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We review a number of the important results of the theory of radiation transport of resonance
radiation obtained mainly during the past decade. Situations are stressed in which the traditional
hypothesis of complete frequency redistribution of quanta is not fulfilled in the process of
reemission. A quite general approach to the problem of radiation transport is presented that
assumes small frequency shifts in the scattering event. Results are presented pertaining to the rate
of deexcitation in Doppler, Stark, and natural mechanisms of line broadening. The transport of
polarized radiation is discussed, including the application to experiments on interference of
atomic states (the Hanle effect, etc.). The problem is discussed of transport of high-intensity
radiation, in particular as applied to the problem of radiation trapping in lines of hydrogen-like
ions. The connection is discussed of the physical mechanisms of radiation transport in spectral
lines and in a recombination continuum.
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1. INTRODUCTION

Interest in the problem of transport of resonance radi-
ation in gases and plasmas first appeared in astrophysics in
connection with the interpretation of spectra of celestial bo-
dies. The astrophysical approach in transport theory is being
developed actively even now, due to the nontransient impor-
tance of the original problem. In the physics literature the
theory of radiation transport has been actively discussed
since the beginning of the 1940s. The detailed mono-
graphs'"3 and the thorough review of D. I. Nagirner,4 which
have been devoted to the astrophysical approach in trans-
port theory, offer us the opportunity of treating the corre-
sponding problems only very cursorily. We shall pay fun-
damental attention to the physical features of
radiation-transport processes that are manifested under lab-
oratory conditions. At the focus of attention will be the situ-
ation in which both the matter and the radiation are far from
equilibrium, while the transport occurs in line spectra of
atoms and ions. The first studies of radiation transport5'6

assumed conservation of frequency in the event of light scat-
tering by an atom. The theory thus constructed greatly re-
sembled the ordinary theory of diffusion of matter and often
led to conclusions that strongly differed from the experimen-
tal results.7 In the 1940s different authors independently of
one another assumed complete frequency redistribution

(CFR). A reference to the fact that the CFR model was first
proposed by Hautgast is found in Ref. 11. The essence of the
CFR model consists in the idea that the atom emits a photon
with a frequency that does not depend on the frequency of
the absorbed quantum. Here one usually assumes that the
frequency dependences of the emission and absorption coef-
ficients are the same. The founding studies of Biberman"'9

and Holstein'" found an integral equation in the steady-state
case, and an integro-differential equation in the non-steady-
state case, that describe the behavior of the occupancies of
atoms in the excited state. Many important results that agree
well with experiment1213 have been obtained by using the
CFR approximation. The transport theory based on the
CFR approximation has been developed by devising meth-
ods of solving the appropriate integral equations using a
rather complicated mathematical technique: this is the cycle
of studies of Yu. Yu. Abramov, A. M. Dykhne, and A. P.
Napartovich, the studies of the Leningrad astrophysicists of
the school of V. V. Sobolev, the studies of the Dutch theoreti-
cian van Trigt, etc. As was noted,4 transport theory in the
CFR approximation for solving linear two-level problems
can be considered to a certain degree complete. This theory
is reflected in the monographs cited above, in the review of
Ref. 4, and the monograph of Ref. 64. Hence we shall practi-
cally not treat the CFR in this review.

We shall focus our major attention on the situation in
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which an incomplete frequency redistribution (IFR) takes
place. The essence of IFR consists in the idea that the fre-
quencies of the absorbed and reemitted quanta are somehow
correlated with one another. The character of the frequency
change in the scattering event depends on the concrete
mechanism of line broadening, and as a rule, one cannot find
universal solutions in the IFR case. We shall describe the
results that have already become generally known (Hearn,
Hummer),5 as well as problems that have arisen very recent-
ly. The theoretical studies will constitute the bases of the
review, but wherever possible, we shall make a comparison
with experiment.

Moreover, we briefly treat some other nontraditional
problems of transport theory: propagation of polarized radi-
ation, application of the theory to laser problems, transport
of high-intensity radiation, and radiation transport in a spec-
tral continuum.

2. FUNDAMENTAL EQUATIONS

The modern outlook on radiation transport with consis-
tent account taken of the mechanism of frequency redis-
tribution has mainly been developed in the studies devoted
to astrophysical problems.'"4 Although we shall follow the
ideology of this approach in our presentation, the need for
treating non-steady-state problems puts its imprint even on
the system of symbols and writting of equations.l415

Resonance radiation is characterized by a distribution
function of photons / (r, t, £), or in other words, by the
number of photons at the point r at the instant t of time
having the frequency co and direction of propagation ft (for
breavity we further combine the latter variables into one: %,).
Restricting the treatment for now to a two-level formulation
of the problem, we shall characterize the excited atoms by
the population N (r, t). We can easily write an equation of
balance for this quantity:

\ fc(<o)/(r, t, t). (2.1)

Here y is the rate of spontaneous emission, a is the rate of
quenching of the excited state in inelastic collisions, F (r, t)
is the rate of nonradiative excitation of atoms, and k(co) is
the spectral absorption coefficient. Hereinafter the velocity
of light is c = 1. For the treatment below it is useful to define
the quantity e(co) such that:

k (co) = A-Se (o>), ^ e (co) do = 1.

Here k s is the frequency-integrated absorption coefficient.
We shall measure the frequency from the center of the line.
Since the width of the spectral line is much smaller than the
central frequency <y0, the integration is performed over an
infinite range. Moreover, we assume in (2.1) that the gas of
unexcited atoms is unpolarized and is homogeneous
throughout the volume.

The equation for the photons is substantially more com-
plicated. The point is that the frequency of the reradiated
quantum depends on the prehistory of the process. If the
atom was excited as a result of an inelastic impact, we can
assume that it will isotropically emit a quantum with a fre-

quency distributed according to e(co). In this case, when a
quantum has been absorbed with the parameter | ' , the prob-
ability that, after a time r, a quantum will be emitted with the
parameter § is W(%,%',T). We can call the quantity
W(%£',T) the time redistribution function; it is analogous to
the transition probability in the classical kinetic theory of
gases. We shall discuss the concrete form of the function
W{%,%',T) below. Taking into account what we have said, let
us write the equation for I(r,t,%):

t,
b

1', t-x,

-e(co)F(r, t — T)}dx. (2.2)

The first term on the right-hand side describes the absorp-
tion of photons (if nonresonance absorption is substantial,
the absorption coefficient must be correspondingly in-
creased ), and the second term describes emission. Equation
(2.2) takes no account of retardation, since under laborato-
ry conditions it plays no appreciable role. The essential point
is that Eq. (2.2) is integral with respect to time, and in gen-
eral cannot be reduced to a differential equation. The con-
crete boundary conditions for (2.2) are imposed with ac-
count taken of the presence of external sources.

In the steady-state case, upon integrating with respect
to r, we arrive at the ordinary transport equation3:

(flV/)=-fc(u))/(r, t, D

X [ \ W (I, I') k (co') / (r, £') A\' + 8 (w) F (r)] .

