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The physical principles and basic theses of the theory, enabling a unified description of the
magnetic properties of all thermodynamically stable domain structures in magnets, are
presented. The theory is based on the following proposition proved by the authors: a necessary
condition for the formation of all thermodynamically stable domain structures in magnets is the
existence of a first-order phase transition induced by an external magnetic field. The approach
developed makes it possible to regard the physics of domain structures as a part of
thermodynamics, to derive the conditions for the existence of domains with different number of
phases, to study the structure of the region of existence of domains, and to formulate for magnets
with a domain structure an analogue of Gibbs rule. The general assertions of the theory are amply
illustrated with experimental results. The properties of domain structures are analyzed in detail,

and an interpretation is given for many experimental results for the most studied spin-

reorientational transitions.
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1. INTRODUCTION

Domain structures in ferromagnets have been studied
for a long time in the physics of magnetic domains. In Ref. 1
it is proved that the formation of such domain structures is
thermodynamically favored. According to Ref. 1 partition-
ing a finite ferromagnet into regions with different orienta-
tions of the magnetic moment M (domains) lowers the ener-
gy of the magnetic fields generated by the body. By the
mid-1960s experimental studies as well as theoretical works,
developing ideas and defining them concretely,' largely
completed the construction of the methods and models of
the traditional physics of magnetic domains. The achieve-
ments of this period are described in monographs,”~ collect-
ed works,”® and reviews.”®

Over the last two decades fundamental research on
magnetic domains has been reborn and continues to grow at
an accelerated rate. This situation is primarily dictated by
the needs of technology and applied science. The appearance
of high-quality epitaxial magnetic films in the mid-1960s
opened up wide possibilities for the development of funda-
mentally new technological devices based on magnetic do-
mains, realized in such films. The most promising develop-
ment (and one which has already come to practical fruition)
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is the development of new devices for recording and storing
information based on films with magnetic bubbles.”"'' Such
devices can obviously be built only based on detailed knowl-
edge about the properties of domain structures in epitaxial
films.

Another factor that stimulates interest in the physics of
domains is the discovery of different types of domain struc-
tures in magnetically ordered crystals many properties of
which cannot be understood within the framework of the
traditional ideas. Here we should first mention domains, dis-
covered in association with first-order phase transitions
(PTI) induced by an external magnetic field H. In Refs. 12
and 13 the formation of a thermodynamically stable domain
structure accompanying a spin-reorientational PTI induced
by an external field was proved theoretically for the example
of a spin-flop transition in an easy-axis antiferromagnet. By
analogy to a superconductor'*'® such domain structures
were termed an intermediate state (IS) of the magnet. The
first IS accompanying a spin-flop transition was observed in
Refs. 17-21. The publications of Bar’yakhtar et al.,'>'*!7-18
Dudko et al.,'?® and King,' stimulated theoretical and ex-
perimental studies of IS at different' PTL.?2-6%131-133

Domains have also been discovered in different multi-
sublattice magnets in noncollinear phases. Such domains

© 1989 American Institute of Physics 810




have been observed in ferrites (so-called high-field do-
mains)®~*7 and in orthoferrites in the region of spontaneous
smooth spin-reorientation.®®’! Such domains can exist in
antiferromagnets with smooth spin orientation induced by
an external field.”®’? In Refs. 73 and 74 domain structures
were observed in many-axis magnets and termed ‘“multi-
plet” structures. Finally, domain structures near second-or-
der phase transitions (PTII) have been studied theoretically
and experimentally.”>%¢

The types of domain structures listed above®®? are
characterized by properties that at first glance distinguish
them strongly from one another as well as from the domains
of a demagnetized ferromagnet. It was gradually determined
that these domain structures are ‘“special,” and their proper-
ties were often opposite to those of the “usual” (Weiss) do-
mains. For this reason, up to now, each type of domain struc-
ture listed above has been studied practically independently
of the others. In this connection, two questions arise:

1. What are the physical reasons for the formation of
different types of domains?

2. Is it possible to find the general laws governing the
formation of domain structures in magnets?

The analysis in Refs. 81 and 82 of the conditions re-
quired for realization of thermodynamically stable domain
structures gives the following answers to these questions:

1. The thermodynamic stability of any domain struc-
ture in a magnetically ordered body is determined, as in a
ferromagnet, by the decrease in the energy of the magnetic
fields generated by this magnet.

