
Propagation of acoustic surface waves in periodic structures
Yu. V. Gulyaev and V. P. Plesskii

Institute of Radio Engineering and Electronics, Academy of Sciences of the USSR, Moscow
Usp.Fiz.Nauk 157,85-127 (January 1989)

This review covers the propagation of acoustic surface waves (ASW) in periodic structures. The
authors discuss the main types of ASW: Rayleigh waves, Gulyaev-Bleustein waves, Love waves.
Shear surface waves which can propagate along a periodically uneven surface of an elastic solid
are described in detail. The authors rigorously treat the Bragg reflection of ASW from periodic
arrays of grooves on the substrate for the cases of normal, oblique, and side incidence. Reciprocal
conversion effects between bulk and surface waves in an array whose period is close to the ASW
wavelength are discussed, together with such related effects as the interaction between Rayleigh
waves and Lamb modes, acoustic wave transmission through a gap in a piezoelectric material, etc.
Laser excitation of ASW and magnetostatic wave propagation in periodic structures are also
reviewed.
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1. INTRODUCTION
A century has passed since 1885, when Rayleigh first

described acoustic surface waves in an elastic solid.' For a
long time this outstanding scientific discovery was not suffi-
ciently appreciated because Rayleigh waves appeared to
have few applications, primarily in seismology and nondes-
tructive product testing. A quarter of a century ago, how-
ever, it was pointed out that ASW can effectively interact
with electrons in piezoelectric materials and layered piezoe-
lectric-semiconductor structures.2 After the discovery of an
efficient method of exciting high-frequency ASW waves in
piezoelectrics using interdigital transducers (IDT)3 it be-
came clear that ASW can furnish the physical mechanism
for a large number of analog signal-processing devices.
Thereafter the volume of research into surface waves grew
precipitously. Today the number of papers published on this
topic probably exceeds 104. Surface waves attract such inter-
est because they possess a number of unique properties: their
propagation speed is low; they can be influenced externally
in the course of propagation; they can be excited in piezoe-
lectrics with low losses. These and other advantages of ASW

allowed researchers and designers to develop a number of
devices—filters (bandwidth, conjugate, dispersion), reso-
nators, delay lines, spectrum analyzers—whose perfor-
mance is a marked improvement on analogous devices based
on other physical mechanisms.

A large class of ASW-employing devices is based on
periodic arrays of elements located along the propagation
path. In order to achieve the desired device characteristics
one should be able to control the propagation of the wave by
means of low-loss reflection, scattering, conversion of bulk
waves into surface waves, etc. As a rule, due to the complex-
ity of ASW structure these operations cannot be performed
by a single local element; rather, a large number of periodi-
cally (or quasiperiodically) located inhomogeneities on the
surface of the acoustic medium provide the necessary con-
trol over wave propagation. Separating the excitation and
reception of ASW (via IDT) from the design of device char-
acteristics (using reflecting structures) also affords a num-
ber of advantages. Currently, reflecting structures are being
employed to produce resonators and dispersive delay lines
with unique parameters.
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The great practical importance of acoustic surface wave
propagation in periodic structures has drawn many re-
searchers to this problem. This review covers the propaga-
tion of various types of acoustic waves in substrates with
periodic arrays on the surface, since practical applications
often exploit periodic structures (for example, arrays of
grooves). We omit the problem of "electrical" periodic dis-
turbances, like thin conducting stripes on the piezoelectric
surface. These are less common in real applications than ar-
rays of grooves and they are properly treated in the theory of
IDT transducers, which requires a different mathematical
formalism.

Both the properties of surface waves and the utilization
of ASW in signal-processing devices are discussed in a large
number of reviews3'5 and monographs.6"18 Consequently, in
this review we shall describe only the fundamental charac-
teristics of Rayleigh waves, shear ASW in piezoelectrics, and
several other types of ASW. Instead, we shall discuss in de-
tail the studies which focus on the propagation of ASW
along surfaces with single or periodic inhomogeneities.

2. RAYLEIGH WAVES, SHEAR ACOUSTIC SURFACE WAVES
IN PIEZOELECTRICS, AND OTHER TYPES OF ASW. NEAR-
SURFACE WAVES

In describing Rayleigh waves propagating along the
surface of an isotropic, elastic semiinfinite space (Fig. 1),
the displacement u can be conveniently expressed via a com-
bination of a scalar q> and vector * potentials:12

u = grad cp + curl 1/1 (1)

This representation can accommodate any spatial structure
of the wave field by decomposing the wave into its compres-
sion (<p) and shear (*) components (seeRefs. 18-20). The
equations for <p and f are independent and can be written as:

(2)

where A is the Laplacian; c, and c, are the longitudinal and
transverse acoustic velocities respectively. When the wave
propagates along the OX axis (see Fig. l,a) and the displace-
ment vector lies in the sagittal (X,Z) plane, the vector poten-
tial has only one non-zero component Vy. In this case the
displacements ux and uz are described by the formulae

--&-. (3)

(4)

The solutions to equations (2), which describe a surface
wave, have the following form:

(p = cp0 exp [pz -f i (qx — cot)],

i|> = ty0 exp [sz -j- i (qx — cot)],

where <a and q are the frequency and wavenumber; <p0 and *0

are the amplitudes of the two wave components;/) and s are
the coefficients which describe the attenuation of compres-
sion and shear waves moving into the bulk of the substrate. It
follows from the equations of motion (2) that

p2 = g2-fc|,

s2 = g2 — k], Rep, s>0,

where k, = a/c,, k, = co/c, are the wavenumbers of longitu-
dinal and shear bulk waves.

FIG. 1. a—Rayleigh waves, b—Shear surface electroacoustic waves, c-
Love waves, d—Shear ASW on a corrugated surface.

At the free surface of the half-space z = 0 the stress-free
conditions crZ2 = axz = 0 must be fulfilled, hence the Ray-
leigh equation:

D (q, to) = (g2 + s2)2 — 4g2ps = 0. (5)

Introducing the Rayleigh propagation speed VK (q
= a/vR ), we see that VR is independent of frequency, i.e. in

a classical elastic solid Rayleigh waves are nondispersive and
the ratio UR /c, is determined by the ratio

_£!__ / 2—2q \
ct \ 1—2a/

1/2

and depends only on the Poisson coefficient a. The Rayleigh
equation is usually solved numerically.12 In Fig. 2 we plot
the dependence of the quantity qR/k, = C,/VR on the Pois-
son coefficient. The value of the derivative of the Rayleigh
determinant D 'q (ca,q) \q = qK enters into a number of expres-
sions that govern the decay and excitation of Rayleigh
waves—in Fig. 3 we plot the dependence of the correspond-
ing dimensionless quantity

D'

The amplitudes tf>0 and *0 are linearly dependent; accord-
ingly, solutions of (4) can be represented as

1,1

',0
0,Z5

FIG. 2. Rayleigh wave propagation velocity as a function of the Poisson
ratio.
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FIG. 3. The quantity — D 'K /k * as a function of the Poisson ratio.

cp = <p0 exp [pz + i (gRx — (at)],

• cp0exp[s2-f i (q-RZ — (at)\. (6)

The displacements ux and uz are computed from formulae
(3). In particular, for the displacement amplitude uz at the
z — 0 surface we have

pfc|
<PO;

accordingly ux \z = 0 is given by the formula

M>0-

(7)

(8)

From these expressions we find that the particles of the
acoustic medium move in ellipses as the Rayleigh wave
passes: at the "crest" of the wave the particles move in the
opposite direction to the wave propagation vector. ( If the
wave is propagating in the negative OX direction 4* in (6)
and ux in (8) change sign.)

The energy flux of a Rayleigh wave per unit width of the
acoustic wavefront Wis given by the formula18

> dz = -i- Re alkw? dz ( 9 )

(uf is the complex conjugate of uk ). Substituting into (6)
we obtain

2 8q|(S

If in this last expression <p0 is expressed via (7) in terms of
displacement uz normal to the surface, we find

For numerical estimates it is convenient to express the ener-
gy flux 5% in W/cm, the frequency/= <y/277 in GHz, the
density p in g/cm3, the amplitude uz in A: then (11) can be
rewritten as

rfi _ T r .;,.•>,-2 / i -•> <\
•̂  R — J * - * /"z^rj f { L £ )

where M(<J) is a function of the Poisson coefficient which is
plotted in Fig. 4.

Note that the proportionality of the energy flux to the
characteristic determinant D 'q is no accident, but rather has
profound physical origins.21-22

The above-discussed relations allow us to calculate all
the essential properties of Rayleigh waves in an isotropic
solid. In analytic calculations of Rayleigh waves the Ray-
leigh equation (5), together with the expressions for the at-
tenuation constants/? and s, form a peculiar "Rayleigh trigo-
nometry". Accordingly, physically equivalent expressions

can take on different explicit forms, which often happens in
research papers. An example of this is the equation

p —s = (13)

which is equivalent to the Rayleigh equation (5).
Although in practice most ASW-employing devices are

fabricated on anisotropic crystalline substrates, theoretical
investigations of ASW physics usually focus on the isotropic
model of an elastic solid. The reasons for this are several.
First, an analytic description of Rayleigh waves in crystals is
hindered by the complexity of resulting equations and usual-
ly cannot be carried out in closed form. Second, real devices
often make use of symmetrical crystal cuts and wave propa-
gation vectors because anisotropic effects (for example, de-
viation of ASW energy flux vector from its wavevector) are
usually undesirable. In actual use, nonsymmetric cuts and
directions are usually the "penalty" paid in exchange for
improved wave characteristics, such as enhanced thermal
stability. For a number of frequently used cuts and crystal
symmetry directions (for example, FZ-LiNbOj) the Ray-
leigh wave structure is similar to its isotropic counterpart.
Such waves are called Rayleigh-type waves. When compar-
ing theoretical results derived for the isotropic solid with
experimental ASW in crystals, the Poisson coefficient a is
used as a fitting parameter.23'24

In general, the existence of Rayleigh waves in an arbi-
trary section of an anisotropic crystal given an arbitrary
propagation direction constitutes a distinct and rather diffi-
cult mathematical problem. A large number of studies have
focused on this question2"0; a complete description is avail-
able in the monograph by Balakirey and Gilinskii.17 For
symmetrical directions in cubic, hexagonal and some other
types of crystals the dispersion relation of ASW has been
obtained analytically.17'3'"34 Normally the dispersion rela-
tion is considerably more complex than (5) and is solved
numerically.

Efficient numerical methods have been developed for
computing the velocities and structures of ASW wave fields
in crystals (including piezoelectrics)28'35 and an extensive
reference literature is available.36'37

We have omitted a number of important questions, such
as the acoustoelectronic interaction of Rayleigh waves,
ASW excitation, Rayleigh waves in layered structures and
waveguides, waves on curved and randomly rough surfaces,
and numerous applications of Rayleigh waves in acousto-
electronic devices. An exhaustive bibliography on these sub-
jects can be found in the above-cited reviews and mono-
graphs.2"18
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Electroacoustic shear surface waves in piezoelectrics
constitute the second important type of surface acoustic
waves.38"39 Like Rayleigh waves, these waves can exist on a
free surface of a solid, but unlike Rayleigh waves they can
only propagate on particular cuts and in particular direc-
tions in piezoelectric crystals. I7>4°

If the propagating acoustic wave in a solid gives rise to
associated electric and magnetic fields, these fields will be
invariably distorted near the solid surface, and this can gen-
erate mechanical stresses on the surface. In this case the bulk
acoustic wave solution no longer satisfies the boundary con-
ditions and the bulk wave can be transformed into a surface
wave.74 Purely mechanical perturbations of the boundary
conditions are also possible. These can be caused by mass
loading, viscosity of the medium, or corrugation of the sur-
face.