(2.3)

Here

W(%, V) = \ W(l, I', T) exp [ - ( + o)T]dT

(2.4)

is the steady-state redistribution function.
In the astrophysical literature the redistribution func-

tion is defined as

R(\, V) = W(%, V) *(«>')•

Although in this form the function is symmetric with respect
to frequency, the quantity W( | , | ' ) is preferable in a number
of cases, since it has the simple physical meaning of the con-
ditional probability of emission of a photon with the charac-
teristics I'. As we shall show below, taking account of noni-
sotropic scattering does not affect substantially the rate of
escape of radiation. Upon averaging (F(§,|',r) over the an-
gular variables, we can integrate Eq. (2.3) over the coordi-
nates:

oo

/ ( r , t, <u)=v \ dr'//(r — r', co) \ dx exp [ — (Y + « )T]
V 0

+ 0O

X f" ( do)'H'((o, w', T) &(w')/(r, ( — T , co')

(2.5)e(co)F(r, « - T ) ] ,
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Here we have

/(r, t, «)= Jj /(r, t, 6)dQ,

H(T, (0)

(2.6)

Equation (2.5) is an analog of the Chapman-Kolmogorov
equation for photons.

In (2.5) we have not taken account of the polarization
of the radiation, as well as of the influence of stimulated-
emission processes. That is, we are studying a situation in
which the population of atoms in the excited state is much
smaller than in the ground state. The influence of stimulated
scattering, as well as transport with allowance for a large
number of excited levels, will be briefly treated below.

As was noted in the Introduction, the case of radiation
transport with CFR has been studied in greatest detail up to
the present. The latter assumes that the function
W{O),(I}',T) = E(CO). Here the starting equations are marked-
ly simplified, and after simple calculations, we can derive
from (2.1) and (2.2) [or (2.5)] the equation

ON (r, t)
^ J

G(r, r')N(v', r' + F(r, t). (2.7)

In the literature this is usually called the Biberman-Holstein
equation.64 It has a very perspicuous physical meaning,
namely, the evolution of the population of excited atoms
N(r,t) is determined by several factors: radiative and colli-
sional decay of the level [ the first term on the right-hand side
of (2.7) ], the process of absorption at the point r of a quan-
tum previously emitted at the point r' (second term), and
population of the level owing to collisions (third term). The
probability of reabsorption (trapping) of a quantum G(r,r')
in the case in which the spectral absorption coefficient k(co)
is considered to be independent of the coordinates has the
form

G(r, r') ^ - X . ,. ( 2 . 8 )

In closing this section we note that the described pat-
tern of successive absorption and emission of photons, al-
though rather graphic, is not self-evident. Nevertheless,
thorough quantum-mechanical treatment of the problem
performed in Refs. 16-19 with allowance for the various
conditions confirms the correctness of the derived equa-
tions. The fundamental restriction is the smallness of the
wavelength A of the radiation as compared with the mean
free path of a photon

Although this restriction can break down in the center of a
line, actual transport occurs in the outer tails, where this
condition is always satisfied.

When the stated inequality holds we can assume that
only one atom participates in the process of absorption and
emission of a quantum. In the converse case one cannot treat
the atoms as a set of independent emitters.64"0 That is, we
must take account of collective effects. One of these effects is
the known selective reflection of resonance radiation from
sodium vapor of high enough density. One can find a more

detailed discussion of this phenomenon and references to the
experimental studies in Ref. 81.

3. EFFECTIVE DEEXCITATION TIME AND THERMALIZATION
LENGTH

In every physical theory, along with the exact relation-
ships between the fundamental parameters of the problem, it
is desirable to gain the possibility of qualitative estimates of
the most important quantities. In the theory of transport of
resonance radiation the effective deexcitation time refI plays
the role of one of such quantities. If we create in a volume a
certain number of excited atoms, then in the absence of
further excitation and quenching, the number of excited
atoms will begin to diminish owing to the escape of radi-
ation. The characteristic time scale of this process according
to Holstein'" is re(r. We may approach the estimation of this
quantity in a somewhat different way. If a stationary excita-
tion source of power/exists, then as a result of competition
of the processes of excitation and escape of radiation, the
volume will constantly contain a certain number of excited
atoms:

N = /x . n .

This definition was given by L. M. Biberman.64 We should
bear in mind that these two definitions, although close in
meaning and magnitude, still are not identical and differ by a
numerical coefficient that depends on the geometry of the
problem.

Another important characteristic is the thermalization
length Lcfl-. In the medium, besides the processes of reradia-
tion of quanta, "loss" of excitation can occur owing to
quenching or nonresonance absorption of photons. Conse-
quently an excited state that has arisen at any point can mi-
grate from it for the distance Lcl1, whereupon the energy of
the photon goes over into the thermal energy of the medium.
If the characteristic dimension of the volume is L > Lcn, then
escape of radiation exerts no substantial influence on points
remote from the boundary of the volume. In this case we can
solve the problem of radiation transport for a thin layer
along the surface. That is, here the approximation of a se-
miinfinite space is considered applicable. In the converse
case L <LC,, only the escape of radiation plays a role, and we
can neglect other processes. The thermalization length is
connected to the effective lifetime. If as before a is the rate of
quenching of excited atoms, and reir is the time for escape of
radiation from a volume of characteristic dimension L^n,
then we can find LCIT from the equation

atfiff = (3.1)

Under the assumption of completely coherent radiation, by
analogy with the diffusion of matter we have

Li
lelf (3.2)

Here A is the diffusion coefficient. In (3.2) we have assumed
that transport occurs at a single central frequency. Under
the hypothesis of CFR the result depends on the type of
broadening. Table 1 presents the results of calculating refT

for two ptypes of broadening: Doppler and dispersion broad-
ening, and two very simple geometries: a plane parallel layer
and a cylinder. The fundamental feature of transport for
CFR consists in the fact that the effective transport occurs in
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TABLE I. -

Geometry

Cylinder
Plane layer

Doppler contour,

T e" «D

Dispersion contour,
(nfcol,)1/1

? L = 1,115

the tail of the absorption line at frequencies at which
k{co)L~\. The transport process is represented as a large
number of random walks of the photon at frequencies close
to the central one, with a small displacement in space and
rare shifts into the region of larger frequencies, which corre-
spond to displacements comparable with the dimensions of
the region.

4. ALMOST COHERENT SCATTERING

As we have already noted above, the transport of reso-
nance radiation depends on the change in frequency in the
scattering event. However, if the frequency change is small
we can draw general conclusions without stipulating the de-
tails of the scattering process. For completely coherent radi-
ation in the case of great optical thickness, we have the fol-
lowing from (2.5):

ei
dt 3*2 (ca) (4.1)

The diffusion approximation is inapplicable near the bound-
ary of the volume, where the boundary condition must be
imposed that3

. 2 dl

IT (4.2)

Here z is the coordinate normal to the surface of the volume.
Radiation at different frequencies propagates independent-
ly, the escape time of the radiation is reff ~ (k(co)L),2 and it
strongly depends on the frequency of the radiation.

