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Physical aspects of the theory of black holes in an external electromagnetic field are reviewed. The
“magnetized” black hole model is currently widely discussed in astrophysics because it provides a
basis for the explanation of the high energy activity of galactic cores and quasars. The particular
feature of this model is that it predicts unusual “gravimagnetic” phenomena that arise as a result
of a natural combination of effects in electrodynamics and gravitation, namely, the appearance of
an inductive potential difference during the rotation of a black hole in a magnetic field, the drift of
ablack holein an external electromagnetic field, the change in the chemical potential of the event
horizon, the creation of an effective ergosphere of a black hole in a magnetic field, and so on.
Questions relating to the description of electromagnetic fields in Kerr space-time are examined,
including their influence on the space-time metric, the interaction between a rotating charged
black hole and an external electromagnetic field, the motion of charged particles near
“magnetized” black holes, including their spontaneous and stimulated emission, and the
influence of magnetic fields on quantum-mechanical processes in black holes.
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1. INTRODUCTION

Progress in the theory of gravitation and advances in
observational astronomy during the last decade have en-
sured that the idea of the black hole has become an insepara-
ble part of modern physics and astronomy. A presentation of
the basic theoretical concepts of black-hole physics can be
found in a number of books,'™ and a detailed development of
the theory of black holes and of their interaction with the
ambient medium is given in recent monographs.*® Particu-
larly intriguing are the predictions of the quantum-mechani-
cal properties of microscopic black holes’ that follow from
Hawking’s remarkable discovery of the quantum-mechani-
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cal instability of black holes.'® Although there is, at present,
no experimental evidence for the existence of microscopic
black holes in the universe, their possible formation at the
early stages of cosmological expansion and subsequent evap-
oration is a significant factor governing the choice of a cos-
mologically consistent model of the theory of elementary
particles.'' The quantum theory of black holes has revealed
unexpected and profound connections between geometry,
quantum-field theory, and thermodynamics, and has had a
definite influence on the development of the quantum theory
of gravitation. The idea of a black hole has thus become an
organic part of the overall physical picture of the universe, so
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that the gathering of evidence for the existence of black holes
of stellar mass in space, or of supermassive black holes at the
center of galaxies, has ceased to be “a matter of life and
death” for the theory of black holes. However, we seem to
find, once again, a confirmation of the validity of Dirac’s
phrase (introduced in relation to the magnetic monopole):
“It would be strange if nature did not use this possibility,”
and astrophysics of the last decade has provided new argu-
ments in favor of the actual existence of black holes in space.

There are reasonably convincing data indicating that
many of the x-ray sources that can be seen at present contain
black holes. The basis for this conclusion is that the probable
mass of a compact object is found to exceed the limiting mass
of a neutron star, which is estimated in the most likely mod-
els as being not more than three solar masses. Apart from the
well-known source Cygnus X-1, discovered as far back as
1971 (see the review given in Ref. 12), there is a number of
““reliable” candidates for black holes. They include the x-ray
source LMC X-3 in the Large Magellanic Cloud, in which
the mass of the compact object is estimated to be ten solar
masses,'> and, probably, the source LMC X-1, whose mass
exceeds three solar masses and whose x-ray spectrum has
similar properties.'*'® According to recent data, the binary
system A0620-00 in the Monoceros constellation contains a
black hole. Analysis of photometric observations of this sys-
tem, performed in the course of the last few years, and of the
shift of discrete absorption lines found in the spectrum of the
optical star, has led to the conclusion that the probable mass
of the invisible component is greater than seven solar
masses.'®'” A black hole may be present as an invisible com-
ponent of the unique object called Geminga—a source of
hard gamma rays whose observable properties can be repro-
duced with reasonable precision by assuming that the system
has a total mass of about five solar masses and consists of a
white dwarf and a black hole rotating relative to one another
with a period of 59 s (Refs. 18 and 19). It is very probable
that the unusual source of optical, x-ray, and radio emission,
$S-433 in the Aquila constellation®is a black hole. Analysis
of the light curve of the system, reported in Refs. 21 and 22,
shows that, under different assumptions about the masses of
the component objects, the mass of the invisible component
is much greater than the critical mass of a neutron star.

Observational data show quite convincingly that there
are black holes in the active cores of galaxies and quasars.
The observed high energy activity of these objects is relative-
ly naturally explained by the presence of supermassive black
holes within them."**** This model is supported by observa-
tions of the central part of the giant elliptic galaxy M87 in the
Virgo constellation in which dark mass of the order of
3 10° solar masses has been found. 26’

Studies of the mechanisms responsible for the extrac-
tion of energy from a black hole are important for astrophys-
ical applications. One of these mechanisms is the Penrose
process, in which a particle traveling in the ergosphere of a
rotating black hole decays into a pair of particles, one of
which has a negative total energy (relative to the observer at
infinity ). The particle leaving the ergosphere receives addi-
tional energy drawn from the rotational energy of the black
hole.”® However, calculations show that this process is not
very probable under astrophysical conditions.? The wave
analog of the Penrose process is the so-called “superradia-
tion” predicted by Zel'dovich®® and Misner.*' The theory of
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this was constructed by Starobinskii *?in the case of the Kerr
metric. In the superradiation regime, the scattering of a mul-
tipole with orbital angular momentum component m along
the symmetry axis of a rotating black hole and frequency
w <mQy, where Qy; is the angular velocity of the black
hole, is accompanied by an increase in the field amplitude.

However, in a realistic model of gas accretion by a black
hole, energy is released mostly at the expense of the binding
energy of the particles and the strong gravitational field of
the hole. It is well known that the maximum binding energy
in the Schwarzschild field is about 5.7% of the rest energy
but, in the Kerr black hole with maximum rotation, this can
reach 42% (see Ref. 33 for further details). Further searches
for mechanisms responsible for energy release which could,
in particular, explain the high activity of the galactic cores
and quasars, have led to the “‘magnetized” black hole model,
in which a large-scale magnetic field is present around the
rotating black hole. This model has recently been discussed
within the framework of different approaches**>” and has
attracted considerable interest in astrophysics. On the other
hand, the intimate connection between electrodynamics and
gravitation, which arises in this model and leads to a number
of new gravimetric effects, is also of general interest in phys-
ics. This has stimulated the publication of this review which,
in contrast to Refs. 36 and 37 (see also the presentation in
the book in Ref. 5) is not explicitly astrophysical in charac-
ter and is devoted to the physical aspects of the theory of
“magnetized” black holes.

It is well known that an electrically neutral black hole
can have no intrinsic “‘magnetic hair’’ (except for the hypo-
thetical monopole hair). As far back as 1965, V. L. Ginzburg
and L. M. Ozernoi examined the gravitational collapse of a
static star with a frozen-in magnetic field and came to the
important conclusion that, as the boundary of the body ap-
proaches the event horizon, the dipole magnetic field of the
star must completely vanish.® This result was subsequently
generalized to the case of a rotating star® and was confirmed
elsewhere,**? in accordance with Wheeler’s well known
dictum that ““a black hole has no hair.” However, a magnetic
field can arise near a black hole due to external factors, e.g.,
the presence of a magnetic satellite (pulsar) that appears
near a black hole as a result of accretion of the ambient plas-
ma. Finally, a magnetic field of cosmological origin may be
present.**** The presence of a magnetic field around a black
hole, which can frequently be regarded as quasiuniform near
the event horizon, establishes the conditions for the realiza-
tion of the electrodynamic mechanism of rotational-energy
extraction from the black hole as a result of the interaction
between charged particles and the induced electric field due
to its rotation. The estimated energy release in this system
suggests that it would be possible to use it as a model of active
galactic cores and quasars.>*’

Time-independent axially-symmetric configurations of
electromagnetic fields have been investigated in Refs. 46-54
in black-hole space-time. A solution of Maxwell’s equations
was found for a test electromagnetic field in the Kerr metric,
which asymptotically corresponds to a uniform magnetic
field.**™*® As the black hole rotates in the uniform magnetic
field, Faraday induction produces an electrostatic potential
difference between the event horizon and an infinitely dis-
tant point, even when the electric charge of the black hole is
zero. This makes it energetically advantageous for the hole
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to absorb the electric charge of the necessary sign during the
accretion of the plasma. The process terminates when the
Faraday potential difference is cancelled by the potential
difference produced by the charge acquired by the black
hole.

If the black hole rotates in a uniform electromagnetic
field that is not axially symmetric, it eventually loses its an-
gular momentum and, according to Hawking’s theorem,*
the configuration becomes either axially symmetric or stat-
ic,”7 where, if the hole has an electric charge, this is accom-
panied by the precession of the angular momentum vector
around the direction of the magnetic field.*”*® A black hole
rotating in an asymmetric electromagnetic field with a non-
zero Poynting vector experiences a ponderomotive force due
to the asymmetric absorption of the electromagnetic mo-
mentum flux by the black hole.’”*° Electromagnetic fields
near a rotating black hole, generated by time-independent
axially symmetric forces (point electric charge, ring cur-
rent) was investigated in Refs. 51, 52, and 54 and, in contrast
to previous analyses,***>*? solutions were obtained in a
closed algebraic form and not in the form of multipole ex-
pansions, which meant that, in particular, the self-energy
shift of a charge in the gravitational field of the black hole
could be calculated.®*®'

There is considerable interest in exact solutions of the
Einstein-Maxwell equations for a black hole in an external
magnetic field, taking into account the effect of the latter on
the space-time metric. Such solutions can be constructed us-
ing the symmetry of the Einstein-Maxwell equations for ax-
ially-symmetric field configurations under some one-param-
eter group of transformations. Ehlers®* was one of the first to
suggest a way of finding these solutions, and the problem
was subsequently discussed in Refs. 63—-66. In particular, a
proof was produced of a theorem®® stating that the Einstein-
Maxwell equations for the time-independent axially sym-
metric configurations of electrovacuum were invariant un-
der the noncompact group SU(2, 1). Subsequent advances
in this area led to the discovery of an infinite-parameter
group of transformations®” and, in the final analysis, to the
formulation of different methods for the complete integra-
tion of the Einstein-Maxwell equations for axially-symmet-
ric stationary fields. We shall not discuss in detail these in-
teresting results, obtained in recent years, and refer the
reader to the review literature, ® since it will be sufficient for
our purposes to use the one-parameter transformation group
first suggested by Harrison.®® Ernst®-® has formulated this
theory in the language of complex potentials, and has used
the above-mentioned theory to construct new exact solu-
tions for a nonrotating, rotating, and specifically charged
black hole, and for a slowly rotating and electrically neutral
black hole in an external uniform magnetic field.®®’' The
characteristic features and physical properties of these solu-
tions were investigated in Refs. 72-78 (Sections 2 and 3).

