , Lc = —

c Q_
(3.10)

This equation has self-similar solutions63"65 that obey the
equation

^+ rj£- = sinq>, i=[(rf-Z)2rL?. (3.11)

Super-radiance is described by the one-parameter family of
solutions of (3.11) that are nonsingular at the origin (qi' (0)
= 0) and depend on the asymptotically small initial angle

<p(Q), given by 14-20 <p0~ (NV)~in ^ 1. This solution trans-
forms to the sequence of lightly damped pulses shown in Fig.
6. This is the concluding stage of the development of abso-
lute instability of waves with the anomalous growth rate
(2.4).

3.4. Transition from the oscillator to the single-pulse regime

An oscillator regime similar to (3.11) is observed, for
example, in infrared experiments15 with cesium vapor in
samples with F 5 1 and La ~L ~3 cm (r~ 1 ns and the su-
per-radiant power is Qmax V ~ 1 mW). However, the record-
ed damping of super-radiant oscillations occurs much more
rapidly14t15'23 than indicated by (3.11) and, when the length
Lc is increased, or the initial inversion reduced, only the
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FIG. 6. Solution of the sine-Gordon equation: self-similar without dissi-
pation-(3.11) (solid curves) and quasi-self-similar with dissipation-
(3.15) for Z/T= 1/6 (dashed). The graphs for the Bloch angle <p, the
field amplitude 2<p '/£,, and the inversion AJV/N = cos cp are all plotted for
the initial condition <f>0 = (p(Q) = 10~3, cp '(0) = 0.

single-pulse regime is observed. This is due to factors that
have been ignored in the model (3.10), namely, field dissipa-
tion, Lorentz and Doppler line broadening, transverse in-
homogeneity of the pump and of radiation field, and so on.
The relative importance of these factors has not been proper-
ly investigated experimentally, especially in the case of dissi-
pation.

The effect of relatively strong dissipation (lira >T^1)
on super-radiance can be described theoretically as follows.
The super-radiance profile is formed on the nonlinear stage
of the dissipative instability of polarization waves, beginning
with the time fd at which inversion is removed at z = L.
Dissipation traps super-radiance, reduces the growth rate
a)p, and increases the delay tA. Actually, for the asymptotic
surface source (3.8) and a relatively short sample, we find
from (1.11') that, when tmax > T2, td, we have

4P/. '
Nd

• 1

(3.12)

where, for simplicity, T, ' = 0. In a long sample with L
^-La>%L l/cT2, the removal of inversion begins with the
"propagatingsource"regime (3.7): t d ~ ( a > p ) ~ l \n\Nd/PQ

< ta = 4LL 1/cL * ) . This is followed by the emission of a

random sequence of_pulses: Each segment of length
~LtA/ta~La \n\Nd/P0\ produces its own super-radiant
pulse.

The effect of dissipation is greater for La <^LC. The re-
placement (3.9) and the assumption that jT2~ ' = 0 then lead
to the sine-Gordon equation with dissipation:60

-.» ~ I Irt y\
oz<p , oq> . ^ z T a( ' xi i -.>—— + — = smq>, Z = — , / = . (3.13)

dZdT^dT La 4L*

This enables us to extend the solution of the linear problem
of Sect. 3.2 to the nonlinear stage (Fig. 7). For z
>L C T ln^ 0 ~ ' , the asymptotic form of the "propagating
source" (3.7) gives rise to the single-pulse regime (the re-
gion BB^B2), which smooths tp0(z) xiP0(z)/Nd to <p0(z):

sin <p =*• cp (Z, T) = 2 arctg U- (p0 (Z — 7) exp T] .dtp
™

(3.14)

For z4,La ln^0~ ' , the asymptotic super-radiance in the
case of In ip 0-' > 1 and [(!/£) + (Z/7V/2]2<1 yields the
quasi-self-similar approximation d / d ( Z / T ) > / 2 ~0 for

(3.15)1 = 2 (7Z)1/;

The one-parameter family of solutions

<p (I) = q>0 (0) exp [-11 IfL^ + [4 + -i)1"]

1/2

(3.16)

of the linearized equation (3.15) joins smoothly to the
asymptotic "surface source" ( 3.8 ) , where <I> is the confluent
hypergeometric function. The quasi-self-similar solutions of
(3.15) generated by them (see Fig. 6) describe a highly

FIG. 7. Subdivision of the coordinate-time plane into zones of different
unidirectional super-radiant regimes in accordance with the sine-Gordon
equation with dissipation (3.13). The double-hatched area represents the
nonlinear zone without inversion (t = td corresponds to maximum super-
radiance). Zones in which the linear theory is valid in inverted and uni-
verted media, respectively, are shown below and above. Curve A ,A2 repre-
sents the beginning of the range of validity of the intermediate asymptotic
form of the "surface source" (3.8), and curve B2B{ represents the same
situation for the "traveling source" (3.7).
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damped oscillator regime (the region A A tA2). The approxi-
mations given by (3.14) and (3.15) differ from the well-
known "mean-field approximation" 12~15'25'66'67 for which
d/dz = 0 in (3.13) and propagation effects are ignored:

dt1 dt
(3.17)

Oscillations and the transition to single-pulse super-radi-
ance (for L0.~LC) are similar within the framework of
equation (3.17) to the oscillations of a damped pendulum
and are different in character. They are due to beats between
the e and p modes, and not to effects associated with the
propagation of radiation (see Sects. 4.3 and 4.5).

3.5. Super-radiance and the instability of electromagnetic
waves. Superluminescence

Dicke's original treatment10 of super-radiance as an
aperiodic collective spontaneous relaxation of excited mole-
cules via the emission of the entire energy stored in the sam-
ple in the form of radiation is closest to the single-pulse re-
gime generated by the dissipative instability of polarization
waves. We shall therefore begin by focusing on this idea (see
Sects. 1.4 and 3.4, and also Sects. 4.2 and 4.4 in which reflec-
tions are taken into account). As dissipation is reduced to
2ir<r < T ^ ', the dissipative instability of polarization waves
is replaced by the anomalous instability of electromagnetic
waves (see Sect. 2.1). Super-radiance does not then vanish,
but smoothly changes its properties, while remaining a co-
herent transient process of stimulated emission. The reduc-
tion in dissipation a and, in particular, the reduction in dif-
fractive emission of energy out of the sample (<7diff), leads to
a delay and reabsorption of the emission by the active medi-
um. The result is that, instead of a single pulse, we have a
long train of peaks, i.e., the oscillator regime.23'62'68

In the case of strong relaxation of polarization, T'2~'
£ilc/2, the instability of electromagnetic waves described
by (2.3) is possible only for a very low level of dissipation
(2ir(T < — a)2 T2/4) and has the maser-like character, gener-
ating not super-radiance but Superluminescence, i.e., quasi-
stationary induced amplification of spontaneous emis-
sion. 12~15-23-26'67 The last of these is described by the rate
equations for the transfer of radiation intensity because,
owing to strong relaxation, the polarization of the medium
no longer exhibits its own dynamics, but follows the field
adiabatically: P = (Ea>l/8wft>0)/(a>0 — a— iT{~') [see
(1.10') ]. If the amplification coefficient is large (ft2 T2L /2c
>2 In <p 0~'), then a short pulse of Superluminescence9' ap-
pears after a short delay ?d ~ (4 In<p0~ l)/fllT2>T2. The
duration of this pulse is of the order of one mean free transit
time in the sample, L /c. For a lower degree of amplification,
the exponential intensity profile 7spoutexp(2a>"(£)z/c) is es-
tablished throughout the sample, and the duration of this
weakly amplified spontaneous emission by the inverted sam-
ple is determined by the ratio of stored internal energy of the
molecules to the emitted power. Similar regimes of superlu-
minesce of duration Af > T2, in which the radiated intensity
is proportional to the concentration N of the active mole-
cules (and not to N2 as in super-radiance) have long been
known and used in electronics, both quantum and classical
(see, for example, Refs. 69-72). In contrast to super-radi-
ance, their characteristic feature is that they cannot radiate

more than one-half of the energy stored in the inverted mole-
cules: induced amplification gives way to the equalization of
level populations, ./V, = N2 = N/2.

To avoid misunderstanding, we note that, when we
speak of Superluminescence, we have in mind the quasista-
tionary emission of photons by isolated molecules, due to
incoherent vacuum fluctuations of field and polarization
(spontaneous emission) or the incoherent wave field pro-
duced independently and amplified by the remaining mole-
cules (induced emission ).'U2'72 The last process is charac-
terized by the Einstein coefficient B^ = n^A^, which can be
calculated from perturbation theory as the probability of a
stimulated transition of a molecule per unit time in a given
monochromatic field containing Na normal free-space
modes of frequency a> (Am is the corresponding Einstein co-
efficient for spontaneous emission). At the same time,
throughout this review, whenever we are concerned with the
semiclassical theory of super-radiance, the concept of an in-
duced process will be understood to be wider and not ex-
hausted by the above rate equations based on Einstein's coef-
ficients.

Let us explain the foregoing points in terms of the ener-
gy balance relation

2o>" I E 2 1 .

The rate of increase in the field energy is thus seen to be
determined by the competition between resistive losses and
stimulated emission by the molecules. The probability p of a
stimulated transition in a given molecule between the upper
and lower states per unit time can be found from (1.10) and
(1.11):

P = aua.Atf = - 16J.KAA, '

where, for the sake of simplicity, we have neglected incoher-
ent relaxation of polarization (r2~1<^«") and have con-
fined our attention to the resonant case: a' — ca0. As can be
seen, the probability of stimulated emission is determined by
the spectral density of the radiation, which is inversely pro-
portional to the growth rate a>". If we substitute forp in the
energy balance equation, we obtain ft>" = — ft>2/4ft>" — 2ira.
Hence, when \coc ^2-ircr, we obtain the expression for the
growth rate of dissipative instability (2.5) (without T 2 ^ ) ,
wuereas for \a>c\^-2ircr, we obtain the anomalous growth
fate (2.4). The departure from the corresponding Superlu-
minescence growth rate &>" (2.3), which is well-known in
laser theory, is due to the wide spectrum of super-radiance
(Atu ~ft)p ), which exceeds the relaxation width of the transi-
tion, T2 ' (since otherwise the expression for/9 would con-
tain a>" instead of T'2~ '). It is precisely the coherence, i.e.,
short duration, of the super-radiance (collective spontane-
ous emission) that distinguishes it from Superluminescence.

Super-radiance is therefore a process of induced emis-
sion of the internal energy of the molecules, which is due to
their interaction with the self-consistent coherent radiation
field (electric field of the polarization wave). Hence the
word "spontaneous" in the commonly used phrase "collec-
tive spontaneous emission" refers, strictly speaking, only to
the absence of external radiation or the formation of super-
radiance from quantum noise. On the other hand, when ex-
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ternal radiation is incident on an active sample, this gives
rise to the so-called initiated super-radiance in which there is
no quantum dynamics at the initial stage of the Dicke super-
radiance.

3.6. Initiated super-radiance. Polariton ir-pulse in a long
amplifier

The super-radiant regime in the presence of strong re-
laxation of polarization is more readily established by using
an initiating electromagnetic pulse of short duration rin <^?d

and area

[see (3.1) and (3.12); Refs. 15, 33b, 35, and 7 3]. When this
device is used to produce the initial macropolarization, the
result is that the delay time tA is reduced by the factor
(In^^1)2^!, down to a value tA <T2. This has been used35

to produce super-radiance in ruby crystals and in Nd:YAG
at 100 K.

A closely related problem is that of the propagation of
the initiating pulse, preceded by a pump, in a long coherent
amplifier (LC4,L 4,cT2). When there is no dissipation and
z-»oo, this produces a time-dependent pulse of duration
T <x 1 /z, amplitude E oc z, and area d fE( t) dt /ft & ir. This ir-
pulse takes up the entire energy stored in the medium. 60'64-74

Its asymptotic behavior is quasi-self-similar with
E = (faz/2dL 2£) d<p /d£, and is determined by the solution
(3. l l ) of the sine-Gordon equation (3.10) in which, for
each value of the self-similar variable ip, there are two co-
ordinates zu = {ct + [ (ct)2 -4g2L2

c]
 l/2}/2. The inver-

sion A7V first vanishes for |" = |"0~ln <p 0~' > I (see Fig. 6),
i.e., in a time t0 = 2g0Lc/c at the point z0 = %J-,C, where z,
= z2. Eventually, two relaxation waves are emitted in oppo-

site directions by this point, and the inversion on their wave
fronts z[°l = {ct + [(ct)2 -4£2

0L
2
C]l/2}/2 is A7V(zi°2')

= 0 (Fig. 8). As ?-> oo, the wave front propagating to the
left approaches the beginning of the amplifier z(,0)

zz£o-L l/ct -»0), whereas the wave front propagating to the
right approaches the light cone (zf ~ct). The former gen-
erates the self-similar super-radiant pulse in the short sam-
ple (L S Lc; Sect. 3.3) and the latter produces a time-depen-
dent vr-pulse in the long amplifier.65

The growth of the ?r-pulse is limited by dissipation. The
result is a time-independent w-pulse24'60 that, in accordance
with (3.13), assumes the form d/dZ=0, for E

I ch(T — T0), which is analogous to the sin-
gle-pulse super-radiance (1.21) and (4.11). It can be re-
ferred to as a polaritonic soliton, since it is associated with
waves in the polariton spectrum (2.1) and arises as a conse-
quence of the dissipative instability of polarization waves.