Actually the applicability of Eq. (4.1) is restricted,
even in the case of almost coherent radiation. As we shall see
below, the change in frequency upon scattering has a tenden-
cy to accumulate and grow, and this substantially affects the
rate of escape of radiation. Therefore the diffusion approxi-
mation (4.1) holds only for not very great thicknesses, at
which the stated accumulation still hardly occurs in the es-
cape time of the radiation.

Let us study the situation in which the frequency of the
photon is shifted in the time of escape of the radiation from
the volume by the amount <yeff, which is substantially larger
than the linewidth, but at the same time is such that

k (coeff) L » 1, (4.3)

as is typical of almost coherent radiation. Here, in contrast
to CFR, the photon does not succeed in entering the optical-
ly transparent tail of the line," and the spectral line can be
divided into two parts: the core \a>\ <^<ueff, in which the pho-
tons practically do not participate in transport, and the tail
a>\ ~<yeff, in which transport occurs. The escape of radiation

from the core owing to frequency redistribution. In the equa-
tion (2.5) for frequencies of the order of &>eff we can neg-
lectthe term involving the external source and consider this

equation in the quasi-steady-state approximation. More-
over, upon taking account of (4.3) we can go over to the
diffusion approximation:

T-A/(r, t, a))— ft(co)/(r, t, a)

f W(<a, (o')/c(o/)/dw' = 0. (4.4)

The solution of Eq. (4.4) must be joined with the solution for
the number of photons in the core of the line. These photons
exist in equilibrium with the excited atoms:

/(r, t, u) = r, t), |(o|<(oeff. (4.5)

The first term in (4.4) describes the spatial transport of radi-
ation, and hence, the change in concentration of excited
atoms at the point r is determined by its integral with respect
to the frequency. Owing to (4.5), the radiation intensity is
linearly related to N(r,t), and we have

-1 J -jfaj-Mir, t, (o)do)=-Y ( G(r, r')AT(r', *) dr\
-"oo V

(4.6)

Naturally, the form of the kernel G(r,r') differs from the
CFR case. Taking (4.6) into account, we can write the equa-
tion of balance for the population N(r,t) of excited atoms:

- ^ • = - a i V ( r , Z) + V $ G ( r , r')N(r', l)dt' + F(r, t).

(4.7)

Thus the problem is reduced to an integro-differential equa-
tion for the population of excited atoms, provided that Eq.
(4.4) has been solved.

One can distinguish two physically different types of
almost coherent scattering. In the one case the probability of
frequency change in scattering is small, but redistribution
occurs within the limits of the entire spectral line (as in the
case of rare broadening collisions). In the other case the
frequency changes in each scattering event, but by a small
amount (as from Doppler redistribution in the presence of
considerable natural broadening). Here diffusion of the ra-
diation over the frequency scale occurs in the region of the
tail of the line, while Eq. (6) is substantially simplified.
Upon introducing D (co), the mean-square frequency change
in scattering, we obtain

.A/(r, «,*)+-*--£• ̂ • £ • / ( ' . '. »> = 0.

(4.8)
In the approximation of almost coherent radiation we can
easily solve the problem of calculating the effective rate of

868 Sov. Phys. Usp. 31 (9), September 1988 Bulysheve/a/. 868



deexcitation.15 If the volume contains no extra excitation
and quenching sources, then after a long enough time after
the initial excitation, we can assume that

I (r, t, «) = /„/ (co) <p0 (r) exp ( — ^ - ) . (4.9)

Here <po(r) is an eigenfunction of the Laplace operator. /„ is
a constant that depends on the initial conditions. The func-
tion f{co) is determined from the solution of Eq. (4.4) or
(4.8) and satisfies the equation

f>0 r

If we know f(co), we can find Tc(r by the formula

/(CO)
A: (co)

do).

(4.10)

(4.11)

Here Ao is an eigenvalue of the Laplace operator, and L, as
before, is the characteristic dimension of the region.

It is interesting to compare the time t in which a photon
occurring in the tail of the line escapes the volume with the
overall deexcitation time rcir. Evidently, t~ (k(coCIT)L)2/y.
Thus we have

k (c )<OefJ
Teff k (0) Aw0

Consequently a quantum spends the major time in the core
of the line, which justifies the neglect in (4.4) of the time
derivative and the terms describing the rate of quenching
and of external excitation.

In closing this section we note that, although the equa-
tions have been derived under the condition (4.3), which is
known to break down in the CFR case, they yield a qualita-
tively correct result even in this case. Assuming in (4.4) that
W{co,co') = e(co), we find by using (4.11) that

£ (CO) (ICO (4.12)

Calculations1^ by Eq. (4.12) show that it yields a correct
dependence on the optical thickness with a coefficient ele-
vated by 10% for a sphere, by 30% for a cylinder, and by
50% for a plane layer. To avoid misunderstanding we note
that this case cardinally differs from the case of completely
coherent radiation for large optical thicknesses. We note
that the equation for N{r,t) has remained integral.

5. FREQUENCY REDISTRIBUTION OWING TO THE DOPPLER
EFFECT

In the case of pure Doppler broadening the problem of
the redistribution of the photon frequency in scattering is
closely connected with the velocity distribution of excited
atoms. Actually, in the absorption of a quantum of frequen-
cy co' and direction of motion fl', an excited atom is formed
whose velocity v satisfies the relationship

(5.1)

That is, only the component of the velocity perpendicular to
ft' is uniformly distributed. If the excited atom has not
changed in velocity during its time of existence, then in sub-
sequent emission the frequency will be correlated with the

HIT \\ \
<7L

—# -z
FIG. 1. Frequency redistribution function for Doppler broadening. /—
ft//A» = 0; 2—&)7A« = 1; 3—co'/Aco = 2; 4—id/Leo = 3, A«D = a{)vu.

frequency co' of the absorbed quantum. Thus in Doppler
broadening complete frequency redistribution occurs only
in the presence of collisions, which Maxwellize the distribu-
tion function within the time of spontaneous emission. Let
us examine the opposite limiting case in which the role of
collisions is negligibly small. Starting with the arguments
presented above, we can calculate the redistribution func-
tion.'"3'20 Without writing out the concrete expression, we
shall present only the graphic results (Fig. 1).

The problem of radiation transport having this law of
frequency change has been studied by different methods. In
Refs. 21 and 22 the transport equation was solved numeri-
cally by finite-difference methods, in Ref. 23 by the Monte
Carlo method, and in Refs. 24 and 25 by using an expansion
of the velocity distribution function of the excited atoms us-
ing polynomials. In all the studies the authors concluded
that the fact of incomplete frequency redistribution affects
the escape velocity weakly. The effective rate of deexcitation
and the fundamental part of the spectrum of the escaping
radiation do not differ by more than 10% from the values
calculated under the CFR assumption for any values of the
optical thickness.