The motion of test particles near a black hole in the
absence of external electromagnetic fields has now been in-
vestigated in adequate detail (see books,’”*®! reviews,>*%
and the references cited therein). When an external asymp-
totically uniform magnetic field is present, analysis of the
motion of neutral and charged particles in Schwarzschild
and Schwarzschild-Ernst spaces and also in the Kerr metric
has shown that the magnetic field produces a significant ex-
pansion of the region of existence and stability of circular
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orbits, and allows ultrarelativistic motion on stable orbits
that are distant from a closed photon orbit.?*** There are
stable circular orbits for which the particle mass defect ap-
proaches 100% (Section 4). The motion of charged particles
in a magnetic field near a black hole has also been investigat-
ed numerically.®**

Charged particles captured into ultrarelativistic circu-
lar orbits around a black hole in an external magnetic field
emit radiation whose properties are very similar to those of
the synchrotron radiation of electrons in accelerators.***°
This radiation has been investigated in the literature®3+°1-%3
(see Ref. 6 for further details). It is interesting to note that
the radiation emitted by an ultrarelativistic charged particle
moving along a geodesic® is the so-called “geodesic synch-
rotron radiation ” (GSR), whose spectral composition and
dependence of intensity on the Lorentz factor y = E /u are
significantly different as compared with synchrotron radi-
ation due to a charge moving largely under the influence of
nongravitational forces. This is so because the geodesic
along which the ultrarelativistic particle is moving is close to
the world line of a light ray, so that the length within which a
high-frequency pulse of radiation is formed under GSR con-
ditions is greater by the factor y than the corresponding
length for synchrotron radiation.®® To describe the synchro-
tron radiation spectrum in curved space-time, we can use the
method of local coordinates, which enables us to generalize
the theory of synchrotron radiation (including quantum-
mechanical effects) to the case of an arbitrary, slowly-vary-
ing gravitational field’*°® (Section 5).

It is well known that the interaction between electrons
moving in a magnetic field in flat space-time and electromag-
netic waves can take the form of negative absorption, which
is the principle of the cyclotron resonance maser.”*~'*' The
effect is also important under astrophysical conditions.'®?
One way of producing negative absorption of waves is to
introduce a nonlinearity into the system. An example is pro-
vided by a relativistic electron in a magnetic field. The am-
plification of waves is then related to the nonlinear depen-
dence of momentum on velocity. Another negative
absorption mechanism is found to operate in linear multiper-
iodic systems with several noncoincident frequencies.'”’

Both negative absorption mechanisms occur naturally
in gravitating systems. Analyses based on the theory of stim-
ulated emission near nonrotating or rotating black holesin a
magnetic field (Refs. 104-106) have shown that the interac-
tion between charged particles and electromagnetic waves
takes the form of negative absorption at certain combination
frequencies (maser effect); see Section 5.

An external electromagnetic field has a significant in-
fluence on quantum-mechanical processes in black holes. '"’
In the case of a uniform magnetic field, including situations
in which the effect of this field on the space-time metric is
taken into account, or when an arbitrary (test) axially sym-
metric electromagnetic field that decreases at infinity is pres-
ent, there is a change in the superradiation threshold due to
the appearance of an additional potential difference between
the event horizon and a distant point, and a change in the
rate of dragging of the reference frames at the horizon of the
charged black hole. There is also a change in the transmis-
sion coefficient of the potential barrier, where, during the
development of boson instability in superradiant quasista-
tionary levels of massive particles, the magnetic field gener-
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ates an asymmetry in the sign of the electric charge and of
the projection of the angular momentum of the created parti-
cles (Section 6).

2. BLACK HOLE IN AN EXTERNAL MAGNETIC FIELD

According to the theorems proved in Refs. 4042, the
most general family of asymptotically flat solutions of the
Einstein-Maxwell equations that have a nonsingular event
horizon is the same as the Kerr-Newman family. '°® In terms
of the coordinates introduced by Boyer and Lindquist,'*® the
corresponding space-time interval takes the form

dsr=(1— =@ g = 25 62

LT
—sin% 8 (rz—}—a2 —}—“———«‘M'v Q

2
a?sin? 6) de?

2 (2Mr—Q2
+ ( g Q%)

asin®8do di

(2.1)

where
A=r*+a>—2Mr +Q* 2 =r*+ a*cos? 8,

and M, Q, and a = J /M are, respectively, the mass, electric
charge, and rotation parameter of the black hole. The elec-
tromagnetic 4-potential is then given by

A=4,dor =& (@t - asinz6dg). (2.2)

In the system of units that we are using G =fi=c = 1, the
electric field has the dimensions of the reciprocal of length,
and so has the quantity 1/M. The latter determines the char-
acteristic scale of the magnetic field strength:

1
B M= 37

M,
o~ 2.4:100 22(G),

(2.3)
where M, is the mass of the Sun, which has a significant
influence on the metric near the event horizon of the black
hole (in ordinary units, By, = ¢*G ~'M ~'). When the mag-
netic field is B <€B,,, there is definitely a region near the
black hole in which the space-time is not distorted by the
external field, and it is sufficient to consider small field per-
turbations to describe it. We note that, for a charged black
hole, electromagnetic and gravitational perturbations can be
examined together because, in the set of equations

(2.4)
(2.5)

1 1
Gy ZRiIV—'T gunR=2 (Fn;.F%-J-." Tgquathﬁ) .
P =0,

where F,,, is the electromagnetic field tensor, g, is the met-
ric tensor, R,,, is the Ricci tensor, R = g*R , is the scalar
curvature, and the semicolon represents a covariant deriva-
tive, the expansions for the electromagnetic field tensor

Fuv:Fﬁ)\)"Jf‘F(p:\)v (2.6)
and for the metric
Zuv =8By T yy 2.7)

lead to a coupled set of linear equations for FJ) and 4,,,,.

If the black hole is uncharged (@ = 0), or its charge is
small (Q<Af), the external fields can be adequately de-
scribed by constructing the corresponding solutions of the
Maxwell equations against the background of the Kerr met-
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ric [ (2.1) for Q = 0]. We emphasize that, strictly speaking,
(2.4) and (2.5) do not allow the introduction of a current
into the right-hand side of (2.5) because a corresponding
contribution would have to be inserted into the right-hand
side of (2.4) to satisfy the covariant conservation condition
G ... = 0. However, if the change in the metric due to elec-
tromagnetic field sources leads to significantly smaller ef-
fects than those of the electromagnetic field itself, they can
be neglected.

2.1. Constant uniform axially symmetric magnetic field
near a rotating black hole. Faraday induction. There is an
interesting internal connection between the Coulomb “hair”
of a black hole and a uniform external magnetic field: both
these fields can be obtained by taking the 4-potential 4, as a
definite linear combination of Killing vectors in Kerr space-
time.*® It can be shown that, in the case of the vacuum space-
time, R,, = 0, the Killing field vectors satisfy an equation
that is identical with the equation for the electromagnetic 4-
potential in this space-time.''" Actually, in the general case
(R,, #0), the homogeneous Maxwell equations have the

following form in the covariant Lorentz gauge 4%, = 0:

ARV~ RYAY = 0. (2.8)
On the other hand, from the Killing equations
b+ P =0 (2.9)

we can show by covariant differentiation and commutation
that

g+ Ry =0, (2.10)

Comparisons of (2.8) with (2.10) proves the above proposi-
tion.

The Kerr space-time is stationary and axially symmet-
ric, and this is reflected in the existence of two commuting
vector Killing fields %%, = {1,0,0,0}, %%, ={0,0,0,1}.
It is found that the use of these fields for 4, generates nontri-
vial electromagnetic fields that are superpositions of Cou-
lomb and asymptotically uniform magnetic fields. We shall
use the fact that any Killing vector can be written as a linear
combination of other Killing vectors, and take the vector
potential in the form

A = sl + Bt @11
Using the formulas !
8uM = — & orly® d23,,,
(2.12)

uvs

16n) = § orty 422

4nQ— § P @23

vy

which give the mass M and angular momentum J of a black
hole in terms of surface integrals of covariant derivatives of
Killing vectors, and the expression for the electric charge of
the black hole, we can show that the relation for the param-

eters @ and S is
2aM — 4pJ = — Q. (2.13)

For Q = 0, we put3 = B /2 and, omitting the index on the 4-
potential, we obtain
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A,—aB [1_%1(1+cos2 0]
- (2.14)

A = Bsin? 0
LD

(a2 (4Mr + A sin® 0) — (r%+ a)?],

which, for @ =0, is identical with the 4-potential corre-
sponding to a uniform magnetic field pointing along the
symmetry axis. In general, when Q #0, we obtain the expres-
sion for the 4-potential that determines the superposition of
the Coulomb field and the external uniform magnetic field in
Kerr space-time:

92 Ky,

2 (2.15)

Av — g. (W€¢)+2a‘%‘$))_

It is clear from this expression that the Coulomb part of the
field is generated by a timelike Killing vector and that the
“magnetic” part of 4* contains an analogous contribution
proportional to the rotation parameter a. The latter can be
related to the electric field induced during the rotation of the
black hole in the uniform magnetic field. A rotating black
hole in an external magnetic field is thus seen to be a dynamo
that creates the electrostatic potential difference between the
event horizon and an infinitely distant point. The magnitude
of this potential difference is the zero component in (2.14)
and, as can be seen from this formula, it is given by

AD, — Q=2aMB

ST (2.16)

Faraday induction is a possible electrodynamic mechanism
for the extraction of rotational energy from a black hole. It
has recently been used in astrophysical models of galactic
cores and quasars.**’

Similarly, we can construct a ‘““magnetostatic’ 4-poten-
tial B, that generates the Maxwell dual tensor

< L .
Fuv=— ewuniF = 2Bjy; 1,

that describes the uniform electric field E pointing along the
symmetry axis:

BY= — - E (8l + 2a88ty), (2.17)

where the magnetic charge of the black hole is set equal to
zero.