First let us consider a wave propagating along a piezoe-
lectric in the simplest geometry, which was first described by
Gulyaev38 and Bleustein39 (GBW). That is, consider a class
C6tt with the hexagonal axis OZ (Fig. l,b) lying in the plane
of the sound-guide surface. The resulting wave has a dis-
placement u only along the OZaxis and propagates in the OX
direction.

In the general case the piezoacoustic equations have the
form 18,41

(14)
eijhuih,

where a^ is the stress tensor; Cijkl is the elastic tensor; eijk

are the piezomoduli; E is the electric field vector; D, is the
displacement component; and £,j is the permittivity tensor.
Here we work in SI units because in reference handbooks the
piezomoduli eijk are usually stated in SI units. Note that in
COS units equations (14) appear as42

aik =

(14')

i.e., the piezomoduli differ not only in magnitude, but also in
sign. Occasionally, for the sake of convenience, the sign be-
fere the piezomoduli in equations (14') is defined the same
as in the SI convention.12'17

In the chosen problem geometry, the equations of mo-
tion ptij = d(rlk/dxk take the form

pit = (15)

where p is the density of the crystal. Further, Poisson's equa-
tion div D = 0 can be rewritten as

(16)

Finally, in thej> > 0 region, where the medium has permittiv-
ity ed, potential pd must satisfy the Laplace equation
A^>d = 0. The solution of equations (15) - (16) can be repre-
sented as a surface wave:

u = u0 exp [x;/ + i (qx — tot)],
cp = <p0 exp Ixy + i (qx — wt)],

(17)

where u0, <pQ are the amplitude coefficients; the constant K
characterizes the attenuation of oscillations moving into the
bulk of the substrate (Re{?<;}>0); q is the wavenumber.
Substituting (17) into equations of motion (15)-(16) we

find that the full solution consists of a sum of two partial
solutions with

Xj = q , x = g2 — q^j,

where kl = pca2/C44, and rj = els/£C44 is the electrome-
chanical coupling constant:

u = u0ex.v(xy + iqx),
e, (18)

(f = (p0 exp (qy + igz) + -^ MO exp (xj/ + f</x).

In they>0 region

(pd = <D0 exp (—gry + iqx)

(we assume that the wave propagates along OX and
Re{g}>0; in order to have x>0 the condition
q>k0(l

 J t - r ) ) ~ l / 2 must be satisfied, i.e., the wave must
propagate slower than bulk shear waves of the same polar-
ization ). From the free surface condition

a23l?/=0=0,

and the continuity of the potential and the normal compo-
nent of D we obtain the dispersion relation of GBW

D(q, o)) = x —- ? = ( (19)

Hence we find that the penetration depth of oscillations into
the substrate K ~1 is inversely proportional to the electrome-
chanical coupling constant rj (which is usually much
smaller than unity) and depends on the permittivity of the
medium adjoing the piezoelectric. The greatest localization
of the wave occurs when the surface is metallic (ed -> oo).
Then

For most piezoelectrics d^A, but in very strong piezoelec-
trics (for instance, LiIO3) the localization depth can be
smaller than the wavelength. The GBW velocity

\2- | l /2 (20)

is smaller by a quantity ~ ij2 -^ 1 than the velocity of the bulk
shear wave c, of the same polarization propagating in the
same direction. The energy carried by GBW per unit time is
given by the expression'7

W,

6=-^ ,q (21)

where W is the wave aperture. Given a fixed displacement
amplitude u0 the energy flux is inversely proportional to TJ,
i.e. proportional to the localization depth of the wave.

The great localization depth and the energy flux of
GBW that exceeds that of Rayleigh waves make the former
less sensitive to single imperfections on the surface. At the
same time, the surface structure of GBW is determined by
the distortion of electric field near the piezoelectric bound-
ary (for example, the wave structure changes strongly with
£d ). Consequently, if the boundary condition perturbations
are periodic and extend over many wavelengths the charac-
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teristics of GBW can be significantly affected.
Electroacoustic shear surface waves were experimen-

tally investigated in a number of studies.43"17 Currently, to-
gether with near-surface bulk acoustic waves (see below),
GBW are widely used in acoustoelectronic devices. Since
their discovery in 1968-69, the question of GBW existence
in crystals of different symmetry classes has been studied
extensively.40'48'51 As a result, it has been discovered that
these waves can exist in a great many materials, including
such frequently used ones as quartz.52'54 Also, it was demon-
strated that GBW can propagate in isotropic dielectrics
placed in an electric field.55'56'66 In this case, electrostriction
inside the dielectric "induces" a piezoelectric effect.57'58 The
resulting material possesses Cxu symmetry, which allows
for the existence of GBW. A number of theoretical50'56 and
experimental43'44'59'60 studies investigated the acoustoelec-
tronic amplification of GBW in piezoelectric semiconduc-
tors and layered piezoelectric-semiconductor structures. It
was experimentally demonstrated that in strong piezoelec-
trics (LiIO3) GBW amplification can exceed Rayleigh ASW
amplification.59 An important contribution to our under-
standing of GBW excitation mechanisms appeared in Refs.
61-63. In particular, it was demonstrated that "deeper"
waves are more difficult to excite at the crystal surface be-
cause bulk shear waves are excited in addition to the surface
wave. Although the amplitude of these bulk waves decays
with distance, it may nonetheless exceed the GBW ampli-
tude at great distances ~A / r f .

Waves that can propagate along the interface of two
piezoelectrics constitute a further generalization of electro-
acoustic shear waves. If the two materials are in mechanical
contact the shear wave, whose oscillations decay in both di-
rections away from the interface, can propagate either along
the interface between two piezoelectrics whose mechanical
parameters are similar64 or between two identical piezoelec-
trics whose polar axes C6 are antiparallel. In the latter case
the interface is equivalent to a domain wall in a ferroelec-
tric.65 In this geometry shear ASW can also exist in nonpie-
zoelectric materials that are placed in an electric field whose
intensity vector is parallel to the interface between the mate-
rials.55'56'57 If two adjacent piezoelectrics are separated by a
small gap, the interaction of electric fields also alters the
structure of GBW propagating along the gap edges and leads
to the formation of coupled modes. These piezoelectric gap
waves were first described in Refs. 55, 68-70. Gap modes of
Rayleigh waves were exhaustively studied in Ref. 71; pre-
viously they had been employed to transmit Rayleigh waves
from one substrate to another without mechanical contact.72

Waves analogous to piezoelectric ASW can also exist in
semiconductors due to the acoustoelectronic interaction me-
diated by the deformation potential,73'74 in magnetic materi-
als due to magnetostatic interactions,75'76 and in metals
placed in a magnetic field due to Lorentz forces.77>78 These
interactions are significantly weaker than the piezoelectric
effect (in strong piezoelectrics) and consequently shear
ASW engendered by these interaction mechanisms are
weakly inhomogenous and penetrate deeply into the sub-
strate. In practice this means that such waves are difficult to
excite selectively (without an admixture of bulk waves), be-
cause the ASW formation length becomes extremely
large.6'-62

In piezoelectrics shear ASW result from a particular

instability12'74 of the bulk shear wave which can propagate
along the free surface of an isotropic elastic solid or along
some crystal directions in certain crystals. These shear
waves have found application in various devices (discussed
in the next section).

A classic example of mechanical surface exitation
which produces shear ASW is the Love wave in a semi-infi-
nite medium-layer system (see Fig. l,c).12'19 If the speed of
bulk shear waves in the layer is lower than in the semi-infi-
nite medium, the shear waves in this system are described by
the following expressions:

u, = ua exp [stz + i (qx—tot)],
COS [S2 (l — /()]

u, --- un cos s2'*
exp [i (qx — axt)],

(22)

where u,, u2 are the displacements in the medium and the
layer; h is the layer thickness; s, = <f — fc,2, s2 = k \ — q2

(kl and k2 are the wavenumbers of bulk shear waves in the
medium and the layer). The wavenumber q is fixed by the
dispersion relation

(23)

A thin layer k2h < 1 supports a single Love mode, but as the
parameter k2h increases several Love modes can appear. The
energy flux carried by a Love wave is

2, (24)

where

A=-D'q,

Love waves have found some practical applications in
laboratory research.78'79 In theory these waves often provide
the simplest model of surface waves, because the calcula-
tions are much simpler than in the case of Rayleigh
waves.80'81

Weakly inhomogenous Love waves can also exist in an
elastic semi-infinite medium with an inhomogenous sur-
face.82 In this case the near-surface region of the substrate
plays the role of a layer where wave propagation is slower
than in the rest of the medium.

Another type of a perturbed boundary condition is a
corrugated substrate surface (see Fig. l,d). The near-sur-
face stiffness of such a system is reduced by the grooves,
leading to the excitation of surface shear waves (SSW).83'84

The propagation speed in the near-surface region is reduced
because the wave must travel a longer distance following the
surface undulations. The equations of motion for the dis-
placement vector u and the stress-free boundary condition
on the corrugated surface of the substrate are equivalent83'84

to the equations for .//-polarized electromagnetic waves in a
delay line. Consequently, SSW on periodically uneven sur-
faces are analogous to surface electromagentic waves travell-
ing in "corrugated" delay lines. The propagation of SSW is
currently well understood. Different studies addressed the
cases of weak corrugation85'86 and finite substrate thick-
ness,87'88 and the effect of corrugated surface combined with
mass loading by a thin layer.89 The propagation of SSW in
quartz and berlinite have been studied in Refs. 88, 90. This
attention to shear surface waves is explained by the fact that
SSW retain the attractive characteristics of near-surface
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bulk waves (see below) but nonetheless remain true surface
waves, i.e., there is no diffractive energy loss into the sub-
strate bulk. For this reason the implementation of delay lines
based on SSW results in a significant (~20 dB) loss reduc-
tion.91'92 In principle, SSW can be employed in resonator
design;87'88'93"95 moreover, SSW can be reflected by the same
periodic surface profile that produces the wave itself.90'95

The boundary conditions can also be perturbed by an-
other mechanism: the surface can be in contact with a liquid
(or gaseous) medium. The propagation of Rayleigh waves in
the acoustic medium-liquid and acoustic medium-liquid
layer systems is fairly well understood.12 Since the speed of
sound in liquids is usually lower than in solids, Rayleigh
wave propagation along the interface is accompanied by
sound radiation into the liquid and the resulting Rayleigh
wave attenuation. At low frequences ( 5 100 MHz) this at-
tenuation mechanism can dominate the intrinsic absorption
in the material and hence limit the quality of ASW resona-
tors.96 Much later, the effect of viscous loading on the sub-
strate surface was examined by Plesski! and Ten.97 It turned
out that this perturbation of the boundary conditions also
produces a special "viscous" ASW which decays as it propa-
gates because viscosity unavoidably leads to energy losses.
(The possibility of Love-type waves existing in a substrate-
viscous liquid-substrate system was mentioned earlier in
Ref. 98, but no supporting calculations were appended.)

The preceeding brief discussion in no way exhausts the
variety of surface waves and waves propagating in bounded
substrates. Let us also mention Stonelee and Sezawa waves12

which can propagate in solids, edge acoustic waves which
can propagate along the edge of an elastic wedge, and var-
ious type of diverging (loss) waves.12'100

An important role in the reflection of bulk waves from
piezoelectric interfaces is played by the so-called associated
surface oscillations (ASO).101'103 These surface oscillations
do not constitute eigenmodes of the piezoelectric substrate.
The appearance of SSW on piezoelectric interfaces is a gen-
eral phenomenon related to the fact that the Laplace equa-
tion A^> = 0 has no "bulk" solution of the form c\p[iqx],
but rather "surface" solutions of the form exp[#y + iqx}.