2. The equilibrium states realized in separate domains
represent coexisting phases of an external-field-induced
PTI. Moreover, it can be shown that the existence in a mag-
net of an external magnetic-field-induced PTI is a necessary
condition for the formation of all thermodynamically stable
domain structures.

In this connection we recall that in a uniaxial ferromag-
net in a field H =0 a PTI occurs between states with M,
parallel to the axis of easy magnetization and M, = — M,,
which form the domain structure.* In a ferromagnet with
higher symmetry the degenerate states, forming a multi-
phase domain structure, are also the competing phases of a
PTI occurring in the field H = O (this is discussed in greater
detail below).

It follows from the foregoing discussion that there is no
fundamental difference between the types of domain struc-
tures listed above and the *““usual” domains of a ferromagnet
with regard to either the conditions leading to their realiza-
tion or the factors responsible for their thermodynamic sta-
bility. The difference in the physical properties of such do-
main structures is linked only with the character of the
external-field-induced PTI, the corresponding equilibrium
states, and the dependence of these quantities on the external
parameters. The physical generality of all thermodynamic-
ally stable domain structures makes it possible to construct
theory, in which the general laws of the behavior of a magnet
with a domain structure can be studied without specifying
the type of PTI with which its formation is linked. This ap-
proach makes it possible to regard the physics of domain
structures as a subfield of thermodynamics, to derive the
conditions for the existence of domains with a different num-
ber of phases, to study the structure of the region of existence
of the IS, and to formulate for a magnet with domain struc-
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ture an analogue of Gibbs phase rule.

This review is devoted to the systematic exposition of
the principles and methods of the physics of magnetic do-
mains. The basic assertions of the theory are amply illustrat-
ed with experimental results. The properties of domain
structures are analyzed in detail and an interpretation is giv-
en for many experimental results for the most studied spin-
reorientational transitions: spin-flop transition in easy-axis
antiferromagnets and spontaneous transitions in orthofer-
rites.

2. PHENOMENOLOGICAL DESCRIPTION OF DOMAIN
STRUCTURES

On the basis of the phenomenological theory (later
termed micromagnetism; see Ref. 4) developed in Ref. 1 the
problem of determining the equilibrium spin configurations
in a magnet with a domain structure reduces to the solution
of the equations specifying a minimum of the nonequilibri-
um thermodynamic potential
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—MMH—TMmHmﬂ (2.1)
together with the equations of magnetostatics
rot Hy = 0, divHy = 4npy, pm = —divM, (2.2)

where M is the total magnetization; L, are other internal
parameters of the magnet, for example, the components of
the antiferromagnetism vectors—definite linear combina-
tions of the magnetization vectors of the sublattices M,,;
H,, (r) is the magnetostatic field generated by magnetosta-
tic charges p,,; and, @ is the part of the internal energy asso-
ciated with the short-range interactions in a magnet (ex-
change, anisotropic, Dzyaloshinskil interaction, etc.).

In its general form this problem leads to a system of
integrodifferential equations. The “superproblem” of mi-
cromagnetism is to construct the solutions of these equations
in the form of some nonuniform distributions M(r), L, (r).
Because of the complexity of the equations this program is
far from being completed.

In the experimentally observed domain structures,
however, the distributions M(r) and L, (r) are almost al-
ways alternating, quite large regions of uniform distribu-
tionsM(r) and L, (r) (domains), separated by narrow tran-
sitional regions with a strongly nonuniform distribution of
internal parameters (domain boundaries). Thus the charac-
teristic thicknesses of the domain boundaries x, are much
smaller than the characteristic dimensions of the domains D.
In addition, if the sample is not anomalously small (the ex-
act criterion will be formulated in Sec. 13), then x,, D, and
its characteristic size L satisfy the inequality

2, D L. (2.3)

This hierarchy of sizes makes it possible to simplify substan-
tially the solution of problems in micromagnetism.