2.2. Uniform constant electromagnetic field without axi-
al symmetry. When the directions of the electric and magnet-
ic fields (or at least one of them) do not lie along the symme-
try axis of the Kerr metric, the above method of solving the
Maxwell equations is no longer valid. One can then use the
effective method of Debye potentials.®''? We refer the read-
erto Ref. 6 for a detailed presentation, and confine our atten-
tion to a brief explanation. If we write the space-time metric
in terms of the complex isotropic Newman-Penrose tetrad
{1#n*,m+m"™}

v = l_xl7lv+nulv— m’um:_ m;mv, (218)
where
(In) =1, (mm*) = —1, (ll) = (nn) = (mm) =0,

I, = {1, —Z/A, 0, — asin? 0},
n, = 1/2 7 {A, £, 0, — Aasin® 8},
m, = [}2 (r + ia cos )]

X {iasin 6, 0, — X, —isin® (* + a?)},
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and expand the self-dual electromagnetic-field bivector
— 1

Fuv= T(Fuv'*'iFuv)

=2 [@ymiuny) + @ (nyuly) + mpum3y) + Polpunyl,

(2.19)

we obtain the following expressions for the complex projec-
tions &, ¢,, P, from the Maxwell equations

1
P22 072D, + —I/_Q Z,00,=0,

2P+ A gt =
p“zop Zd)i—fl/—ijlpcbo—o,

o1 _ 2.20
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(2.22)

this system reduces to the single equation for the Debye po-
tential W:

(A D+ L, L) v=0. (2.23)

To construct a solution which describes a constant uniform
electromagnetic field for r— o, we note that, as r— oo,

@, (r —o0) = A‘;(F9+iFfi)’

V2

D, (r—>o0)=—

lQI —

F,, (2.24)

1

D, (r— 0) = — T

(Fo—iFy),

[

from which we can readily obtain the boundary value for the
Debye potential. The solution of (2.23) that satisfies the
boundary conditions (2.24) is then constructed by the meth-
od of separation of variables, and has the simple form

Ay . 0 e . e
Y= — 573 (Fzsmf:)— F(+)c052?e—“ﬁ—l—F(_)smz%B’“’) )
(2.25)
where F=E + /B, F(t)ziniFy» ¢7=¢

+a(r, —r_ ) 'In[(r—r,)/(r—r_)]. Theelectromag-
netic field tensor is then obtained from (2.22) and (2.19).
When F, = F, =0, we return to the solution constructed in
the last Section. In general, the field configuration that we
are considering is a simple example of an electromagnetic
field without axial symmetry. Since, according to the well-
known Hawking theorem,*' a stationary black hole should
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be axially symmetric, one would expect the appearance of
nontrivial ponderomotive effects in the interaction between
a black hole and a field of this kind. We shall return to this
question in Section 3.

2.3. Nonuniform axially symmetric stationary fields.
Another case for which the Maxwell equations can be inte-
grated in Kerr space-time. without resorting to the laborious
formalism involving expansion in the spin spherical har-
monics, is the case of axially symmetric and time-indepen-
dent configurations with arbitrary dependence on the co-
ordinates r and 6. For these configurations, the equation for
the Debye potentials (2.23) then assumes the form

az [7] o

1 . ~
Aa?‘p-"*'sinn W(Sme a6 ‘L)

—(1-+etg2®) = —4aZ_T, (2.26)

where we have introduced the source _,7(r,&) which is re-
lated to the current J* by the Teukolsky relations. ' Trans-
forming to the Weyl coordinates

E=AYsin0, z = (r — M) cos 6,

we have
A (sin 0_,%) = — 4nST [A + (M? — a? sin? 8] sin 0,
(2.27)
where the generalized Laplace operator is given by '™
A=grt ot 32 L =1 (2.28)
The Green’s function for this equation
BG (s 250 B B) = — 50 (2 — 29 8 (5 — &) (2.29)
can be written in the form of the integral®
G=—1J§1 23 (1l —n)1/2dxn (2.30)
2n ' '

-1
where

Z (z, zy; &, Eo) =[(z— zo)z+ E: + 82— 2§05K]1/2.

As a result, the solution of (2.26) assumes the form

1/2
1T, d6, dry.

_p=4n { G Z,sin B8, (—g‘;) (2.31)
As an example, let us find the electromagnetic field due to a
point charge e at rest on the symmetry axis of the Kerr met-

ric at the point 8, = 0:

T¥ = == 8808 (r —ry) 8 (cos 6 — 1). (2.32)
Using (2.31) and (2.22), we find that
o
v = — L2 o (2.33)

where .., is the solution of the homogeneous equation
(2.26), which must be added in order to ensure that the
physical charge of the system is e. Using the asymptotic ex-
pansion

Z(r->oo)x~r—M— (r,— M) cos 8,

we find that the Coulomb term is
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/2 1 ,
Voour = _%Jr_; —5 (M (1—c0s6) —r—iacos6] (2.34)
The explicit expression for the components of the electro-
magnetic vector potential of a point charge at rest on the

symmetry axis of the black hole can now be found with the
aid of (2.33):*

4= (rg+—fa_2)_2 [(ror + a?cos 9)

X(M+ (r—M) (To—M);(Mz—az)cose )

+a?(r—rocos 8) Z71 ((r — M) — (r,— M) cos 9)] )
(2.35)

Ag= — [(r—rocos 8) (T—M)—(Q—M)cose

e
rg+a?

—~Z— M (1-cos e)]—asinzeA,. (2.36)

It is readily seen that the potential difference between the
event horizon and an infinitely distant point is A®, = e/
2M, independently of the position of the charge. A charged
black hole with the same value of charge e produces precisely
the same potential difference. Other examples of construct-
ing axially symmetric nonuniform fields can be found in the
literature.*®%%

2.4. Influence of an external magnetic field on the space-
time metric. When the magnetic field near a black hole is
strong enough, its effect on the geometry of space-time must
be taken into account. The characteristic magnetic-field
scale for a black hole of mass M is, as already noted, the
quantity B,, = 1/M. When B=B,,, the space-time geome-
try near the horizon undergoes a significant change. How-
ever, even when B« B,,, it is interesting to consider the ef-
fect of a magnetic field on the metric because this enables us
to analyze the influence of the magnetic field on the ergos-
phere parameters and the thermodynamic properties of the
horizon.

The exact solution of the Einstein-Maxwell equations
describing a black hole in an external magnetic field was
constructed by Ernst® using the Harrison transforma-
tion®**® of the Schwarzschild solution.® This solution is not
asymptotically flat, but its physical interpretation is quite
simple because there is an intermediate asymptotic region
r, €r<B ~'in which the space-time is approximately of the
Schwarzschild type (7 is the radius of the event horizon)
and the magnetic field is uniform (this region exists for
B«B,,). The solution for a charged rotating black hole can
be constructed similarly.''> However, the question of the
physical interpretation is less trivial: the field is then found
to contain an electric component, the conical singularity of
the metric appears, and so on. Moreover, the parameters M
(mass), a (angular momentum per unit mass), and Q (elec-
tric charge) of the bare solution are found to be different
from the corresponding parameters of the magnetized solu-
tions.

Consider the following interval of stationary axially
symmetric space-time in terms of cylindrical coordinates:

ds* = — f (do — odt)* — f[e? (dE + d2?) — & df?],
(2.37)
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where f, o, 7 are real functions. We now introduce the com-
plex electromagnetic potential ® = 4, + iB, and the com-
plex gravitational potential & = f— iH, where 4 is the
component of the 4-potential 4, and B, i.e., the component
of the magnetostatic potential generating the dual tensor of
the electromagnetic field whose existence, like that of the
potential H, follows from the corresponding Einstein-Max-
well equations. It can then be shown, after some further ma-
nipulation, that the complete set of Einstein-Maxwell equa-
tions for axially symmetric stationary configurations
reduces to a set of two nonlinear equations for the poten-
tials®® ¥ and &:

FAD = 9,@ (0% — 2D*o D),

(2.38)
fAY = 8.& (0"€ — 20*3" D).
where

f=Ref — D2,

02 | 02 0
‘et art T wE
5 @ e .
a, = (a = E&. z):

and the raising and lowering of indices are performed by the
two-dimensional tensor

g% = g,, = diag (1,1).

The potentials B, and H satisfy the equations
VA, -+ oVA, = — 1/VB,,
VH — 2id*vD = if*vVo,

(2.39)
(2.40)

where
a . 0
V=g tig

The set of equations given by (2.38) is invariant under the
SU(2,1) group of transformations of complex potentials.
Applying one of the transformations from this group to a
“bare” solution of the Einstein-Maxwell equations, we can
construct a new solution that physically corresponds to the
turning on of a uniform magnetic field B. The corresponding
transformation is®’
£ =ATE, D =A" (CD—%B%‘) ,

A=1—BO+ 4 B%. (2.41)
We then have f— f', o — ', where

' =Ref — [D'P = |A Y, (2.42)

Vo' = | A |2Vo — & (A*'VA — AVA*)  (2.43)

and the remaining quantities in (2.37) stay the same.

For the Kerr-Newman metric that describes space-time
containing a black hole, the potentials ® and &, found from
(2.39) and (2.40), are

b=0 (icosema———sin20 ) ,

r—iacos0

(2.44)
€ = (r*4a? sin 0+ ¢% cos? § — 2ia.lf cos 0 (3 — cos? 0)
2asin® 0 - P
—|—-:&§m(ﬂla sin? 0 -+ iQ2 cos 6). (2.45)
The corresponding magnetized metric is specified in the

form
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Asin2 0
T)AG?

ds= (5 ae— U —ae2) 2jApe - (dg — o’ de)2,
(2.46)
where

A = (r* + a*)? — Ad?sin® 6.