The situation differs in the case in which the excited
atoms are formed with a strongly non-equilibrium velocity
distribution function. Let us study the sensitized fluores-
cence in a mixture of mercury and thallium vapors.26"27

Upon irradiating the cell containing the vapor mixture with
the radiation from a mercury lamp, the 63P, state of mercury
is excited. In the collision of these atoms with thallium atoms
in the ground state, an excited thallium atom is formed in the
62DV2 state. The 0.4-eV energy defect goes over into the
kinetic energy of the colliding particles; the excited thallium
atoms are formed with a strongly non-equilibrium velocity
distribution. The 62DV2 level is coupled by a radiative tran-
sition not only with the ground state (the 2768-A line), but
also with the metastable 62PV2 level (the 3529-A line). The
emission of this line is also measured in the experiment. The
line being measured is not reabsorbed. Hence the contour of
the line resembles the distribution function of the atoms in
the 62DV2 state with respect to the projection of the velocity
on the direction of observation. In the experiment the gas
cell had the form of a parallelepiped of dimensions
25x25x20 mm. The results of calculating the spectrum
(the calculation was done by the Monte Carlo method) are
shown in Fig. 2. Curve 1— NTI = 10'° cm"3 (kDL~0.\)
corresponds to the absence of trapping and describes the ve-
locity distribution of the atoms created as a result of colli-
sions. Here k D is the coefficient at the center of the line in
Doppler broadening. Curve 2—NT[ = 10'2 cm"3 corre-
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j

— \

' / \ ^

fc. ^

\ \ \ .
\ ^^, \\ ^ ^ ^ >v

N ^ * & ^ V

0,< T,Z 2,0 u

F I G . 2. u = (co — <y,|)/A<i>D (explanation in text) .

sponds to k D L ~ 10; the trapping in this case alters the spec-
trum toward equilibrium (the equilibrium distribution is
shown by the dotted line). The dots show the experimental
points.

6. FREQUENCY REDISTRIBUTION IN STARK BROADENING

The problem of radiation transport in Stark-broadened
lines of hydrogenlike ions is essential for a plasma having the
parameters characteristic of the problem of laser thermonu-
clear fusion (TV, ~ 1021, T~ 1 keV, Z ~ 10),2X for which the
Stark broadening exceeds other types of broadening by
about an order of magnitude.29

The redistribution problem in Stark broadening re-
quires analysis from several standpoints. In the time during
which the ion exists in the excited state, the plasma field
changes in value. This effect is described by the parameter

(6.0

Here v0 is the thermal velocity of the ions, r0 is the character-
istic distance between them, and Mis the reduced mass of the
emitting and the perturbing ions. If <5> 1, then the value of
the plasma microfield (and the Stark shift) varies strongly
within the time of emission, and correlation between the fre-
quencies of the radiated and absorbed quanta is absent. That
is, CFR occurs for each Stark component. In the opposite
limiting case 84I the plasma field varies insignificantly.
That is, almost coherent scattering takes place. Simple esti-
mates show that the value of 8 varies over a broad range,
possibly including the case 8 41.l4

A second essential factor can be the redistribution of an
excited ion over the Stark sublevels owing to inelastic colli-
sions. If the rate of this "mixing" substantially exceeds the
rate of spontaneous emission, then complete redistribution
over the Stark levels can occur within the lifetime of the
excited state. In the opposite limiting case, which, as esti-
mates show,29 corresponds more to reality, the ion remains
in the same Stark sublevel. And finally, the excited ion can
go over upon emitting a quantum to an arbitrary Stark suble-
vel of the lower state. The effect of this circumstance on
frequency redistribution has not yet been studied and we
shall not treat it now. This effect is absent for lines of the
Lyman series, to which we shall restrict the treatment.

We shall assume that we can neglect also collisional
mixing over the Stark sublevels for lines with La8 41. In this
case one can treat radiation transport separately in each of
the side components. We shall adopt the "nearest-neighbor"

model30 for the microfield. That is, we shall assume that the
microfield is created only by the nearest ion, which travels
the distance vo/y4rQ within the emission time. Calculation
of the redistribution function yields the result

W(<o, o)')

fico*
j- dt r

sh 2Ato.s
(6x)2 (6.2)

If the condition is satisfied that

Weff<-g2-, (6.3)

where Acos is the Stark width of the line, then the condition
is applicable of almost coherent scattering, and
D(o) =4«\52/A<ys. In this case the solution of Eq. (4.8) is
expressed in terms of the Macdonald function:

(6.4)

(6.5)

24

8 Aojg

Calculation of the effective deexcitation rate by Eq. (4.11)
yields the result

The obtained results hold under the condition

(6.6)

(6.7)

At smaller optical thicknesses frequency redistribution
plays no role and transport is described by Eq. (4.1). At
greater optical thicknesses conditions (4.3) and (6.3) si-
multaneously break down and the approximation of almost
coherent scattering becomes inapplicable. Under the condi-
tion converse to (6.3), the redistribution function (6.2) is
substantially simplified:

(6.8)

We see from (6.8) that W(co,a)') differs from zero for
a' ~Aa)s/8

24a>Cfr> where the radiation is at equilibrium.
Simple integration showed that the CFR condition is satis-
fied in this case within the limits of one Stark component.
Accordingly the effective escape time of the radiation is

Tef, ~ (ksL)0,*. (6.9)

The law (6.9) corresponds to the spectral dependence of
e(co) in the tail of the line ase(<y) ~co~5/2.

Let us examine the rate of deexcitation found by the
Monte Carlo method from a plane layer of thickness L for
comparison with that determined by Eq. (6.6) under the
condition that all the photons at the initial instant have the
frequency co = 2A«ys (Fig. 3). We can see well three charac-
teristic regimes with the example of the curve with 8 = 0.05:
coherent scattering, diffusion in the tail of the spectral line,
and CFR within the limits of a Stark component.
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FIG. 3. Rate of deexcitation from a plane layer with Stark broadening. /,
2—calculation by Eq. (6.6) respectively for <5 = 0.2 and 0.05; 3—calcula-
tion by Eq. (6.9); 4—coherent reemission; 5—calculation with S = 0.2 by
the Monte Carlo method; 6—calculation with S = 0.05 by the Monte
Carlo method.

Complete neglect of transitions between Stark compo-
nents for the line La is physically not justified. The central
component has a finite, albeit small, width caused by the
Doppler effect and by collisions with electrons. Therefore
reemissions in the center of the line will lead to effective
remixing over the Stark sublevels. Thus only half of the ex-
cited ions will exist on the displaced sublevels, and the rate of
deexcitation will prove to be half of that calculated by Eq.
(6.9).

Now let us estimate under what conditions collisional
broadening will have no effect on the frequency redistribu-
tion of radiation. Evidently, for this to happen the probabili-
ty of such a collision must be small over the time during
which the photon exists in the tail of the line. According to
the estimates of Sec. 4, one can estimate this time as
[ T5 (8k SL)'n] -'. If we take account of the fact that the rate
of remixing collisions is ~ Z ~ V whiley—Z4,evidently this
condition is satisfied for large Z.