Other types of waves are also described in the literature
(for example, shear ASW generated by spatial dispersion of
the medium104) but we shall omit these because practical
devices with periodic structures are usually based on Ray-
leigh waves; shear ASW in piezoelectrics and SSW on un-
even surfaces are used less frequently; Love waves have also
found some application. Consequently this review will con-
centrate on the above waves.

In concluding this section let us review near-surface
waves. Acoustic surface waves are inferior to acoustic bulk
waves in some respects. They usually propagate more slowly
than bulk waves by a factor of 1.5-2; the thermal stability of
ASW time delays is also inferior to bulk shear waves on some
cuts of quartz.

It is known that interdigital transducers excite parasy-
tic bulk waves in ASW devices.105 Several authors have pro-
posed a new class of devices based on these near-surface
waves.106'107 These devices usually employ bulk shear waves
with group velocity vectors parallel to the substrate sur-
face.108'109 Given an isotropic medium or certain orienta-
tions of some crystals, such a wave satisfies the boundary
conditions and propagates without generating mechanical

! v, m/s

-90 -BO -30 0 30 60 90

FIG. 5. Near-surface wave propagation velocity as a function of angle of
the X-cut in quartz.

stresses at the interface.108 In addition, the crystal cut must
satisfy the following criteria: the propagation speed of shear
waves should be as high as possible; the thermal coefficient
of the delay should be small or zero; the electromechanical
coupling constant should be large for shear waves and zero
for Rayleigh waves and other types of waves. Rotated F-cut
quartz meets these criteria and is therefore widely used in
near-surface wave devices.91'110 In this case'the wave dis-
placement falls along the OX axis (Fig. 5) and the wave
propagates along the OZ axis. In Fig. 6 we plot the intersec-
tion of the Y,Z plane and the inverse velocity surface for
shear waves in quartz (cut angle a = 0). A near-surface
wave is a bulk wave whose wavevector corresponds to point
A on the inverse velocity surface. It is easy to demonstrate
that a wave with this wavevector automatically satisfies the
condition that no mechanical stresses appear at the y = 0
surface of the substrate (axy = 0). In Fig. 5 we plot the de-
pendence of near-surface acoustic wave velocity on the rota-
tion angle of 7-cut quartz.

Near-surface waves can be excited and received using
IDT. They combine the useful properties of ASW and bulk
waves. Yet it should be emphasized that unlike, for example,
Rayleigh waves, IDT-excited near-surface waves are not
eigenmodes of the system, but rather wave-packets of bulk
waves with slightly different wavevectors. In the course of
propagation this wave-packet broadens and the wave ampli-
tude at the surface decays according to a power law.10!U 1' In

y, 10-5s/m
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order to minimize the losses intrinsic to this process, either
the IDT's are positioned close to each other or the near-
surface wave is transformed into SSW either by depositing a
layer with lower wave velocities between the IDT's or by
fabricating a periodic groove array. 83>87~9'uu

Another circumstance is worth noting. In piezoelec-
trics (which are invariably used in practical devices) the
near-surface wave is accompanied by electric fields and this
can lead to the result that no bulk wave solution might actu-
ally exist and at the near-surface wave can turn into a shear
electroacoustic wave.90'"0""3 However, in piezoelectrics
that are not too strong, such as the commonly used quartz,
this distinction is unimportant, since the dimensions of the
substrate are smaller than the GBW formation length.61'62

Near-surface waves have been employed in a number of
highfrequency (higher than 1 GHz) devices: delay
lines9''"2l"4 and filters."5 These elements are used mainly to
stabilize the frequency of gigahertz band generators. U2't l6

In conclusion we note that in anisotropic substrates
there may exist special bulk waves which satisfy the bound-
ary conditions and yet are not purely shear waves.117'118

There have been attempts to generate longitudinal near-sur-
face waves."9'120 Obviously, a plane bulk longitudinal wave
cannot propagate along the surface of an elastic medium as it
would not satisfy the boundary conditions. But the behavior
of a wave-packet which is excited to propagate along an in-
terface (which is easily accomplished experimentally) has
not been thoroughly investigated to date.12' The amplitude
of longitudinal waves excited by a monochromatic point
source should decay along the substrate surface as ~x~ ' 5 .

3. SCATTERING OF SURFACE ACOUSTIC WAVES FROM A
SINGLE SURFACE INHOMOGENEITY

3.1. Rayleigh wave reflection from a single groove

If an acoustic surface wave propagates over an inhomo-
geneity (groove, protrusion, strip of a different material,
conducting layer on the piezoelectric surface, etc.) scatter-
ing occurs because the incident wave does not satisfy the
boundary conditions in the inhomogenous region. A review
of early research into Rayleigh wave scattering from single
defects is available in Viktorov's monograph.12 There we
find a discussion of experiments in which a Rayleigh wave
propagated over "strong" single defects, such as grooves
with depth of the same order as the AS W wavelength. In this
situation the wave is strongly reflected and scattered into the
bulk, with the distribution of energy between the transmit-
ted, reflected, and scattered waves depending on the geome-
try of the inhomogeneity and material parameters.12 Strong
defects are not employed in ASW devices, since ASW scat-
tering from such defects cannot be controlled. On the other
hand, arrays of weak defects, which reflect and scatter the
wave weakly, have found wide practical application.14'15 As
we mentioned previously, if these defects are periodic one
can achieve phase interference effects: for example, the re-
flected waves can be made to add in phase and the transmit-
ted waves to cancel. In this fashion, shallow grooves provide
the necessary means of controlling wave propagation.

Grooves are the most common type of surface inhomo-
geneity because the reflection coefficient can be tuned by
varying the groove depth (Fig. 7). Grooves are technologi-
cally simple to fabricate within the required tolerances and
do not degrade with time.123-124 Arrays of strips made from a

different material or metallic strips on the substrate surface
have also found application.125

Rayleigh wave scattering from a single, linear inhomo-
geneity (groove) has been investigated theoretically in a
number of studies.23'126"144 Calculations of ASW reflection
from a single groove are also cited as a specific case in studies
devoted to ASW reflection from periodic arrays of inhomo-
geneities. The results of this research can be summar-
ized as follows.

In the inhomogenous region the incident wave exerts
forces (in the first order proportional to the extent of the
inhomogeneity) on the surface of the elastic medium. These
forces, in turn, give rise to reflected and scattered fields con-
centrated in the vicinity of the inhomogeneity.

The reflection coefficient r of Rayleigh waves from a
single groove of depth h is proportional to the ration h /A,
that is /•= C,h /A, where C, depends on the shape of the
groove and on material parameters. For a single step whose
width l^A the coefficent C, is independent of its shape and r
can be derived as133'147

(25)

(The considerably more complex expressions given in Refs.
134, 135 reduce to the simple form above.)

For an "upward" step (Fig. 7,a) r is a positive real
quantity and C, depends only on the Poisson coefficient of
the material. This dependence is plotted in Fig. 8.

The phase of the reflection coefficient is important in
the design of devices with reflecting arrays. Here the reflec-
tion coefficient is defined as the ratio of the scalar potentials
of the incident and reflected waves r = (pKf/(pinc (x = 0) or
as the equivalent ratio of normal (with respect to the sub-
strate) displacements uy of the reflected and incident waves
at x = 0.

When an ASW is incident on a "downward" step (Fig.
7,b) r in formula (25) changes sign. When the reflection
coefficient from the groove is calculated, its phase depends
on the choice of the point at which the phases of the reflected
and incident waves are compared. Thus, if the origin coin-
cides with the left edge of a groove A /4 in width, the reflec-
tion coefficient for a wave incident from the left is R = — 2r,
where r is the reflection coefficient from an "upward" step.
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FIG. 8. Normalized ASW reflection coefficient as a function of the Pois-
son ratio.

If, on the other hand, the origin coincides with the center of
the groove, R = 2ir.

Given a groove of arbitrary profile j> =f(x) expression
(25) acquires a factor

+,00

G(g)= *\ -g-exp(2iga:)da:«3.
— oo

The values of G(q) for several groove profiles are cited in
Table I. These first order results are obtained in the Born
approximation of perturbation theory. This approximation
is valid when h^A and the slopes of the uneven regions are
small.148 Nonetheless, it turns out that the integral of the
derivative of the groove profile, which enters into G(q), is
finite also for inhomogeneities with steep walls—for exam-
ple, for rectangular grooves. When the width of a step is
much smaller than the wavelength, the wave does not "feel"
the details of the step profile.134 The correctness of these
theoretical results is consistently corroborated by experi-
mental data on rectangular grooves. These questions are dis-
cussed in Ref. 137.

When a Rayleigh wave is incident on a single groove at
an angle 0 to the normal of the groove, the reflection coeffi-
cient can be obtained from the formula133'134

(26)

The most interesting feature of this expression is the fact that
r turns to zero at 6 = sin~' (vR/2v,). This effect was first
described in Refs. 133,134, whose authors termed it to be the
analogue of the Brewster angle for ASW. Subsequently this
"Brewster angle" was discovered during research into the
diagrams of Rayleigh wave scattering from local three-di-
mensional inhomogeneities.149 A simple, intuitive explana-
tion of this phenomenon is currently lacking. It is believed133

that two types of stresses (normal and tangential) occur in
the inhomogenous region and these give rise to coherent
ASW. The phase shift between these ASW depends on their
propagation vectors and can equal ir. When a Rayleigh wave

is incident on a strip made of a different material the reflec-
tion coefficient r becomes dependent on the material param-
eters of the strip.140>141 In particular, depending on the mate-
rial properties of the strip and the acoustic medium, ASW
reflection can exhibit two, one or no "Brewster angles"
where r = 0.

3.2. Second-order effects

In addition to the first-order (Born approximation) ef-
fects described above, more subtle second-order effects enter
into the problem. For example, the local wave fields that
appear in the vicinity of inhomogeneities accumulate wave
energy and thus influence the scattering and transmission
processes.

A number of difficulties hinders the consideration of
second-order effects on the ~ (h /A)2 scale. First, perturba-
tion theory calculations for a single groove become very
complicated. Second, perturbation theory becomes inappli-
cable when the groove has steep walls.148'150'151 Empirically
it has been established that the reflection from a single "up-
ward" step, taking into account second-order effects, can be
expressed as

where the second term describes the phase accumulation in
the uneven region of the surface. (When an infinitely thin,
perfectly conducting layer is deposited on a piezoelectric
material there also exists a Au/i> effect arising from reflection
due to the shorting of the wave electric fields which is inde-
pendent of the metal thickness). In Refs. 152-154 this phase
accumulation is related to the accumulation of energy near
inhomogeneities. There also exists a purely geometric quali-
tative explanation of this effect: the wave requires more time
to traverse an uneven region. In this approximation the
transmission coefficient through a step can be written as

which corresponds to the wave's velocity changing by a
quantity

— = — — C, ( — }2

v n - \ X /

Experimentally these shifts are measured on large arrays of
grooves and the results are normalized to a single groove
(step).96"153 The constant C2 depends strongly on the shape
of the grooves. In particular, for a rectangular groove the
perturbation theory result diverges logarithmically. 155~157 In
experiments on very shallow grooves (h /A < 0.01) the preci-
sion with which C2 is determined falls to ~50%,96 which
may indicate that the above formula becomes invalid as
h /A -»0. Recently Biryukov has shown that, in the case of a
rectangular step, the expressions for R and Ai>/i> contain an-
other term

TABLE I. Groove form factor (a-d—groove profiles in Fig. 7, a-d).