3.7. Super-radiance from a three-dimensional sample in the
absence of reflections from boundaries

«

The approach used in macroscopic electrodynamics is
convenient as a means of generalizing the problem of unidi-
rectional super-radiance to a real three-dimensional situa-
tion. 10) The linear stage of super-radiance (AN = N), that
determines the character of the instability is described by a
partial differential equation for the Laplace time transform

-} eE(o>, r) - [T, |V, E(w, r)]] = II (t = 0, r). (3.18)

This follows from the Maxwell-Bloch equations. The right-
hand side II is specified by the initial distribution of the field,
the polarization, and their time derivatives in the active sam-
ple. Unstable solutions are characterized by the "integral"
growth rate a>" = W/2W > 0, which, according to (2.8), is

W=\wdV, SH3J1= — f I?, ft] d S.

FIG. 8. Spatial structure of inversion in a long amplifier,65 corresponding
to the self-similar solution (3.11) for times ta = 2goLc /c and t > t0.

(3.19)

Hence, it follows again that super-radiance is associated
with the dissipative instability, since for a>" > 0 and small
volume sample losses Q, the presence of the energy flux 2rad

> 0 across the sample surface S0 is compatible only with a
negative energy (W < 0).

In the interior of a uniformly inverted sample, the solu-
tion E(«,r) of (3.18) can be expanded in terms of the com-
plete set of known multipole fields with a continuous spec-
trum of complex frequencies.4 However, the more
informative is the Green's function for the Maxwell-Bloch
wave equations (1.9) and (1.10), which is determined by the
initial condition <5(r — r') and the radiation condition, and
has a definite time dependence. It takes the form of an outgo-
ing spherical wave <x G(ct — |r — r'|). As in the one-dimen-
sional problem, analysis of the three-dimensional Green's
function shows that its dissipative instability with the "inte-
gral" growth rate (3.19) leads to the Dicke super-radiance.
We note that, in a very long sample (L>LC), the super-
radiance is frequently reabsorbed by the medium on the non-
linear stage, so that the loss factor representing emission
through the sample surface becomes unimportant, and su-
per-radiance transforms from the periodic to the oscillator
or irregular regime that consists of a random sequence of
pulses (see the beginning of Sect. 3.5).

The scheme presented above for the solution of the elec-
trodynamic vector problem has been implemented system-
atically in the case of a sphere.76 The problem has also been
solved for the scalar model77 in the case of a sphere and a
cylinder with F£l, for which the replacement
- [V,[V,E]]-.AJ? in (3.18) yields
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a, r )=fn(r ' )C 0 ( r , r ' )dV,
V

(iWE1/2\T — T'\/C)
(3.20)

This model transition to the Green's function of the scalar
wave equation for infinite space corresponds to the retention
of only the first term of the Debye expansion in the theory of
diffraction, i.e., the geometric-optics approximation with re-
flection.11' The inverse Laplace transformation in the ap-
proximation defined by \e— 1 <1, and the treatment of
E(t,r), P(t,r) as Heisenberg operators with initial condi-
tions that are (5-correlated in space, has enabled the above
authors to provide an analytic description of the linear stage
of super-radiance in three-dimensional samples. As in the
case of a progressive pump in a cylinder with /> 1, the mean
super-radiant intensity for a-=Tl~2

l=Q and £>1 [see
(3.11)] is as given in Refs. 77 with <^2>/47r
= if'cNd 2F exp(2g)/A 3g2. The incoherence of spontane-

ous noise, amplified during propagation along geometric-
optics rays from one end of the cylinder to the other, ensures
that the super-radiance at the exit end 5 of the rod has the
characteristic coherence area ~AL /F, i.e., of the order of
the area of the first Fresnel zone divided by the Fresnel num-
ber F = S /AL. This conclusion is in agreement with the well-
known optical theorem of van Cittert and Zernike,77'170 and
means that the super-radiance is due to a large number F2 > 1
of diffraction modes (rays) whose relative intensities fluctu-
ate from one shot to the next, but the total intensity is almost
constant. The investigations presented above show that the
methods of macroscopic electrodynamics are effective in su-
per-radiance problems.

The analytic continuation of linear solutions to the non-
linear stage of the three-dimensional problem is still an open
question.13'14 Numerical studies have shown that, for ran-
dom initial conditions and nonuniform inversion, the spatial
structure and angular distribution of super-radiance exhibit
considerable fluctuations. This means that, when they are
recorded with high angular resolution, oscillations that oc-
cur at different points on the exit cross section are not syn-
chronized (see Sects. 3.3 and 3.4). Moreover, the resultant
intensity is averaged out and corresponds to a super-radiant
single pulse. All this has been confirmed directly by experi-
ment.79

4. REFLECTIONS IN BOUNDED SAMPLES

Because of high gain, even weak reflections can have a
significant effect on super-radiant power and dynamics,
since they transform the continuous super-radiance spec-
trum to a discrete spectrum. Reflections have attracted in-
creasing attention23,36,66.80-82 during the 1980s in connection
with super-radiance experiments involving resonators and
waveguides,14>23'31 and also impurity crystals.32"35

4.1. Hot modes with a discrete spectrum

Reflections from the boundaries of a dielectric sample
of an active medium, including the abrupt increase in the
background permittivity f0 (which is taken into account be-
low together with the susceptibility of the two-level medi-
um), give rise to hot modes12) with a discrete spectrum, i.e.,

the "natural modes" of Refs. 83 and 84. In general, hot
modes are introduced for a time-independent structure of
inversion AA^(r) as the eigensolutions of the homogeneous
equations of macroscopic electrodynamics (3.18) (for
FT = 0) in a sample of volume V, which satisfy the well-
known conditions on the sample boundary 50 and the radi-
ation conditions. l~*'84 These eigensolutions

Em (r), Bm (r), Pm (r) = % (a>m, r) Em (r) (4.1)

have a discrete spectrum of complex frequencies cam = co'm
+ ia>"m, which is determined by the characteristic equation
that is identical with the traditional equation used in the
time-independent eigenmode theory of diffraction.

The solution E(«,r) of the inhomogeneous equations
(3.18) in the interior of the sample contains a set of hot
modes 2mam (a))Em (r) with amplitudes am (<a) determined
by the initial condition n. (The completeness of this set has
so far been proved only for special cases.83'84) The field out-
side the sample is formed by the emission of hot modes from
its surface.

The solution of the initial-value problem of super-radi-
ance on the linear stage is given by the Laplace transform of
E(o),r). It includes contributions due to the pole &m of the
hot-mode amplitude am (a>) <x (co — <am) ~', and other sin-
gularities of the integrand, e.g., the essentially singular
points. The former lead to the super-radiance of modes with
a discrete spectrum <xEm (r)exp( — icomt), and the latter
appear even in the limit of super-radiance with a continuous
spectrum in the absence of reflections (cf. unidirectional su-
per-radiance). The rapid removal of inversion AJV(f,r) on
the nonlinear stage leads to time-dependent hot modes
(time-dependent frequencies and structure; see Sect. 4.2),
their nonadiabatic interaction (Sect. 4.3) and mixing with
continuous-spectrum waves (Sect. 4.5).

4.2. Self-excitation of polariton modes in a one-dimensional
layer

In a one-dimensional layer of an inverted medium of
length L, hot modes take the form of the sum of two counter-
propagating waves radiated outwardly into the vacuum
(Fig. 9):

,-iu>mt

(4.2)

~ \',n = — In -
1 + e1

l_ei/*(<om)

°\ / / / / / Z

Y '. / / '
Vacuum I Active medium A Vacuum

t / / /'/A
FIG. 9. Spatial structure of hot modes in the one-dimensional model of
super-radiance.
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In the resonance approximation, their frequencies are equal
to «e p(A:m), (2.1) if we assume that the wave number is
discrete and given by km = m-rr/L, and we if we introduce
the replacement 2wa^Iira + vm. The quantity vm repre-
sents losses by radiation into ambient space.

We thus have hot (m, e) modes of positive energy and
(m, p) modes of negative energy.22'29 Their properties are
analogous to those of electromagnetic waves and polariza-
tion waves in an infinite medium. However, in bounded sam-
ples, a appears together with field dissipation due to radi-
ation via the sample boundaries, i.e., arad = (c/4irL)lnR ~l

, where R = \ ( e — !)/(£+ l ) | l / 2 is the reflection coeffi-
cient. Thus, for short samples (L <LC) with large inversion
(flc>2/r2), which is typical for super-radiance, we find
that for R ̂  1 and 27r0X27rarad ^fi2 T2/4 the dissipative in-
stability develops for the polariton (m, p) mode closest to
the line center, and its growth rate is &)p ss — w2/8jrarad. In
the mean-field adiabatic approximation («p' x AW (f)) , this
leads to a super-radiant single pulse described by a formula
such as (1.21) with r= l/2op'(f = 0).

The conclusions of Sect. 3.5 can be extended to hot-
mode super-radiance. In particular, for small inversion,
there are no super-radiant modes, and quasistationary su-
perluminescence with a continuous spectrum is found to de-
velop. Its power and time of emission are given by

exp (-

if the amplification coefficient at the line center is
= 2w "L /c S: 2. For a high enough initial inversion, we have

a transition to super-radiant modes with a discrete spec-
trum. The super-radiant power at the pulse maximum is
(?SL F~/zft>0ArK<yp/2>£?SL K. However, in contrast to the
situation without reflections, the transition that occurs
when the threshold for the generation of polariton modes
with Op' = n2/87r<7rad — T2 ' is reached (Fig. 10) is accom-
panied by a much more rapid increase in the emission rate
and power. This sharp reduction in the duration T of the
pulse is also found to occur for small reflection coefficients
R<£\. It is characterized by a large "jump" rf^/T^l,
where the time r*L is defined in terms of the mode generation
threshold, i.e., the condition op'~l/2rSL, and is given by

FIG. 10. Rapid variation of the rate of emission after transition from
superluminescence (SL) to incoherent ( r~ ' < T2') generation of polari-
ton modes (IG) and then to their super-radiance in a short sample
(L-£cT2 In R ~ ' ) with reflection coefficient R •£ 1 (T is the duration of the
pulse of radiation).

FIG. 11. Replacement of self-consistent optical nutation [oscillator re-
gime of superabsorption (a): 1-na = flc/4, ck — ioa = fic/32 with irre-
versible collective relaxation [single-pulse superabsorption (b):
2-rrcr = ilc /2, ck — <u0 = Hc /8 as the dissipation a is increased in the mean
field model. The resultant field e=\E\( SjrficOoN)'/2 is a superposition of
the e and p mode fields; 7Y ' = 10~2HC.

4.3. Superabsorption and optical nutation in a cavity
resonator

An increase in the reflection coefficient R and in the
sample length L obviously impede the escape of radiation
from the sample. When the inequality 2wcrrad 5 |<yc | (Sect.
2.1) is first satisfied, the instability of the polariton modes
becomes anomalous and has the high growth rate &C,P
oc(AAO l / 2 (for \coc >r2-'). As a result, the self-excited
(m, p) modes rapidly remove inversion and nonadiabatical-
ly generate damped (m,p) modes of comparable amplitude.
Their nonlinear beats generate oscillator super-radiance. In
a closed resonator (R ~ 1), this essentially coincides with an
effect that is well-known in quantum radiophysics and in-
volves the periodic transfer of energy between the electro-
magnetic field and the two-level medium, i.e., self-consistent
optical nutation.67'86"88 Under the conditions of strong resis-
tive dissipation that replace radiative losses and lead to the
dissipative instability of the polariton modes with growth
rate co'^ p 5 2ira, this effect reduces to the aperiodic collec-
tive transformation of the energy stored in the inverted me-
dium into heat in a time T~ 1/2&>P' <^ T} (Fig. 11). This su-
perabsorption effect25'29 is completely analogous to
single-pulse super-radiance.

Polariton modes are excited not only in supper-radi-
ance or superabsorption by an inverted medium, but also in
an absorbing (noninverted) two-level medium in the cavity
of a laser that contains an active element with negative losses
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FIG. 12. a—Polariton spectrum of the quasistationary generation by a
laser (a>"n ~ 0, A<up ~ o>c). b—Laser with mirrors R, 2 , active element
A (aa < 0), and two-level absorber B.

ffa < 0 (Fig. 12). Laser generation may then be largely deter-
mined by strong frequency dispersion of polaritons (see, for
example, Refs. 89).

Optical nutation accompanied by the excitation of po-
lariton modes in a system of excitons and photons in semi-
conductors was investigated in Ref. 137.

4.4. Super-radiance by a three-dimensional sample with
reflecting boundaries

Hot-mode super-radiance by three-dimensional sam-
ples differs from one-dimensional super-radiance by the
large number of simultaneous unstable polariton modes of
different structure. This multimode situation leads to a num-
ber of static and dynamic super-radiant features, and is re-
sponsible for the angular distribution of the super-radiance.
For example, possible effects include nonsimultaneous emis-
sion in different directions (see Ref. 59), partial depolariza-
tion of radiation, and smoothing of oscillations.14

Hot modes and their super-radiance in the three-dimen-
sional case have been examined in detail but only for a
sphere.29 In the limit of a small particle (a<A), the growth
rate has been determined only for the single electrodipole
mode of the sphere. Its dissipative instability gives the Dicke
super-radiance discussed in Sect. 1.4. For a sphere of radius
a>/l, the number of unstable modes with a discrete spec-
trum is such that M~ («0a/c)2 > 1, and their super-radiance
on the linear stage is described by

(t)

2ac

2o>" exp (2(o"0,

-In —, co =
2M p ;

(4.3)

This is the situation that actually occurs, and is responsible
for the emission of the energy of the medium, if the mode
delay time t J0*1 is less than the delay time t D

d for waves in the
continuous spectrum. This occurs if the reflection coeffi-
cient is less than the critical value: R >Rst ~ (M/NV)"4. It
can be estimated by comparing (4.3) with the solution76 of
the vector problem for the linear stage of continuous-spec-
trum super-radiance if we neglect the reflection and the de-
lay of waves in the sphere

8nt
-exp 2 (2a

Ll

Sac

ZnNV (4.4)

an open sphere with the "single-mode" cylinder with Fres-
nel number F=SY/IL ~ 1 (which is relatively close to the
one-dimensional model; Sect. 4.2).13'14 For a given size
L~2a>A, reflection coefficient R, and inversion density
A./V, the duration of the super-radiant pulse in these samples
is the same: r = l/2«Up. The peak power FQmax emerging
from the sphere is greater by the factor Vspt,/ycyl ~2a/A as
compared with the cylinder. However, under typical condi-
tions (a = 0, 8cln/? ~ '/ft2 T2<2a 5Lc 4,cT2, the emission
by the sphere is a superposition of a large number N of modes
with the multipole angular distributions. Hence, super-radi-
ance by the sphere is almost isotropic when averaged over all
the modes, and its intensity per unit solid angle is the same as
for the "single-mode" cylinder radiating into a narrow solid
angle ~/t /2a containing its axis.