The inequality x, € D made it possible in Ref. 1 to devel-
op the “thin-wall approximation,” which forms the basis for
most modern methods for calculating the equilibrium do-
main structure: in the calculation of the characteristic pa-
rameters of domain boundaries the dimensions of the do-
mains are assumed to be infinite, while in the calculation of
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the equilibrium parameters of a domain structure it is as-
sumed that the domain boundaries are infinitely thin and are
characterized by an integral parameter—the surface energy
density.

The equilibrium parameters of a domain structure in-
clude the parameters characterizing the internal state of the
magnet in separate domains M®, L ¥ (k enumerates the
domains with different internal states) on the one hand and
the geometric parameters fixing the shape and dimensions of
the domains on the other. The internal states of a magnet in
the domains M®’, L {¥> are determined by the strengths of
the exchange, anisotropic interactions, the Dzyaloshinskii
interaction, etc., as well as by the strength of the internal
field

H® (r) = H + Hy (o) (2.4)

The physical nature of the formation of a domain struc-
ture as well as its basic properties are most easily studied
both theoretically and experimentally under conditions
when uniform states are realized in the domains. It is ob-
vious that the uniformity of the internal states in domains is
predicated on the uniformity of the internal field H” in
them. Such uniformity of the internal field obviously cannot
be achieved, in samples with a domain structure, because of
the nonuniformity of the magnetostatic field H,, (r). This
field is generated by magnetostatic charges p,, (2.2), pres-
ent on the surface of the sample or in its volume.

We shall first study the field generated by the surface
charges. It can be made uniform in the bulk of the sample if
the sample is ellipsoidal while the domain structure realized
is regular. By a regular domain structure we mean®"?? a
structure for which the magnetization (M(r)), averaged
over the dimensions x such that L> x> D, is uniform over
the sample. Of course, the concept of a regular domain struc-
ture can be introduced only if the inequality (2.3) holds and
is not predicated on strict periodicity of the distribution
M(r). In this case the magnetostatic field in the bulk of the
sample will be uniform and given by

Hy = — 4N (M), (2.5)

where N is the tensor of demagnetizing coefficients; H,, is
nonuniform only in a layer of thickness of the order of D near
the surface of the sample.

If the state of the domains is uniform, then the intravo-
lume magnetostatic charges can be concentrated only on the
domain walls. Of course, total vanishing of p, in the domain
boundaries, generally speaking, cannot be achieved (the
Néel domain walls in ferromagnets are an example®*); how-
ever, only distributions gy, (r) that lead to the existence of an
uncompensated magnetostatic charge on a domain wall, as-
sociated with a jump in the component of the magnetization
vector normal to the domain wall

m, =M — MY, (2.6)
where M M*" are the equilibrium magnetizations in
neighboring domains, lead to an increase in the volume part
of the magnetostatic energy. Thus the requirement that the
thermodynamic potential be minimum leads to the condi-
tion

my = 0.

2.7
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It follows from what was said above that in an ellipsoidal
sample the regular domain structure is energetically favored
since its formation prevents the appearance of an additional
magnetostatic field §H,, in the bulk of the sample and the
associated increase in energy
AE ~ (8Hw)?
8n ’
where Vis the volume of the sample.
The condition (2.7), together with (2.5), means that
the internal field H” in the bulk of a sample with a regular
domain structure is uniform and is given by

HO = H — 43N M). (2.8)

We note that a domain wall in the form of an arbitrary
cylindrical surface, whose generatrix is parallel to the vec-
tor81,82 )

My =5 (MO —M*?), (2.9)
satisfies the relation (2.7). For the reasons enumerated
above, in what follows we shall study domain structure only
in ellipsoidal samples, including also limiting forms of an
ellipsoid: plane-parallel plates and elongated cylinders. The
condition for realization of a domain structure in nonellip-
soidal samples are discussed in Sec. 13.