When 8 ~ I, even if we restrict the treatment to the near-
est-neighbor approximation, there are no grounds for as-
suming that the field is created by the same ion at the instant
of absorption and at the moment of emission. Within the
reemission time the nearest ion can change and the redis-
tribution function of (6.2) will describe the process falsely.
A complete calculation of this function in the nearest-neigh-
bor approximation is given in Ref. 14. The time redistribu-
tion function W(a>,co',t) is calculated in the same reference.
By using this function W(co,co',t) the problem was solved by
the Monte Carlo method of calculating the time rc(r pertain-
ing to emission from a spherical volume for different values
of the parameter 8. The transition from the diffusion law for
8 = 0 to CFR for <5> 1 occurs in a narrow interval of values
of 8, which corresponds to the conclusions drawn above.

A numerical calculation of frequency redistribution
with account taken of the action of many perturbing ions has
been performed32'33 by the method of molecular dynamics.

To treat radiation transport in other lines of the Lyman
series within the framework of the two-level model is already
incorrect. However, the problem of frequency redistribution
is solved by averaging (6.2) over the Stark components.

7. TRANSPORT IN THE TAIL OF A LINE WITH NATURAL
BROADENING

The problem is of substantial theoretical interest in
which the characteristic frequency «cff at which the radi-

ation escapes from the volume lies in a region of the spec-
trum determined by the natural broadening. Since the
Doppler broadening usually considerably exceeds the natu-
ral broadening, the volume must have a rather great optical
thickness. At the same time the pressure must be relatively
small, so that collisions should not lead to complete loss of
coherence in scattering. These conditions are realized in
many astrophysical problems, for which low densities to-
gether with a considerable extent of the objects are charac-
teristic. Another field is a high-temperature plasma contain-
ing ions of great multiplicity Z. The natural lifetime of
excited states declines for them as Z ~4, and for large values
of Z the natural linewidth can prove comparable with other
broadening factors. Finally, many atomic lines from whose
upper level an autoionization process occurs possess an
anomalously large natural width.65 An example is the cop-
per line k = 453.9 nm, whose natural width is ~ 1 A.

In a single natural broadening event the quantum is
scattered coherently by the atom. Other types of broadening
(as before, we shall treat Doppler, collisional, and Stark
broadening) lead to partial redistribution. If it is small, we
apply the approach presented in Sec. 4.

Let us study the influence of Stark frequency redistribu-
tion. We can find the redistribution function in joint action
of Stark and natural broadening from simple probability
considerations. It is

W(o>, w')= \ i\u Ws (co — co'-fu, u)8S (") Esp Id' — u)
e(co')

(7.1)

Here Ws and es arise from a pure Stark mechanism, £sp is
the natural broadening, and e is the natural profile of the line
as determined by the joint effect of both factors. Equation
(7.1) in general form is very complicated. Beside, in the case
of an ideal plasma, the mean-square variation of the frequen-
cy diverges. To estimate the escape time of the radiation we
must solve the integral equation (4.4). However paradoxi-
cally, the case of a nonideal plasma is simpler, since the expo-
nential cutoff of the tails of the Stark broadening owing to
nonideality (see, e.g., Ref. 34) allows one to go over to the
diffusion approximation throughout the frequency scale. As
before, we shall consider transport in the La line. Under the
conditions stated above the major role is played by the plas-
ma fields, which lead to a frequency change of the order of
A<ys /x2 > A<ys, for which the nearest-neighbor approxima-
tion is applicable; here

is the nonideality parameter of the plasma. We can no longer
consider the motion of the perturbing ion to be rectilinear,
and the expression for D(co) becomes complicated. Let us
examine this in two limiting cases. For <5<̂ x, when the
change in the plasma microfield during the emission time is
small, we have

n _ 16

In the converse case we have

2

(7.2)

(7.3)
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The condition for applicability of both expressions is

(7.4)

Taking account of the fact that we can use the asymptotic
value of the absorption coefficient34 when a>~a>eif, we can
easily solve Eq. (4.8):

3D y*ki,L \ V3

—a" jj •

(7.5)

(7.6)

Calculation of the effective deexcitation time yields the re-
sult

(7.7)

Of the two conditions (4.3) and (7.4) necessary for applying
the approximations that we have made, we see that the latter
is the stricter one, and reduces to the form

1/3

Awl
(7.8)

Evidently it can be satisfied.
What we have presented above on Stark redistribution

when there is a substantial effect of natural broadening re-
quires the following explanation. The fundamental assump-
tion was the idea of the scattering process as a sequence of
absorptions of a quantum with a change of the frequency of
the Stark sublevel and emission of a quantum at another
frequency. We stress that the time of variation of the fre-
quency is actually the lifetime of the atom. Under the given
conditions such an approximation is not obvious, and the
problem requires further study.

Now let us study the Doppler frequency redistribution.
The redistribution function corresponding to the case of
joint action of Doppler and natural broadening can be calcu-
lated by using the pure Doppler redistribution function ac-
cording to a formula analogous to (7.1). Although one can-
not perform the analytic calculations in full, the properties
of the corresponding redistribution function have been well
studied.3'20"21 An algorithm for fast calculation of this func-
tion is given in Ref. 35. The absorption coefficient for the
joint effect of Doppler and natural broadening is described
by the Voigt function.3' It is expedient to introduce the Voigt
parameter a = y/2AcoD and also the frequency coP at which

FIG. 4. Redistribution function for Doppler and for natural broadening.
)D = 0; 2—a'/tx0D = 2; 3—<u7A&»D = 3; 4—co'/ka)D = 5.

the frequency functions e(co) calculated for pure Doppler
and pure natural types of broadening coincide. Figure 4
shows graphs of the redistribution functions for a = 10~3.
We see well from them that almost coherent scattering oc-
curs when a>^coF. If the condition is satisfied that

«<•„> £0p,

then again we return to Eq. (4.8), with

D =

(7.9)

(7.10)

Different aspects of the problem in this approximation have
been treated in Refs. 15,36-40. The solution of Eq. (4.8)l5is
given by Eq. (7.5) with

(7.11)

The effective rate of deexcitation according to (7.7) is

Teffl - kDL •
(7.12)

The problem of the thermalization length is of interest.38"39

If the deactivation in the medium is determined by quench-
ing of excited atoms with the rate a, then, according to
(7.12) and (3.11), we have

(7.13)

Yet if the deactivation is due to nonresonance absorption of
photons in the medium, then the mean free path /of a photon
is limited, rather than the lifetime of the excitation. We can
easily show that in this case

(7.14)

The condition for applicability of the formulas derived for
r^ and Lcfr acquires the form

(aA-DL)V»>l. (7.15)

In the converse limiting case (a < 1), according to the results
of Sec. 5, we must obtain the rate of deexcitation within the
framework of the CFR for Doppler broadening.