Inhomogeneity

G(q)

a

+1

b

1

c

2: sin ql

d

„ . . , sin qa
2i sin ql —

qa
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which may be significant at very small h /A. (in this case the
total corrections to velocity are small, however).

The currently known values of C, and C2 coefficients
for normal and oblique incidence are collected in Table II.

3.3. Scattering into the bulk

The scattering of Rayleigh ASW into bulk waves from a
single groove has been exhaustively examined in Refs. 129,
130, 132. The conversion coefficient (with respect to ener-
gy) of surface into bulk waves depends on the groove shape
and elasticity parameters. For a rectangular groove of A /4
width the conversion coefficient depends solely on the Pois-
son coefficient. If a = 0.31 (the quantity usually cited for
y,Z-LiNbO3 in the isotropic approximation) this coefficient
becomes ~ 10(h //I)2.182 Hence it follows that a single
groove scatters an order of magnitude more energy into the
bulk than it reflects. In periodic structures (see below) the
situation can be quite different, however, because the waves
scattered into the bulk by individual grooves interfere and
can cancel.

3.4. Gulyaev-Bleustein wave reflection from a single
inhomogeneity

Scattering of shear ASW from a single inhomogeneity
in piezoelectrics has been studied less extensively than the
scattering of Rayleigh waves. A number of authors have ex-
amined theoretically and experimentally the scattering of
GBW when the wave traverses the edge of a conducting
screen, i.e., when the wave moves from the free substrate
surface to a metallized region and vice versa. 17'47'62'I5<M62

The resulting effects are quite strong as the wave structure is
modified markedly. The transmission coefficient of a wave
moving from a free to a metallized surface is described well
by the following formula.62J7>47

(27)

where UM and «0 are the displacement amplitudes of GBW
on the metallized (transmitted wave) and free piezoelectric
surfaces; £ and £0 are the permittivities of the piezoelectric
and the adjoining medium.

In this scenario reflection is weak and the reflection
coefficient is proportional to the square of the electrome-
chanical coupling costant ~ rf. In LiIO3 the reflection coef-
ficient of GBW from the edge of a conducting screen

TABLE II. Rayleigh wave reflection from a single inhomogeneity and reduction of propagation speed in a
periodic array of inhomogeneities (s—metallization delay coefficient). Data from Refs. 124-158. In case
of disagreement all conflicting data are cited.

Mater-
ial

lithium
niobate

quartz

BGO

Li2B4OT

PZT-4

Cut and
reflect-
ion angle

Y, Z, 180°

Y, Z-+X.
90°

Y, x, 180°
Y, X-+Z,

90°
ST, 180°

STX^lx.
90°

Y, X-~s.
90°

(001), (110),
90°

(100), (Oil),
180°

45°*-*z,
180°

180°

Type of inhomoge-
neity

A /4 groove

shorted Al strips
unconnected
Al strips
A /4 Au strips
upward step

SiO^ strip
A /I Al strip
A /4 groove
Al strip

A /4 groove

A /4 Al grooves

buried Al strips

Au strips
Al strips

A /2 Au strips

A /2 groove

Al strips
Cu strips
A /2 groove

A n Al strip

step

shorted Al strips

shorted Au strips

A /4 Al strip
A /4 Au strip

Reflection coefficient
R = C0 + Ci (hi),) + iC, (h/K)'

c.

0.018

0,011

0,018
0,027

0,011

0,006

0,006

0,04
0,04

c,

0,67

0,51

0,6±0,1

0,88

0,50—0,02
0,54; 0,65
0,5—0,1

0,2

1,5

9,7

1,67±0,05

1,1+0,2
6,1+0,8

0,46

0,23

2

4

-0,5
0,5

C,

25; 42

4,5±0,4

34; 32;
24—34
25—32;

29

Velocity reduction
-Ai!/s = S(fl,, + B,(A/X))

+ B, (h/W

BO

0,024

0,024

0,024

0,0078

0,004

0,009

B,

0,2

4

0,12

0.4—0,56

0,4

s,

13,4; 8,0

5.5; sys-
tem of
grooves

1,3

9—12;
10,3

.
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amounts to r~6-10~3 (in amplitude).17'62 When a GBW,
propagating along a metallized surface of lithium iodate, is
converted into an antisymmetric gap mode the wave ampli-
tude is reduced by a factor of two.47'163

The reflection of GBW from a single groove has been
addressed in Ref. 164. The reflection coefficient is given by
the formula

R= - • sin- (28)

where A is the wavelength; h, I, and a are the parameters of a
trapezoidal groove (see Fig. 7,d). Consequently, r~T]h/A
and in piezoelectrics with weak electromechanical coupling
GBW waves experience much weaker reflection than Ray-
leigh waves in the same geometry. But in strong piezoelec-
trics (like LiIO3) reflection can be significant: r^z l.65h /A
for LiIO3, which is much higher than the reflection coeffi-
cient of a Rayleigh wave in y,Z-LiIO3 from a rectangular
step with the same h /A. ratio.

4. SHEAR SURFACE WAVES (SSW) ON A CORRUGATED
SURFACE (A§>1)

The scattering of ASW from a periodic array of inho-
mogeneities is largely determined by the interference of
waves scattered by individual array elements and, conse-
quently, depends significantly on the ratio between the array
period and the wavelength. The phase-matching condition
for vectors q + nQ = kp (q is the ASW wavenumber;
Q = ITT/I is the wavenumber of the periodic structure; kp is
the wavenumber of the scattered wave; n = ± 1,. . . ) is
conveniently illustrated by the diagrams in Fig. 9. When an
ASW propagates along a periodically uneven surface it gen-
erates surface stresses with wavenumbers q + nQ. If one of

the surface stress harmonics has a wavenumber equal or
nearly equal to one of the wave eigenmodes of the system, the
corresponding wave is resonantly excited. In Fig. 9,a we
have A>21 (q<Q/2), in which case the wavenumbers
1 ± Q' 1 ± 2C, etc-> nave moduli that are too large to excite
waves in the system. Consequently, when A > 21 ASW propa-
gation along a periodically uneven surface does not generate
scattered waves. The q + nQ wavenumber harmonics then
become near-surface oscillations whose amplitude is much
smaller than the ASW amplitude as long as the surface cor-
rugation is weak. The existence of these near-surface oscilla-
tions has the effect of slightly slowing Rayleigh wave propa-
gation. This phenomenon is not particularly interesting and
the propagation of Rayleigh waves over arrays with period
/ < A /2 has attracted little study.

The influence of periodic arrays of inhomogeneities on
the propagation of shear waves is markedly different. As we
have already observed (see Sec. 2), a periodically uneven
substrate surface localizes bulk shear waves and converts
them into surface shear waves (SSW),83"84 In this case the
wave field consists of a surface wave

u = f(0 exp (xy -f iqx),

with a series of small-amplitude harmonics (un<£u0) of
wavenumber q + nQ. For a rectangular grating the attenu-
ation coefficient x and the propagation speed c = ca/q are
given by the expressions

d ' • "- (29)

[7?-. (30)

where /, d, and h are the dimensions of the grating (see Fig.
7,e). In the case of a smooth (sinusoidal) corrugation of the
surface the quantity x becomes proportional to h 2

:
85-86

x =- (31)

FIG. 9. ASW scattering diagram at different relative values of ASW wave-
vector k and lattice wavenumber Q.

(y= — h0 sin Qx is the functional form of the corrugation).
As an example we take grooves on ST-cut quartz of depth
2h0 = 0.4 fj,m and period /= 10 yum. Then
Re-U/} = 370(/z0//O

2, i.e., the attenuation depth *-'
reaches 707 at A = 40 fim.90

Currently SSW have found wide application in high-
frequency delay lines and filters.89'91'92 These waves retain
the attractive properties of surface waves but allow for sig-
nificant reduction of losses. In weak piezoelectrics like
quartz, arrays of inhomogeneities make it possible to reduce
significantly the localization depth of GBW, which simpli-
fies wave excitation and ultimately also leads to loss reduc-
tion. Earlier, in Sec. 2, we cited studies focussing on the de-
tailed examination of SSW properties. The dispersion curves
of SSW in isotropic media at frequencies 0 < co <co0 (where
<u0 is the Bragg frequency) have been numerically computed
in Ref. 165. If the corrugation profile is sinusoidal the calcu-
lation is valid up to h /A < 0.6. The width of the Bragg stop-
band is ~ (h /A)2. The authors incorrectly stated that the
dispersion curves are symmetric about the Bragg frequency
o>0 (seebelow).

A number of authors have studied SSW in strong pie-
zoelectrics (LiNbO3, LiTaO3) where the waves are local-
ized at the surface by depositing a periodic array of conduct-
ing strips and causing the shorting of electric fields (the
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Av/v effect).166-168 In Ref. 168 the authors designed a reso-
nator employing SSW in a strong piezoelectric. An advan-
tage of this design is its simple fabrication technology, which
does not require ion-etching of the substrate; a disadvantage
is that the wave characteristics cannot be tuned.

5. BRAGG REFLECTION OF ASW (A=27)

5.1. Bragg reflection of Rayleigh waves

We have seen that ASW scattering does not occur in
arrays with A > /. Such arrays have periods so small that the
inhomogeneneities are averaged over many periods, i.e., the
surface appears nearly smooth. Now let us consider higher
frequencies at which the wavelength A is comparable to the
period of the array of inhomogeneities.

As the frequency is increased the " — 1" surface stress
harmonic, generated by an ASW propagating on a periodi-
cally uneven surface, comes to coincide with the wavenum-
ber of an ASW propagating in the opposite direction
q — 2~ —1> 2<l~Q (see Fig. 9,b). In this case a reflected
wave is resonantly excited. The effect can be described as
constructive interference of waves reflected by individual
grooves. Indeed, from the condition 2q = Q it follows that
A = 21. The incident wave gains a phase of w by traversing
the distance A /2 between the grooves. Accordingly, the
wave reflected by a groove after travelling a distance of A /2
in the opposite direction has the same phase (A<p = 2-ir) as
the wave reflected by the preceeding groove in the array.
This effect, known as Bragg reflection, occurs in all physical
systems of waves traveling through a periodic structure,l69

including x-rays whose diffraction in crystals was originally
studied by Bragg.

If the number of reflecting elements N is large, Bragg
reflection cannot be treated within the framework of the
Born approximation. In fact, as the reflected waves are
matched in phase, the total reflection coefficient R = r-N
can exceed unity at large N, which is obviously unphysical.
Therefore, if N~r> I one must consider the decay of the inci-
dent wave amplitude as it propagates through the array and
take into account multiple reflections. The ASW reflection
coefficient of such a distributed reflector can be very close to
unity. Clearly the penetration depth of the wave into the
array is of the same order of magnitude as |/-|~'.In !970Ash
proposed an ASW resonator based on distributed reflec-
tors316 and experimentally demonstrated the efficacy of such
a resonator. The development of ASW resonators, which
have a number of advantages over bulk resonators, proceed-
ed extremely quickly and resonators with quality factors of
~4-104 became available by 1976.5 This rapid success of
experimental designs was due to the availability of proven
photolithographic and ion-etching technologies, which
made it possible to fabricate structures with desired proper-
ties.14 Soon thereafter the quality factors of ASW resonators
reached ~ 105, reaching the limit imposed by substrate im-
perfections.