We note that it was assumed in Refs. 16,76, and 90 that
each individual super-radiant shot from a sphere was con-
fined to a narrow solid angle 5 4-ir/(a)0a/c)2 <£ 1. The oppo-
site point of view is examined in detail in Refs. 29,77, and 91
(see Sect. 3.7) and is in agreement with experiments3315'92193

and numerical results 94>9S on super-radiance by three-di-
mensional samples /> 1.

4.5. Super-radiance of modes with a discrete spectrum and
waves with a continuous spectrum

In general, the instability of waves with a continuous
spectrum (Sects. 2 and 3) and modes with a discrete spec-
trum (Sect. 4) develop simultaneously. To investigate how
the super-radiance of waves is replaced by super-radiance of
modes when the reflection coefficient R is allowed to in-
crease, we can consider the simple example of the unidirec-
tional model in the form of a thin-ring sample with feedback
coefficient R (Fig. 13) ,82 This model is simpler than the one-
dimensional plane-layer model (see Fig. 9) because it en-
ables us to avoid additional complications associated with
the interaction between counterpropagating waves on the
nonlinear stage of super-radiance. For the sake of simplicity,
we shall neglect distributed losses (a= T ̂  = 0) and the
delay (1.9'), and will assume that the sample is short: L /Lc

^InR ~\ In^o"1. The Maxwell-Bloch equations (1.9')-
(1.1D then reduce to the sine-Gordon equation with the
boundary condition [see (3.13)]

dTdz
-smcp, __ p 1/8 Of

dT

(4.5)

We must now compare the hot-mode super-radiance in
,f, r = 2co;/ = T^_.
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FIG. 13. Numerical solution of (4.5) (solid curve)
and the mean-field approximation (4.11) (dashed
curve) for R = 1/e = 0.37: dependence of the Bloch
angle <p and field amplitude dip /dT at exit from the
sample (Z = z/L= 1) (a) as functions of the time
T= 2a>pt, and the evolution of the spatial structure of
inversion AJV /N = cos (p. (b) Unidirectional super-
radiance in the ring model is shown at the top.

On the linear stage, when sin tpzz<p,ihe Laplace time transformation gives

(<p (T = o, z =0) — #1/2<p (r=o, z= i
l (l-Z')lnff-'

e ^~

dZ'

l-.R1/2exp[(ln/T1)/4p]
Z'ln«-i

dZ'
-dZ'

The inverse Laplace transformation then leads to the two
super-radiant components

<P = fc + <Pd, <PC (T, Z) = res [<p (p, Z) exp (pT)],
p=0

=o, Z=D

1 (l-Z')lnK-'
31/2 (' „ 2 (?(j) (7-=0, Z') , ?[

dZ' dz (4.7)

where the dimensionless Laplace variable is p =
— i(ct) - a)0)/2(j}p, tpc is the residue at the essentially singu-

lar point p = 0, and tpd is the sum of the residues at all the
other discrete singular points (poles)58 pm

= [2+ ( 8-rrim/ln R ~ ')]"'. The latter give the frequencies
of the polariton modes (4.2).

The solution is easier to analyze if we write it in a differ-
ent form by evaluating the Green's function and its convolu-
tion with the initial distribution <p( T = 0,Z) . We thus obtain
the general solution, equivalent to (4.7 ), in the form of a sum
of unidirectional solutions corresponding to K-fold propaga-
tion in the ring and involving the Z-shifted self-similar vari-
able £, = [T(Z+ «)ln

Z) = Rnlt (q>(0, 0)-

X /„ ([T (Z-Z' + n) In 7?-1]1") d Z' . (4.8)

In the absence of reflections (R—Q), only the « = 0 term
survives in (4.8) and describes the limiting super-radiance

(4.6)

of waves with a continuous spectrum in the absence of reflec-
tions. Its asymptotic form is <x exp( TZ In R ~')1/2. Modes
R 7^0 with the highest growth rate begin to emerge from the
overall background for T> TR when, as it turns out, we can
make the following replacement in (4.8):

2 .. . _> f ... dn.
n J

This integral can be evaluated:

<p(T, Z)«9 d «exp(Y-f

1

C —i '-> /
X J < P ( - -

(4.9)

Comparison of (4.9) with (4.7), shows that, in theasympto-
tic case, the m = 0 polariton mode has the maximum
growth rate eo'p and begins effectively to remove inversion
after the delay time Td ~\n(NV). The final result is super-
radiance of modes with a discrete spectrum, which occurs
for Td>TR, i.e., when R > RCI

ln«- ln(A/F)f2(l + f l + l
L I L 1 6

(4.10)

This criterion takes account of the increase in the rate of
growth of super-radiance in the presence of feedback, and
therefore gives a slightly greater value for /?„ than the
coarse estimate Rcr ~ (NV)"1'4 of Sect. 4.4 for M~ 1. The
earlier condition for the absence of the effect of feedback on
super-radiance,23 i.e., R^\/ir2/3\n[Tr(Ny)>/2}(NV)1'3, is
not a criterion for the selection of modes with a discrete
spectrum, and is not, therefore, in conflict with (4.10).

The dynamics of the nonlinear stage of super-radiant
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FIG. 14. a, b—Same as Fig. 13 in the case of the numerical
solution of (4.5) with the 2ir pulse (4.12) (dot-dash
curve) and the self-similar solution of (3.11), (4.13)
(dashed lines) for R = !/<?"- 1.8-10~2.

modes (R > Rcr ) is significantly different for strong (R ~ 1 )
and weak (/?<!) reflections. When R~\, equation (4.5)
reduces to the equation of the mean-field model [cf. (3.17)
and Ref. 66]

. d q , ( 7 - . Z = l ) =lsinq)(T>Z=1)
V V '

=*» cp (7-, Z = 1 ) = 2 arctg exp [| (T - Td)j .

dT

(4.11)

The result is single-pulse polariton-mode super-radiance
(Fig. 13).

When R <^ 1, the mode (4.9) is pushed against the exit
end at Z = 1 . Initially, inversion is removed only at this end,
and the presence of the left-hand boundary at Z = 0 has no
effect. The first super-radiant pulse is therefore very similar
to the 2vr-pulse in infinite space, i.e., a soliton of the sine-
Gordon equation

q>« 4 arctg exp

P 5tp __ r
" ffF~[c

r+zin/r1

(4.12)

Thereafter, the value <p(T,Z = 1) ~ir is established at the
exit end, so that, in accordance with the boundary condition
(4.5), a small polarization appears at entry: q>(T,Z — Q)
~irjR 4,1. The final effect82 is that the first powerful super-
radiant polariton-mode pulse is followed by the self-similar
super-radiant regime, i.e., a continuous-spectrum "after-
glow" (Fig. 14) described by a solution of (3.11) that is a
function of the variable

~ In (2JI 4" ln
2

(4.13)
ln

4.6. Effect of weak reflections

For a macroscopic sample, (4.10) gives /Jc r«^l. For
example, when NV ~ 10'°, we have Rcr ~ 10~2. This means
that even weak (and occasionally uncontrolled) reflections
can alter the super-radiant regime by increasing the power,
reducing the duration T of the first pulse, and reducing its
delay time fd . This is important if we wish to produce super-
radiance in the short-wave range in which good mirrors are
not available. In addition to initiation (see Sect. 3.6), reflec-

tions can also be used to ensure that the super-radiance con-
dition td $ T2 is satisfied in media with fast phase relaxation,
e.g., in crystals and glass fibers (laser generation in activated,
fiber lightguides is discussed, for example, in Ref. 113).

We also note that, while in the absence of reflections by
the boundaries, the super-radiant frequency shift and its
variation during the emission of the pulse are small, they
may become considerable78 when reflections occur in a par-
ticle, resonator, or waveguide. Moreover, this collective
Lamb frequency shift is difficult to detect experimentally.

The appearance of symmetric polariton modes due to
reflections during super-radiance (Fig. 9) may be signaled
by the synchrotron emission of identical pulses from both
ends of the cylindrical sample. This type of super-radiance,
and also the super-radiance of modes with a discrete spec-
trum in a disk-shaped active sample, have been observed
experimentally33 in the case of KC1:O2~ crystals. From the
experimental point of view, the effect of reflections on super-
radiance is still a largely unresolved problem. There are also
some unsolved theoretical problems, e.g., it is not clear
whether weak reflections by boundaries (R <^ 1) can result,
during super-radiance, in lattice inversion A./V(r) with
strong Bragg reflection that produces the self-trapping of
some of the radiation in the sample. Super-radiance under
the conditions of "given" Bragg diffraction is discussed in
Refs. 13a, 59, 75, and 96.

5. PHENOMENOLOGICAL QUANTUM ELECTRODYNAMICS
OF ACTIVE MEDIA AND THE QUANTUM-STATISTICAL
PROPERTIES OF SUPER-RADIANCE

In phenomenological quantum electrodynamics
(PQED), the normal waves are taken to be photons in the
medium (quanta of transverse waves) andplasmons (quan-
ta of longitudinal waves) with energy &u,-(k) and momen-
tum -Kk. In contrast to microscopic quantum electrodynam-
ics, PQED starts not with the equations for the quantum
interaction between individual particles and photons in
vacuum, but with the classical (non-operator) equations of
continuum electrodynamics for the local macroscopic field
and the polarization in the medium.3'11'97'103 The transfor-
mation of these equations to the Hamiltonian form and their
subsequent canonical quantization immediately enables us
to use the quantum statistics of collective excitations in the
medium.

We shall show in this Section how PQED can be con-
structed for active media. This is not a trivial question be-
cause PQED is generally accepted only for transparent me-
dia in which Imo> ; (k)=0 (Sect. 5.1). Attempts to
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generalize PQED to absorbing media Im o)j < 0), which are
reviewed in Ref. 99, have not resulted in a physically satis-
factory theory. On the other hand, there is no doubt that
PQED reduces in the case of absorbing media to the quanti-
zation of damped oscillators with positive-definite ener-
gy.104'105 The situation is found to be qualitatively different
in the case of active media (Im MJ > 0). It has become clear,
following the publication of Refs.29 and 91, that the evolu-
tion of quantum fluctuations in an active medium, e.g., dur-
ing super-radiance, must be described as an instability oc-
curing during the interaction between quantum oscillators
(modes or waves) with different signs of energy. Broadly
speaking, this may be referred to as a dissipative instability
because, relative to a selected dynamic subsystem of unsta-
ble oscillators, the remaining oscillators play the role of a
dissipative subsystem in one way or another (see Sect. 5.2).
The dissipative character of the instability as a macroscopic
phenomenon means that we have to introduce into quantum
theory the Hermitian Hamilton operator that is not positive-
definite (in the linear approximation). This approach en-
ables us to establish a general quantization scheme and to
describe the dynamic evolution of fluctuations in collective
excitation between the micro- and macro-levels. This pro-
vides a much simpler way of taking into account frequency
and spatial dispersion, nonlinearity and inhomogeneity, ani-
sotropy, and the presence of sources in the medium.

As a simple example of the application of PQED to ac-
tive media, we can consider the statistics of the delay time
and the polarization elipse for discrete-mode super-radiance
(see Sect. 5.3). The efficacy of PQED in the analysis of
quantum-statistical phenomena in amplifiers and oscillators
relies, in the first instance, on the fact that the well-tried
methods of solution of the truncated equations of classical
wave theory can be extended to the quantum theory of Hei-
senberg operators for slowly-varying macrofield ampli-
tudes. A closely related approach has been developed for
problems involving the interaction and propagation of pho-
tons and excitons (via the kinetic equation approxima-
tion),107 stimulated parametric scattering (based on the
parabolic operator equation),98 and super-radiance (using
the Maxwell-Bloch operator equations).42'53'76'77'78'90'91

5.1. Quantum electrodynamics of transparent dispersive
media

PQED has its origin in a 1940 paper by Ginzburg, and
has been the subject of extensive development ever since (see
Ref. 3 for the relevant citations). The theory starts with
Maxwell's equations for a medium

dt
rot 33' i , A -il -- r- 4nc l

dt dt
(5.1)

where & is the polarization of the medium. PQED is con-
structed by the Hamilton method whereby the field is ex-
panded in terms of normal waves (modes) in the medium,
gkj <=c exp (ikr), labeled by the subscript^' (see Sect. 1.2). The
frequencies of these modes in a transparent medium are posi-
tive (a)kj >0), and the permittivity is an even function of
frequency, eY& (w,k) = erS ( — o>,k), since there is no relax-
ation and the equations for the polarization of the medium
are reversible in time.1>2

The quantization of the free field in the transparent lin-
ear medium is performed by analogy with quantization in

vacuum. The creation and annihilation operators ak+ and akj

for photons in the medium and plasmons must satisfy the
canonical commutation relations (1.7). The free-field Ham-
iltonian is equal to the total energy of the normal field oscil-
lators with generalized coordinates qkj and momenta pkj:

i)si2(/
^ ' Z k./

(5.2)

In accordance with the energy of the quasimonochromatic
field in a dispersive medium, well known in classical electro-
dynamics, 1>2 the eigenfunctions gkj are normalized to the en-
ergy of they'th mode quantum:

SJJj ?,«=!