The quantity ' satisfying (2.43) was found in Refs. 70, 71,
and 115 for different values of the parameters M, a, Q, B.
The conical singularity on the symmetry axis’” is an
interesting property of the magnetized solutions. It can be
avoided by expanding A around the point @ = 0, and intro-
ducing the new angular coordinate = ¢ /|A,|*, where

2

|Apl2 — (1+%BZQZ) + B2(Q + aMB)2. (2.47)

The area of the surface of the event horizon of the magne-
tized black hole is then given by

21 Aol a
S = \ d(p'\ d0]g,,855 1% = 4n] A2 (r2 +a?). (2.48)
0 o

It is clear that a strong magnetic field would increase the
area of the surface of the event horizon, where the change for
Q@ #0 is proportional to the square of the magnetic field,
whereas for Q = 0 it is proportional to (a/M)*? (B /B, )*.
For a nonrotating black hole, the area of the surface of the
event horizon retains its Schwarzschild value.

A different interpretation of solutions with the conical
singularity is also possible. In particular, the metric of an
infinitely thin cosmic string is associated with the conical
singularity.''® The solution of (2.46) for 0<@<27 can then
be interpreted as the space-time of a magnetized black hole
“pierced” by the infinitesimally thin cosmic string. We shall
not take these ideas any further, but we emphasize that the
Harrison transformation (2.41) will, in general, alter the
conical structure of space-time. If the bare solution does not
have a conical point, the transformation will, in general;
have this singularity. On the contrary, to obtain the trans-
formed solution without the conical singularity, we must
take the bare space-time with such a singularity.

Let us now consider the physical significance of the pa-
rameters Q,, M, a of the magnetized solutions.

We shall calculate the electrical and magnetic charges
Q and P of the black hole described by (2.46). It is conven-
ient to express F,,, in terms of its components in a locally
nonrotating reference frame B;, E;  This gives
A m

\ de | dOsinqu2 (B» +-iE.)=4a (iQ +P).  (2.49)
0 o

Since

B. 4 iEx = —(AY*sin O)t o, (2.50)
we find that

0= Qo+ 2aMB — + B*G}, P 0. (2.51)

The magnetic charge of a magnetized black hole is thus seen
to be zero, and the electric charge is not equal to the original
“bare” charge Q,.

To elucidate the physical significance of M and q, we
can use the following expressions:'!'
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§> (2T% — 88T) o1}, d3S,

1 0 oy 1 ;
— — g DA R+ g Y@L, 252)
— §> TE51 Y, d3S,
— = bt aes,, — 1 & ortsy des 2.53
167 ) ¢ uy 167 ? (@) vy (2.53)
%0 T+

where T# is the energy-momentum tensor. In an asymptoti-
cally flat space-time, the surface integrals over the infinitely
distant surface on the right-hand side of (2.52) and (2.53)
determine the mass and angular momentum of the entire
configuration, and the integrals over the surface of the event
horizon determine the corresponding black hole parameters
(M y,J ). Inour case, the metric is not asymptotically flat,
and the surface integrals over the distant surface are found to
diverge. However, when only the terms that are linear in B
are taken into account, the total mass of the configuration is
found to be finite, and neither M _ nor M,; coincides with
the mass of the “bare’” Kerr-Newman solution. As far as the
angular momentum is concerned, the quantity J_ will, in
general, diverge for r — o0, which is due to the insufficiently
rapid reduction of o’ as r— w0, where the bare angular mo-
mentum aM is not equal to Jy, either. It is therefore clear
that, when the external magnetic field is present, the param-
eters Q,, M, and a can no longer be interpreted as the electric
charge, mass, and specific angular momentum of the black
hole.'*®

3. PONDEROMOTIVE EFFECT OF AN EXTERNAL
ELECTROMAGNETIC FIELD ON A BLACK HOLE

We may suppose that a black hole with electric charge Q@
experiences a force Q E in an external electric field E, just as
if it were an electric point charge. However, the charge of a
black hole is located under the event horizon, so that the
question requires further investigation. Moreover, the black
hole is a nonlocal object characterized by a parameter with
the dimensions of length, namely, the gravitational radius
r.. Wemay therefore suppose that the point force Q E will be
obtained only when the electric field varies little over dis-
tances of the order of 7, i.e., strictly speaking, only in the
limit of the uniform field.

An additional force should act on the black hole as a
result of its rotation. In particular, if the Poynting vector of
the external electromagnetic field (density of the field mo-
mentum) is nonzero, the asymmetry in the absorption of
field momentum by the rotating black hole should give rise
to a force perpendicular to the angular momentum.*” This
force is now of purely gravitational origin, and is indepen-
dent of the electric charge of the hole.

The motion of a charged rotating black hole in a mag-
netic field whose direction is at a certain angle to the axis of
rotation should be accompanied by precession of the angular
momentum because a charged rotating hole has an intrinsic
magnetic moment u = aQ. Finally, in accordance with
Hawking’s theorem, a rotating hole (whatever its electric
charge) located in an external field, and not axially symmet-
ric, should lose its angular momentum (when the field is
axially symmetric, but its symmetry axis does not lie along
the axis of rotation, there is a loss of the angular momentum
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component perpendicular to the field symmetry axis).

All these features can be demonstrated without any par-
ticular difficulty by using the above formulas for the differ-
ent external-field configurations. We shall use the device
employed by Press'!” to calculate the relaxation of the rota-
tion of a black hole in an external scalar field. We shall con-
sider that the solutions of the homogeneous Maxwell equa-
tions found in Sections 2.1 and 2.2 against the space-time
background of the rotating black hole are valid not in the
entire space, but only in the interior of a sphere of radius
R>r, and vanish outside this sphere. If we then use the
Maxwell equations with the source J*, we find that, in gen-
eral, there are not only electric, but also (fictitious) magnet-
ic currents on the surface of the sphere. If the self-dual bivec-
tor of the electromagnetic field is written in the form

v =2 [Dymiynyy + O, (nulvy + mymdy)

+ (I)Zl[umv]] }] (R — T),

3.1

where 6 is the Heaviside function, the Maxwell equations for
the complex current density yield

TE=Th+ i = o M8 (r — R). (3.2)

whereJ % is the electric current density and J %, the magnetic
current density (appearing in the equation for the dual ten-
sor F'= — 4zJ%). The field % ,, acts on currents flow-
ingin a shell with a force whose density can be calculated in a
standard manner. Integration over the surface of the sphere
leads to expressions that are finite as R— «, i.e., they are
independent of the position of the shell. Because of the global
conservation of 4-momentum and angular momentum in as-
ymptotically flat space, an equal and opposite force (mo-
ment of force) must be applied to the black hole.

3.1. Charged black hole in a uniform electric field. The
resultant electromagnetic field of a black hole and the exter-
nal field can be obtained by substituting the following
expression in (3.1):

(Di= - ng +(D1E»
where the first term represents the Coulomb field of the
black hole (we assume that Q< M) and the second is an
arbitrarily directed uniform electric field (found in Section
2.2). When the force is determined, we must confine our
attention to terms proportional to the product of Q and E,
and the result for the force density is®’

f"=2_€: Re [pz(D,E (nu—% lu) — Oy ymu —%@wm*u].

(3.3)

If we carry out the integration over the surface of the shell in
the limit as R — oo, and take into account the fact that an
oppositely directed force must act on the hole, we obtain

f = QE, (3.4)

as expected in the limit of a uniform field. The alternative
derivation of this formula for a black hole was given by Bi-
cak.!'® We note that, if we transform to the reference frame
moving with velocity v relative to the frame in which the
black hole s at rest, and apply the Lorentz transformation to
the field E (a magnetic field B will then appear in this
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frame), we find that the force acting on the black hole is the
resultant Lorentz force

3.2. Drift of a rotating black hole in an electromagnetic
field. Let us now suppose that the uniform external field has
both an electric and a magnetic component. The tetrad pro-
jections of the Maxwell tensor ®,, ¥,, ¢, must then be eval-
uated using (2.22) and the Debye potential found in Section
2.2. The force density acting on a shell is given by

o= 51 {ICD‘| -—-lU-—nu) ]

— |, 218 + Re | D}

'_v_ ](I)olznu
\ZCD mu~——-CD m u) ”
(3.6)

into which we substitute the values of ¥, ®,, P, just found.
Integrating over the sphere and passing to the limit as
R - «, we obtain the expression for the force acting on the
shell (the contributions to /* that are infinite as R — » are
found to vanish after integration with respect to the angles).
The counteracting force applied to the black hole is

161 [SJ1, (3.7)

where S = [E B)/47 is the Poynting vector of the external
electromagnetic field and J is the angular momentum of the
hole. As noted above, this force is associated with the asym-
metry in the absorption of the field momentum of the rotat-
ing black hole. An analogous effect should arise when a ro-
tating black hole is immersed in a uniform flux of particles
traveling with velocity v, whose direction is not the same as
that of the angular momentum vector J of the hole. The
asymmetry in momentum absorption that arises as a result
of rotation must lead to the appearance of a transverse force
f~uvxJd, where u is the mass density of the particle flux
(we are assuming that v<c¢).

3.3. Precession of the angular momentum of a charged
black hole in a magnetic field. The moment of the force act-
ing on a spherical shell for R - « can be calculated from the
formula for flat space-time

N= (\; [rf] r2dQ, (3.8)

R—voo
where fis the force density. Repeating the discussion of Sec-
tion 3.1, we find that the rate of change of the angular mo-
mentum of a charged black hole in an external magnetic field
B is given by

dy @
’*—YUBI' (3.9)

dt
This describes the precession of the magnetic moment
= QJ/M in an external magnetic field with angular veloc-
ity Q@ = QB /M thatisequal tothecyclotron frequency of the
charge Q.