The theoretical understanding of ASW Bragg reflection
from arrays of grooves, strips, etc. proceeded in tandem with
or even lagged behind the experimental work. First, the scat-
tering of Rayleigh waves from a periodic array of grooves
was described in terms of a mismatched transmission line.125

It was shown that at the Bragg frequency the reflection coef-
ficient is \R | = tanh(7V- j r | ) and the effective penetration
depth into the array is L = A /4|r|. A review of research de-

voted to reflecting structures prior to 1976 is available in
Refs. 124, 125. These simple models accurately described
the basic properties of distributed Bragg reflectors, but they
had several flaws. First, the models were purely one-dimen-
sional and could not describe reflection at oblique incidence,
scattering into the bulk, etc. Second, the coefficient r was
introduced phenomenologically, neglecting second-order
effects.

A step forward was furnished by Refs. 145, 170, in
which Bragg reflection was described in terms of "coupled
modes"—a method previously developed for problems in in-
tegrated optics171 and for the theory of distributed feedback
lasers.172'173 The coupled mode analysis was based essential-
ly on the fact that from the infinite number of wave harmon-
ics of wavenumber q + nQ in a periodic structure Bragg re-
flection selected only two (with n=0, — 1 ) whose
amplitudes remained large. Other harmonics had ampli-
tudes ~h /A and could be discarded. A system of coupled
mode equations could then be derived for the n = 0, — 1
harmonics. These equation described the amplitude changes
in the incident (n = 0) and reflected (n = — 1) waves as a
function of distance along the array due to reciprocal multi-
ple reflections. In Refs. 145,170 the coupled mode equations
were postulated, rather than derived, while the coupling co-
efficient, determined by ASW reflection from a single
groove, was calculated separately145 or computed numeri-
cally from energy considerations.170

The full analytic solution of Bragg reflection from a
periodic array of inhomogeneities was given in Refs. 134,
174 (for normal incidence) and Refs. 147, 175-177 (for
oblique incidence). In these studies the distributed reflector
characteristics were determined from "first principles" via
the acoustic parameters of the substrate and the array geom-
etry. Somewhat later these results were extended to large
amplitude arrays (up to h /A~0.5)178 but the edges of the
grooves were taken to have finite slopes. Rayleigh wave re-
flection from an array of rectangular grooves was studied
numerically.17^181 It was shown that the analytic solution
obtained to first order in perturbation theory remains valid
for rectangular grooves as well.

Let us recall the fundamental characteristics of a dis-
tributed Bragg reflector. Such a structure usually contains
500-2000 small grooves (5 • 10~3 < h /A < 2.10~2) :96 the ar-
ray has a period of A /2 and the grooves are about A /4 wide.
The transmission coefficient for a wave at the central stop-
band frequency is given by the expression

20 Ig T = 8.68 N | r I - 6.02 (32)

which is valid when N- \ r\ > 1, where r is the reflection coeffi-
cient from a single groove. If losses to bulk scattering are
ignored the reflection coefficient R at the central frequency
is tanh(N-r). Second-order effects play an important role in
ASW resonators. The most important of these are scattering
into the bulk and reduction in wave velocity in the vicinity of
reflecting structures. Notably, scattering into the bulk is an
"edge effect", because complete destructive interference of
waves scattered into the bulk occurs everywhere except at
the boundaries of the periodic array. These energy losses
have been calculated in Refs. 145, 170, 182, where it was
shown that as the number of scatterers N rises the amount of
scattered energy quickly becomes independent of N (at
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20 )182 and that the loss coefficient is Ct, (h/A)2, where
Cv is determined by material parameters. In an isotropic
material with the Poisson ratio a = 0.3 1 we have
Cv = 9 ± I. With small corrections to wave field structure
AS W scattering into the bulk can also be treated as the trans-
formation of a wave which passes from a smooth to a periodi-
cally uneven surface region. l46 Scattering of AS W into the
bulk can limit the quality factor of ASW resonators. In order
to limit these losses there have been proposals to reduce the
groove depth towards the boundaries of the groove ar-
ray.183'184 The stopband bandwidth, defined as the frequency
separation between the first two zeroes (Fig. 10) is deter-
mined by the equation96

/„
(33)

where/0 is the central stopband frequency /„ = vG/2l, and
the ASW propagation speed vc is somewhat lower in the
array than on the free surface:

#B = -i-C2. (34)

The reduction in propagation speed on an uneven surface
quadratic in h /A is sometimes labelled as an "energy accu-
mulation effect".152 As in the case of a single groove, this
effect can be qualitatively explained by several physical
mechanisms (reduction in the effective stiffness due to sur-
face inhomogeneity, increase in the path length traversed by
the wave, multiple wave reflection, and energy accumula-
tion in near-surface oscillations near surface inhomogene-
ities). For smoothly-varying surface corrugation the effect
has been computed by two different methods:151'155 the theo-
retical values proved in adequate agreement with experi-
mental data which, as we have already discussed, are known
with poor (~ 50%)155 precision when h/A< 0.005. For rec-
tangular grooves the theoretical methods151'155 yield logar-
ithmically divergent expressions for Ku. Recently Biryukov
demonstrated that in this geometry formula (1.36) acquires
another term of the form

Quadratic effects at oblique incidence of the wave onto the
array have been examined in Refs. 154, 185.

0,2

FIG. 10. Bragg array amplitude-frequency characteristic at normal inci-
dence (#=200).

5.2. Modulation of groove depth

Thus we find that a Bragg reflector array containing a
large number N of small (r~ h /A < 1) grooves can reflect a
wave with a coefficient close to unity (if AV> 1) in a frequen-
cy stopband near the Bragg frequency determined by the
A, = 21 condition. Two requirements need be met in resona-
tor design. First, the reflection coefficient R at the operating
frequency should be as close to unity as possible. For suffi-
ciently large N, when AV>1, one must take into account
scattering into the bulk as the wave travels from a smooth to
a periodically uneven surface region. This scattering is due
to a small modification in the spatial wave structure as the
wave propagates over the array. In order to reduce this wave
field "mismatch" there have been proposals183'184 to reduce
the groove depth gradually to zero at the array boundaries
on the cavity sides of the resonator.

The second important requirement is that the reflection
coefficient R (A<o) should be as small as possible away from
the operating frequency in order to suppress additional re-
sonances. A uniform array has a frequency characteristic
R (A<y) which contains side lobes whose height is only a few
decibels below R (0), which makes such an array unaccepta-
ble for a number of applications. It turns out that the R(&&')
characteristic can be markedly improved by the same groove
depth modulation technique.186'187 If the reflection coeffi-
cient from each array element varies smoothly along the ar-
ray r ( x ) , then the total reflection coefficient at the Bragg
frequency, taking multiple reflections into account, has the
form

R I = tanh

The side lobes in R(&co) are strongly suppressed if the
groove depth is gradually reduced to zero at the array boun-
daries. Physically, at small r multiple reflections are of little
importance away from the Bragg stopband. The amplitude
of the reflected wave is determined by the sum of the ampli-
tudes of the waves reflected by each groove with appropriate
phase delays. In essence this process is analogous to trans-
verse filtration. It then turns out that the functional shape of
/J(A«) is determined by the Fourier spectrum of r(x) and
that the ripple can be reduced by employing smoothly grad-
ed r(x) functions that go to zero at the boundaries. The
technology to vary groove depth along the array in a prede-
termined manner has existed for some time.14 The character-
istics of ASW Bragg reflectors can also be controlled by em-
ploying point reflector arrays,188'189 where the local
reflection coefficient can be tuned by varying the local den-
sity of metallic points.

5.3. Oblique incidence of ASW onto arrays

Reflector arrays are also employed in filters, where they
can be used to control filter performance. Historically, re-
flector arrays have found their greatest application in filters
used to form and process linearly frequency-modulated
(LFM) signals.190191 Excellent results have been achieved
in this field (for example, signal compression of better than
1O4, for reviews see Refs. 191-193), but we shall omit further
discussion because structures employed in such devices are
nonperiodic and hence fall outside the scope of this review.

Periodic reflecting arrays are employed in narrow-band
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FIG. 11. Array reflectors.

ASW filters. Detailed calculations of the properties of such
niters can be found in Ref. 194. The important advantages of
reflecting array niters are that optimal IDT's can be used to
excite ASW independently of array frequency characteris-
tics, and that the level of spurious signals is low. Reflecting
arrays have been used to design ring filters'95''"6-197 with
losses of only a few decibels.

In reflecting array filters the relevant geometry is often
considerably more complex than the above-described cases
of normal or oblique incidence of plane waves onto an array
consisting of infinitely long grooves. Several of these geome-
tries are schematically illustrated in Figs. 11 and 12. The
finite extent of the arrays and finite wavefront apertures of
ASW are important. In some simplest cases, such as grazing
incidence onto an infinite array consisting of finite-length

• grooves (see Fig. 1 l,a,b) the solution can be found via the
coupled wave method by considering the interaction of inci-
dent and reflected waves in the array.198^200 The interaction
varies depending on the exit point of the reflected wave. If
the reflected wave propagates in the reverse direction
(a + 20 > iT/2) the incident wave decays quickly as it moves
into the array and the reflection coefficient increases with
array width. If, on the other hand, the reflected wave propa-
gates through the array in the forward direction, reflection
from the array becomes analogous to the acousto-optic in-
teraction in the Bragg regime.201 The reflection coefficient
then oscillates as a function of array width. In wide arrays
the incident and reflected waves propagate as if channeled
along the grooves and experience multiple reciprocal reflec-
tions.

5.4. Arrays of finite extent

In the above discussion we have assumed that the wave
amplitude does not change along the array. This assumption
is invalid if the reflected (or incident) wave propagates
along the array (see Fig. l l ,c) . In practice this is usually

achieved by having the wave propagation vector change by
900. The equations which determine the reciprocal multiple
reflections in this geometry have been derived by various
means in Refs. 194, 197, 202. The equations which govern
the amplitudes of interacting waves have the form

du

Ou~
(35)

where r = eF/D'; r = r-A is the reflection coefficient of a
single groove. This system of equations (35) is completed by
the appropriate boundary conditions which determine the
presence (or absence) of waves incident on the array in di-
rections of x' and y' axes. The Riemann method yields ana-
lytic solutions for these equations for several simple array
configurations.202'194 In particular, given an array occupying
the rectangular region x'Oy' (Fig. 12,b) and an incident
wave at the central frequency (Acu = 0), the incident and
reflected waves in the array are distributed as follows:

(36)
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where Jn are «th-order Bessel functions of the first type; the
amplitude of the incident wave at x' = 0 is taken as unity.

If the array occupies a region of arbitrary shape, equa-
tions (35) are best solved numerically. A simple numerical
algorithm results when the boundary conditions are im-
posed on a rectangle which bounds the array and a position-
dependent reflection coefficient r(x',y' ) is introduced. 197 We
observe from equations (36) that reflection becomes signifi-
cant when r2XY> 1, where A' and Fare the dimensions of the
array (in wavelengths) — this is true for other array shapes
as well.203 Wave diffraction was neglected in deriving equa-
tions (35); diffraction can be taken into account 204' ' 94 in real
systems but ASW wave aperture is S 100/1 and diffraction
effects are small.