(5.3)

When the medium is nonlinear, the Maxwell equations
can also be reduced to an equivalent set of Hamilton equa-
tions, and then quantized. A systematic presentation of
PQED for transparent media and its applications to the gen-
eration and propagation of waves in media can be found in
Refs. 1, 3, and 97-103 and in the citations given therein. The
fact that PQED had to be used in the analysis of, for exam-
ple, the bremsstrahlung emitted by electrons interacting
strongly with neighboring atoms in the medium, was well
understood by Ter-Mikaelyan, Landau, and Pomeran-
chuk.97

5.2. Quantum theory of dissipative instability

The PQED of active media, which we shall develop here
for super-radiance, is based on the quantum theory of dissi-
pative instability. Its simplest variant, i.e., the dynamic dissi-
pative instability of two coupled oscillators with different
signs of the quanta of energy (see the second footnote in Sect.
2.3) is described by the Hamiltonian13'

H = of'a iat + Sa^a 2«2 + — ft (TiajOij +

da,. ^ [a,, H] _

At ~ ih
(5.4)

where &>J0) > 0 and the partial-oscillator creation and anni-
hilation operators o,+ and a} (j= 1,2) satisfy the canonical
commutation relations (1.7). For example, this variant de-
scribes the anomalous instability (2.4) in an inverted two-
level medium during the interaction (77 = &>c ) between the
partial oscillations of polarization (<wS0) = o}0) and the elec-
tromagnetic field (&401 = ck) in the single-mode model of
super-radiance or optical nutation. The complex transfor-
mation of the creation and annihilation operators

[2 K - - a,} {2 [ | (5 5)
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leads to noncommuting normal oscillators with the follow-
ing Hamiltonian:

H = Ttojoja i 4- -f- W^,
(5.6)

<°>» + CD° ± *

and to the following cross-commutation relations99'104 in-
stead of the canonical relations (1.7):

[at, a,] = 1, [5?, «/•] = 0 (/= 1, 2, /' = 1, 2). (5.7)

The Heisenberg equations of motion for the new oscillators
are a,+ = — /<o,a,+ ,a2= — «o2a2 where, and henceforth,
we assume that co" > 0.

The solution of the problem with the Hamiltonian (5.6)
is elementary and enables us to perform a complete investi-
gation of the statistics of the process. According to the con-
servation law for the difference between the numbers of par-
tial oscillators d/df(«, — «2) =0, which follows from
(5.4), where n, 2 = a^2al2, the dynamic dissipative insta-
bility develops as a result of the exchange of excitation quan-
ta between these oscillators. The fundamental quantum-me-
chanical result is that the coupled oscillators, which need not
be initially excited [ p(n,t = 0) = 8(n) ], can become excit-
ed as a result of spontaneous fluctuations, i.e., we can have
the spontaneous creation of pairs of quanta from the vacuum
state. The mean number of quanta is then found to rise from
the initial value of zero: n(t) = rj/2a>"\2 sh2(a)"t). The
asymptotic form (t-> oo) of the statistical distribution of the
number n of quanta of the partial oscillators is found to be
exponential and Gibbs-like:

(5.8)

p (n, i) dn = 1, n(t) = neff exp (2o>*0,

which corresponds to the Gaussian statistics of fluctuations
in the field amplitude. If we start with thermal fluctuations
at temperature T, the asymptotic form of p(n,t) is again
given by (5.8), but with a larger mean number of quanta:

Another form of dissipative instability occurs during
the interaction between a dynamic subsystem of negative
energy (the oscillator 2, ) and a dissipative subsystem of
positive energy (thermostat consisting of a continuum of os-
cillators bk that are not directly coupled) :

= - aa>i0)flfo + 2 + S -J- fr* + f

(5.9)

The fact that the thermostat is macroscopic in the limit of
the continuous spectrum of frequencies cak [2^...
zzSdct)g((o)... ] ensures that the process is irreversible in
time. This model of the thermostat, i.e., the particular phe-
nomenological description of the quantum dynamics of the
initial classical system, '°5 can be justified by the fact that the

Frequency

FIG. 15. Exchange of negative and positive energy quanta between dy-
namic oscillators ( — feuj0') and thermostat oscillators ( + Hcok) during
the spontaneous development of dissipative instability.

macroscopically observed results do not depend on the
choice of the microscopic parameters^ (a>) and/?* = J3(a>).

The above problem can be solved analytically in the
Weisskopf-Wigner approximation. It follows from this solu-
tion that the dissipative instability again spontaneously de-
velops even from the unexcited vacuum state: «,(?)
= exp(2<u"0 - l (f>0) (Fig. 15). The observed (modified

by the thermostat) complex frequency of the dynamic oscil-
lator is

4-

Aco^

.
03 L

V ,. P(co)

2

a g(<o)

(0 — (0<0)

— oo

ng(co<«)
p («<«>)

2

9

<^ co'0).

dw, (5.10)

In general, if we start with spontaneous and/or thermal fluc-
tuations, we again have the asymptotic form (5.8) with ef-
fective number of quanta neff = cth(fi<»[0)/2xT)>l.

The quantum theory based on the models defined by
(5.4) and (5.9) can be extended to the more general case of
dissipative instabilities that include both the interaction
between dynamic oscillators with energies of different sign
and the irreversible removal of oscillator energy by the ther-
mostats. The coupling between a dynamic oscillator and a
thermostat consisting of oscillators whose energy has the
same or different sign [which modifies its frequency by anal-
ogy with (5.10) ] will then describe relaxation and incoher-
ent amplification, respectively. Thus, for fluctuations in the
polarizations of a two-level medium, this gives the relaxation
7"2~', whereas for the electromagnetic mode, we have the
positive resistive dissipation 2-rra or the negative dissipation
2iraa in lasers (see Sect. 4.3).

The PQED quantization procedure for active linear
media may be summarized as follows. First, we must find the
normal waves and their frequencies <y7(k) . Next, we must
set to zero all the relaxation and dissipation constants, and
proceed to the Hamiltonian equations for the dynamic
modes, which are found to be split into pairs of modes with
complex conjugate frequencies fi^.0> = tt(°v + H«0)" and in-
dividual stationary modes with real frequencies H^01. Each
pair of modes n^0),fi^0)* is then represented by a set of two
interacting partial oscillators with energies — fuo(a\ and
+ fuo^-i of different sign, by analogy with (5.4). The ampli-
tudes of the resulting mode oscillators are normalized to the
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energy of one quantum [cf. (5.3)]. Next, in the Hamilto-
nian, we add to each dynamic partial oscillator
H00) and - (o(°?, + (1)^2 a pair of thermostats of partial os-
cillators with different sign of energy, which interact with it,
so that the frequencies fll0> and fl^0) modified by the ther-
mostats are equal to the original frequencies (Of [ cf. (5.10)].

Finally, quantization is performed by replacing the ca-
nonical coordinates and momenta of all the above partial
oscillators with the corresponding operators obeying the ca-
nonical commutation relations [cf. (1.7) and (5.2)]. Of
course, the canonical modes with fl^01" ̂ 0 are then found to
obey the cross-commutation relations (5.7). This means
that the Hamiltonian for the set of oscillators with energies
of different sign in the active medium is not diagonalized by
the analog of the canonical Bogolyubov transformation6 that
preserves the commutation relations. This is in contrast to
the situation for the set of oscillators of positive energy in a
transparent medium (see Sect. 5.1). Unless we understand
this fundamental point, we cannot extend our discussion be-
yond the framework of PQED for transparent media, and
systematically quantize the field in active and absorbing me-
dia. It is therefore clear that the analysis of the quantum-
statistical properties of unstable macrofield oscillators re-
duces in PQED to the quantum theory of dissipative
instability.14'

5.3. Macroscopic manifestations of quantum fluctuations of
super-radiance

Spontaneous quantum fluctuations are amplified in the
course of super-radiance to the macroscopically observable
level, and this in turn leads to strong fluctuations in the pa-
rameters of the super-radiant pulse that cannot be predicted
between successive shots.

This remarkable phenomenon has been investigated
in a few experimental15'33"134'53'92'93 and theoreti-
Cali4-i6,,9,28,42,7^io8 papers We shall inustrate how it can be

described by the PQED of active media by considering the
statistics of the delay time td in discrete-mode super-radi-
ance (Sect. 4). For simplicity, we shall take into account
only M modes with growth rates ca'^, (m = \,...,M) of the
order of the maximum value l/2r. According to Sect. 5.2,
the numbers nm of quanta in different modes are indepen-
dent random quantities with the asymptotic probability dis-
tribution ( 5.8 ) . The probability that the super-radiant pulse
will be emitted within the time interval 0 < t < t d is equal to
the probability that the total number of quanta

n=

with the probability distribution

at time fd will exceed one-half of the number of inverted
molecules151, NV/2. If we write the above condition in the
form

I ' An
AT/2

and differentiate it with respect to td, we obtain the required
distribution for the normalized delay time91

/ _! =:_± exp \-M-2--
1 1 T ( M — 1 ) ! V \ t

• ue

NV
(5.11)

This result means that the super-radiance statistics de-
pends on the shape of the sample, which reduces to the de-
pendence of the number M of unstable polariton modes on
the sample shape (Fig. 16a). This number is determined by
the solution of the corresponding electrodynamic problem
(see Sect. 4). For example, for a sphere of radius aj>/l, the
number of modes is M ~ (ca0a/c)2 > 1, whereas for a cylinder
with Fresnel number F, estimates14 show that
M~[(F2+ 1 + (l/F)]/3. As M increases, the mean delay
time is reduced in accordance with the formula t d = r In ( u/
M) , whereas experiment shows that fluctuations decline92'93

in accordance with the expression (Figs. 16 and 16b)

The investigations77'94'95 cited above refer to an experi-
ment on the super-radiance of waves with a continuous spec-
trum in low-pressure cesium vapor92 in which L ^ Lc and
reflections by the boundaries were very weak (in contrast to
the super-radiance of modes with a discrete spectrum in res-
onators and activated solids). Nevertheless, the behavior of
super-radiance statistics when the scale of the cylindrical
sample is varied is similar in the two super-radiance regimes
(Fig. 16b). In the special case of the single-mode model
( M = 1 ) , the result gi ven by ( 5 . 1 1 ) agrees at T = 0 with the
risetimes obtained for single-mode lasers 109 by other meth-
ods in super-radiance theory14 and in the theory of fluctu-
ations.

f
1.2

0.8

0.4

22 24- 26 28 td/f m
a

10 '-

FIG. 16. Dependence of the statistics of super-radiance
delay time on sample shape, a—Probability distribution
(5.11) for u = 10 ". b—Relative variance a2 of the delay
time/d as a function of the Fresnel number F= S ML for
cylindrical samples (ML2 = 10", L = const): solid
line—envelope (5.12), dashed rectangles—experiment,'IJ

triangles, full rectangles, and vertical segments—numeri-
cal calculations reported in Refs. 77, 94, and 95, respec-
tively.
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FIG. 17. Probability distribution for the angle /? repre-
senting the orientation and eccentricity of the super-radi-
ance polarization ellipse in the case of polarization degen-
eracy ((a" = <o'i, r = l ) (a) and weak anisotropy,
determined by the linear polarization of the pump at angle
P=Tr/2(a';^a>", r=10) (b): 1—linear PQED—for-
mula (5.13), 2—typical experimental histogram," 3 and
4—linear and nonlinear theory".

When the properties of orthogonally polarized super-
radiant modes in an isotropic medium (Sec. 2.5) are taken
into account, the PQED of active media is also capable of
explaining the statistics of fluctuations in the polarization
ellipse, observed experimentally in Refs. 14 and 53. The usu-
al procedure is to measure the probability distribution/^, for
the angle 0e.[Q,ir/2] deduced from the ratio of intensities
(number of photons) detected by two receivers with orthog-
onal polarizations: tg2/3 = I2/Il=n2/nl. For example, con-
sider two unstable super-radiant modes with orthogonal lin-
ear polarizations and approximately equal growth rates,
co"xct)2J= 1/2—y ' = 1/2 emitted as a result of the transi-
tion (see Sec. 2.5). The numbers of photons, n, > 2 , are statisti-
cally independent, and their distributions are given by (5.8).
The distributions of the ratio «2/« i and of the angle ft are
therefore of the form

n. r sin 2ft

(5.13)

tively new effects in the electrodynamics of coherent wave
processes. We then have to consider not only frequency dis-
persion, but also the nonlinearity of spatial dispersion, i.e.,
the dependence of permittivity E on the wave number k. Spa-
tial dispersion is due to the different reaction of particles
with different velocity to the field with a given spatial struc-
ture. 1,2,37

6.1. Polariton spectrum of a gas with allowance for the
thermal motion of the molecules

Consider an isotropic gas of two-level molecules with
the Maxwellian velocity distribution F(v/vT)
= 7r~1/2exp( — v2/v2

T), where M is the mass of a molecule,
VT = -JIxT/M , and T is the gas-kinetic temperature. The
constitutive equation (1.10) must now be replaced5'9'110

with the transport equation16'

+
dt

p + 2771 (^ + W) p + (<o° + 772) p

(6.1)

The theory of fluctuations in the polarization of super-
radiance was given in Ref. 53, but it was based on a distribu-
tion of mode photons that was different from (5.8), and the
analysis was confined to the case of exact degeneracy
((o'l = co"). It predicted an infinite peak in/, at 0 = ir/4
(Fig. 17a), which has not been observed. The result given by
(5.13) and its generalization to arbitrary elliptic polariza-
tion of modes disagree with the theoretical predictions of
Ref. 53, but are in qualitative agreement with observations of
Ref. 53 such as the considerable change (including total irre-
producibility) in histograms for a small change in experi-
mental conditions, e.g., the direction and polarization of the
pump, geometric parameters, external fields, and so on. The
point is that large changes \nfe are due to the exponentially
large enhancement of the manifestations of even a weak ani-
sotropy (and gyrotropy) during super-radiance. Even a
small difference between the growth rates of orthogonally
polarized modes can have a considerable effect on the statis-
tics of polarization, and can emphasize the contribution due
to the mode with the higher growth rate (Fig. 17b).