Under the conditions prevailing in real astrophysical
objects, the angular precession velocity is very small. How-
ever, when the magnetic field itself is produced by a lighter
accretion disk, the latter will precess with frequency

Qdisl( = ‘0_‘ B J

En5l, (3.10)

which can be somewhat greater for J ;,, €J. The possibility
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of observing this effect is discussed in Ref. 58. The critical
factor is the charge of the hole: Astrophysically reasonable
precession times can be obtained for high enough (and, in
principle, admissible) values of the charge.

3.4. Relaxation of the angular momentum in an asym-
metric field. The rate of change of the angular momentum of
ablack hole in a uniform magnetic field, whose direction is at
an angle to the precession axis, has been discussed by several
authors.>>**!'7'1% In the course of time, the black hole loses
its angular momentum component perpendicular to the
field, and the system becomes axially symmetric (because
the angular momentum effectively rotates along the direc-
tion of the field), in accordance with the Hawking
theorem.*? When the external field does not have an axis of
symmetry, the black hole can be expected to lose its angular
momentum altogether. To evaluate the relaxation of the an-
gular momentum, it will be sufficient to determine, within
the framework of the above method, the moment of force
acting on the electrically neutral black hole, which is due to
the crossed external fields, described in Section 2.2, for arbi-
trarily oriented vectors E and B. The result is the following
expression for the rate of change of the angular momentum
of the black hole:

t(il-: — __M (IB[IB]]+[E[IB]])-

Diagonalization of the matrix, multiplied, on the right-hand
side by the vector J, leads to a set of eigenvalues 1/7,, 1/7,,
1/7, that are the reciprocals of the relaxation times of the
components of the vector J along the eigenvectors £‘*':

(3.11)

Jy=J et (3.12)

One of the eigenvectors £’ is the Poynting vector of the
external field and the corresponding eigenvalue is
By
Ty =75 M =T yrpyl
The two other eigenvectors lie in the plane containing E and
B, and the eigenvalues are given by

Ty, o= 3M By {(E*+ B?) 4= [(E2+ B2 —

(3.13)

4[EBJ2]1/2)1,
(3.14)

When E and B are collinear, the matrix is degenerate, 1/
7, = 0, and the other two eigenvalues are equal. This corre-
sponds to the conservation of the angular momentum com-
ponent along the common direction of E and B. In the case of
mutually perpendicular vectors E, B, we have 7, = 7, = 27,
Under these conditions, the black hole initially loses its an-
gular momentum component perpendicular to the plane
containing E and B, and then the component lying in the E,
B plane. In general, the relaxation process is such that®
>t (3.15)

T3 1

4. MOTION OF CHARGED PARTICLES

The motion of test particles in Kerr space-time is usual-
ly investigated with the aid of the Hamilton-Jacobi equation
for which a complete separation of variables can be carried
out.'?® However, it is found that, because of the symmetry of
the problem, direct integration of the equations of motion is
not only simpler, but also frequently has technical advan-
tages. This approach is best investigated by the method of
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successive approximations, using nearly circular orbits, and
taking the zero-order approximation to be the equatorial cir-
cular trajectory. %1%

4.1. Circular orbits in the equatorial plane of a nonrotat-
ing black hole in a magnetic field. The equation of motion for
a particle of charge ¢ and mass u traveling near a black hole
in the presence of an electromagnetic field is

d2zH u  dx® dzﬂ___Fu, dz¥

ass + Tap “ds ds ds * (4.1

It is clear from the symmetry of the problem that the circular

motion
dz#

i

=u’(1, 0, 0, )

is possible in the equatorial plane & = /2. Substituting ap-
propriate values of the Christoffel symbols and of the elec-
tromagnetic field tensor into (4.1), we find that the angular
velocity w, is given by
2

m0=%(03{-_4_—_(1+4—(:—§-)—1], (4.2)
where w, =M "2/ is the Kepler frequency and
wy = eB /uu’is the cyclotron frequency in the gravitational
field. The two signs correspond to the “Larmor” (Lorentz
force pointing toward a hole) and “‘anti-Larmor” (Lorentz
force pointing in the opposite direction) rotations of the par-
ticles. Using the normalization conditions for the 4-velocity
of the particle, g, u“u” = 1, we find that

(ud)? (1—§1:—4+r2w0u)3)=1. (4.3)
Comparison of (4.2) and (4.3) readily shows that the Lar-
mor motion (@, < 0) is possible only for r > 3M, whereas the
anti-Larmor motion occurs for 7> 3M and 2M < r<3M. Let
us now introduce the dimensionless parameter € = eBM /u
that characterizes the relative effect of the magnetic field on
the motion of the particle. We note that, even for small val-
ues of the magnetic field, BM < 1, the parameter ¢ for a parti-
cle with high charge-to-mass ratio (for the electron e/
p#=10%") may not be small. Simultaneous solution of (4.2)
and (4.3) shows that the energy of the particles is given by

E = puy =22 (1 4 3,2, (4.4)
where
— 1/2
Aoy = _—-___—2M(rA__3M){si[s+4 r 3\1) Ma] /} (4.5)

Hence, it is clear that A ., which corresponds to the Larmor
orbits, has a singularity at » = 3M, but A _ does not have a
singularity. It is clear from (4.5) that the region of existence
of large trajectories extends right up to the event horizon for
large enough &. For 2M < r<3M, there are anti-Larmor or-
bits with radii r>M(2 + ¢~ '). Accordingly, the energy
measured in the locally inertial frame is £ = /172, and the
gravitational mass defect is

Ap= “’——(1—3 12y, (4.6)

which approaches 100% for £¢> 1. We note that ultrarelati-
vistic trajectories (y> 1) exist for r > 3M, but this is unrelat-
ed to the fact that the orbit is close to a closed photon orbit.
When eA/M*>2[(r/M) — 3]}, it follows from (4.4) that

a2M e2A?
(+)#{1—_)[1+1————_m(r M)]>>1 (4.7)
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4.2. Small oscillations about circular orbits. To describe
nearly circular orbits, we modify the initial set of equations
(4.1) and replace it with the set of equations for the devia-
tions £ (s) = x* (s) — 2 (s). Retaining terms that are lin-
ear in £“ on the left-hand side, we obtain

(t;;‘;:‘ u dE. + §a 01" UU- ‘/l/-u- (g)’ (48)
where
9 gt ,
528 b= B 6.r<1 ['Ya.u“ (u%) —-T Fhu a]e:nlz (4.9)
(a=r, 0).

The term N (£) on the right-hand side of (4.8) represents
terms that are nonlinear in £#. When the electromagnetic
field F,,, is axially symmetric, the only nonzero components
in the equatorial plane (6= 7/2) are the components
Yo:¥1,¥5: 73, U U? of the quantities y*,U*, introduced
above. Taking this into account, and integrating (4.8) with
# = 0.3, we obtain the following equation in the approxima-
tion that is linear in £* :

dg4
d

A =0 (4.10)

(A=t, $=0.3).

Substituting this into the equation with 4 = 1, we obtain the
simple harmonic equation

dt2 S 4ok =0, (411)
where the angular frequency is given by
T 1/2
o= (G- —vard) " (4.12)
Equation (4.8) with u = 2 gives
dete su® \1/2
St =0, oe= () (4.13)

Equations (4.11) and (4.13) describe the radial-phase and
axial oscillations of the particle around a circular orbit, in
which the axial oscillations are independent, whereas the
radial oscillations

(4.14)

£ = const-sin o,t
are accompanied by azimuthal and “temporal” oscillations

L. (4.15)

A COs .
£” = const- Yfl [uhiiihad A8
Wr

These formulas enable us to investigate the stability of circu-
lar orbits. From (4.12) and (4.13), we then find that, neara
nonrotating black hole,

wp=od (1 - —Gé"—)+w§3(1 -

g) , ob=o0d (4.16)
Hence, it is clear that motion in the vertical direction is sta-
ble (@} > 0), independently of the radius of the orbits. Radi-
al motion is stable for r > 6M, independently of the magnetic
field. When r < 6M, the regions of stability are different for
the Larmor and anti-Larmor rotations. For large enough ¢,
the Larmor motion is stable up to r~4.3M and the anti-
Larmor motion up to the event horizon.*

4.3. Motion in a Schwarzschild-Ernst field. For an arbi-
trary external magnetic field strength, the space-time of a
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nonrotating black hole is described by the Schwarzschild-
Ernst metric®

det=[ (1~ ZL)ar— (1 - 2L)7 —r2q02]

2 gin?
r?sin20
2
d7

X A?— 1z

A=1+ B2sin2g. (4.17)
The motion of neutral and charged particles in this metric
was investigated in Ref. 83. In particular, for neutral parti-
cles in the 8 = 7/2 plane, the normalization condition for
the 4-velocity yields the following conditions for the radii of
closed circular photon orbits:

(r—3M) = + Ber2 (3r — 5M). (4.18)

Analysis of this equation shows that, when B =0, there is
only one root r = 3M, but, for large values of B, there are no
circular orbits in the physical domain of the radius r > 2M.
The critical magnetic field

B.. =2V 3 By (169 + 38)/19)-1/2, (4.19)

corresponds to one closed photon orbit with 7,
=1(8+ J—I§)M. Thus, when B < B_,, there are two closed
photon orbits,whose radii are

B \Z 2 1
r,z3M+9M(ET) R

(4.20)
We note that the factor A in (4.17) satisfies the condition
1<A<4 in the region of existence of circular orbits. Similar
results were subsequently reported in Refs. 121 and 122.

4.4. Motion in a magnetic field in the Kerr metric. Con-
sider the motion of a charged particle in a test uniform mag-
netic field defined by the vector potential (2.14) in Kerr
space-time (Refs. 84, 106). From (4.1) withu = 1, we then
find that the angular frequency in the equatorial plane is
given by

wp =B (1 — %)™t {Z=[1 4+ B205 (1 — a%§) (1 + awp) ]2 — 1},

@ (4.21)
=2 (14 a%})+ avk

where the two signs correspond to the forward and reverse
rotations of the particle in the Kerr field, and there are also
Larmor and anti-Larmor motions.

On the other hand, it is readily shown that

(u®)2 [1 — # (1 — aoy)? — ©ia? (4.22)

M
+ r2o,ug (14 a?wi) — #] =1.