When a finite aperture beam is Bragg-reflected by an
array the beam profile can change significantly (see Fig.
1 l,d) and a beam shift can occur.205

5.5. Bragg reflection of SSW

The Bragg reflection of SSW and shear ASW in piezoe-
lectrics proceeds quite differently. 20<>-207-n The very exis-
tence of shear ASW is due to surface corrugation. Conse-
quently wave reflection at A = 21 and scattering into the bulk
(when A < 21) are no longer small effects and can markedly
alter the wave structure. Researchers have determined85'93'90

that as the frequency approaches the Bragg value the pene-
tration depth into the substrate KQ ' falls off and reaches its
minimum at the left edge of the stopband. In the stopband
the wavenumber of the incident wave becomes

where 8 is a purely imaginary quantity. The Bragg stopband
bandwidth is

o A<» •, MM2
2 — «6-~(— ) •

and the maximum attenuation coefficient along the array is

Im

Numerical calculations for an ST-quartz structure with peri-
od /= lO^m and groove depth h = 0.4yum are shown in Fig.
1 3. In the stopband Re{<5} = 0 and XQ is the complex conju-
gate of x _ , . As the frequency increases and approaches the
right edge of the stopband the localization depth of the wave
increases sharply. At even higher frequencies the solutions
yield | lm{xQ _ i } | > | Re{^0, _ ] } | and hencehave the form of
inhomogenous bulk waves. In Fig. 14 we plot schematically
a typical experimental curve95 of loss vs frequency as the
wave propagates through the array. Unlike the Rayleigh
wave case, the curve is sharply asymmetric (see Fig. 10),
because at frequencies above the Bragg value SSW are prac-
tically nonexistent.

The changes in the wave field structure lead to changes
in the phase of the reflected wave as a function of frequency
in the stopband. At the central stopband frequency the phase
shift is 7T/4,93 rather than 0 or IT as in the case of Rayleigh
waves. This fact should be heeded when designing SSW reso-
nators, which have been discussed in Refs. 88, 94, 93 and
experimentally realized in Ref. 95. Their advantages lie in
the properties of near-surface waves and SSW — high fre-
quency and thermal stability. Problems arise because of
losses due to scattering into the bulk in the resonator cavity,

FIG. 13. SSW in Sr-quartz. a—wavevector correction, b—inverse pene-
tration depth.

since no SSW can exist on the smooth regions of the sub-
strate. There has been a proposal88 to fabricate an array of
grooves with a different (smaller) period inside the cavity,
which would support ASW of approximately matching
structure but transmit the wave at the operating frequency.
It follows from the above discussion that this wave-matching
is unattainable because the quantities x0 L, are complex in
the Bragg stopband. Consequently the most promising alter-
native is to reduce the distance between the array boundaries
to the absolute minimum of 3/t /8.93

In the case of Rayleigh waves, the central Bragg reflec-
tion frequency /„ = VR /2l and the frequency fp at which
scattering into the bulk begins are quite different, because
Rayleigh wave velocity is less than the velocity of the bulk
shear wave. These frequencies do coincide, however, for
SSW on a periodically corrugated surface given infinitely
weak corrugation, and this leads to the above-described ef-
fects: changes in the wave structure, stopband asymmetry,
etc. When SSW propagate in piezoelectrics we have an inter-
mediate situation. Scattering into the bulk begins at a fre-
quency which is only slightly greater than the Bragg value:
fp — f0 ~ t]2f0, where 17 is the electromechanical coupling co-

34 dB
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FIG. 14. SSW losses upon passing through a reflecting array.
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efficient. Since the Bragg stopband bandwidth is determined
by the corrugation ratio h /A, it is possible that the frequency
/0 may fall into the Bragg stopband. Calculations show207

that if £ < 77 no such overlap occurs and the GB W structure is
unaffected. Accordingly GBW reflection is the same as that
of any "good" wave208—the Rayleigh wave, for example.
The coefficient of exponential decay Im{6} as the wave
propagates into the array is proportional to rjh /A and there-
fore small. The decay coefficient per array element equals
the GBW reflection coefficient from a single array element.
Thus, when e > rj, the Bragg stopband merges with the fre-
quency range of decay due to scattering into the bulk (Fig.
15,a), while the localization depth of GBW oscillations
changes sharply (Fig. 15,b).206'207'235

6. RECIPROCAL CONVERSION OF BULK AND SURFACE
WAVES ON PERIODIC STRUCTURES (A~/)

As the frequency is increased above the Bragg value,
beginning at some critical frequency
fp = 2f0v,/(v, + v,) >/„ (where v, is the propagation speed
of the bulk shear wave) surface inhomogeneities begin to
scatter ASW into bulk waves (see diagram in Fig. 9,c). The
back-scattered bulk shear wave appears first, then, as the
frequency is increased, the longitudinal wave. At A = / scat-
tered waves propagate normal to the surface. When the
wavelength is further decreased (diagram in Fig. 9,d) sever-
al scattered waves appear.

6.1. ASW attenuation due to scattering into the bulk

Rayleigh wave attenuation due to scattering into the
bulk was examined theoretically in a number of stud-
ies.209*219 The pioneering role was played by Brekhovs-
kikh209 who evaluated the attenuation coefficient by the
successive approximation technique. In the "zeroth" order
approximation the Rayleigh wave is taken to have the same
structure and velocity on the uneven surface as on the
smooth regions and hence to propagate without attenuation.
Such a wave does not fulfil the boundary conditions on the
free surfacez = £(x); one can evaluate the forces that act on
thez = 0 plane and the amplitudes of bulk waves generated
by these forces. The attenuation coefficient is defined as the
ratio of the energy flux carried off by the bulk waves to the
energy of the Rayleigh ASW. In the case of a one-dimension-
al sinusoidal corrugation z = £0cosQx, when q = Q one ob-
tains the expression:219'34

«= 0* _ _

D'g is the derivative of Rayleigh determinant
(D,q,a>) = (q1 + s2)2 — 4q2ps with respect to g; £0Q = E is
the small corrugation parameter. Consequently, the attenu-
ation coefficient can be put into the form

(37)

where

where C(cr) is a factor that depends only on the Poisson ratio
and the groove profile. For sinusoidal grooves and a= 0.3
we find F = Q.Q6e2q. Attenuation due to scattering into the
bulk is significantly weaker than attenuation along the array
in the case of Bragg reflection ( T~ h /A ~E), because scat-
tering into the bulk involves the addition of scattered wave
energies rather than amplitudes. The analysis of Brekhovs-
kikh was repeated in Ref. 211 and experimentally verified in
Ref. 210. Rayleigh ASW scattering into the bulk at oblique
incidence onto the array was investigated in Refs. 182, 217-
218. By varying the spacing between the grooves scattered
bulk waves can be focused and scanned.213 In Ref. 34 the
Brekhovskikh method was used to calculate ASW attenu-
ation with the wave propagating along a periodically uneven
surface (A = I) of cubic and hexagonal crystals. The analy-
sis demonstrated that in almost all crystals of these symme-
tries longitudinal and transverse waves carry off approxi-
mately equal amounts of energy.

When the wavelength A equals the array period / the
q — 2Q= —q condition is fulfilled (see diagram in Fig.
9,c), i.e., in addition to scattering into the bulk this scenario
phase-matches double Bragg reflection or, equivalently,
scattering from the second harmonic of the Fourier function
f (x) which describes the uneven surface. This harmonic ap-
pears, for example, in the case when the width of the rectan-
gular grooves is different from the distance between them.
Since Bragg reflection is a stronger effect, it is this double
reflection of ASW, rather than scattering into the bulk, that
determines attenuation along the array.

6.2. Second-order effects

In Refs. 220,219 the authors first pointed out that in the
case of sinusoidal corrugation at A = / there can be signifi-
cant wave reflection due to second-order effects, whose con-
tribution to the attenuation along the array exceeds that of
scattering into the bulk. Given sinusoidal corrugation
g(x) = f0cosQx ASW reflection of amplitude ~f02 = f is
absent, since the waves reflected by the hill and valley of each
sinusoidal period interfere destructively. However, there ex-
ist several coherent reflection mechanisms whereby each pe-

0,1 -

FIG. 15. GBW in periodic structures, a—wave attenuation, fa-
change in wave structure. 1—h // = 0.1; 2—h // = 0.2, CdS.
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FIG. 16. Structural transducer "acoustic bulk waves <-> ASW".

riod gives rise to a scattered amplitude ~£2, including dou-
ble scattering of bulk waves, incomplete destructive
interference of waves reflected by the hill and valley, and
effects of harmonics with wavenumbers nQ generated near
the uneven surface.219 Let us estimate the amplitude of the
reflected wave given a sufficiently long reflecting array.
Since the reflected waves are also attenuated by scattering
into the bulk, the number of waves reaching a given point is
~£2. Adding the amplitudes of these waves we obtain uref

~£2Ua£~2 = tt0, i.e., at A = I the reflected wave can be com-
parable in amplitude to the incident wave. Scattering of the
reflected wave into the bulk leads to a strong (several-fold)
enhancement of the ASW attenuation coefficient at the reso-
nant frequency.219 In the case of nonsinusoidal corrugation
with grooves in the shape of symmetrical trapezoids (a con-
figuration which contains no harmonics with wavenumber
2Q) reflection becomes a strong function of groove profile,
increasing with the slope of the groove steps. It was shown
experimentally that reflection from arrays at A = I is
large153'221 an description of second-order effects using "en-
ergy accumulation" near inhomogeneities for arrays with
A = /l54-191 is not completely rigorous because this model
does not incorporate scattering into the bulk.

6.3. Theory of the structural transducer

Interest in arrays with A ~ / is largely due to the opposite
phenomenon—the possibility of transforming a bulk wave
incident on an array into ASW. Such a transducer was first
proposed in Ref. 222 and then numerically modeled at a 10
MHz frequency in Ref. 223. Subsequently it was demon-
strated that this method can be used to excite ASW at 1 GHz
frequency224 in nonpiezoelectrics. In Fig. 16 we illustrate the
"surface-structural" transducer due to Ash.223 The phase-
matching condition (see diagram in Fig. 17,a) has the form
ksina ±Q= ±qoiq — Q=^£- ksina. Hence we obtain
the resonant frequency

Here " — " corresponds to the excitation of ASW propagat-
ing forward along the OX axis and " + " corresponds to

ASW propagating in the opposite direction. At normal inci-
dence (a = 0) of a bulk wave onto the array two ASW waves
are excited and these propagate in opposite directions. The
order of magnitude of the generated ASW amplitude can be
estimated as follows.225 Let the incident bulk wave have am-
plitude A0. The surface wave excited at every inhomogeneity
will be of order eA0. Given the phase-matching condition the
surface waves add in phase. They also decay with attenu-
ation coefficient ~£2q, however, and hence the number of
waves reaching a given point in a long array is Neff ~e~2,
and their combined amplitude is

This estimate holds if the array length exceeds the attenu-
ation length, i.e., N>£~2. In the opposite situation, which
occurs when e->0, we have u~eA0N-*Q.

In comparison with the interdigital transducer, the sur-
face-structural transducer has certain advantages at fre-
quencies > 300 MHz: arrays are easier to fabricate than
IDT's;14'15 bulk transducers based on ZnO films13 are also
quite efficient and work in the GHz range; unlike IDT the
structural transducer is insensitive to local structural de-
fects; the groove depth can be modulated, etc. The effective-
ness of a structural transducer at normal incidence was dem-
onstrated in Refs. 223,224. Conversion losses were 5-10 dB.
At the same time, if the attenuation of bulk signal is weak the
amplitude-frequency characteristic of a transducer in steady
state operation becomes distorted due to multiple reflections
of the bulk wave.226'227 Also, as we have seen already, at
normal incidence there exists the possibility of double Bragg
reflection from the second harmonic of the surface profile or
due to second-order effects. These effects reduce the effi-
ciency of structural transducers.228-229 A detailed theory of
the structural transducer at normal incidence, which takes
into account second-order effects, is derived in Ref. 229 both
for the ASW generation and reception (conversion into bulk
waves). The optimal number of grooves in the array JVopt is
~e~2, which is comparable to ASW attenuation length due
to scattering into the bulk. Then the conversion efficiency
into ASW of longitudinal bulk waves is 77, ~0.2 and of trans-
verse waves is ri,~ 0.4. The operating bandwidth of the
transducer is A&>/<y~£2.