Thus in an ellipsoidal magnet with a regular domain
structure, because of the conditions (2.3) and (2.8), only
the terms associated with uniform interactions make the
main contribution to the total energy (2.1) (proportional to
the volume of the ellipsoid ):

=

Thas

Lo (M®, LY, 0, 0)— (M) H+ 21 (M) N (M},
! (2.10)

M) = Z EM®, D) t.=1, (2.11)
h=1 h=1

where 7 is the number of different types of domains (#-phase
domain structure) and &, is the volume fraction of domains
of the k th type. As regards the energy associated with nonu-
niformities (the nonuniform part of the magnetostatic ener-
gy A®ys and the energy of the domain walls ®, ), it is
significantly smaller than the volume terms in the energy
(2.10) and its contribution to the energy (2.1) is propor-
tional to v® (a < 1; for example, a = | for a striped structure
in a plane-parallel plate; @ = 4 for domains branching at the
surface), so that it can be neglected in the leading order ap-
proximation in the parameter D /L. In the limit V- o, the
main contribution AP /Pnyw ~ ¥V */V approaches zero.
In the leading order approximation in D /L theenergy of the
ellipsoid with a regular domain structure is independent of
the domain ““microstructure” (the distribution of the mag-
netization in the domain walls, the shape and dimensions of
the domains), so that in Refs. 81 and 82 this approximation
was termed thermodynamic.

An important result follows from what was said above.
In a magnet with a regular domain structure three groups of
parameters characterizing the structure can be separated;
each group is associated with different, with respect to the
power of D /L, contributions to the energy. They form the
following hierarchy: 1) structure of domain walls; 2) shape
and size of domains; and, 3) internal states of the domains
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M,,,, L {¥’. The problem of micromagnetism for regular do-
main structures thus reduces to the solution of three largely
independent problems.

1) The theory of domain walls is concerned with the
smallest scale in a magent with domains—nonuniform states
in transitional regions. Here the structure, thickness, ener-
gy, and their dependence on the external parameters are cal-
culated for isolated domain walls. This part of the theory of
domain structures is most developed. Many results obtained
in this field are described in the monographs of Refs. 84 and
85, and the total symmetric classification of domain walls in
magnets is developed in Refs. 124 and 125.

2) The calculation of equilibrium geometric parameters
of model domain structures. This includes problems in
which certain domain configurations are modeled for mag-
nets with a given shape and in the “thin-wall” approxima-
tion the equilibrium values of these quantities are deter-
mined by minimizing the energy with respect to their
geometric parameters. The nonuniform part of the magne-
tostatic energy A¢ys plays the determining role in the for-
mation of equilibrium geometric parameters of domains and
the energy of the domain walls. For this reason the calcula-
tion of the magnetostatic energy for model domain struc-
tures is the chief part of the solution of this group of prob-
lems. Thus far such problems have been solved primarily for
ferromagnetic plates with striped and cylindrical do-
mains.”~'""#~%° The equilibrium geometric parameters have
also been calculated for domain structures with some spin-
reorientational transitions. ' '?-22-23:35.90.91

3) The thermodynamic theory of magnetic domainsis a
macroscopic theory, and in this theory the behavior of the
domain structure is studied irrespectively of the shape and
size of the domains. On the basis of this approximation it is
possible to determine the equilibrium values of the internal
states in the domains M’ L, ¥’ and their dependence on the
external parameters, the magnetization of the sample parti-
tioned into domains, the region of existence of the domain
structure, and a number of other quantities.

The first such approximation was apparently employed
in Refs. 14 and 15 in a phenomenological description of the
IS of a superconductor. Later analogous approximations
were employed many times to solve different problems for
both magnetic domains®***'?’-13% and for other domain
structures.**>%* Until recently, however, the thermody-
namic approximation was used for particular problems,
while the range of problems in the traditional theory of mag-
netic domains was limited to the simplest models.