It is interesting to trace how the transition for the effec-
tive rate occurs from (7.12) to the formulas of Sec. 3. One
can obtain an exact solution of the problem only by numeri-
cal methods (e.g., the Monte Carlo method41"44 and finite-
difference methods40'45"46). However, if we assume that
complete redistribution occurs when a < coF, while Eq.
(4.8) holds when co>coF, we can propose an approximate
formula15:

Terr1 = - | - (arctg rj) T H ' (7.16)

Here rH is the deexcitation time according to Holstein for
Doppler broadening, rdjf is defined by Eq. (7.12), and we
have

(7.17)

Equation (7.16) yields an exact result in two limiting
cases: CFR and almost coherent scattering. As is shown by
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comparison with numerical calculations, Eq. (7.17) holds
throughout the range of the parameters with an accuracy of
the order of 20%. The presented approach is in a certain
sense a refinement and generalization of the approximate
approach of Jeffries and White,46 who generally neglected
frequency diffusion of photons in the tail of the line. As we
have already noted above, this can lead to considerable er-
rors at great optical thicknesses.

Collisional frequency mixing leads to the redistribution
function

W(w, G)') = ( l -P c )6 (o ) -w ' ) + /'ce(M). (7.18)

Here we have Pc = ^ . / (K + Y)> where yc is the rate of
broadening collisions, and £(&>) is the dispersion profile.
Physically Eq. (7.18) reflects the fact that, if no collision
occurs within the time of existence of an excited atom, then
the scattering is coherent. CFR occurs in the converse case.
This approach is fully confirmed by quantum-mechanical
calculations in the impact approximation.47 The solution of
Eq. (4.4) with this redistribution function is not complicat-
ed; it yields

1/4 -7c)

-v I h.\ Ui J ^ i ( V + Tc \
- 7 { 3 ) 2 I kYL I

'" »V3

(7.19)

(7.20)

(7.21)

The condition of applicability of diffusion theory in this case
has the form

i > , « l . (7.22)

However, comparison of (7.21) with the results of Sec. 5
shows that (7.21) satisfactorily describes the situation al-
most throughout the range of the parameters.

In the joint action of Stark and Doppler redistribution
mechanisms, their frequency-diffusion coefficients add.
Taking account of collisional redistribution simultaneously
with them requires numerical solution of Eq. (4.4). To an
accuracy of ~ 20% the effective rate of deexcitation is given
by the sum of (7.21) and (7.7):

1/2

(7.23)

We see from (7.23) that the collisional and diffusional
mechanisms of redistribution become comparable at

' - ( - & - ) • " « « •
(7.24)

To test the obtained results, a comparison was per-
formed with the results of experimental measurement of the
deexcitation rate of argon in the 1048-A line48 from a cylin-
drical volume of radius 1.1 cm in the pressure range 0.0015-
10 Torr. The parameters were such that, at a pressure of the
order of 0.1 Torr, the escaping radiation lies in the tail of the
natural broadening, and considerable deviations were ob-
served from the Holstein rate of deexcitation. At lower pres-
sures the results are satisfactorily described within the
framework of the CFR approximation with Doppler broad-
ening. At higher pressures CFR is brought about by reso-

Pressure, Torr

FIG. 5. Rate of deexcitation of the 1048-A line of argon. /—result ofRef.
15; 2—complete redistribution with Doppler broadening; 3—complete
redistribution with natural and collisional broadening; 4—experimental
data.4"

nance collisions. We see in Fig. 5 that taking account of the
joint action of the effect described by Eqs. (7.16) and (7.23)
agrees well throughout the region with the experimental
data. For perspicuity the effective rate of deexcitation calcu-
lated according to Holstein is given in the same place.'" Re-
sults have recently been published of experiments49"50 in
which an analogous effect was observed in the 1849-A line of
mercury of the natural isotropic mixture. These data are also
described rather well by frequency diffusion of photons with
account taken of the hyperfine splitting of the lines.

8. TRANSPORT OF POLARIZED RADIATION

Up to now we have treated the radiation and the atoms
of the medium without allowance for their polarization. The
scattering process was considered isotropic. Actually polar-
ization effects make the scattering process anisotropic, and
one must elucidate to what extent this can alter the radiation
yield. In the general formulation of the problem one must
operate with the polarization density matrix of the photons
and excited atoms, since in the scattering process an initial
linearly polarized photon ceases to be such and goes over
into a mixed state described by the density matrix. The equa-
tions of radiation kinetics in this form have been formulated
in Ref. 16. Below we restrict the treatment to the case in
which atoms have the total angular momentum j0 = 0 in the
ground state, and/, = 1 in the excited state. Upon scattering
by such atoms a linearly polarized photon remains linearly
polarized but changes its direction of polarization. The in-
tensity of emission begins to depend on yet another argu-
ment—the direction e of polarization of the photons. The
redistribution function of the polarizations and directions
has the form:

Q; e', |Q') = -^ («e')26 ( e - •(Qe')B

I —(Qo')2] 1 ' 2

(8.1)

The first factor in (8.1) takes account of the angular depen-
dence in dipole emission, and the second, the change in po-
larization of the radiation. We assume in (8.1) that, during
the time of existence of an excited atom, it is not subject to
collisions that can affect its polarization. Thus the density of
the medium is considered to be low and the frequency redis-
tribution function is determined by the Doppler effect.

The transport equations with account taken of polariza-
tion are very complex to solve. Some estimates of the charac-
teristic quantities have been given in Ref. 51. In particular, it
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was shown that the effective rate of deexcitation at large
optical thicknesses is decreased in comparison with the Hol-
stein value by the amount:

(8.2)£ J l e » In (k0L) •

Numerical solution of the transport equations shows that
the change in the effective deexcitation time does not exceed
10% at any optical thicknesses.

The question of the degree of polarization of the excited
atoms is of interest. Results will be given below of a numeri-
cal experiment performed by the Monte Carlo method. A
plane layer of thickness L is considered in which unpolarized
excited atoms are formed homogeneously throughout the
volume at the rate F (this corresponds, e.g., to excitation by
thermal electrons). The number of excited atoms at each
point will be determined by excitation by inelastic impacts
and absorption of the radiation emitted at other points of the
volume. Since the radiation is nonisotropic, this leads to for-
mation of polarized atoms. As the measure of polarization
we can take the quantity

n0 —0,5 («! (8.3)

Here the subscripts 0 and + 1 denote the projection of the
angular momentum of the excited atom on an axis perpen-
dicular to the planes bounding the plane layer. When all the
atoms have a zero projection of the angular momentum, then
we have/? = 1; if there are no such atoms at all, then we have
p = — 0.5. The value of the degree of polarization differs by
a numerical coefficient from the alignment factor as defined
as the second moment of the density matrix of the excited
atoms.52 Figure 6 shows the results of calculating the quanti-
ty p for a plane layer of differing optical thickness. We see
that the strongest alignment is observed in a layer of optical
thickness of the order of unity. With increasing optical
thickness the alignment as a whole declines, which corre-
sponds to the estimates of Ref. 52, where it was shown that,
at the center of the layer with kDL^> 1, we have

(8.4)

In agreement with the estimates of Ref. 52 the alignment
changes sign in a narrow region at the boundary. This is

p
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FIG. 6. Alignment of excited atoms in a plane layer of thickness L.
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FIG. 7. Latent alignment at the center of a sphere. /—k0R = 0.5; 2-
k0R = 2; 3—knR = 4; 4—k{tR = 8.

explained by the fact that in the center of the layer the atoms
are excited mainly by radiation propagating along the layer,
but at the boundary by that escaping the layer.