In this case, the simultaneous exact solution of (4.21) and
(4.22) cannot be obtained for y(7,¢) and w,(7,&). However,
assuming that wg €wg, 1.e., that the electromagnetic force
predominates, and comparing (4.21) with (4.22), it can be
shown that the kinematic properties of the charged particles
remain the same as in the uniform magnetic field in the
Schwarzschild matrix. The regions of existence of circular
orbits are shifted toward the event horizon, and ultrarelati-
vistic motion is possible well away from the closed photon
orbit. The explicit expressions for the frequencies of radial-
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phase and axial oscillations around the circular orbits are as
follows:

6M

)

re

2
mi:(uﬁ(’l —— 8a2m§)—i—0)0m3 (1 -

+ 4awd (20 4 0p) + 0} ( 1 — g — 2ol -+ 2a2u)§) ,

)

(4.23)
3a?
=]

ob= (1 + 25" +4a%3) 0} +ugop (1+

— 200§ (20, + op). (4.24)

Hence, it follows that the boundaries of the region of radial
stability are shifted toward the event horizon, depending on
the magnetic field strength. These conclusions are consistent
with numerical calculations of the effective potential for ra-
dial motion in the Hamilton-Jacobi equation.®

5. SPONTANEOUS AND STIMULATED EMISSION DURING
NONGEODESIC MOTION OF PARTICLES

The problem of radiation in curved space-time must be
formulated so that the conditions under which observations
are carried can be carefully defined. The scattering of radi-
ation emitted by a particle in curved space-time makes this
process essentially nonlocal. If the wavelength in a particu-
lar spectral interval is much shorter than the characteristic
length over which there is a significant change in the gravita-
tional field, it is in principle possible to isolate secondary
scattering effects, but this cannot be done when the two
lengths are of the same order. In asymptotically flat space-
time, the radiation energy can be calculated at infinity and,
in this global formulation of the problem, the effects of scat-
tering and of the change in frequency in the gravitational
field are automatically taken into account. For a nonrelativ-
istic particle moving along a geodesic, the radiation wave-
length is always of the same order as the scale of gravitation-
al field inhomogeneity. Only the global formulation of the
radiation problem is meaningful in this case. In nongeodesic
motion and, especially, for ultrarelativistic particles, the
characteristic wavelength may be much smaller than the in-
homogeneity scale. The radiation problem can then be ex-
amined in the locally geodesic coordinate frame. In what
follows, we shall consider both formulations of the problem
with a view to determining the radiation emitted by an ul-
trarelativistic particle moving mostly under the influence of
electromagnetic forces.

5.1. Scalar wave model. To avoid complications con-
nected with the vector character of electromagnetic radi-
ation, let us begin by considering the global formulation of
the radiation problem, using the scalar wave model. We shall
assume that the particle has mass ¢ and travels in Kerr
space-time along a world line x* (s). It interacts with the
massless real scalar field ® (x) and has ascalar charge ¢g. The
field produced by the charge is the retarded solution of the
d’Alembert equation in curved space-time

a
ozH

[(—g)2gm 2% | =dng | dst (e —z (), (5.1)

where §is defined by § §*(x)d*x = 1. The total energy loss E
by radiation consists of two parts, namely, radiation depart-
ing to infinity (E,,, ) and radiation absorbed by the black
hole (E,, ). The corresponding intensities are given by °
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Py = 208 —lim § (2-+a) 7%, d,

dt r—+o0

dEy

(5.2)

Pln = (5.3)

2 — lim §> (% +a?) T*'s7, dQ,
T+

where %, is a timelike Killing vector. The solution of (5.1)
is constructed using an expansion in the spheroidal func-
tions'?* Z(6,4)

O @)= 2 Ry (1) Zim 8, @) €70, (5.4)
The radial functions Rlrn satisfy the equation

(A )+ (5~ hm) Rom

=2 2 (5, 0) 80 —ro (5.5)

where K = (P + a¥)w —am, A = E — 2amow + d’0* and E
is the separation constant. The subscripts carried by the ra-
dial functions will be omitted henceforth. Substituting

R(r)=u(@) @+ a7,

M / r—
r*=r+'('Mz_a2)1/z \r+1n

—r_InIZ==

) (5.6)

we can transform from (5.5) toan equation without the first
derivative. The corresponding homogeneous equation takes
.the form of the Schrédinger equation
d2u
drz

—Ve“u=0 (5.7)

with the effective potential

Vegr = — (r? 4 a?)2 (K2 — A))

+ F%lﬁ [2 (l][r -_ a2) + 31_\(12 (r2+ az)_1].
(5.8)

As r* - o, the potential becomes Vg — — ?, whereas near
the event horizon, r*— — o, V. assumes the value k
= (& — mQy )2 Accordingly, we can introduce two pairs
of linearly independent solutions of (5.7), namely, y T (r*¥)
andv* (#*) with the following asymptotic behavior:

Xi ~ eiimr', vE ~ exihr®,

(5.9)

We shall use these functions to construct the “right” (ug)
and “left” (u, ) solutions. The first describes waves depart-
ing to infinity as 7* — o and the second describes waves inci-
dent on the hole for 7* - — o

up & (2 [of)V2elort, up & (2 |k])V2Tem B, (5.10)

where the constant 7 can be interpreted as the transmission
coefficient of the potential barrier. Using these solutions, we
obtain the radial function corresponding to the retarded so-
lution of (5.1) in the form

R (r) =4nq (r*4- a®) V2 (rg 4-a%)" “2Z‘”‘( =, 0)

101 (up (r) ur, (r) 8 (r— ro)

X

4up (r)ug (ry) 8 (rg—r)t- (5.11)

Substituting this in (5.2) and (5.3), we obtain the following
expressions for the radiation intensity P,, departing to in-
finity and the intensity P,, incident on the black hole:
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Pout =4n z‘ mwyq? (u‘))‘2 (rz +a?)t

I, m>0

k14

x [zr(T, 0} | tu (ro) 12

7, mwyg?

1, m>{

(5.12)

Py =4n (uo) 2

X1t (ry+a2)t |2 (5, 0)f lun (o)

(5.13)
It is clear from (5.13) that, when w, < 2y, the power P,
becomes negative, which corresponds to the superradiant
state in the Kerr field.***!
For the ultrarelativistic motion of a scalar particle, P,,
is exponentially small because the transmission coefficient 7
is small. Since, in this case, the higher harmonics of the angu-
lar frequency are radiated, it is sufficient to determine the
radiated power P, using the radial function in the high-
frequency approximation. This can be done in the quasiclas-
sical approximation, assuming that /> 1,|m|>1 in (5.7).
When the particle travels well away from the closed photon
orbit, wy(r — ry, ) > 1, the quasiclassical solutions of (5.7)
must be joined at the point r, at which the descending seg-
ment of (5.8) crosses the abscissa axis. The coordinate r,
that determines the position of the circular orbit of the ul-
trarelativistic particle differs from ~, by a small amount be-
cause the potential V_; for the massless scalar field in the
WKB approximation is close to the potential for a massive
particle when ¥> 1. This means that the value of the radial
function at the point 7, can be obtained by solving the para-
bolic equation, valid in the immediate vicinity of the point r,,
which arises when V4 in (5.7) is expanded in the vicinity of
the point 7,:
d%u

a =0

(5.14)

]}1/3‘("*_’_?).

m? Ar

q= -—{m[mg(3r2+ az)—i

The solution of this equation that can be joined to the quasi-
classical solution u; for r##r, is the Airy function ®(q).
Transforming from the Airy function to the Macdonald
function KI,, and recalling that

A Q l |
oo [ I 4] (515
O _ 2MaF (8)'12r,
0" ¥ atro+ 2Ma? '
where
g=0 @ +ay)—1, (5.16)

we finally obtain the following expression® for 1, (ry):

r0§20 1/2

2
e L ) R LN
(5!17)
2= g-*QSr:Aé’Z(i + ),
V= - (1= R (5.18)

Since the Macdonald function decreases exponentially for
large values of its argument, it is clear from (5.18) that the
main contribution to radiation is provided by the harmonics
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Lo — (5.19)

M S Mmaz = Saa1708

We see that the maximum number of radiated harmonics is
proportional to the third power of the energy (just as in the
case of flat space-time) and depends on the gravitational
field parameters. However, as the closed photon orbit is ap-
proached, the 3* dependence is replaced with the ¥* depend-
ence. To demonstrate this, consider the product yg. Formu-
las (4.21) and (4.22) then readily show that, as r—r,,
(g—0) for given ¢,

Yg — €-const,

(5.20)

i.e., the product remains finite, whereas y— . It is also in-
teresting to compare the / distributions in synchrotron radi-
ation and geodesic synchrotron radiation spectra at given
frequency @ = mw,, which is determined by the number m
of the harmonic. Since the effective range of variation of the
parameter ¥ extends from zero to unity, we have
! — |m| S m/y?, and a large number of multipoles, / ~ , con-
tributes to synchrotron radiation for fixed m, whereas the
principal contribution to geodesic synchrotron radiation is
provided by terms with / = |m| and / = |m| + 1. This is in
agreement with conclusions reported elsewhere (Refs. 124,
125), based on numerical estimates. The approximate for-
mula for the spheroidal harmonics Z7'(#/2,0) for
I>1,|m|> 1 was found in Ref. 124. In our notation,

I-Im
|7 (%, 0) [ = A . (5.21)

1 v (1—a2Qp1s2
T E 0%
Substituting (5.17) in (5.21) and (5.12), and transforming

from summation with respect to / and m to integration with
respect to ¥ and the parameter

4|m|

y= girtAY P, (5.22)
(because the spectrum is quasicontinubus), we find that the
spectral distribution of the radiation is

dPout __ 313 [ #¥2\2_ g% \
dy —  32n ( ] ) AN \ Ky (z)dz. (5.23)
y
-For small y, the radiation intensity increases as yiy whereas

for large y it decreases exponentially. The spectral curve has
a maximum corresponding to the critical harmonic (5.19).
The total intensity of the scalar wave is

2

P =y ey (5.24)
We note that this intensity is greater by a factor of y*than the
intensity of the scalar geodesic synchrotron radiation.'** It
also depends on how close the radius r, of the particle orbit is
to the radius 7, of the closed photon orbit. When a =0,
these formulas become identical with the result obtained in
Ref. 83 for the Schwarzschild space-time.