For the domain structures currently studied in experi-
mental and applied physics (primarily for domains in the
region of spin-reorientational transitions) the question of
the magnitudes of the internal parameters in domains and
their dependence on the external parameters is one of the
most important questions. For this reason the thermody-
namic approximation, on the basis of which this problem is
solved, forms the basis for the theoretical analysis of domain
structures. The values of M‘*’,L ¥ obtained in the thermo-
dynamic approximation in the calculation of the character-
istic parameters of solitary domain walls play the role of
boundary conditions, and in determining the equilibrium
values of the geometric parameters of model domain struc-
tures they form the parameters of the theory together with
dpw - Figure 1 shows the quantities determined in each of the
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Thermodynamic
theory of domain

structures
Boundary ® (k‘
conditions M¥(H ), L2(Hp )

Calculation of the

Theory of domain geometric parameters
boundaries of model domain
structures

FIG. 1. Basic parts of the theory of domain structures and their interrela-
tionships.

three groups of problems of the theory of magnetic domains
listed above, and their interrelationship is indicated schema-
tically.

3. THERMODYNAMICALLY STABLE DOMAIN STRUCTURE
AS AN INTERMEDIATE STATE OF A MAGNET

Thus in the thermodynamic approximation the non-
equilibrium potential (2.1) of a magnet with a regular n-
phase domain structure has the form (2.10). Minimizing the
potential

(DA=CD~AV(k21§h—1), (3.1)
where A is an undetermined Lagrange multiplier, we obtain
the following system of equations with respect to M*?, L (*,
and £, determining the equilibrium values of these param-
eters:

b0, () -, @

(HY =gy —MHD =A==¢q, (k=1, 2, ..., n),
(3.3)

where H is given by the relation (2.8), and ¢,

=p(M,L f,k),0,0).

It follows from the relations (3.2) and (3.3) that the
necessary condition of the existence of a thermodynamically
equilibrium regular domain structure consisting of n phases
is that their thermodynamic potentials ¢ % (H'”), corre-
sponding to the equilibrium states (see (3.2)) in the internal
field H'”, must be energetically degenerate. We emphasize
that in the system of equations (3.2) and (3.3) the internal
magnetic field H” plays the role of a fixed external param-
eter. This is associated with the fact that it is precisely H'”
that acts on the magnetic moments of the atoms in the sam-
ple.

Thus the problem »f determining the possible phases,
comprising the domain structure, actually reduces to mini-
mizing the nonequilibrium thermodynamic potential of a
uniform system in a fixed field H"

Dy =9 M, Ly, 0, 0) — HOM (3.4)

with respect to the parameters M and L, and determining
the range of the internal field H'” in which the energy of the
equilibrium uniform states @  (3.3) is degenerate.

The degeneracy of the energy of the ground state could
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be determined by the symmetry of the magnet (1) or it could
be accidental (2).

1) Such degeneracy of the energy in a magnet arises
with spontaneous symmetry breaking. If the space group of
the low-symmetry state is a subgroup with index »n with re-
spect to the group of the symmetric state, then the symmet-
ric state can transform into a low-symmetry state by n mech-
anisms. In the process, n different states (phases), in each of
which the transition is realized by one of n mechanisms, can
be realized in the magnet. These » states transform into one
another by means of those symmetry operations that the
crystal loses in the transition into the low-symmetry state.”®

As is well known, the phase transitions occurring with a
lowering of symmetry include, for example, the transition of
a ferromagnet into the ordered state.*® In addition, such
phase transitions include transitions into corner phases or
into the region of smooth spin reorientation.’” In this case a

continuous restructuring of spin configurations from one .

symmetric state to another occurs in a definite range of
change of external parameters.