6. EFFECTS OF SPATIAL DISPERSION IN A GAS OF TWO-
LEVEL MOLECULES

So far, we have confined our attention to active media
consisting of immobile particles. Allowance for the transla-
tional velocity distribution of the particles leads to qualita-

where p(v,r,0d3rd3v and n(v,r,r)d3rd3v are, respectively,
the mean h.f. polarization and the difference between the
populations of molecules within the volume element d3r and
velocity interval d3v. Assuming that « = ANvf 1F, and in-
troducing the Kramp function5'111

-^r fexps'ds
' n

(6.2)

for fields a exp( — fait + ikr), we find that the permittivity
is given by45

i4na
— (6.3)

i/nco*

kvr

co0

kvT

where we have taken account of the difference between the
acting field and the mean field, i.e., the Lorentz correction
Ea — E = (47r/3)P. Hence, for frequencies that are very
distant from the Doppler line, for which co + ;T2~ ' + io0\
5>kvT, co" + r;T

1> -\oj'+6J0\ and oj(Z) ~ra-~1 / 2Z~',
the value ofe for co ~ cj0 differs from (1.15) by only the small
shift of the resonance frequency: <y0-»&>0 — «2/9<y0 (for

The resonance spatial dispersion effects45 that are of
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interest to us here produce a qualitative change in the shape
of the polariton spectrum (2.1) and arise in the region of the
Doppler line

(6.4)

The character of the spectrum of homogeneous transverse
waves (1.16) for ck~co0 then depends mostly on the ratio of
the two parameters 2kvT and <uc j . If Doppler broadening is
small in comparison with the cooperation frequency of the
gas, i.e., 2kvT^ coc \, the effect of the thermal motion on
wave dispersion «e,p(&) (2.1) is small because, almost
everywhere,

FIG. 18. a—Polariton spectrum (I = («' + ico")/a>a as a
function of kc/u>n for a gas, with allowance for the Doppler
broadening for |2mr- 7% ' j = \a>l \/\2caa = 10~2(OH.
Left—graphs for 2v,/c = OAa, right—2vr/c = 3a, where
a= oc |/7J(U,, = 0.2. a—Univerted gas with T2~'=4ircr
= io]/(Mia, b—inverted gas with 7, ' = 4ira = - ial/(tcatv

c—conducting inverted gas with lira= T, ' = — a>l/(xou.
Solid curves—polarization waves, dot-dash curves—electro-
magnetic waves. Dashed lines show segments of dispersion
curves with strong collisionless damping.

t,3

-ff.'
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w ( =

This asymptotic behavior gives rise to small corrections
and is invalid for (6.4), i.e., for |Z | 5 1 and/or within the
cone|(ir/2) + a r g Z j <7r/4. For the polarization wave
ct)p(k), this corresponds to the part of the Doppler line for
which one of the following inequalities is satisfied:17'

ck — u0 — i (2na —
3tt)n! (6.4')

The spatial dispersion effect manifests itself in both variants
in (6.4') as strong collisionless damping that occurs with the
rate — a>" % kvT + T^ ' and is due to the dephasing of the
ordered fluctuations in the polarization of the molecules in
the course of their thermal motion (see Fig. ISandSec. 6.2).

When the Doppler broadening is large, 2kuT > | tac \, the
above suppression of the polarization wave by thermal mo-
tion occurs throughout the polariton spectrum. The only
weakly damped (or growing) wave is the electromagnetic
wave with the dispersion relation

— i2na
12a>0ur

w
— o>0 — i (2na — T'1)

—
kvr

2na — | ck — «„ 1 + koT. (6.5)

This is also valid for large Lorentz broadening, \2ira
— 7Y] | > \a>c, and is obtained by applying the perturbation

method to the dipersion relation (1.16), (6.3). When kvT

4(o0a.nd2ir\x\ = l.5\0 <C I, we find that

, . Znack . Vncv>l
CO — 0)0 = CK C00 — I I •

(6.6)

Only the limiting case defined by (6.5) is well known in
the spectroscopy of gases. This is the "Voigt" dispersion law,
which takes the form of a correction to the "vacuum"
Iaw5,9,ll0

exp (— du

3/n ftcoot-j. _J (G>/<OO)
, (6.7)

and implies that the replacement k -»<u0/c is possible in (6.3)
before the dispersion equation (1.16) is solved. However,
this replacement, which distorts the spatial dispersion ef-
fects associateed with the Doppler spread of moleculear fre-
quencies co0 + kv, is not always admissible.37'45 This applies,
above all, to the case co, << 2-ircrT^ ' . for which spa-
tial dispersion becomes significant, but does not as yet pre-
clude the polariton resonance. To find the correct polariton
spectrum co(k), we must therefore turn to equation (6.6)
which allows for the dependence of E on k, and is found to
contain a whole series of solutions, most of which are highly
damped.18' A numerical analysis of the evolution of the po-
lariton spectrum with increasing Doppler broadening is

shown in Fig. 18 from which highly damped waves have
been removed.

6.2. Collisionless damping in the Doppler line wings

Strong collisionless damping of polarization and elec-
tromagnetic waves is due to the relaxation of the initial po-
larization of the gas as the molecules traverse the distance
~A = 2ir/k in the course of their thermal motion. The
damping is formally related to the new normal waves
ojj ± ) ( k ) that appear near the polariton spectrum. These
waves correspond to solutions of the dispersion equation
(1.16), that are localized near the zeros of the Kramp func-
tion(u>(Z) = 0), which lie along the bisectors of the third
and fourth quadrants of the complex plane of Z. We shall not
reproduce here the corresponding solutions of (6.6) (Ref.
45); they are illustrated in Fig. 19.

We note that, in the most interesting case for which
|<uc | Z2kvT>Tj~l, the damping rate aj * r(k)~2kvT for
waves with collisionless damping and low values of/ is found
to be less than \CDC \/2 or lira, which determine the damping
rate (o)"<p (k) (2.2) of waves in the polariton spectrum if we
neglect spatial dispersion [ in the wave number range defined
by the second inequality in (6.4') ]. In particular, in a highly
conducting gas, in which 2wcr^kvT, we can therefore have
prolonged (on the time scale cr~ ') existence of molecular
polarization transported by waves with collisionless damp-
ing. According to Fig. 19b, the Voigt dispersion curve for
electromagnetic waves is significantly deformed and shows a
break in the Doppler line wings, so that the standard solu-
tion (6.5), (6.7) ceases to be valid. Spatial dispersion is thus
seen to alter the spectrum and the damping of normal waves
and, consequently, the evolution of field and polarization
perturbations in the gas at frequencies close to the strong
electrodipole lines.

6.3. Longitudinal polarization waves. Analogy with plasma
waves

Polaritons <yep (k) with k~a>0/c are not the only phe-
nomena found beyond the Doppler line limits of the gas.
There are also long polarization waves with the dispersion
relation

(°> = l + 9^-
• + •

6<on
3

(6.8)

[see (6.6) and Fig. 19].45 These transverse waves have
E = k 2c2/&)p < 1, so that they are not very different from lon-
gitudinal waves with E = 0, for which a>\\ = ap

— k 2c2«e/6«o because of the absence of the magnetic field.
[A dispersion relation for the longitudinal waves in an unin-
verted gas has been obtained by Kazantsev48 for a = 0. How-
ever, his transverse excitons in a gas do not correspond to the
actual polarization waves described by (6.8) ].

The fact that the damping of polarization waves (6.8)
becomes exponentially small for T^ l<^kvT is due to the
frequency shift of collective molecular polarization oscilla-
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FIG. 19. a, b—Spectrum of normal transverse waves fl = (<a + i(o")/couanA the corresponding functions Z( k) = (a + /T: — <aa)/kv, for the disper-
sion curves on the plane of the complex argument Zof the Kramp function in the region of the Doppler line (6.4) for 0 < k < a>,/10u , .The graphs are con-
structed for y,fc),/c = <o] |/3a)t. = 4T2 ' = 0.04<y(>; weakly conducting uninverted gas (v,a>ll/c>2ira = iol/(xon) (a) and a highly conducting inverted
gas (vr(oa/c <2ira = \(of\/2^3 = — 5<uJ/6<j(). (b) The inner part of the Doppler line |<y' — can\ <ku, is shown shaded; the direction of increasing A- is
indicated by arrows at points Z(k = <u,>/c); circles mark the zeros of the Kramp function [w(Z) =0].

tions due to the Lorentz correction which takes most of the
molecules out of the Doppler resonance with the wave. The
thermal velocity spread of the molecules then gives a spatial
dispersion effect that is quadratic in k, i.e., there is an addi-
tional shift of the wave frequency [cf. the second and third
terms in (6.8)]. This leads to a nonzero group velocity
dco'p/dk—Vv^kcoo/col. In the inverted gas, the ohmic con-
ductivity reduces the long-wave damping and, for
2ira> — 37V l<»l/tal, leads to dissipative instability, since
the wave energy density is negative:

! (to, k) 3 I EM co;

Sitcu*
1 +•

9(0*

NffJl- (6.9)

If we ignore the last point, we can readily see an analogy
between these waves in a gas of two-level molecules (a)0^0;
Sees. 3.1-6.3) and cyclotron waves in magnetoactive plasma
(&)()~&>B ) or Langmuir waves in isotropic plasma37'39'45'111

(d)0 = 0). The difference between them is essentially (and

only ) due to the different reasons for the frequency shift of
collective oscillations. In a gas, the Lorentz correction en-
sures that it is determined by the cooperative frequency of
the medium (a>l/9a)0 = — Sir d2AN/9fi), whereas in mag-
netoactive and isotropic plasma it is due to the gyrofre-
quency a>B and the electron Langmuir frequency tuL. As for
the Debye length rD = vT/a>L , which determines the short-
wave limit of the exponentially weak collisionless Landau
damping of Langmuir waves in Cherenkov resonance, it is
clear from (6.8) that the scale A. d = ISirVj-atf/l&H plays the
analogous part for longitudinal waves and long polarization
waves.

6.4. "Beam" instabilities in a gas of active molecules

Let us now develop further the analogy with plasma
phenomena and consider a gas containing a beam of neutral
molecules of the same kind as the molecules of the main gas,
but with opposite inversion: A7Vb = — /oATV, p <g. 1 . Analysis
of this situation in the polariton part of the spectrum
k~co0/c shows45 that, at the Doppler resonance
kvb = co — a>0, a beam moving with velocity vb 2; VT can ex-
cite transverse waves of frequency (&). When
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\a",P +T2 ' I ̂ kvn, the presence of the beam is equivalent
to the conductivity crb = — peal /24^fkvn, where vn is the
thermal velocity spread of the molecules in the beam. The
inverted beam has ab < 0 and gives rise to the maser-type
instability: a",,, ̂  — (irab + ira + T2 V2) (we are assum-
ing that \ac 15>2kvT, 2ircr, T2~ '). The uninverted beam has
crb > 0 and, according to Sec. 2.1, produces either an anoma-
lous instability of the electromagnetic wave or the dissipa-
tive instability of the polarization wave.

The beam of inverted molecules or, more precisely, the
"beam" distribution of inversion with velocity, &N(v), can
be produced in the gas by, say, a quasimonochromatic pump,
using the well-known three-level scheme and the Doppler
eifect. In gas lasers with Doppler broadening, it is also possi-
ble to produce two-hump or more complicated velocity dis-
tributions of inversion by exploiting the nonlinear saturation
effect. According to Ref. 44, the instabilities of the new nor-
mal waves that accompany this can have a significant effect
on the emission spectrum and on the operation of the laser. It
is quite possible that these "beam" instabilities develop in
the course of spontaneous coherent fluctuations in gas lasers
operating well above the generation threshold.43 More com-
plicated spatial dispersion effects may be expected in partial-
ly ionized gases114'115 in the case of the plasma-dipole reso-
nance for which O}O^COL (see Sec. 2.4), or during the
excitation of molecular polarization oscillations by an elec-
tron beam.116*118 However, studies of these questions, and
searches for new (other than electromagnetic) high-fre-
quency waves are only just beginning.

6.5. Effect of Doppler (inhomogeneous) broadening on
super-radiance

We have seen that an increase in linewidth reduces the
growth rate of normal waves in an inverted medium. This
applies both to the inhomogeneous broadening19' (2/T$)
(including the Doppler broadening (2kvr) and homoge-
neous, Lorentz broadening (2/ T2). The result is a reduction
in the super-radiant power, an increase in its delay ?d and
duration r, a loss of super-radiant oscillations, an asymmet-
ric pulse, and a partial release of the energy of the medium by
emission of radiation. These conclusions are based mostly on
numerical calculations'3"15'17'18'26'27 and are in agreement
with experiments on gases and crystals."'23'30"35 On the
whole, the effect of inhomogeneous broadening on the prop-
erties of super-radiance is significantly smaller than the ef-
fect of homogeneous broadening.42 When inhomogeneous

broadening is present, the analytic solution of the problem,
which includes the nonlinear stage of super-radiance, can be
obtained, at least in principle, by the inverse-problem meth-
od of the theory of scattering.65'119 However, simple general
formulas for the super-radiance parameters have not as yet
been obtained.