5.2. Synchrotron radiation from ultrarelativistic parti-
cles. To calculate the electromagnetic radiation intensity due
to ultrarelativistic charged particles in the Kerr metric, it is
convenient to use the Newman-Penrose-Teukolsky formal-
ism.''*12%127 The radiation flux departing to infinity is given
by

dzEnut _ 1 . o 2
e — 3w e [Dpl

(5.25)

where ®, is the Newman-Penrose scalar defined by (2.22).
Separation of variables in the Teukolsky equations for ¢,
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b |

leads to the following expansion in spheroidal spin functions
of weights = — 1:

D, =02 | do 3} LR ()20, ) eior. (5.26)
I, m
The radial functions _ R (r) satisfy the equation
Ao R—_ V. R=—_T, (5.27)
where
K? dK d
V= SeA—in (28 GE—K - A). (5.28)

The source on the right-hand side of (5.27) has the following
form for the above case of circular motion:

eA ;
e Lt
S NN iam 4 iK
x {(—to Lot y om0y K

— (1 —awy) l:m (1 —a(')o)"i‘iTa_—%‘:i}-i

xz;’"(% 0) 8(—ry- (5.29)
The potential defined by (5.28) is complex, which compli-
cates the procedure for joining the quasiclassical solutions.
However, the formalism proposed in Ref. 128 can be used to
avoid this difficulty by transforming (5.27) into an equation
with a real potential. As a result, the problem of finding the
radial function in the high-frequency approximation /> 1,
|m|> 1 can be reduced to the above scalar case. Repeating
the discussion given in the last Section, and transforming
from spheroidal harmonics with s = — 1 to functions with
s = 0, we obtain the following expressions for the two inde-
pendent polarization states of electromagnetic radiation de-

parting to infinity (o and 7 components):®*

8 e - o
P(o‘ii)t = Z‘ T % mgiryd,Qg (14 ¢2)2

L, m>0
m 12 72
x|z0 (5. 0) [ Kham, (530)
() 2 -
out_ 2 Yezm lr 'AOQB (1 - ‘PZ)
I, m>0
| dZP (2, 0y 2 .,
| K ). (5.31)

Replacing summation over /, m with integration with re-
spect to ¥, y, and using the asymptotic representation

dz /2, 0 -lml -y R
('r/ ) ‘ — ) 'ﬂ—z.—froQomz(i—GZQE)”zw

(5.32)

we obtain the following expression for the spectral distribu-
tion:

8

iy 31/3 eyt \
dyu = 3m rads/ 2 g%y (5 Ky ( (z) dz & K, (y))
v

(5.33)
It is readily seen that the spectral distribution of electromag-
netic radiation emitted by an ultrarelativistic charge has
similar properties to those noted in the last Section for scalar
waves. In particular, the conclusions relating to the change
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in the limiting frequency in the spectrum and to the set of
multipoles providing the main contribution to radiation as
we pass from synchrotron radiation to geodesic synchrotron
radiation remain valid. The total radiation intensity is

28
P- 1 e2y

=% T & (5.34)
The degree of polarization is
(a) _ p(m
o PO—P% 4 (5.35)

P -3
and is independent of the presence of the gravitational field.
These formulas generalize existing results®*=*° on the spec-
trum and polarization of synchrotron radiation in flat space-
time to the case of the strong gravitational field of a rotating
black hole.

5.3, Local description of synchrotron radiation in a grav-
itational field. Since the high-frequency part of the radiation
spectrum due to ultrarelativistic particles originates in a
small segment of the trajectory, the method of local coordi-
nates can be used to describe the spectrum. Consider the
normal Riemann coordinates™ £, for which the space-time
metric takes the form

1 =
g;l.v:nuv"*’"T'Huo;vﬁgagB—*_ s (536)
3

and all the Christoffel symbols vanish at the origin £ = 0.
We can then write the Maxwell equation in terms of these
coordinates, taking into account only the terms that are lin-

ear in £%:
a24* | 2 oA* v, 94*
i + 2[R 25+ i+ RY) 2]

65“ OEB T 0§7' oY

AR = b, A =0 (5.37)
The main operator on the left-hand side is the usual d’Alem-
bert operator in Minkowski space-time. The additional
terms that are proportional to space-time curvature are of
relative order £4 /L ?, where L is the inhomogeneity scale of
the gravitational field and A is the characteristic wavelength
in the spectrum. For synchrotron radiation A, ~Al /7%,
where Al ~p/y is the length within which the radiation from
the ultrarelativistic particle is produced on a trajectory with
instantaneous radius of curvature p, and y is the Lorentz
factor in the same frame of reference (the wave zone begins
at distances that are small in comparison with p). When
&S L, the relative size of terms proportional to the space-
time curvature is then small in a significant wavelength
range even when p~L.

Confining our attention to the high-frequency part of
the radiation and omitting, in view of the foregoing, all terms
in (5.37) that are proportional to £ for a freely falling sys-
tem, the spectral distribution of the radiation can be de-
scribed by the formula for flat space-time

a0

p 33,0 .
%= -2k ety \ Ky (2) dz, (5.38)
y
where
y = ) (—wdy e, ur= s (5.39)
For ultrarelativistic particles, we have ki = — wi’/u’,

which is valid to within ¥ 2. If we transform the 4-momen-
tum of the photon u— Du/ds to an arbitrary frame, so that
k, Al = k,, where Ay = d£*/dx" is the coordinate transfor-
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mation matrix at the instantaneous position of the particle,
we can rewrite (5.38) in terms of generally covariant quanti-
ties. The derivatives of the 4-velocity that are represented by
dots then become covariant derivatives: ¥ —Du/ds and so
on. Correspondingly, the total intensity assumes the form

2

P=%% Fy  Fhubu,. (5.40)

Consider synchrotron radiation emitted by ultrarelati-
vistic particles traveling in a uniform magnetic field in the
Kerr metric.

Transforming from local coordinates £ # to an arbitrary
frame with origin at the instantaneous position of the parti-
cle X* by the standard method,'*

B[ X0+ T (0 e~ X @ X+ ]

(5.41)

we can readily show that the total radiation intensity ex-
pressed in terms of the time coordinate in the Boyer-Lind-
quist frame is the same as (5.34), the latter being obtained in
the Newman-Penrose-Teukolsky formalism.

The foregoing discussion remains valid for the Dirac
equation referred to the local inertial frame. The quantum
spectrum of synchrotron radiation in a freely falling refer-
ence frame is therefore given by the corresponding expres-
sions found in the case of flat space-time.'*° The total radi-
ation intensity, including quantum corrections to the
classical spectrum in the Kerr metric, is found to be”’

%-}f— grytAL M 4L ) ,
where P, is given by (5.34) in which the orbital radius r,is a
function of y. The dependence of the quantum corrections
on energy is therefore more complicated than in the case of
flat space-time, in which the relation is linear. When a =0,
(5.42) becomes identical with the expression obtained in
Ref. 96 for the Schwarzschild space-time.

5.4. Stimulated emission. The interaction of radiation
with a charged particle traveling in a uniform magnetic field
in Kerr space-time can give rise to negative reabsorption of
radiation. Consider the forced oscillations of a charged par-
ticle traveling on a circular orbit under the influence of weak
electromagnetic waves described by the field tensor f,,.
With this in view, let us introduce the perturbing force £,
= f“u*(4®) "' into the right-hand side of (4.10), (4.11),
and (4.13), which describe the free radial-phase and axial
oscillations of the particle about its circular orbit. Trans-
forming to the Fourier expansions for the quantities / and
the perturbations &,

P=Pg, (1 — (5.42)

M, r, 0, o= \ de 2 *(r, 8, ©, m)

-0 m=-—o0

X exp (— iot +-img), (5.43)
)= T deE" (w) exp (— iot), (5.44)

we finally obtain
B (0, m) =~ AT (0, m)— S LSO (545)

iwm pud (O
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o, m = g (70 = )
(5.46)
where

Om=0—mao,, M, 0, o, m)=f* (o, m).

It follows from the form of these solutions that, when
the spectrum of the perturbing force contains the frequen-
cies
0= QF =mo, & o,

(5.48)

the forced oscillations exhibit resonance. To give (5.45)—
(5.47) a physical meaning under resonance conditions, we
must take dissipative processes into account by shifting the
pole into the complex plane, @ — @ — iv, and assuming that
the collision frequency v is small in comparison with @. If the
Kerr space-time admits a timelike Killing vector %%, , the
work done by the ﬁeldf#v (x) on the current J*(x) can be
defined in a covariant manner as follows:

A= fu (@) " (@) ) (—

Assuming that there are no correlations between the parti-
cles, the wave power absorbed by the system can be deter-
mined by integrating the corresponding one-particle result
over the particle distribution. Substituting the current

ds

0=mw, ©=9F=me,+ o,

(5.49)

g2 dix.

J'(z)=¢ ( uv (x) & (z“—z“(s))w ) (5.50)
into (5.49), we obtain
A=e | fuy (2 () uv (s) B ds, (5.51)

where
z* (5) = z*

(s) + &= (s).

Expanding the integrand in powers of £ %, and using the low-
est nonvanishing order of perturbation theory, we find that
the absorbed wave power averaged over the phases is given

by
—e <§u O

We now introduce the correlation tensor for the electromag-
netic field with random phases:

(5.52)

(,fu ((J), m) f:' ((1)', m.’) ]”vém”»é ((_u)— (,)'), (553)

It is clear that the tensor I

.. satisfies the following condi-
tions:

]uv((’)’ m’)=]:‘u(('-'r m):]w(—(o, - m). (5.54)

Using the above formulas for the absorbed power averaged
over the phases, we obtain '

oo
a

s [ P* (q [ A
- c\l dum_[ioo L;.ii r (o, m (@—Qp)2 v
v \ v
+ Z,lPe( (a) QR w2 T {o—meg? v Po (@, m)]'
.