We shall show that if spin configurations with different
values of the vector M are realized in the transition into the
low-symmetry state, then their formation can be linked with
the existence of an external-field-induced PTI in the sys-
tem.®!2 It is obvious that states with different values of the
vector M can be energetically equivalent only if there is no
magnetic field H or the field is oriented along distinguished
crystallographic directions. The tilting of H away from these
symmetric directions removes the energy degeneracy: the
direction of M that makes the smallest angle with H becomes
energetically favored. Therefore it can be assumed that the
magnetic field in this case induces the PTI. For example, in
an easy-axis ferromagnet with no magnetic field two states
are realized: M,||Oz (Oz is the axis of easy magnetization)
and M, = — M,. The magnetic field H'”||Oz removes this
degeneracy, i.e., in the field H” = 0 a PTI occurs between
phases with M, and M,. The nontriviality of the situation
here lies in the fact that the magnetic field H is an external
vector parameter. Other phase transitions (both first and
second order), associated with other components of H or
some nonmagnetic external parameter, for example, the
temperature, can occur, together with PTT induced by one of
the components of H, in the phase diagram containing the
field H. In the investigation of phase transitions in a magnet,
occurring with spontaneous symmetry breaking, phase dia-
grams in the variables giving rise to the given transition were
usually studied. In the process the fact that the component
(or components) of the magnetic field that removes (re-
move) the energy equivalence of the degenerate states in the
low-symmetry phase actually induces (induce) a PTI in the
system was ignored.

2) We shall term energy degeneracy that is not associat-
ed with a transition of the magnet into a low-symmetry state
accidental. In this case the energies of the different states
assume the same value owing to a unique balance between
the strength of the internal and external interactions. Thus,
for example, in an easy-axis antiferromagnet for a certain
value of the magnetic field, parallel to the axis of easy magne-
tization, the energies of the collinear phase, whose formation
is associated with an advantage in the anisotropy energy, and
of the spin-flop phase, corresponding to the minimum ener-
gy of interaction with an external field become equal.
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It follows from what was said above that the degeneracy
of the energy (3.4) with respect to M can always be linked
with the existence of an external-field-induced PTI in the
magnet. Thus all thermodynamically stable domain struc-
tures consist of domains of the competing phases of a PTL.

We call attention to the following fact. The invariance
of the energy of the system with respect to the time-reversal
operation leads to the conclusion that every state with non-
zero M and L, are at least doubly degenerate in the absence
of an external magnetic field: (M, L, )and ( — M, —L,).
This means that in a field H = 0 only an even number of
phases can coexist under the conditions of phase transitions.
The exception is the PTI from the magnetically ordered state
into the paramagnetic state, where M =L = 0.

In an external magnetic field with arbitrary orientation
the degeneracy owing to symmetry, generally speaking, is
removed and the accidental degeneracy remains. If the mag-
netic field is oriented along the symmetry axes (planes),
then the degeneracy due to symmetry is removed only par-
tially.

As is well known, the term ‘““intermediate state,” intro-
duced in Ref. 12, has now been solidified in the literature for
domains formed with external-magnetic-field-induced PTI.
The results of this section lead to the following conclusion:
all thermodynamically stable domain structures are an inter-
mediate state. For this reason, it appears to be advantageous
to employ the term “‘intermediate state” to denote thermo-
dynamically stable domain structures. In this connection it
is of interest to trace the evolution of the term “intermediate
state.”” In Ref. 14 R. Peierls, who was studying the thermo-
dynamics of a supercc;nductor in the region of an external-
field-induced PTI into the normal state, showed that in finite
samples a transitional (buffer) region, which he termed “in-
termediate state,” forms in a definite range of magnetic
fields. The structure of the IS, however, was not studied in
Ref. 14. The structure of the IS of a superconductor was
clarified by L. D. Landau,'® who showed that this transition-
al region (TR) is a thermodynamically stable domain struc-
ture consisting of regions of the metal in normal and super-
conducting states.

It was shown in Ref. 12 that the arguments analogous to
those employed by L. D. Landau in Ref. 16 can be used to
prove the formation of a thermodynamically stable domain
structure with external-field-induced spin-reorientational
PTI. By analogy to a superconductor such domain struc-
tures were termed intermediate states of the magnet. Thus
the term ““intermediate state,”” introduced by R. Peierls for
conditionally denoting the transitional region in supercon-
ductors, as a result of Refs. 12, 13, and 17-63 has now ac-
quired a wider meaning and is generally accepted for the
thermodynamically stable domain structure arising with
first-order phase transitions induced by an external magnet-
ic field. It appears in the monograph and reviews of Refs. 84
and 97-99. Finally, the general conditions for the existence
of IS have been clarified in Refs. 81 and 92.