Multiple reflections of the bulk wave are avoided in the
case of oblique incidence.228i23<U31 In this geometry the
phase-matching condition is first fulfilled at a frequency
lower than \R //, generating a "backward" ASW (kR k <0),
and then at a frequency higher than vR/l, generating an
ASW propagating "forward" along the OX axis (see Fig.
17). These regimes differ in that excitation of the forward-
propagating wave is less efficient, since it is invariably ac-
companied by additional scattered waves (see diagram in

FIG. 17. Wavevector diagrams for conversion of bulk
waves into ASW propagating backward (a) and forward
(b).
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FIG. 18. Efficiency of ASW excitation for a longitudinal bulk wave inci-
dent at 45° as a function of normalized frequency mismatch. Theory—
solid curve, experiment—dotted curve.

Fig. 17,b). Phase-matching at even higher frequencies is
avoided for the same reason. A detailed theoretical analysis
of ASW excitation at oblique incidence216'230'232 indicates
that excitation of backward-propagating ASW is most effi-
cient, with conversion losses as low as 2-3 dB. The excitation
of ASW at oblique incidence of bulk wave onto a periodic
array of grooves on the substrate was first observed experi-
mentally in Ref. 227. The losses for conversion of a longitu-
dinal bulk wave into ASW at 320 MHz were 8 dB, in good
agreement with the theoretical result (Fig. 18).230t232

6.4. Destructive interference of scattered bulk waves in ASW
propagation over an array with K=l

The effects discussed above for A = / (/being the period
of a weak sinusoidal corrugation) exhibit additional features
when shear ASW (Love and GBW) are involved.220'233'80

Here the reflected wave generated by second-order phenom-
ena is scattered into the bulk analogously to the incident
ASW. In this situation it is possible that the scattered waves
propagate in antiphase and destructively interfere with one
another.220 The exponential attenuation coefficient for prop-
agation along the array then goes to zero (Fig. 19). This
effect is nonexistent for Rayleigh waves because both types
of waves (longitudinal and transverse) scatter into the bulk
and simultaneous destructive interference is impossible.219

A similar effect exists in integrated optics.234 Detailed calcu-
lations80 have shown that if Im{<5> = 0 the incident ASW
still decays over an array of finite length, but linearly rather
than exponentially. The reflected wave also grows linearly,

while the waves scattered into the bulk are not completely
canceled by interference and their amplitude is constant over
the array. A structural transducer operating in this regime
can convert up to 50% of the incident wave energy into bulk
waves.233'80 If a second harmonic is present in the nonsinu-
soidal function that describes surface corrugation, the wave
experiences strong multiple Bragg reflection. The number
N^ of waves excited by individual inhomogeneities that add
in phase is sharply reduced and the conversion efficiency of
bulk waves into ASW deteriorates.235 Such an array causes
strong reflection and an incident ASW is reflected after
propagating a distance ~ A /£, before it can scatter apprecia-
bly into the bulk. The attenuation of shear ASW (Love and
GBW) and their excitation at oblique incidence of a bulk
wave onto an array were investigated in detail by La-
pin.236"238 Second-order effects are insignificant in these pro-
cesses and can be neglected (see also Refs. 239-241).

6.5. Resonance interaction of Rayleigh waves with Lamb
modes

During experimental research into the attenuation of
Rayleigh waves due to scattering into the bulk from groove
arrays on the F,Z-LiBNO3 surface at IzzA. several groups
(Refs. 154, 242 and, independently, Refs. 226, 243, 244)
discovered that Rayleigh waves interact with Lamb modes
in a plane-parallel plate with a polished lower edge (Fig.
20). The effect manifests itself in the appearance of narrow
and deep notches in the amplitude-frequency characteristic
of a delay line. The authors of Refs. 242, 245 proposed a
qualitative model which explained the effect in terms of Ray-
leigh ASW interacting with plate modes, the latter calculat-
ed in the parabolic approximation. The resulting monotonic
behavior of notch parameters did not agree with experiment,
however. Nonetheless, the model242'245 gave a correct quali-
tative explanation of the different interaction properties at
/</o = V

R //, when the excited Lamb modes propagate back-
wards and the incident ASW decays exponentially as it prop-
agates over the array, and/>/|,, when the Rayleigh wave and
the excited Lamb mode travel in the same direction and peri-
odically exchange energy as they propagate over the array.
In the isotropic approximation this interaction of Rayleigh
ASW with Lamb modes due to surface corrugation was first
described in Ref. 243 (see also Ref. 246), where the coupled
mode analysis was employed to explain qualitatively all the
experimentally observed properties and calculate the shape
of stopband peaks. An accurate numerical calculation of res-
onance frequencies was carried out in Ref. 244, where the

FIG. 19. Normalized attenuation coefficient for Love waves due to de-
structive interference of scattered waves.

op a, dB
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FIG. 20. Interaction of a Rayleigh wave with Lamb modes. Attenuation
coefficient of a wave travelling over an array with A. = / = 40/im, h = 0.5
pm,N = 150.
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authors computed the dispersion curves of higher numbered
Lamb modes (Ar~40) in a lithium niobate plate. The agree-
ment with experiment was good. It is worth noting that this
calculation confirmed the presence of Lamb modes (low
number) with negative group velocities in LiNbO3.

247'248

Experiments carried out by the groups of Melngailis245 and
Grigor'evskii232'243 demonstrated the possibility of "invert-
ing" the notches, i.e. fabricating devices demonstrated the
feasibility of designing narrow bandpass and stopband
filters.

This phenomenon has also been observed in a plane-
parallel plate of ST-quartz.232 Essentially, the effect is due to
the excitation of a high harmonic bulk plate resonance, with
the array effectively pumping energy into the resonator.
Consequently thick ( 3:1 mm) plates can be used at high
frequencies, which simplifies the fabrication technology.
The uncertainty in material parameters and their change
from sample to sample make it difficult to obtain resonances
at a given frequency.

6.6. Transmission of a bulk wave through a gap with irregular
edges

As we have seen earlier, the amplitude of ASW excited
by conversion from bulk to surface waves on a sufficiently
long array can exceed the incident wave amplitude by a fac-
tor of £~' > 1. In piezoelectrics this phenomenon can result
in strong electric fields on the surface. A number of effects
based on this generation of strong electric fields was pro-
posed in Refs. 250, 251. In particular, if an identical second
crystal is placed close to the piezoelectric surface of the first
and both crystals have identically oriented arrays of surface
grooves, the electric fields will generate ASW on the other
side of the gap and these ASW will scatter into the bulk of the
second crystal. Thus an incident bulk wave will, in effect,
travel through a vacuum gap. Calculations show252 that for
shear waves the transmission from one crystal to another can
be total. A necessary condition for total transmission is a
sufficiently strong piezoelectric effect 77 > e, such that the
excited ASW transfer to the other side of the gap before they
scatter into the bulk on the surface inhomogeneities of the
first (source) crystal. In Fig. 21 we plot this effect in Ray-
leigh wave excitation.253 The transmission losses of 4.5 dB
are probably due to excitation of both longitudinal and
transverse waves by Raleigh wave scattering, while only the
longitudinal wave is recorded. Unlike the seepage of a bulk
wave through a gap103 related to the so-called attendant os-
cillations, this phenomenon depends resonantly on frequen-
cy and does not require grazing incidence of the bulk wave,
as does the seepage effect described in Refs. 103, 254.

6.7. Bulk acoustic wave amplification upon reflection from a
semiconductor interface

The electric field created on the surface can be used for
electroacoustic amplification of bulk waves upon reflec-
tion.225'255 To this end a semiconductor must be located ad-
jacent to the corrugated piezoelectric surface. The electron
drift velocity in the semiconductor should exceed ASW ve-
locity, just as in an ordinary acoustoelectronic amplifier.
(Other amplification mechanisms are examined in Refs.
256, 257.) Calculations show that the resulting amplifica-
tion should be a strong, resonance phenomenon.225 The non-
resonant interaction occurring when a bulk wave is incident
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FIG. 21. Amplitude-frequency characteristic of the transmission coeffi-
cient.

on an array of period / which is several times smaller than
wavelength A is also of interest.255 In this case the bulk wave
is reflected without scattering and the surface oscillations
with the same period as the array have a small amplitude
( ~ £ ) and contribute only slightly to the phase of the reflec-
tion coefficient. But the interaction of the electric fields that
penetrate into the semiconductor with the drifting electrons
can cause a weak enhancement \R | — 1 ~ erj of the reflected
wave—the so-called "orotronic" effect. Interestingly, the
drift velocity required for such amplification is smaller than
ASW velocity by a factor of A //, which eases the thermal
operation of this amplifier.

If the frequency is increased further above/> VR // sev-
eral scattered bulk waves are excited (the diffraction orders
are shown in Fig. 9,d). When light is diffracted by diffract-
ing structures—including diffraction by sound in acousto-
optics10'201—this situation is common. However, light prop-
agates through vacuum (air) and can be received or
redirected at any point in space, even far away from the
structure. Unfortunately, bulk acoustic waves are difficult to
control and the dimensions of the acoustic medium are
usually comparable to those of the diffracting structure.
Consequently diffracting arrays that produce many scat-
tered waves are rarely employed in acoustoelectronic de-

assvices.

7. LASER EXCITATION OF ACOUSTIC SURFACE WAVES

In the two remaining sections of this review we will
briefly discuss laser excitation of ASW, which frequently
involves periodic irradiation of the surface, and the propaga-
tion of magnetostatic waves (MSW) in periodic structures.

The generation of acoustic waves due to absorption of
laser radiation is well known.259 At low laser intensities the
main mechanism is the time-dependent thermal expansion;
as the intensity is increased other mechanisms, like evapora-
tion, come into play.260'261

Since laser radiation is usually absorbed near the sur-
face laser excitation of ASW becomes possible. This phe-
nomenon was first observed in 1968 by Lee and White.262 In
the last several years there has been much active research in
laser excitation of ASW for two major reasons. First, the
combination of laser ASW generation and the use of laser
probes for ASW reception provides a contactless and fairly
precise means of quality control, which is essential for mass
production of AS W-employing devices. Second, laser excita-
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tion of ASW appears to hold promise in the fields of photo-
acoustic spectroscopy265 and microscopy.266

The advantages of laser ASW generation are the follow-
ing: the technique is contactless; small samples of all acous-
tic media (nonpiezoelectric, metallic, etc.) can be studied;
laser intensity and frequency can be varied over an extremely
wide range; there is the unique possibility of creating a mov-
ing sound source; directions of ASW propagation can be
quickly altered, etc.264-267-268

Several focusing techniques have been used experimen-
tally. In Refs. 260-262, 264-265, 269-270 ASW were excit-
ed by amplitude modulated laser radiation focused onto a
point oranarrowstrip.260'261'264'265'270-271 This meth-
od allows for ASW generation over a wide frequency range.
In another study272 the authors focused laser radiation onto
a ring and generated outgoing and incoming Rayleigh
pulses. When the substrate surface is periodically irradiated
through a mask262'268 or by creating a diffraction grating of
light and dark stripes,267 the generated ASW have the same
wavelength as the irradiation period. Others have fabricated
periodic heat sources on the substrate by depositing a period-
ic array of strips of an optically absorbing material separated
by a Rayleigh wavelength.273 The sample can be scanned
through a focused laser beam by means of a step motor
drive.266 Generation of ASW by a light spot running along
the surface at ASW speed was proposed in Ref. 274 and ex-
perimentally realized in Ref. 275. Such synchoronous exci-
tation of the substrate produces a linearly increasing ASW
amplitude: fairly large displacements (~10~5 cm) have
been observed even at low ( < 3 °K) substrate heating.

