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The Sagnac experiment can be explained systematically without going beyond the special theory
of relativity.

The Sagnac effect1 ranks along with Michelson's exper-
iment, measurements of the velocity of light, etc., as one of
the fundamental experiments in the theory of relativity.
Nevertheless, one still encounters in the literature both in-
correct explanations of this effect, based on signals which are
moving at velocities higher than the velocity of light23 or
with references to the general theory of relativity,3 and the
declaration that the Sagnac effect is puzzling and cannot be
explained in a noncontradictory way.4 We will be discussing
this matter in more detail below. We therefore think it is
pertinent at this point, on the basis of methodological consid-
erations and also to avoid any possible misconception, to em-
phasize once more that the Sagnac effect is of a purely special-
relativistic nature. We will of course not need any velocities
higher than the velocity of light or, especially, the general
theory of relativity.

We begin with a description of the Sagnac experiment.
Mirrors are placed at the corners of a quadrangle on a disk.
The corners are positioned with respect to each other in such
a way that a light ray coming from a monochromatic source
is reflected from the mirrors around a closed loop and then
returns to the source. A beam splitter can be used to split the
ray from the source into two rays, which would move in
opposite directions around this closed loop.

Sagnac observed that if the disk was put in rotation a ray
traversing the loop in the direction of the rotation would
arrive at the source after a ray traversing the loop in the
direction opposite the rotation, with the result that there
would be a shift of an interference pattern on a photographic
plate. When the rotation was reversed, the interference
fringes shifted in the opposite direction.

What explanation has been given to this effect? Sagnac
himself derived a theoretical value for the magnitude of the
effect through a purely classical summation of the velocity of
light with the linear rotation velocity for a ray moving in the
direction opposite the rotation. He did the same for the ray
propagating in the direction of rotation, using a correspond-
ing subtraction. The discrepancy between this result and the
experiment result is of the order of 1%.

In one form or another, frequently obscured, this expla-
nation persisted. For example, we might cite a typical asser-
tion in this regard by Sommerfeld in his Optics*: "Michel-
son's negative result of course tells us nothing about the
propagation of light in rotating media. In this case it would
be necessary to appeal, not to the special theory, but to the
general theory of relativity, with its additional terms which
correspond to centrifugal mechanical forces. If, however,

one notes that in later experiments (of Sagnac et al.—note
by the present authors) the only velocities which were in-
volved satisfied v4,c, and the only effects which were in-
volved were of first order in v/c, then one can make do with-
out any theory of relativity and carry out the calculations at
a purely classical level."

That explanation is actually in the spirit of old ether
concepts and, as Yilmaz4 has correctly pointed out, is
wrong, since it allows velocities higher than the velocity of
light. Furthermore, it contradicts the relativistic law for
adding velocities.

For clarity, let us follow Yilmaz and examine the circu-
lar path which would be traced out by the rays in a Sagnac
experiment carried out with an infinite number of mirrors.
According to the classical law for adding velocities in a ro-
tating coordinate system, the velocities of the light would be
c±ar0, where a> is the rotation frequency, and r0 is the
radius of the path.

It is then obvious that the magnitude of the effect is
given by

2Jirn 2irrn 4nr?.to iaS

which agrees well with experiment. Here S is the area of the
closed loop around which the rays propagate.

We see that this result has been achieved at the cost of
introducing an anisotropy in the velocity of light and of actu-
ally allowing velocities higher than the velocity of light. This
anisotropy contradicts the relativistic law for adding veloc-
ities (even in first order), and it contradicts the constancy of
the velocity of light. In other words, although these ideas do
generate a prediction which agrees (in a first approxima-
tion) with the correct prediction, it is internally untenable.
With this fact in mind, Yilmaz labeled the Sagnac effect
"puzzling."4

A team of experimentalists at the University of Mary-
land, headed by C. O. Alley, is planning measurements of the
velocity of light with the goal of seeking a possible anisotro-
py."