The coherence criterion for a time-dependent optical
process in general, and super-radiance in particular, has at-
tracted considerable attention in the literature. In our view,
in accordance with (1.1), the general criterion is \E ~ ldE/
dt | > l/T2, i.e., it involves the rate of change of the field am-
plitude acting on the molecules. This means that the polar-
ization of the molecule does not follow the field adiabatic-
ally, i.e., it depends on the form of the process E(t, r). The
growth of the plane wave E<x>exp(ca"t) with k = ca0/c and
growth rate «" ~ |«21T%/4-^ l / T f in the case of the inho-
mogeneous line of Lorentzian shape (see footnote 18) is a
coherent process if E~ldE/dt \ =co" > l/T2, i.e., \a>c\
>2/(T2T$)112. This is a generalization of the criterion
\o)c > 2/T2 of Sec. 2.1. For polariton-mode super-radiance
with a discrete spectrum (Sec. 4), the criterion for coherent
super-radiance assumes the form ca'^ > \/T2. For unidirec-
tional super-radiance of waves with a continuous spectrum
and inhomogeneous broadening with a Lorentz frequency
distribution of the molecules, /*(«0) = T%/
ir{\ + [ (G)O — &>„) T f ]2}, the asymptotic form of the field
on the linear stage E<x>exp[\coc\(tL/c)tl2 — ( t / T f ) ] ,
which corresponds to (3.8) after the replacement \/T2

In this case, we obtain the condition
', where TR(\col\L/4ct*)>/2>l/T*, i.e., (t%TR) 1/2

= 2T%//n0L and fi0 is the amplification factor at the line
center. The observed delay t * is greater than fd (3.12) and,
in particular,15 t%^td [1 + (tdrR ) 1 / 2 (T?)- ' ] for
(tdrR)l/2^Tf. It is indeed the criterion (t$TR ) 1 / 2 < Tf
and not a stronger criterion t*<Tf that is often
thought15'17'34 to distinquish super-radiance from superlu-
minescence (see Sec. 3.5).

6.6. Soft mode and the antiferroelectric gas crystal

Apart from the h.f. waves («~«0) that occur in a dense
gas of two-level molecules, there are also soft modes that
correspond to low-frequency, self-consistent oscillations of
polarization a)\ <&>0. There is particular interest in the pos-
sible instability of the transverse soft mode co,(k) in an unin-
verted equilibrium gas in which <y2 y>N\h(fuoQ/2xT). This
mode is due to the strong frequency shift of collective polar-

FIG. 20. Instability of the transverse soft mode
for the two-level gas model in equilibrium, a—
Stability threshold (6.10), b.r
= OfuOa/K-ird 2NS,) cth (fuo^2xTc,) as a func-

tion of the concentration JVor and temperature
7*cr. b—Growth rate 01" as a function of coH/kv,.
The quantity b is denned by b = 9taf,/<a*.
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ization oscillations of molecules, due to the Lorentz correc-
tion (see Sec. 6.1). The instability threshold and the growth
rate near it can be determined from (1.16) and (6.3):

kvT[\mw(Z) — (

z= too + JT^1

kvr

(Z)]
(6.10)

(Fig. 20). It is clear from Fig. 20a that, as the temperature T
is reduced and/or the concentration N is raised to the critical
value (<0o)c r = 4/3~<uc> the instability starts at the finite
wavelength A~3irvT/a)0. This spatial dispersion effect is
thought to be the reason for a possible antiferroelectric phase
transition in a homogeneous gas to the coherent gas crystal
state with the static transverse polarization density wave.
The antiferroelectric phase transition and the corresponding
soft mode were previously considered only for anisotropic
media (crystals). Earlier analyses of the isotropic gas were
confined to the ferroelectric phase transition (A = oo ) in the
appproximation of stationary molecules5'13) (cf. papers on
the super-radiant phase transition, mentioned in Refs. 5, 13,
and 19). We emphasize, however, that the result given by
(6.10) is only a model, and its applicability to real gases is
still unclear.

7. CYCLOTRON SUPER-RADIANCE IN PLASMA PHYSICS
AND ELECTRONICS

So far, we have been concerned with polarization waves
and Dicke super-radiance in a set of quantum oscillators
(two-level molecules) with space-time dispersion of a spe-
cial form and saturation-type nonlinearity. Since, from the
electrodynamic point of view, the phenomenon of super-ra-
diance is, under certain conditions, a dissipative instability
of negative-energy waves, and the dissipation is due to the
emission of energy by the sample into ambient space, it is
clear that similar super-radiant effects can occur in other
systems, including classical systems with different types of
dispersion and nonlinearity. When we turn to the classical
analog of super-radiance, we extend to the case of coherent
processes (1.1) the analogs of masers and lasers that are
well-known in electronics and culminate in the work of Ga-
ponov'20and Lamb.121 They include, for example,the cyclo-
tron-resonance maser122'124 and the free-electron la-
ser.69-71'125

7.1. Dissipative instability in a beam of electrons in a
magnetic field

Broadly speaking, spontaneous collective emission (su-
per-radiance) can include any time-dependent coherent
emission process that develops spontaneously in an open
nonequilibrium system of initially non vibrating particles (in
the absence of a resonant external field) in a time shorter
than the incoherent relaxation time T2 of the oscillations of
the individual particles.20' In a narrower sense, and by anal-
ogy with the Dicke super-radiance, super-radiance can also
be understood as a coherent process that is associated with
the dissipative instability of negative-energy waves that de-
velop from spontaneous noise.

It will be clear from the ensuing analysis that the latter
situation can occur in a set of classical harmonic oscillators.
From the standpoint of classical macroscopic electrodynam-
ics, it is precisely this specific situation that distinguishes the
phenomenon of super-radiance52 from other instabilities of
systems of weakly nonlinear oscillators that interact as a re-
sult of induced emission.72'124 The super-radiant regime has
a direct relationship to microwave electronics in which dif-
ferent ways of generating powerful coherent pulses of elec-
tromagnetic radiation that do not require the use of resona-
tors or are based on low-Q resonators are being extensively
studied at present.85'123 Attempts to abandon high-Q resona-
tors, which facilitate the attainment of the generation
threshold, have been dictated by a number of factors. They
include the difficulty of developing such generators in cer-
tain wavelength ranges (e.g., x-ray or submillimeter ranges)
and the necessity for higher pump power and shorter radi-
ation pulse lengths that would ensure higher output pow-
er.211 It is therefore interesting to consider the possibility
that phased oscillations of radiating particles could be pro-
duced as a result of interaction between them via the time-
dependent intrinsic super-radiant field52'125 rather than an
external pump or long-lived quasistationary field, built up in
the resonator over a long interval of time120"122 Af > T2.

To be specific, let us consider a set of classical oscilla-
tors, e.g., electrons, in a uniform magnetic field B0||z°. The
electrons can circulate around the lines offeree with relativ-
istic cyclotron frequency <UB = eB0/me c that is a function of
electron energy &e = wcc

2. The variance and nonlinearity
of the system are determined by the well-known structure of
"transverse" Landau energy levels111 and the relativistic
variation of the velocity of the electrons v\\ in the direction of
the magnetic field under the influence of the radiation reac-
tion.

Let us consider the evolution of an unbounded rectilin-
ear beam of monoenergetic electrons traveling in the direc-
tion of the magnetic field. We know that transverse h.f. oscil-
lations can occur in this beam under the conditions of the
anomalous Doppler effect, v\\ >c0 = c/el

0
/2 (Fig. 21), for

which the initial population of the lower Landau level corre-
sponds to the excited state of the electron128'129 in a medium
with effective permittivity e0> 1. To explain the nature of
the h.f. instability in the presence of resistive losses, consider
the waves ~% = ( EL /2 -J2 ) ( x° + iy° ) exp ( - icot + ikz )
+ c.c. that propagate along the magnetic field and are left
and right polarized, respectively. In this one-dimensional
formulation of the problem, the Maxwell equations and the
relativistic equation of motion of an electron in a uniform
rectilinear beam of concentration Ne in the laboratory frame
leads to the following dispersion relation:52

- (c$k* + ] [co + 1771 - (to,, rp COB)]

(7.1)

where «L = (4Tre2Ne/me ) 1/2 is the plasma frequency and
a = ff0/£0. The quantity a0 represents the dissipation of the
field by the effective conductivity of the "background medi-
um" with permittivity £0> 1. Apart from a dielectric, this
medium can be a slowing-down electrodynamic system
(waveguide). In the low-density limit, &>2-»0, the beam
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FIG. 21. a—"Superluminous" beams of electrons in a
uniform magnetic field and in a homogeneous trap of
length L S S//1. b—Dispersion curves for accompanying
waves, slow cyclotron &>,, and electromagnetic &>, waves.

maintains only damped partial waves, namely, electromag-
netic waves co = c0\k — i2ira and cyclotron waves
at = kv\\ ip &>B — iT2 ' (slow and fast). However, the wave
spectrum changes when the finite electron density is taken
into account, and an instability becomes possible (see Fig.
2lb). Actually, substituting co^0 = kv^ + «B and assuming
that lira4,u>T0

 and T^', a>L <^<yB, we find that in the re-
gion of resonance with the accompanying waves eo{ ~(o'u
and for c0& ;s « ̂  o > ft>L (2&> B /&&> T o) ' / 2 . we obtain the nor-
mal electromagnetic waves u>^ (k) and the cyclotron waves
<yii (k ) (slow and fast) that are analogous to the electromag-
netic wave and the polarization wave in a medium consisting
of two-level molecules, described by (2.1) with the following
replacements:

(Oc co=c = : (7.2)

The instability develops only for one of the waves, a>l (k) or
(0n ( k ) . It is convective and arises under the conditions of
the anomalous Doppler effect if the square of the "electronic
cooperative frequency" a>2_ c is negative and its modulus ex-
ceeds %irff/T2 (electron density threshold). The maximum
growth rate [see (2.2)] is achieved for the wave number
k° = o)B/(v^ — c0) at the frequency a>° = c0k°. When
T ^ ' > lira, this instability is related to the negative dissipa-
tion of the positive-energy electromagnetic wave.

The dissipative instability of the slow cyclotron wave,
which is due to its negative energy,22' develops when the
field dissipation is large enough, i.e., 2ir(7>T2~

l. This
means that the growth of the slow cyclotron wave, i.e., the
excitation of the transverse oscillations of electrons, is ac-
companied by a reduction in their total velocity as compared
with the velocity in the undisturbed beam. The development
of this type of instability is impossible under the conditions
of the normal Doppler effect (v\\ <c0) when there is no in-
version of the Landau levels (co2

+ c > 0) in the monoenerget-
ic beam and resonance occurs only for positive-energy
waves, i.e., electromagnetic and fast cyclotron waves.

7.2. Cyclotron super-radiance by electrons in a magnetic
trap

This dissipative instability can evolve spontaneously in
a time much shorter than T2 and can lead to cyclotron super-
radiance in a uniform magnetic trap with electrostatic or
magnetic plugs at the ends atz = 0 and z = L. If the slowing-

down electrodynamic system or medium is also bounded
£0 > 1 and is confined to the layer 0 < z < L (see Fig. 21 a), the
slowed-down cyclotron waves will be partially reflected
from its ends together with the electrons. In the one-dimen-
sional model23) this leads to circularly polarized modes with
a discrete spectrum ?m = (Em (z)/2V2)(x° - /y°)
Xexp( — itamt) +c.c. (see Sec. 4.2). The characteristic
equation for the frequencies of the electromagnetic and cy-
clotron waves is given by (7.1) with discrete wave numbers
k = km - /(In R ~')/2L, where km = vm/L. The imagi-
nary part of the wave number, determined by the field reflec-
tion coefficient R of the ends, determines the inhomogen-
eous structure of the modes Em (z) along the trap. This can
be taken into account in (2.1) and (7.2) by introducing the
following additional replacement:

2iiCT-> 2ita = 2na -|—— In R"1,

771--ft1 =77'+^ In fl-1. (7.3)

It is readily shown52 that, when effective reflections
R £ 1/2 occur in a sufficiently short trap of length L S c0/
\co _ c |, the super-radiant regime is due to the instability of
modes with a discrete spectrum, since the instability of
waves with a continuous spectrum is then found to be weak.
It is precisely this situation that we shall examine below for
the following special case:

0>il(6°) = — -

for which the inhomgeneity of the modes structure along the
trap is small. In this "mean-field approximation" (cf. Sec.
3.4), the mode growth rates and the attendant polarizability
of the electron beam are given by

OH (km) = — 771 —

i (km) =5 •
— km (v ii — CQ) ~ (7-5)

£fm 2JUO°

We emphasize that cyclotron super-radiance is a tran-
sient process that is fundamentally different both from the
slow quaistationary processes of instability development in
resonators for times A?> T2, commonly encountered in elec-
tronics (for example, in the case of cyclotron masers using
the anomalous Doppler effect123) and the well-known plas-
ma physics transient processes involving the development of
kinetic instabilities that end in quasiperiodic oscillations due
to the nonlinear Landau damping.39 In contrast to this
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damping of oscillations in plasma, which appears in the ab-
sence of true energy dissipation and is associated with the
dephasing of particles with different velocities and energies,
the damping of cyclotron super-radiant oscillations, and
their transition to the a periodic regime in the system of
monoenergetic particles that we are considering, occurs as a
result of the strong dissipation of field energy due to the
escape of radiation out of the trap.