In the situation examined above the alignment was
created by nonisotropic radiation at the given point of the
volume. However, even if the radiation is isotropic (as, e.g.,
at the center of a spherical volume), it has a spectral finite
width, an atom possessing the velocity v will receive this
radiation anisotropically owing to the Doppler effect. Radi-
ation distributed perpendicularly to the motion of the atom
will be absorbed more efficiently than that propagating col-
linearly. This has the result that an ensemble of atoms with
the velocity v will have an alignment with the axis of v, al-
though as a whole the atoms are unpolarized.

In the terminology of M. P. ChaTka,52 this alignment is
called latent. The rate of alignment calculated by the authors
by the Monte Carlo method at the center of the sphere is
shown in Fig. 7. We see that, with increasing velocity the
alignment can become considerable, but there are extremely
few atoms having such a velocity.

In closing this section, we can conclude that the effects
of polarization affect the radiation yield weakly. At the same
time, the alignment varies in the magnetic field and an obser-
vation of a dependence of the alignment on the field strength
(or a depolarization of the radiation) can serve as an instru-
ment for determining atomic parameters, relaxation con-
stants, magnetic characteristics, etc.52'53 However, a discus-
sion of these problems lies outside the scope of this review.

9. NONLINEAR EFFECTS IN THE PROBLEM OF RADIATION
TRAPPING

The process of transport of high-intensity radiation is
very complicated. Even in the case that a monochromatic
wave of considerable amplitude is interacting with a two-
level isolated atom, we must bear in mind a number of effects
difficult to take into account: hole-burning, change in the
spectral composition of the scattered radiation, etc.54 Exten-
sive literature has been devoted solely to discussing this
problem. Yet there are practically no results in the problem
of the interaction with a two-level system of several waves
having different frequencies and directions. Therefore CFR
has been assumed in the small number of studies on trans-
port of high-intensity radiation. In Ref. 55 the problem was
solved in a two-level formulation with conservation of the
number of atoms in the two levels. In transforming from the
coordinates to a new variable that is actually the optical path
length, the authors55 obtained a transport equation, now lin-
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FIG. 8. Contours of the population of the excited state for a considerable
radiation intensity. The arrows indicate the position of the exciting beam.

ear, but on an unknown scale. They obtained an estimate of
the solution in a semiinfinite space and calculated the line
contour of the escaping radiation. In Ref. 56 a solution of the
problem of the population distribution in a plane layer was
found on the basis of an asymptotic theory. The qualitative
conclusion from Refs. 55 and 56 is rather lucid: stimulated
scattering diminishes the optical thickness of the transition
and decreases the extent of variation of the population. In
Ref. 57 the problem of the interaction of high-intensity radi-
ation with a gas of two-level atoms with Doppler broadening
was studied by the Monte Carlo method. The transmission
and reflection coefficients were calculated for a plane layer
as functions of the intensity of the radiation incident on the
layer. It was shown that the increase in the coefficients of
reflection owing to the gradient of the absorption coefficient
somewhat compensates the effect of hole-burning. They not-
ed that, in scattering of a spatially restricted beam, the hole-
burning effect alters the indicatrix of the backscattered radi-
ation. The intensity becomes more extended in the
"backward" direction—the layer begins to operate as a mir-
ror. Figure 8 shows the contours of the populations, and Fig.
9 the indicatrix of the scattered radiation. In Ref. 58 the
problem was solved of calculating rL.n for a cylinder in the
presence of stimulated emission under conditions of
Doppler broadening, also by the Monte Carlo method. At
the initial instant the populations of the lower and upper
states were taken equal. We can formulate the result of the
modeling as: with k(,R < 1, r,.n- coincides with the radiative
lifetime, and when k(,R > 1, rcl, rapidly goes over to the Hol-
stein asymptotic. Here k0 is taken to mean the "generalized"
absorption coefficient (with account taken of stimulated
emission) at the center of the line.

We should note that the assumption of CFR is not ob-

FIG. 9. Indicatrix of the back-
scattered radiation.

FIG. 10. Diagram of levels for the
problem of trapping in a three-level
system. /—ground state; 2—lower
laser level; 3—upper level.

vious when the excitation of the medium is appreciable, and
it is known to become false in the presence of inversion. In a
medium with inversion the frequency distribution is nar-
rowed, and strong anisotropy of the radiation occurs, etc. In
all cases (both absorption and amplification) one must take
account of the distortion of the emission and absorption con-
tours by the radiation.

In treating the transport of high-intensity radiation in a
dense plasma of hydrogenlike ions, Refs. 32 and 33 have
analyzed the frequency redistribution function with Stark
broadening. In this case the redistribution function begins to
depend on the radiation intensity. At low intensity the result
is close to the linear theory, while at very strong intensity
CFR sets in under the "field" broadening.34 In the interme-
diate case the problem is extremely complicated, and the
redistribution function can be found only numerically. Yet,
insofar as we know, no solution of the problem of radiation
transport with such a redistribution function exists in the
literature. Thus the study of problems of transport of high-
intensity radiation is in its beginning stage.

A three-level system of an atom is studied in Refs. 59
and 60 in which a laser transition occurs between levels 3 and
2, and radiation trapping in the 3 ^ 1 transition (Fig. 10).
The problem arose in connection with the interpretation of
experiments61 that established a deviation of the data of
measurements and calculations for laser action. Attempts to
interpret the smoothing of the Lamb dip owing to collisins
led to anomalously large collision cross sections. Therefore
in Refs. 59 and 60 the "diffusion into the dip" was explained
by a frequency change upon light scattering in the 3 — 1 tran-
sition. Qualitatively one can understand this phenomenon
by studying the formation of "Bennet holes" in the velocity
distribution function of excited atoms (in level 3) in the
presence of radiation trapping. The existence of "Bennet
holes," as they are known, involves the fact that, in Doppler
broadening of lines, only a small fraction of the atoms inter-
acts with the laser field. The induced 3^2 transitions for this
group of atoms decreases the number of atoms in level 3. In
the presence of trapping in the 3 -> 1 transition, the atoms
from other regions in state 3 can spontaneously go to level 1
and return owing to absorption in the interaction region.
The reverse course is also possible. Evidently the rate of the
former transitions prevails over the rate of the latter. Conse-
quently a partial "smearing" of the dip occurs. The theory of
this phenomenon proposed in Refs. 59 and 60 agrees quanti-
tatively with the experimental data.