In most experiments the frequency of excited ASW is
determined by our ability to modulate laser radiation and
ranges from 3 MHz261 to 130 MHz.265 A record frequency of
830 MHz was obtained in Ref. 267. The intensity of continu-
ously modulated laser irradiation usually falls in the 10-50
mW range (although / = 2.5 W has been reached in Ref.
264) and the magnitude of ASW signals received by IDT in a
strong piezoelectric LiNbO3 is of the order of 1 n\. The
ASW generation efficiency on the surface of anti-reflection-
coated LiNbOj by radiation focused onto a narrow strip
reaches KASW//~10~3 (yuV/W-cm~2). In addition to in-
vestigations focused on ASW generation we also note a
study267 in which Rayleigh wave excitation occurred as a
secondary effect in the laser probing of a charge distribution
created by inhomogenously irradiating a photoconducting
semiconductor.

Laser generation of ASW has been discussed theoreti-
cally in a number of papers273'274'277"284 which examined all
the above-described geometries. In addition to laser excita-
tion of Rayleigh waves in an isotropic solid, there have been
attempts to take into account heat losses to the thermally
conducting nonviscous medium adjacent to the semiconduc-
tor279 and to calculate the excitation properties in a piezoe-
lectric without neglecting the anisotropy of elasticity and
permittivity constants.281 In the case of monochromatic ex-
citation the process is determined by three length scales: sur-
face wavelength A; "thermal wavelength" /T = (x/pcca)]/2

(x, p, c are respectively the thermal conductivity, density,
and specific heat capacity of the acoustic medium); and the
laser penetration depth into the acoustic medium y~].
Usually lr 4.A, and thermal conductivity can be neglected in
calculations.277 A number of other assumptions are usually

employed but not specifically outlined in theoretical studies,
making it difficult to compare the results obtained in Refs.
277-282. A consistent theory of laser ASW excitation by
periodic irradiation with modulated laser light was devel-
oped in Refs. 283-284. Furthermore, the calculation was
carried out within the framework of thermoelasticity theo-
ry,20 i.e., taking into account not only sound generation due
to temperature variations, but also the reverse process —
sound-wave-induced temperature variations leading to ther-
moelastic light absorption. The relation between the quanti-
ties/I, l-f , Y~ ' is taken to be arbitrary. The calculations have
shown that ASW generation efficiency peaks when the radi-
ation is absorbed at the surface. Also, the peak efficiency of
converting laser energy into ASW occurs when the irradia-
tated region has the same length as the ASW attenuation
length. The peak efficiency is ~k.T/T0, where AT is the
amplitude of temperature variation.

Now let us cite some order of magnitude estimates of
the amplitude of generated waves.284 If the mean energy flux
density 70 is incident on 1 cm2 in 1 s over a period of 27r/«,
the acoustic medium absorbs the energy I0-2ir/o) which
heats a layer of thickness /T :

Due to thermal expansion the surface shifts by a quantity
z/=;aA77T, whence we have uz;aI0/pcca.2M Since the excit-
ed waves add in phase (A = /) the resulting amplitude is

pew (38)

where F(a) is a factor of order unity that depends only on
the Poisson ratio cr.284 This formula is valid as long as L < La,
the attenuation length of ASW, which is usually the case.
Since the amplitude u depends on the product IQL, the exci-
tation efficiency is nearly the same regardless of whether the
laser beam is focused onto a point or a single narrow L—A,
strip.

Undoubtedly precise and effective methods of measur-
ing the velocity and attenuation of ASW will be developed
based on laser excitation of ASW. An indication of this is
provided by the first very successful investigations264 in this
direction.

8. MAGNETOSTATIC WAVES IN PERIODIC STRUCTURES

Modern signal processing systems must cope with ever-
increasing signal bandwidths at ever higher central frequen-
cy. Fabrication of ASW-employing devices with bandwidth
A/> 500 MHz and central frequency above I GHz has met
with daunting technological difficulties and physical limita-
tions (for instance, rapidly increasing losses in the acoustic
medium). For this reason magnetostatic waves (MSW),
which were first discovered and theoretically analyzed in
1961-1965,288'289 have attracted much scientific attention
over the last decade.285"287 Magnetostatic waves are spin
waves whose propagation speed is much lower than the
speed of light. Usually the MSW wavelength is sufficiently
large for the exchange interaction to be ignored.287 Research
into MSW burgeoned after the development of the technolo-
gy for fabricating high-quality yttrium-iron garnet (YIG)
films on low-loss gallium-gadolinium garnet (GGG) sub-
strates. The three principal MSW excitation geometries are
shown schematically in Fig. 22, together with the dispersion
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FIG. 22. Types of MSW: a—SMSW; b—backward bulk MSW; c—for-
ward bulk MSW.

relations of the three types of waves that can propagate in
these geometries. When film thickness is ~ 10 /nm the wave
velocity lies in the 3-105-3-107 cm/s range, with the wave-
length falling between 1 fj.m and 1 mm.290 Magnetostatic
waves are easily excited with a single shorted conductor (see
Fig. 22): the losses are low and the excitation band is quite
wide (the wavelength must be greater than twice the sample
thickness).

We therefore find that a number of properties—ease of
excitation, possibility of altering the direction of propaga-
tion—make MSW the high-frequency analogs of ASW.29'
At higher velocities and lower attenuations in the 1-20 GHz
range the dimensions and losses of MSW-employing devices
are quite acceptable. Another advantage of MSW devices is
the tunability of their parameters afforded by changing the
magnetic field. Disadvantages of MSW devices include
strong dispersion, high level of directly transmitted (induc-
ing) signals and other spurious signals, and poor parameter
stability. Methods of controlling MSW dispersion,292 reduc-
ing parasitic wave reflections,29' and improving device sta-
bility are currently under development. As in AS W-employ-
ing devices, reflecting arrays for MSW play an important
role. These arrays are usually composed of small grooves or
metallic strips.293 The role of reflecting arrays is particularly
crucial in the design of narrow-band devices, since the strong
interaction between MSW and the exciting antenna (trans-
ducer) limits the possibility of tailoring the amplitude-fre-
quency characteristic in transducers.

Periodic arrays have been employed to design MSW
resonators294 and LFM compression filters.291 Although the
central frequencies of these devices are high (3-5 MHz),
other parameters (resonator quality factor, compression ra-
tio and quadratic nature of phase-frequency (PF) chacteris-
tics of LFM filters, thermal stability) so far remain greatly
inferior to analogous ASW devices.

The scattering of all three MSW types from various pe-
riodic disturbances is well understood. The propagation of
surface magnetostatic waves (SMSW) in periodic structures

has been examined in Refs. 295-307. Tsutsumi and co-
workers296 obtained the dispersion relation for SMSW prop-
agating through a plate with two periodically uneven edges;
others297 have investigated the case when the film and sub-
strate are ferrites with different magnetizations and only one
surface is uneven. These studies considered infinite periodic
structures only. The scattering of SMSW from a finite array
of grooves and from a single groove was evaluated numeri-
cally in Refs. 298, 303. But the frequency behavior of reflec-
tors remained unclear and the reflection coefficient was cal-
culated inaccurately by ignoring the reciprocity of SMSW
propagation. These deficiencies were corrected in Ref. 307.
Bragg reflection of SMSW has the same characteristic prop-
erties as the reflection of Rayleigh waves: a frequency stop-
band and exponential attenuation as the wave propagates
along the array. At the same time, due to strong dispersion,
the reflection coefficient from a single groove, the stopband,
and other reflector characteristics are strongly dependent on
wavenumber. As the SMSW wavelength is reduced the stop-
band shrinks exponentially because at lower wavelengths
the interaction of the forward and backward waves propa-
gating on the opposite surfaces of the YIG film is dimin-
ished. Simultaneously, the attenuation coefficient increases
sharply because the group velocity falls off exponentially as
qdis increased (dis the film thickness).

The reflection of SMSW from conducting strips was
examined in Refs. 305, 313. In Ref. 305 the strip was taken as
perfectly conducting and was positioned some distance from
the top surface of the ferrite in order to reduce the image
term. In Ref. 313 the conductivity of the metal was taken as
finite and the strip thickness was assumed small compared to
the skin depth. In that scenario it turned out that the period-
ic structure modulates wave absorption rather than wave
velocity. Reflection was weak—even a semi-infinite array
has \R | -0.1.

The reflection of forward bulk magnetostatic waves
(FBMSW) from periodic systems of inhomogeneities at
normal and oblique incidence was studied in Refs. 306, 308.
The reflection coefficient per period at normal incidence is
found to be

where h is the depth of the sinusoidal corrugation on the
film's surfaces; d is the film thickness. Unlike the Rayleigh
wave case, for no angle of oblique incidence does the reflec-
tion coefficient go to zero. Forward bulk MSW are the only
class of magnetostatic waves that can propagate in any direc-
tion in the plane of the ferrite film. Consequently FBMSW
are employed for signal compression devices with reflecting
structures of the "herringbone" type.295 There have been
proposals to control the reflecting capabilities of array ele-
ments by using reflectors fabricated by ion implantation.3(W

The reflection of backward bulk MSW (BBMSW)—
which are rarely used for practical applications—from peri-
odic systems of inhomogeneities was addressed in Ref. 310.
Both forward and backward MSW are multimode waves.
Their propagation through a periodic structure involves not
only reflection but coupling of different modes,304 which is
usually a parasitic effect. Also, in arrays3" and in sufficient-
ly thin films with smooth surfaces"2 MSW can interact with
exchange spin waves and magnetoacoustic waves.
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9. CONCLUSION

In this review we have attempted to cover the physics of
ASW propagation in periodic structures. Reflectors of ASW
based on periodic arrays of inhomogeneities are the second
most important type of element (after IDT's) in ASW-em-
ploying devices. Without interdigital transducers ASW-em-
ploying devices would be impossible and without reflecting
strucutres the most sophisticated, unique classes of these de-
vices—resonators and dispersive delay lines—would be un-
realizable. Currently the research in this field has shifted
towards investigation of more subtle, second-order effects,
the development of powerful universal computational algor-
ithms,3 14 investigation of non-Ray leigh types of ASW and of
surface wave waveguides. The scattering of ASW from ar-
rays in anisotropic crystals has not been studied extensively.
The scattering of ASW by strong inhomogeneities has been
little studied experimentally and no wideband local "mir-
rors" (even semi-transparent ones) are available for ASW
reflection. The very high frequency range ( > 10'° Hz) is of
great interest—there interesting phenomena are expected in
ASW propagation through superlattices and thin layers, and
at low temperatures.

Research into acoustic surface waves has come the full
circle from original proposals and laboratory experiments to
mass production of devices (the cost of all ASW devices now
exceeds $ 100 million and the price of a filter has fallen below
$1). Now technological requirements are stimulating re-
search into new types of waves, new excitation methods, and
new techniques of controlling their propagation.
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