7.3. Nonlinear stage

The growth of the cyclotron modes, which is initially
exponential, terminates when they are no longer in reso-
nance with the electron beam that is being slowed down by
the resulting h.f. mode field: v\\ (t) = U||0 — At^ ( t ) . Suppose
that, initially, a beam of electrons of energy & & is in reso-
nance with the mode m = r, i.e., kr = k °(v^0 ) . Since the in-
stability band Afc = (2ircrT2)

1'2 co _c | /(y| | — c0) is narrow
for an individual mode (7.5), we shall confine ourselves to
the case Ayp <^U||0 — c0 when we examine the shape of the
super-radiant pulse. We shall also neglect plasma effects and
the longitudinal bunching of electrons, assuming that COL

<a>B. We begin with the single-mode regime, assuming that
the mode spacing is large: km — km _ , = ir/L > A&. In the
adiabatic approximation, we then obtain the following equa-
tions for the square of the mode polarization P * averaged
over the trap (or over the h.f. period)52

growth rate T = — 4-ira/co2_ c . The length of the pulse of cy-

(7.6)

In view of (7.5), this set of equations is self-consistent and
includes relativistic effects. Its solution is shown in Fig. 22 in
which t = t /T is normalized to the reciprocal of twice the

clotron super-radiance Qr = a0| E 2
r ( t ) \ is Tp

and the maximum power (per unit trap volume) is Qr,mm

= NC%M<»1(V\\ -c0)
2/6}B(E0-l)£0c

2
0<x>Nl. According

to (7.6), the pulse shape can be expressed in terms of the
electron slowing-down function U= &V^<O°(EO— I ) /
2ircr(cEl

0
/2 — v\\0 ) and has the form

Qr (t) = • 2U (£/Lx -

Next, let us consider the multimode regime in which IT/
L -4 AA: and the number of modes M within the strong insta-
bility band in which &>,", (km ) ~max <u,", is large is given by
M=2La/(v^0 — c0)>l . In the adiabatic approximation
analogous to (7.6),the slowing down of the electron beam is
now determined by the total mode power and does not end
when the beam is no longer in resonance with one of the
unstable modes m = r. New and higher frequency modes,
which grow and continue to slow it down, enter resonance
with the beam. The result of all this is that mode sequences
corresponding to equally slowed-down electrons are estab-
lished and are defined by Ai^ = — aco2_c (c£g/2 — v^0 )/
2ct)°(EQ — 1) a = const. For t^. T2, the radiated mode power
Qm = 0b I E 2

m ( t ) \ is then described by a function52 of the
running variable g = at — (A/n/Af):

(2a)-

e I M (EO — l)u>°

FIG. 22. Single-mode cyclotron super-radiance regime: time dependence
of the slowing-down of the electron beam, Ai)|| oc U(t) and the shape of the
radiationpulsefi, (7) for7 d =< d /T = In [£>,..,„„/& (0) ] = 10, TVr = 54.

(7.7)

where Am = (m — r) is an integer and e = 2.71... . In the
most interesting j;ase,_in which (2r/7T

2)1/2<a<l, we have
a~-rr/\n[ (re2/2T2a

2)Q( \/2a)/Qr (0) ] and the total quasi-
stationary radiated power is 2mC?m = 2agRmax. The pulse
length for an individual mode is rp~r/a2, its total time
within the instability band «,", (km ) > 0 is A?~ (rT 2 ) ' / 2 , and
the time to establish this mode-sequence regime td

~rln[grmax/MQr(0) ] is short in comparison with the
time T2 for a random dephasing of the rotation of an electron
in the trap.

Let us now estimate the maximum cyclotron super-
radiant power, e.g., for electrons with energy %^ ~ 1 MeV
and concentration A^—3-10 1 0 cm"3 («L~10'° s ~ ' ) in a
trap with slowing-down factor EO = 1.5 and magnetic field
fl0~20 kG («B~2-10" s"1). To be specific, we assume
that U|| — cc = 0.1 c0 and a = 1/6. For a trap with perfectly
reflecting ends (R ~ 1), we find that, in the sequential mode
state, 2m(?m ~ 10 kW/cm3 at to0 = 10«B (wavelength ~ 1
mm). When L~30 cm and S~0.3 cm2, the total power
transported by diffraction super-radiance across the side
surface of the trap is LSI.m Qm ~ 100 kW, so that, during the
time of emission of an individual mode, i.e., rp ~ 30 ns, about
3% of the kinetic energy of the electrons is radiated. Cyclo-
tron super-radiance should cease after a time t £ 7", > rp, or
before, if the conditions for the anomalous Doppler effect
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are violated as a result of the rapid deceleration of the elec-
trons. However, the long-term course of the process, includ-
ing the transition from the anomalous Doppler effect to the
normal effect, and the possibility of quasiperiodic energy
transfer between the field and the electrons in the presence of
partial emission, has not been adequately investigated. Some
aspects of the dynamics of this type of process are examined
inRefs.129-132.

7.4. Dicke super-radiance by a system of molecules under
the conditions of the anomalous Doppler effect

To complete the classical analogy that we have devel-
oped, let us compare cyclotron super-radiance in a beam of
harmonic oscillators (electrons) under the conditions of the
anomalous Doppler effect with the corresponding problem
for Dicke super-radiance by a "superluminous" beam of
two-level oscillators (molecules).133'134 Suppose that the ve-
locity of the molecules is v > c0 = c/Ve^ in a homogeneous
medium of conductivity a0 > 0. The molecules are aligned at
right angles to the direction of motion (the z axis). In the
one-dimensional case, and if we use the equations of Sec. 1.3
together with the Lorentz transformation, we then find that
the complex frequencies of the two counterpropagating elec-
tromagnetic waves (o±e(k) and the two accompanying fast
and slow polarization waves ca ± p ( k ) satisfy the following
dispersion relation:

c0k] [ c0k\

-vk

(to —
(7.8)

where y = (1 - v2/c2)~l/2 [cf. (7.1)]. The solution in the
resonance case is similar to ( 2 . 1 ) , and is shown in Fig. 23.
For the branches « + e and ( o _ p , the part played by the
square of the cooperative frequency (1.12) is now taken up
by the quantity co1^ — tal(l — v/c0)/£0y, whose sign is op-
posite to that of «e • Consequently, as well as both the slow
cyclotron wave, the slow polarization wave has a negative
energy in the beam of uninverted molecules, and it is precise-
ly there that its dissipative instability and super-radiance
become possible for — «J, >&ira/T2y.

Conversely, inversion in the "superluminous" beam
precludes the instability of the slow polarization wave. How-
ever, the dissipative instability of the fast polarization wave
ct)+p is then possible (in the region of the normal Doppler
effect, i.e., for k <0 in Fig. 23a). For this wave and for the
counterpropagating electromagnetic wave a _ € , the role of
the square of the cooperative frequency is taken up by
&C2 = tf>f (I + v/c0)/e0y, so that the character of the super-
radiance is essentially no different from the usual case with
v = 0, for which the solution of the dispersion relation (7.8)
reduces to (2.1). Hence, it is clear that, for times t^T{, the
"superluminous" sample of two-level molecules (but not
classical electrons) can spontaneously generate a sequence
of super-radiant pulses that are emitted as a result of the
successive instability of waves in the two resonances indicat-
ed in Fig. 23. The process of unidirectional super-radiance
after each radiated pulse repeats itself on the next resonance
because of the change in the sign of the population difference

C.k

FIG, 23. Dispersion curves for partial waves with a>c -» 0 in the laboratory
frame (a), normal waves with |ocl-2| 'S.2v(7^l/T2Y in the absence of
inversion AAr<0 (thick line shows the region of instability of the slow
polarization waves; for AJV> 0, the other, fast polarization wave is unsta-
ble) (b), and the same normal waves in the accompanying frame attached
to the beam of uninverted molecules (c).

A./V that occurs as a result of the development of the instabil-
ity on the previous resonance. Thus, the kinetic energy of the
molecules is the source of the two asymmetric trains of su-
per-radiant pulses having different frequencies and propa-
gating in opposite directions.

We emphasize that the established specific analogy
between Dicke super-radiance in a set of quantum (two-lev-
el) molecular oscillators and cyclotron super-radiance in a
set of classical electron oscillators does not exhaust the prob-
lem of collective spontaneous emission in the classical phys-
ics of plasma and in electronics, but actually merely poses
it.135 In particular, it has been suggested125'136 that it may be
possible to produce super-radiance from moving electron
bunches also in the free-electron laser. It is then interesting
to consider the emission by an electron bunch of both dis-
crete modes and waves with a continuous spectrum.

8. ANALOGS OF DICKE SUPERRADIANCE IN MORE
COMPLICATED SYSTEMS

The example of cyclotron super-radiance examined in
the last Section showed that our electrodynamic approach is
an effective means of finding analogies between collective
coherent processes in different quantum and classical sys-
tems. In this Section, we review some of the more complicat-

864 Sov. Phys. Usp. 32 (10), October 1989 Zheleznyakove/a/. 864



ed systems in which Dicke super-radiance type processes
have been produced. To do this, we shall need to extend the
theory of polarization waves to new special situations. In
many cases, this generalization has not been carried out. The
brief description of collective coherent phenomena, given
below, is intended to draw attention to problems that can be
usefully and successfully investigated by the methods avail-
able in the electrodynamics of continuous active media.

8.1. Super-radiance in a three-level medium. Subradiance

The transition from the two-level to the three-level me-
dium already provides a number of interesting effects (Fig.
24). The successive super-radiance of two pulses of different
color in the 3-»2->l cascade S-scheme was observed in
Refs. 14, 32, and 138. For the V and A schemes (see Fig.
24b), we have typically partial super-radiance, i.e., the in-
complete emission of stored energy as a result of competition
between pulses of different color.13'14'33'108 Super-radiance
produced as a result of the weaker transition is quenched
without succeeeding in fully developing because of the re-
moval of inversion by rapid super-radiance via the adjacent
transition. For closely spaced sublevels, there are quantized
intensity beats, time-dependent polarization ellipse of the
super-radiant pulse, and very strong macroscopic quantum
fluctuations. 13~15'53

The self-consistent excitation of low-frequency coher-
ence (off-diagonal element of the density matrix p32) in the
V scheme during the development of super-radiance from an
incoherent initial state is a nontrivial fact. The result is the
destructive interference between h.f. polarizations of the op-
tical 3-1 and 2-1 transitions that removes the resultant mac-
roscopic polarization, and super-radiance is limited and ter-
minated: the three-level medium goes over to the metastable
state of subradiance24' (see Fig. 24b).140 The point is that
the nonlinearity of the three-level medium that is responsible
for the excitation of low-frequency coherence may come into
play for a lower field amplitude than the ordinary nonlinear-
ity of the two-level medium that is responsible for the com-
plete removal of population inversion by Dicke super-radi-
ance. This means that we can have coherent trapping of
populations on the upper sublevels and the termination of
super-radiance for an incomplete removal of inversion (this
type of effect in initially uninverted media is discussed in
Ref. 141). The molecules are subsequently slowly de-excited
only as a result of incoherent relaxation. The phenomenon of
subradiance was first established experimentally in 1985.138

Similar phenomena occur during super-radiance by two
uncoupled degenerate or almost degenerate transitions in a
medium of one species of atoms or two different isotopes

3-

2-
"32

3c

time, rel. units
finin ncc 0.5o

3
Q.

£ o i — -!-/???

time, rel. units

FIG. 24. Super-radiance in a three-level medium, a — Possible schemes
(2, V, A), and also super-radiance from two uncoupled transitions, b —
Numerical example140 of partial superradiance and subradiance in the V
scheme; 72, and /3, — superradiance intensities from the 2-> 1 and 3-» 1
transitions, p,, — populations of levels ; = 1, 2, 3 ..... | p32| — low-frequen-
cy coherence.

(see Ref. 14 and the references therein). In this case, as for
the three-level medium, the presence of two partial oscilla-
tions of polarization, coupled to the electromagnetic field,
leads to the existence of three normal waves (Fig. 25). Two
of them are different types of polarization wave and the third
is an electromagnetic wave. This situation is known experi-
mentally in gases and in crystals.137

8.2. Nonresonant coherent Raman scattering

Super-radiance and the excitation of polarization waves
are typical not only for single-photon (resonance) pro-
cesses, but also for two-photon and multiphoton (nonreson-
ant) processes. Nonresonant cooperative Raman scattering
of light, also called coherent scattering, has been particular-
ly well investigated. This is a form of stimulated Raman scat-
tering of a powerful pump of frequency &>L, which differs
from the resonance frequencies comn (m, n = 1, 2, 3, ...) of
molecular transitions, to the Stokes (ws = &>L — «0) and
anti-Stokes («A =a>L +&>0) components (Fig. 26a).

It is common to distinguish two states of coherent [in

ck 0

FIG. 25. Typical form of the polariton spectrum
of inverted (a) and uninverted (b) three-level
medium in the V scheme.
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FIG. 26. a—Stokes and anti-Stokes SRS. b—Experimental dependence'52

of the intensity 7S of the Stokes component of SRS for liquid nitrogen on
the pump intensity 7L /7lh.

the sense of (1.1)] stimulated Raman scattering (SRS).
First, time-dependent SRS is discussed, for example, in Refs.
54, 142, and 143. This occurs when the pump length is
TL < T2, but its intensity is insufficient to ensure that, during
the generation of the Stokes components, there is a signifi-
cant increase in the population of the upper level 2 during the
time TL. Second, intrinsic cooperative Raman scattering
(CRS) is also referred to as super-radiant Raman scattering
and occurs when the pump intensity is high enough and in-
dependent of the pulse length TL £ T2, so that the growth rate
of the Stokes radiation is so high, ', that the
lower level 1 is almost completely depleted during this pro-
cess in a time A?<^ T2 and populates level 2. This process was
first observed in the case of SRS in hydrogen"4 and, subse-
quently, in other experiments.93'145"147 Ordinary quasitation-
ary SRS, that was well-known before the 1970s,15' differs
from cooperative Raman scattering in roughly the same way

that superluminescence differs from super-radiance (cf. Sec.
3.5). Several authors have given theoretical descriptions of
different aspects of cooperative Raman scatter-
ing> 13,77,78,145,148-150 but many Qf the possibilities Qf the

methods employed in the electrodynamics of continuous ac-
tive media have not as yet been fully exploited.