(5.55)
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The spectral functions in this expression are given by

2 A

Prd:(‘l’a m)= + eo —’o‘i( u+ ]33“‘*1111]13)7

u® 2 o
- e? 1 (0]

Po (0, m)= =+ e r o Lo
262 1 2M

Py(w, m)=— 0 {Ao [1 - ’1-—awo)—(no(r -+ a?)
A #2774 20 By, }

7 m—%]ﬁk(‘)lss)—f' o2 td 2 ImZyy,
(5.56)
where

I 0
H =T WYy

Similar expressions for the wave power absorbed during
the motion of a charge in the Schwarzschild-Ernst field
(4.17) were obtained in Ref. 105 and, in the Schwarzschild
field, in Ref. 104. The typical feature of these expressions is
the fact that P, is nonpositive and P %, is nonnegative. We
thus find that the power absorbed at the combination fre-
quencies {2,” and Q, is negative, and we have maser-type
wave amplification, whereas at frequencies (,* and Q" the
absorbed power is positive. The sign of P,, which describes
the resonance interaction for the harmonics w = ma,, de-
pends on the more detailed structure of the correlation func-
tions and, in principle, can also be negative. It is interesting
that the condition for wave amplification in our model is
analogous to the condition for superradiation in the Kerr
field. In point of fact, negative absorption occurs for
w <moy (., = mw, — @,,), and the condition for super-
radiation is @ < m{}y .

6. EFFECT OF A MAGNETIC FIELD ON QUANTUM
PROCESSES IN BLACK HOLES

Quantum processes occurring in the strong gravitation-
al field of a black hole are of interest because there may be
microscopic remnant black holes that may have been pro-
duced at the early stages in the evolution of the Universe (see
Ref. 11 for a review of the modern state of the problem).
Historically, the first quantum effect discovered in the theo-
ry of black holes was the prediction by Zel’'dovich?® and by
Misner®* of *‘superradiation” in classical language. From
the classical point of view, superradiation is the amplifica-
tion of waves of different nature when they are scattered by a
rotating black hole. Superradiation occurs for multipoles for
which the frequency w and azimuthal quantum number m
satisfy the condition

® < mQy, (6.1)

where }y; = a/2Mr_ is the angular frequency of the event
horizon of the black hole. From the point of view of quantum
theory, supsrradiation is the stimulated creation of field
quanta by a rotating black hole. The corresponding sponta-
neous process is the creation of particle pairs with opposite
components of orbital angular momentum, due to the inter-
action between the orbital angular momentum and the angu-
lar momentum of the hole, which depends on their mutual
orientation. For modes satisfying (6.1), this interaction is a
repulsion which makes superradiation possible.

Somewhat later, Hawking'® predicted the quantum
evaporation of a black hole due to the creation of pairs in the
gravitational field of the hole (including a nonrotating hole)
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as a result of tidal forces. This process ensures that the black
hole loses energy (mass) and that this loss corresponds to
the emission of radiation by the black hole at temperature
T= (m)(r, —M)/(r*. + a*). ForaSchwarzschild black
hole (using usual units), we have
ke

8nGM
The loss of mass (angular momentum) is described by the
equation (in the case of bosons)

M,
~ 10~ -9 K
~ 10 "T k. (6.2)

d /M 1« F?'"(Z)
W(J):‘_Tn—b(\d exp (o —mQg)T] —1 °

im 0

(6.3)

w

where the “barrier factor” T, is due to the gravitational
interaction between the emitted quanta and the black hole.
The temperature of the black hole is a purely quantum quan-
tity. In the classical limit 70, the Planck factor in (6.3)
transforms into the Heaviside function &(m{ly — w) (atthe
same time, 'y, — — 1) and (6.2) describes spontaneous su-
perradiation in the Kerr field.

The quantity m(y, in the argument of the exponential
in (6.3) plays the part of the chemical potential py of the
horizon in the Bose distribution of the created particles. In
the case of a charged black hole (charge @), the creation of
particles of charge e is determined by the chemical potential
of the horizon

where V;; = Q /2M is the electrostatic potential of the hori-
zon.

Massive particles can form quasistationary states
around the black hole which decay by particle tunneling un-
der the event horizon. When the gravitational radius 7, of a
hole is small in comparison with the Compton wavelength
A of the particle, these massive states are found to be long-
lived.®!31:13213% The real part of their energy is hydrogen-like
in character (when relativistic corrections are neglected):

fo=pl1— BT (6.5)
where p is the particle mass and n the principal quantum
number n =/ + n, + 1. In this approximation, the rotation
of the hole has no effect on the positions of the energy levels.
The complex energy of the quasilevels is given by

(6.6)

- . 1.
éflmn,. ={n — 9 LFlmnr-,

where the damping rate I, which depends on the quantum
numbers /, m, and n, satisfies the condition

F<<fn_(n—i' (67)
which shows that the levels are long-lived. For a rotating
black hole, there are superradiant quasistationary states for
which &, < uy .- These do not decay but, on the contrary, are
excited as a result of superradiation. When 4, >, the su-
perradiant level / =1, m = 1, n, = 0 is most effectively ex-
cited (for a € M). For this level,
2ap ( L )3

Tw=—57 {5y,

(6.8)
The significant difference between superradiation involving

quasibound levels and “ordinary” superradiation is the ex-
ponential instability development. The number of particles
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occupying quasistationary levels (in the case of bosons) in-
creases as exp(|T"|¢). This process involves the successive
transfer of the angular momentum of the hole to increasingly
higher energy levels, and the mass of the hole is lost much
more slowly than its angular momentum.®

The remarkable fact is the possibility of “controlling”
the above quantum processes by an external magnetic field.
Let us examine this in greater detail.

6.1. Variation in the chemical potential of the event hori-
zon. The chemical potential of the horizon is determined by
the behavior of the effective potential in the radial equation
(5.7) in the vicinity of the event horizon of the black hole.
When the magnetic field is weak enough, so that it can be
looked upon as a test field, we can use the results obtained in
Section 5.1. As already noted, the rotation of the black hole
in a uniform magnetic field produces a Faraday potential
difference between the event horizon and an infinitely dis-
tant point. It is readily verified that a corresponding quanti-
ty appears in the effective potential in the radial equation, so
that the chemical potential at the horizon is given by

pu = mQu + 2 (Q — 2aM B). (6.9)

The creation of particles as a result of superradiation can
give rise to a tendency for the chemical potential to fall to
zero, while the reduction in the second term occurs as
Q- 2aMB. When the magnetic field becomes so strong that
the induced electric field near the horizon exceeds the
Schwinger value p?/e, the electrodynamic mechanism of
pair production comes into play.'*’ This process is also
found to cease when the hole acquires the electric charge
Q =2aMB. A discussion of thermodynamic relationships
for rotating black holes in an external magnetic field can be
found in Ref. 72.

The chemical potential of the event horizon in an exter-
nal field of a more general form behaves similarly:

U = mQu + e (4, + Qud,), (6.10)

where 4, and 4, are the components of the 4-potential of the
external field at the horizon if the gauge is chosen so that 4,
-0 at infinity.

6.2. Magnetic ergosphere. A new curious phenomenon
occurs when the magnetic field is strong enough to ensure
that its effect on the metric of space-time must be taken into
account. As noted in Ref. 107, the ergosphere of a charged
black hole in a strong magnetic field does not vanish even for
a = 0. The value of the function @' in (2.46) at the event
horizon, which has the significance of the angular velocity
with which inertial frames are dragged, is given by (to with-
in terms linear in B)

, 2Q8Br,
o= O~y -

(6.11)

Thus, even for neutral particles, the chemical potential is
modified"*®:

pia=m (Qu~2BQr, (r’ + a*)™). (6.12)

In the case of charged particles, we must additionally take
into account the change in the electrostatic potential of the
event horizon.

0.3. Variation in the spectrum of quasistationary states of
massive charged particles. If we assume that the external
magnetic field is uniform up to the region of localization of
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finite orbits of massive particles, the effect of the field on the
spectrum of quasistationary states of charged particles will
be as follows. First, there is the Zeeman shift of levels, which
can be described by introducing the effective mass

pz — p? — eBm,

(6.13)

where m is the magnetic quantum number. Second, because
of the change in the chemical potential of the event horizon
[in accordance with (6.9)], there is an asymmetry in the
excitation threshold of quasistationary states with respect to
the sign of the charge. The result is that an electric current is
excited during the development of the boson instability.

7. CONCLUSION

The effects discussed above are interesting because they
are associated with the simultaneous existence of gravita-
tional and electromagnetic fields. Moreover, since the gravi-
tational interaction and the Einstein law of gravitation are
universal, the electromagnetic field is both affected by the
gravitational field and itself acts on the latter. This gives rise
to phenomena that are not a simple “sum” of electrodynam-
ic and gravitational effects, but reflect their synthesis and
internal interrelation.

All this applies to classical effects, such as the appear-
ance of an induced potential difference during the rotation of
a black hole in a magnetic field, the drift of a rotating black
hole in the electromagnetic field with nonzero Poynting vec-
tor, and spontaneous and stimulated radiation processes ac-
companying the motion of charged particles in an electro-
magnetic field in the Kerr metric. There are also
characteristic quantum effects associated with the change in
the chemical potential of the event horizon of a rotating
black hole in an external magnetic field and the appearance
of an effective ergosphere of a charged black hole in a mag-
netic field.

The “gravimagnetic”” phenomena probably play a defi-
nite role in astrophysics. For example, there has recently
been considerable interest in the hypothesis that the extrac-
tion of energy from black holes (in particular, supermassive
holes in galactic cores and quasars) is due precisely to the
electrodynamic mechanism associated with the above induc-
tive effects (see Refs. 5 and 34-37 for further details).

In our view, these phenomena constitute a methodolo-
gically interesting example of new properties ensuring from
the synthesis and interrelation of two branches of physics,
namely, electromagnetism and gravitation.
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