In the present paper we will show that an explanation of
the Sagnac effect is completely within the capabilities of the
special theory of relativity and that none of the following
need be invoked: the general theory of relativity, velocities
higher than the velocity of light, or any other postulates. We
will see in detail how to calculate the time between the arriv-
al of the rays at the source, working in a fixed inertial frame
of reference. We will also do this using a noninertial frame of
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reference which is rotating along with the apparatus. As
should be expected, the results of the calculations agree.

We begin with the case of an inertial frame of reference.
We write the interval in cylindrical coordinates:

ds2 = c2 &t2 — dr2 — r2 d<p2 — dz2. (1)

Let us assume, as we mentioned earlier, that the light rays
are moving in the z = 0 plane along a circle of radius r = r0

= const. For the light, the interval is zero, so we find
dtp± (t) _

dt ~ • (2)

The plus sign indicates the ray which is moving in the direc-
tion of the rotation, and the minus sign indicates that which
is moving in the opposite direction.

Using the initial conditions p * (0) = 0, cp__(O) =2v,
we find the behavior of the angles <p ± of the two rays as
functions of the time t:

(3)

The rays meet at the time /,, at which we have
<p + U\) =(p-(tt). Substituting (3) into this relation, we
find

q>+ (d) = q>_ (h) = n.

Now choosing /, as the initial time and repeating the argu-
ments, we find that the next meeting of the rays occurs at
specifically that point (in a three-dimensional space) from
which the rays were emitted, i.e., at the point with the co-
ordinates cp = 0, r = r0, z = 0.

We wish to emphasize that this result obviously does
not depend on the angular rotation velocity of the frame of
reference of the source and the mirror.

By definition, the changes in the angular coordinate of
the source are described by [the initial condition is q>s

( 0 ) = 0 ]

<p3 (t) = (of. (4)

Consequently, the source meets the + ray at the coor-
dinate time t +, determined by the condition
<ps (t+) = <p+ (t+) — 2irl; i.e.,

< . =
 2" . ( 5 )

It meets the — ray at the coordinate time /_ , which is deter-
mined by the condition <ps(t_) — q)_(t_):

The form of expressions (5) and (6) might give the impres-
sion that the velocity of light is anisotropic and different
from c in this case. However, this is not true. The velocity of
light is the same for the two rays and equal to c; the explana-
tion for the difference in the times at which the rays return to
the source is that over the ray propagation time the source
has moved a certain distance, so the rays traverse different
distances before they meet the source (the + ray travels the
greater distance).

Let us find the proper-time difference between the ar-
rival of the two rays for an observer at the source. By defini-
tion, this difference is

A — — [ d — — \ — At

where s is the interval. Substituting the values of the interval
at the point of the source into (7) and using (4), we find

d.s2 = c2 dt2 — r-dq2 = e2 df ( I ~-^-) ,

where ar/j, /c1 < 1.
We find the exact value of the Sagnac effect2':

[1—( (8)

In deriving (8) we used only the absolute concepts of
events in which rays meet each other or meet the source—we
did not use the concept of the velocity of light with respect to
the rotating frame of reference.

A point which needs special emphasis is that the essence
of the special theory of relativity is the postulate of a pseudo-
Euclidean geometry of space-time; the principle of relativity
and the "postulate of the constancy of the velocity of light"
are secondary, particular consequences of this fundamental
position. It is the postulate of a pseudo-Euclidean geometry
which allows us to examine the effects in noninertial frames
of reference, while remaining exactly in the special theory of
relativity. We will demonstrate this point below, and we will
show that calculations of the Sagnac effect in a rotating
(noninertial) frame of reference differ in no fundamental
way from corresponding calculations in an inertial system.
Consequently, the general theory of relativity simply is not
involved here. The reader interested in more details about
this point might look in Ref. 5.

We will now show that if an experimentalist wished to
measure the velocity of light in this experiment with respect
to a fixed frame of reference or with respect to a rotating
frame he would always find that the result was exactly c. We
first recall that what can be checked by direct experiment is a
so-called physical velocity, which should be distinguished
from a coordinate velocity, which we might say has a math-
ematical rather than physical meaning.