For example, it may be shown by analogy with resonant
super-radiance (Sec. 4, Fig. 10) that slight reflections can
lead to cooperative Raman scattering into the Stokes polari-
ton modes with a discrete spectrum, and to a rapid discontin-
uous rise in the Stokes radiation intensity when the thresh-
old for its generation has been reached. A similar anomalous
rise in cooperative Raman scattering by a factor of 106 or
more, was observed, for example, in Ref. 152 (Fig. 2b). Oth-
er interpretations of this phenomenon have also been put
forward.13'153'154

8.3. Resonant CRS and super-radiance using prolonged
coherent pumps

Nonresonant CRS becomes the corresponding resonant
effect when the pump is in resonance with some transition in
the molecule (<OL =;«3i; cf. Fig. 26a). Once a prolonged co-
herent pump (tL = L/C in Fig. 27a) has been turned on and
has traversed the sample, Stokes radiation is produced by the
combined effect of 3 -»2 Dicke super-radiance and the CRS
of the pump («L -> cas). Its intensity 7S is doubly modulated:
It consists of slow damped oscillations due to propagation
effects (as in the case of Dicke super-radiance; see Sections
3.3-3.5) and fast optical nutations between the initially pop-
ulated level 1 and level 3 under the influence of the pump
field EL with Rabi frequency &>R =dnE^/fi. A more de-
tailed discussion of resonant CRS is given in Refs. 27, 115,

0.02

0.01

0.5

ls, rel. units

280 420 560 tflc

FIG. 27. a—Oscillogram of the resonant Stokes CRS intensity
/s and integral level populations pu (i= 1,2, 3) for a sample of a
three-level medium of length L = 2/2 c/Jlc; pump field ampli-
tude EL = fiflc/2\f2dt3, (numerical calculation in the unidirec-
tional model in the absence of relaxation271, b—Numerical solu-
tion157 for the evolution of the pump pulse 7, , super-radiance
7SR, and Stokes CRS 7S during propagation in the medium; Z—
optical thickness of the medium at pump frequency.

Zf = 0.004

Time, rel. units
b
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and 156. In particular, one possibility is the self-consistent
Stokes transformation of the 27r-pump pulse into a Stokes
pulse.156

In the general case super-radiance and Stokes CRS are
different radiation components with different frequencies
(«32/os = «L — «2i) and different type of evolution. For
example, a sequence of super-radiant 2-rr pulses (Fig. 27b,
Z,) may appear and rapidly develop on the trailing edge of
the pump pulse, and this may be followed by more slowly
growing Stokes radiation (Fig. 27b, Z2) that increases the
population of level 2, quenches the 3 — 2 super-radiance, and
begins to deplete the pump, leading to two-photon self-mod-
ulation of pulses (Fig. 27b, Z3).157

In addition to CRS by spontaneous or thermal fluctu-
ations, there is also CRS by macroscopic coherent polariza-
tion of the medium, produced by external field sources (see
initiated super-radiance; Sec. 3.6). The latter includes CRS
by nonlinear polarization waves158 accompanying the propa-
gation of simultons, SRS solitons, and other pulses in three-
level media. This soliton-like CRS regime was observed in
Ref. 147.

The analogy between CRS and super-radiance can be
extended to a number of coherent three-wave interactions in
the pump-wave field in a medium with a quadratic nonlin-
earity. This includes, for example, stimulated parametric
scattering in the presence of a pulsed pump98 and second-
harmonic generation.159

8.4. Other analogs

First, we note that spontaneous collective emission can
be produced by spontaneous phasing of a set of radia-
torsi9,i6Q-i62 tnat js unreiatecj to tneir interaction via the in-
trinsic radiation fields. For example, there is the coherent
radiation emitted when the dipole moments of the unit cells
of a crystal undergo a transition to the ferroelectric or ferro-
magnetic161 state when the crystal is rapidly cooled below
the Curie point Tc, or when a depolarizing pulse of an exter-
nal field (or pressure) is applied at T< Tc via the direct (and
not via the photons) intermolecular interaction. 16° Another
example162 is the radiative decay of the exciton mode that
had been filled macroscopically by nonequilibrium Bose
condensation of excitons generated in a crystal by an inco-
herent pump. A similar explanation has been offered for the
narrow emission lines observed experimentally in Ref. 163.
Essentially, this is not Dicke super-radiance, since the radia-
tors are correlated by the direct dipole-dipole interaction, or
some other mechanism, and not by the self-consistent super-
radiant field. Such emission processes are closer to the radia-
tive damping of free polarization12 produced by extraneous
sources.

Negative-energy waves, analogous to polarization
waves, and their dissipative instability, exist not only among
electromagnetic phenomena in electrodynamics, optics, ra-
diophysics, electronics, and plasma physics, but also in other
areas of physics, including hydrodynamics and acoustics
(see Refs. 41,126, and 164, and the literature cited therein).
The generation of sound by supersonic hydrodynamic shear
flow, i.e., a tangential discontinuity, is an example of this. It
is related to the phenomenon of super-reflection of a wave
incident on a tangential discontinuity, which amplifies the
reflected waves. A negative-energy wave then travels into

the moving medium, whereas a positive-energy wave enters
the stationary medium. The presence of the boundary leads
to acoustic feedback and a dissipative instability in which the
negative-energy wave grows at the expense of the positive-
energy wave radiated by the system.

Similar processes are possible for electromagnetic
waves near a rotating conducting cylinder,166 for sound
propagating near a rotating viscous vortex,164 and for gravi-
tational and electromagnetic wav^s near a rotating black
hole.6 A direct analog of electromagnetic super-radiance in
acoustics is the super-radiance of ultrasound (phonons) by a
set of atoms prepared in excited electronic states.32-165'167

Coherent collective emission of fermions (neutrinos,
neutrons, etc.) by a set of identically excited nuclei is dis-
cussed in nuclear physics and is analogous to the super-radi-
ance of photons by a set of excited molecules.168 Unfortu-
nately, the power that can be produced in existing
accelerators is as yet insufficient for the super-radiance of
fermions.

9. CONCLUSION

We have tried to demonstrate the efficacy of the phe-
nomenological approach of macroscopic electrodynamics in
the investigation of coherent collective processes in active
media. In particular, the above description of super-radiance
as a dissipative instability of negative-energy polarization
waves enabled us to establish not only the physical mecha-
nism responsible for this phenomenon, but also to move for-
ward its analysis, both in the examples considered above
and, probably, in other cases, too. Moreover, direct phenom-
enological quantization of modes and normal waves in active
samples (rather than field oscillators in a vacuum) enabled
us to provide a simpler description of the quantum-mechani-
cal properties of collective excitations of the medium, and to
facilitate the solution of problems involving macroscopic
quantum fluctuations. One example, is the derivation of the
quantum statistics of the delay time and the parameters of
the polarization ellipse of super-radiant pulses. On the
whole, this approach leads to the correct allowance for the
way super-radiance depends on geometric factors and the
three-dimensional character of the problem, the inhomoge-
neity of the active medium, reflections from the ends of the
sample, self-excitation of modes with a discrete spectrum
and of waves with a continuous spectrum, nonlinear interac-
tion between modes and/or waves, and so on.

The concepts and descriptions employed in the macro-
scopic electrodynamics of continuous media are exception-
ally useful in the comparative analysis of different coherent
collective processes, and in estimating their place in the
overall picture of wave processes in active media. The inher-
ent possibilities of this approach are far from having been
fully exploited.

"Its advantages for transparent and equilibrium absorbing media were
noted a long time ago7"9.

2>For the sake of simplicity, we assume that ?||d, and omit from (1.12)
the factor ~ 1/3 which is associated with averaging over the orienta-
tions of the molecules. It is taken into account in Sec. 6 [see Sec. (6.1)].

-"In a gas with NZcOg/c3, a minimum occurs for T{~ ' ~\(ol\/\Qaa

<:\co^\. It is determined by the dipole-dipole h.f. interaction between
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the molecules in Weisskopf collisions.45'59 In particular, this limits the
resonance susceptibility \%\ = \e — 1|/4]7<1 for a" =0 even when
ta's;ca0.

4)The expression for the energy (2.9) differs from the modulus or the real
part of the usual electrodynamic expression '~3 (| E2 \ /1 (tiro)) d (<a2e) /d<y
because the susceptibility of the medium is now complex. It follows that
A(ta2e)/dio is not sufficient to enable us to determine the energy.

5' In the limit of no relaxation or dissipation (Q = 0), for which the insta-
bility is anomalous in character (see Fig. 2b), the normal waves with
£Ue'p 7^0 have zero energy because w = — Q/2cu". The nonzero growth
rate in this case is due to the transfer of energy from the partial oscilla-
tions of polarization to partial oscillation of the electromagnetic field
due to the interaction between these dynamic subsystems. This type of
dynamic excitation of the oscillations of the two subsystems with oppo-
site sign of energy is the limiting case of dissipative instability.

"Or active centers in semiconductors and metals in the optical and ultra-
violetranges (at the limit of transparency, ca0zz(oL ~bira £0~' > T2~ '),
where the field dissipation is due to free electrons.

"The Arecchi-Courtens length Z.c = c/flc determines (apart from a
logarithmic factor) the maximum size of regions in the medium in
which the instability with maximum growth rate fic /2 occurs in a caus-
ally connected manner: light traverses the length Le during its develop-
ment.

"Strictly speaking, Pu(z'a) in (3.7) must be understood to represent the
quantity Pa(z'0) = J0, P0(z')exp{ - ((z'0 -z')(Az')-' ]2} dz' aver-
aged over the scale ~Az'= (La/Lc)(ctLa)-*

12.
"In the original formulation of the problem, there are no pump sources or

incident external fields.
""Super-radiance in the two-dimensional problem is discussed in Refs. 28,

59, and 75.
'"The second term in the Debye expansion, which represents waveguide

effects in super-radiance from a cylinder due to reflections from the side
surface, is discussed in Ref. 78.

12lThe concept of "hot modes" is widely used in microwave electronics
when the introduction of a dense enough electron beam into an empty
"cold" resonator (or waveguide) produces a significant change in the
structure and spectrum of its electromagnetic modes, transforming
them into new "hot" modes (see, for example, Ref. 85).

13>By adding to the quadratic Hamiltonian (5.4), (5.9) further terms of a
higher order, which make it positive-definite, we can describe the subse-
quent nonlinear intability state, as well. However, in many cases, in-
cluding super-radiance, the macrofluctuations already occur on the lin-
ear stage, so that we can confine our attention to the quadratic
Hamiltonian in the case in which we are interested here.

""The PQED of macrofields of normal oscillators can be compared with
the QED of cold modes and individual molecules in vacuum apparently
by using the exact solutions for the quantum models of super-radiance,
recently obtained by means of the Bethe substitution. '°6.

15)This criterion determining for the delay time is based on the linear
approximation for the description of super-radiance, and is analogous
to that used in Refs. 14, 42, and 77.

l6)This is valid for wavelengths exceeding the dimensions of the mole-
cules, but not greater than the mean free path: rm <gk ~' ̂ /. The reso-
nance properties of the gas in relation to the long wave fields with
k~'^,l~vTT2 are due to the diffusion (Brownian) motion of mole-
cules that is described by the collision integral omitted from (6.1).
These collisions lead to a narrowing and replacement of the Doppler
line (6.7) with the Lorentzian line of half-width ~k2lvT.

'71Under the conditions of effective dissipation 2mr> 7*2~ ' in an inverted
medium with 2kvT < | <uc |, the last variant in (6.4) refers only to strong-
ly damped electromagnetic wave <ue ( k ) , whereas a weakly damped or
growing polarization wave (2.1) will leave the Doppler line because the
frequency has an imaginary part <up' -I- T2~ ' >£ur although <yp — <u0|
5&ur.

18>As in the case of plasma, the new solutions do not arise if instead of the
Maxwell distribution we use the Lorentz distribution FL(v/vT)
— [w(l + v2vf2)] ~' . According to (6.1), this leads to the Lorentz

type permittivity (1.14), (1.15) with the replacement T2~'
— ?Y' +kvT, so that the dispersion relation (1.16) for transverse
waves is completely exhausted by the polariton solution (2.1), whereas
equation (1.17) for longitudinal waves is exhausted by the solution <U||L)

= <u0 + (<u2/9<o0) - /(r2~ ' -I- kvT) (for a = 0).
'"One could consider the spread of the resonance frequencies of active

particles not only in a gas but also in a condensed medium, for example,
a crystal host.

201 In electronics, the time T2 is determined not only by collisions between
particles and by spontaneous transitions, but mostly by the electron
transit time in the electrodynamic system (resonator).

2 "The attainment of this aim in different generators is in one way or

another related to an increase in the concentration of active electrons,
and, consequently, leads to an enhancement of coherent processes such
as super-radiance, which ensure maximum power and minimum radi-
ation pulse length.

22)In plasma physics and in electronics, the possible development of the
so-called radiative instability of a beam of classical oscillators under the
conditions of the anomalous Doppler effect and the corresponding
"dissipative amplification" along a beam of negative-energy waves was
investigated independently of the super-radiance effect in Refs. 30, 40,
118, 126, 127, etc.

"'After some modification, the one-dimensional model can be used to
describe a magnetic trap with transversely bounded electron beams in
the form of a cylinder with Fresnel number .F= SY/ti S 1. The"diffrac-
tive dissipation" of the field along the side surfaces is described by
replacing CTO with the effective quantity CTO + CoEa/(>TrFL (Refs. 14, and
29).

24)The word "subradiance" was first used in Ref. 139 to denote a nonra-
diating coherent (phased) state of a set of two-level molecules (the
reverse of the super-radiant state).
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