10. RADIATION TRAPPING IN THE CASE OF FREE-BOUND
TRANSITIONS

Radiative free-bound transitions in a plasma can be for-
mally correlated with bound-bound transitions. Actually, if
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we assume that the atom has only two states—the ground
and the ionized states—and also radiation is present that can
ionize the atoms, then the processes of radiation transport in
the lines and in the continuum formally coincide. On the
basis of this analogy, the authors of Ref. 62 derived an equa-
tion for the concentration of ions of the type of the Biber-
man-Holstein equation:

- ^ - = - neNikr + ^ G (r, r') ne (r') JV, (r') d V . (10.1)
v

Here kT is the recombination coefficient.
If we assume that the electrons and the ions are formed

only by photoionization, then we have ne (r) = N-, (r), and
Eq. (10.1) becomes nonlinear. If we assume that the ions of
the given type are a small addition, while the electrons are
supplied by an easily ionizable component, then «e (r) is a
known quantity, and Eq. (10.1) remains linear. The authors
of Ref. 62, while assuming CFR for the recombination con-
tinuum, went over in Eq. (10.1) to the re(r approximation,
taking N,(r) outside the integral. In this case this method is
not fully obvious. The assumption of CFR in this case
arouses no doubts. Actually CFR is attained owing to free-
electron collisions with the other components of the plasma.
As a rule, the cross sections of collisions with velocity
change are much larger than the corresponding cross sec-
tions for photorecombination. For the method to be justified
it requires also the coincidence of the frequency characteris-
tics of the emission and absorption coefficients.63 In the giv-
en case this is specifically not so, and the accuracy of the rcn-
approximation can turn out to be low. As was shown in Ref.
63 with a model example, the deviation from the exact solu-
tion can be as great as an order of magnitude. In the case of a
recombination continuum, the mean free path of a quantum
is a finite quantity and equals in order of magnitude the mean
free path at the boundary of the continuum. The diffusion
approximation is more natural, but no solution of Eq. (10.1)
has been performed in this approximation, so that no final
conclusion has been drawn at present on the accuracy of the
approximation.

The two-level approximation is less substantiated than
for transport in lines. Actually an electron can recombine
also into an excited level, which leads to "fragmentation" of
the quantum.

The small number of studies on transport in a recombi-
nation continuum indirectly indicates that the formation of
an ionized state by radiation is a relatively rare situation, in
contrast to trapping of radiation in lines.

11. JOINT EXCITATION TRANSPORT

In treating a number of experimental situations, along
with taking account of a pure radiative transport mecha-
nism, one must estimate the influence of the intrinsic dis-
placement of the excited atoms. Chaotic motion of the latter
can be interpreted as a diffusion process. Here the diffusion
coefficient of the excited atoms is determined not by the gas-
kinetic mean free path /, but by the effective mean free
path64:

( l i . D

(11.1) takes account of the decrease in the mean free path
owing to deexcitation and quenching. An analytical study of
the influence of diffusion of atoms has been performed in
Refs. 71-73; numerical calculations are described in Refs. 74
and 75. Some of the theoretical results have been tested ex-
perimentally in Ref. 76. For our purposes we must first bear
in mind the results of the simple estimates as well as of the
numerical and experimental studies cited above, which im-
ply that, for an optically allowed transition, the intrinsic dif-
fusion of atoms can compete with radiation transport only in
a thin layer near the boundaries of the volume, while it does
not substantially alter the overall pattern of the process. If
the probability y is small, the role of the motion of the atoms
can become predominant. The criterion for absence of an
influence of diffusion of excited atoms can be the relation-
ship

(•') htt
TefJ

(11.2)

If the medium is moving at the velocity v, this affects the
occupancies of excited atoms under the condition that

Te[f
(11.3)

Here (v) is the mean velocity of an atom. The latter term in
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This condition is often realized in calculating the density of
excited atoms ahead of the front of a shock wave.77'79

12. CONCLUSION

In closing we shall present some results and cite some
related and unsolved problems.

At present the theory of transport with CFR is close to
completion. The determination of the region of applicability,
the detailed comparison with experiment, the large number
of problems solved in the asymptotic region, and also by
approximate and numerical methods—all this allows us to
draw the above conclusion. The situation is more complicat-
ed upon strong deviation from the simplified conditions of
the linear two-level problem. Transport of high-intensity ra-
diation and interaction of radiation with a large number of
levels of the atom are problems far from fully worked out.
The difficulty of theoretical analysis consists here in the non-
linear character of the equations. We should also note that
radiation transport in these cases must be considered jointly
with other kinetic processes and the hydrodynamic move-
ment of the medium.

The theory of transport with IFR is also far from per-
fection. Although the frequency redistribution functions
have been calculated for many cases of broadening, there are
as yet very few examples of solving concrete problems for
IFR. The appearance of new objects of study, e.g., a laser
plasma, requires construction of a theory under conditions
sharply differing from those traditionally studied. The stud-
ies in which both factors, IFR and nonlinearity, are mani-
fested simultaneously are quite solitary. The theory is taking
only the first steps along this line. As a rule the results of
transport theory under the assumption of IFR adequately
describe the physical processes observable in laboratory ex-
periment. The individual parameters when CFR is not ful-
filled are presented in Sees. 5-7; we see from them that devi-
ation from CFR leads to considerable difference in the
observable quantities. However, the greatest interest arises
in transport theory with IFR in solving problems associated
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with extremal states of the medium: in studying strong shock
waves, a laser plasma, a plasma of high-current discharges
and other objects in which ions of high multiplicity Z are
formed. As the estimates show, under these conditions CFR
ceases to be fulfilled for a number of reasons (mainly because
of the increase in the rate of spontaneous transitions in pro-
portion to Z 4 ) .

However, radiation transport in these objects is a very
important factor, but not the only one. In modeling one must
also take into account the conditions of energy dissipation,
hydrodynamics, kinetics of ionization, transport in the con-
tinuous spectrum, etc. It is very difficult to point out "pure"
experiments that isolate the role of radiation trapping alone.
The approaches described above for solving transport prob-
lems under IFR conditions are at the same time an integral
part of the more general, complicated calculation.

This review has treated radiation transport under con-
ditions in which the medium is far from an equilibrium state,
including discussion of extreme nonequilibrium situations in
which the rate of the radiative processes is much greater than
the rates of the collisional processes. However, radiation
transport in lines can also play an important role under con-
ditions of LTR. Without altering the occupancies of the lev-
els explicitly, radiation can act on them indirectly—owing to
heat exchange. A large series of studies along this line has
been performed by V. G. Sevast3 yanenko and his associates
(see, e.g., Ref. 66).

Having focused attention on transport in the spectra of
atoms and ions, we have not touched upon problems of radi-
ation transport in molecular media. A series of studies on
radiation transport in spectra of diatomic molecules676" has
been constructed by analogy with transport in atomic spec-
tra. In the "photon shoot-through" approximation, a num-
ber of problems of atmospheric optics has been solved.6470

However, we should note that the analogy with atoms is
not far-reaching, and the problem of transport in molecular
spectra as before remains topical, both on the level of sub-
stantiating the starting equations and in solving applied
problems.
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