We thus consider the interval of the pseudo-Euclidean
Minkowski space:

ds2 = yih dt" + 2Voac dt

(9)

where yik is the metric tensor, for which the Riemann curva-
ture tensor is zero. We can identically transform interval (9)
to the form

which is of the same form as the interval in an ordinary iner-
tial frame of reference,

ds2 = c2 dx2 — dl2. (10)
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The role of physical time is thus being played by the

quantity dr = (r00) "2dt + — dxa(ft>0)l/2, which is equal
c

to ds/c in the case dl = 0; the role of the square of the phys-
ical distance is played by the quantity

dl 2 = ( ott °P — Yap ) dxa dj?P,

which is equal to — ds2 in the case dr = 0. It is clear from

A. A. Logunov and Yu. V. Chugreev 862



these definitions that both dr and dl can be measured, since
they can be expressed in terms of an absolute value: an inter-
val. It also follows that the velocity which is measurable
experimentally is the quantity dl/dr. Since an invariant de-
finition of light signals in the special theory of relativity is of
the form ds2 = 0, we find on the basis of (10)

dl
(IT = c. (11)

This result means that in whatever type of frame of refer-
ence—inertial or nonertial—that the experimentalist mea-
sures the velocity of light, the local value of this velocity will
be constant, equal to c, in absolute value everywhere. In the
case of an inertial frame, the quantity dr is a total differen-
tial, and we can say that the physical velocity of light is glo-
bally constant. The coordinate velocity of light, dx'Vdt, on
the other hand, can have any value except zero and infinity.

To calculate experimentally measurable times, dis-
tances, etc., we need to know the components of the metric
tensor ylk, along with the coordinates. We thus conclude
from this discussion that the physical velocity of light with
respect to a fixed frame of reference is

d
dx - ± enl(,

where nv is a unit vector in the azimuthal direction. In this
frame of reference, the physical and coordinate velocities of
light are the same.

We now consider the same physical process—the prop-
agation of rays in opposite directions around a circle—in a
noninertial frame of reference which is rotating at an angular
velocity co. To find the form of the interval in this system, we
transform coordinates:

<pn = <po — cot0

tn = fo

zn — (12)

In terms of the new coordinates /,,, r,,, cpn, z,, we find the
interval to be (for simplicity, we are omitting the subscript
n)

(13)

It is not possible to realize a rotating frame of reference with
r^c/co physically since in the limit r^c/co the inertial mass
and moment of inertia of such a frame would become infi-
nite. Although the four-dimensional geometry remains
pseudo-Euclidean, the geometry of three-dimensional space,
which is determined (as we have already noted) by the met-
ric tensor xa/3 = yOa y0/3 /y0Q — ya/3, is not Euclidean in this
case. Let us calculate the curvature tensor of such a space:

RuUa = — (<5otiX>.v — dlxXnv — dlyXXa -f d\xxtw)

here F ^ denotes the connectedness of the three-dimensional
space and is given by

where the matrix xva is the inverse of xal3. Substituting the
effective metric xaP = diag {l,r 2/[ 1 - (co2r Vc2) ],1} into
the equation for the curvature tensor, and calculating the
connectedness F ^ , we find that it has only one independent
nonvanishing component,

We see that the curvature of the three-dimensional space is
nonzero and that the coordinate r cannot take on values
greater than c/co, since the coefficient y^ would change
sign, and that change would be physically inadmissible.

A characteristic manifestation of this deviation from a
Euclidean nature also in the three-dimensional geometry of
the space is the known fact that the ratio of the circumfer-
ence of a circle to its radius is not equal to 2-rr:

K2.T)

1(0)

2jt.

Let us examine the Sagnac effect in this noninertial
frame of reference. We will carry out the calculations by the
old method. As before, the paths traced out by the light rays
are circles of radius rf) = const which lie in the z = 0 plane.
From condition (13) we find, using the relation ds2 = 0» the
behavior of the angle q> as a function of the coordinate time t:

• = — 0) ± • (14)

Using the initial conditions <p+{0) = 0 , <p_(0) =2TT, we
find

(15)

The first meeting of the rays occurs at the time tt, which
corresponds to the value <p+(tt) = £>_U|), i.e., to the value
<p, = 77-[ 1 — (corQ/c) ] of the angular variable. Similar argu-
ments lead us to the conclusion that the second meeting of
the rays occurs "at the angle"

(p2=--2jt (16)

i.e., at an angular distance of — 2irr0co/c from the source.
The behavior of the angular coordinate of the source in

this case is described by the trivial equation <ps = const = 0.
The coordinate time t + , at which the + ray meets the

source, is found, as before, from the condition
<pAt+) =0 = <p+{t+) -277-:

2n,-0

t w< 0

Correspondingly, the time f is found to be

(17)

'_ — "

The interval of proper time between the two events in which
the rays arrive at the point of the source is found with the
help of definition (7):

C )
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This is the same as the result calculated in the fixed frame of
reference. Interestingly, in the nonrelativistic approxima-
tion the expression for the shift of the interference fringes
which follows from the expression for A is also valid in a
medium; i.e., it does not depend on the refractive index of the
optical fiber, the group-velocity dispersion, and so forth.6

Let us calculate the physical velocity of light for this
process. From (10) and (14) we find

— — ± en

tivity, without the need to use velocities greater than the
velocity of light, and without the need to resort to the general
theory of relativity. All that is needed is strict adherence to
the special theory of relativity.

We wish to thank H. Yilmaz and C. O. Alley for useful
discussions.

We also note that in a rotating frame of reference the
coordinate velocity of light is anisotropic:
&<p /At = — co + c/r0.

We wish to stress that the detector does not detect
changes in the frequency of the rays, since the metric coeffi-
cient Xoo > which is responsible for the redshift, is constant
over the entire propagation path of the rays.

Interesting in this connection is the shift of the frequen-
cy of light in this noninertial frame of reference. If a light ray
of frequency v0 is directed away from the rotation axis along
the radius, its frequency for an observer on the disk will
increase in accordance with

1 . i ^ _L
11/2 l ~ 9'[l-(coara/ca)]V* V~/o> 2 °2 ( 1 8 )

in the blue direction. This point has been verified experimen-
tally within7 10 2%.

We have thus shown that the Sagnac effect can be ex-
plained without the need to modify the special theory of rela-

"Private communication from C. O. Alley.
2'In a calculation of the realistic Sagnac effect, in which case the path

traced out by the light ray is a broken line, one would have to take into
account the deformation of the centrifuge caused by centrifugal forces.

'M. G. Sagnac, J. Phys. (Paris) 4, 177 (1914).
2S. I. Vavilov, Collected Works (In Russian), Vol. 4, Izd. Akad. Nauk
SSSR, M.,1956.

'A. Sommerfeld, Optics, Academic Press, N.Y., 1954 [Russ. transl., IL,
M , 1953].

4H. Yilmaz, in: Proceedings of the Fourth Marcel Grossman Meeting on
General Relativity (ed. R. Ruffini), Elsevier Science Publ., Rome, 1986,
p. 1753.

5A. A. Logunov, Lectures on the Theory of Relativity and Gravitation (in
Russian), Nauka, M., 1987.

"S. Ezekiel and H. J. Arditty Eds., Fiber-Optic Sensors and Related Tech-
nologies, Springer-Verlag, Berlin, Heidelberg, New York (Springer Se-
ries in Optical Science, Vol. 32).

7H. J. Hay, J. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff, Phys. Rev.
Lett. 4, 165 (1960).

Translated by Dave Parsons

864 Sov. Phys. Usp. 31 (9), September 1988 A. A. Logunov and Yu. V. Chugreev 864