4. PHASE DIAGRAMS OF MAGNETS. PHASE RULE

We shall derive some general relations for phase dia-
grams, containing d components of the magnetic field
(d =0,1,2,3) and A components of other parameters of the
system 7, (the temperature, pressure, ..., i = 1,2,..., 4).
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In a thermodynamically equilibrium domain structure
states corresponding to coexisting phases accompanying
PTI are realized in separate domains. For this reason, we
must set H” = H; in Egs. (3.2) and (3.3), determining the
equilibrium values of the internal parameters. For a domain
structure consisting of # phases Eqs. (3.2) assume the form

oy -0 op
aLs T oM

- Hp = 0~ (4. l )
Solving (4.1) with respect to the variables L ¥ and M®, we
find them as functions of Hy and 7. Substituting the quan-
tities found into Eqgs. (3.3) and (2.8), we arrive finally at the
following system:

CDi (Hp,7p) :q)z (Hp,mp)=1... :ch Hp,7), (4.2)
H=H, +4nN 3 EM® (Hp,7p), (4.3)
B=1

2 E=1, (4.4)
A=1
where

Dy (Hyp,7p) =0 MP (Hp,7) o

L(Vh) (HPyTiP) H 07 O]——M(h) Hl’ (45)

is the equilibrium thermodynamic potential of a uniform k-
th phase for an internal field equal to the field of the phase
equilibrium H,, and the value of the parameters 7,, also be-
longing to the region of the PTI—r ;. The system of n — 1
equations (4.2) gives in the phase diagram in the compo-
nents of the internal field—H'”, 7 diagram—the region of
phase equilibrium (Hp,7,5 ). The system (4.2)-(4.4) deter-
mines the region of existence of the IS in the phase diagram
in the components of the external field—the H, r; diagram,
and it also gives the equilibrium parameters of the IS
§(H,7p), Hp (H,75).

For systems whose phase equilibrium is determined by
the accidental degeneracy in the (4 + A)-dimensional H'”,
7 diagram the region of the PTI is determined by Eqs. (4.2).
For n coexisting phases Egs. (4.2) have a solution, if their
number n — 1, in any case, does not exceed the number of
variables d + A. From here we obtain the well-known Gibbs
rule®

n<{d-+4+ A4 1. (4.6)

Introducing the so-called number of thermodynamic de-
grees of freedom—d,,, we obtain

dp=d+ A —n+ 1. (4.7)

In the (d + A)-dimensional space of the H'”, 7 phase
diagram the system of equations (4.2) defines a hypersur-
face (region of PTI) with dimension dp (4.7).

We shall now examine the H,7 phase diagram. The re-
gion of existence of the IS in it is described by the system
(4.2), (4.3), and (4.4). Eliminating £, from Eq. (4.3) with
the help of (4.4), we rewrite it in the form

A A n-1
H=H, +4nNM, +4nN D) &, (M, —M,). (4.8)
k=1

In the case of accidental degeneracy the vectors
M, — M, are linearly independent, if their number n — 1 is
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less than (or equal to) the number of equations (4.3) d, i.e.,

n—1<d. (4.9)

In this case (4.8) maps each point on the hypersurface of the
PTI H,;, 7; into a linear region with dimension » — 1. For
the dimension of the IS d ;5 on the (d + A)-dimensional H,7
phase diagram we obtain

dis =dp +(n —1) =d + A, (4.10)

i.e., the dimension of the IS equals the dimension of the
phase diagram.

If n — 1>d, then the number of linearly independent
vectors M, — M, in (4.8) equals d. Now, among then — 1
vectors M, — M

n

v=n—1—d (4.11)

vectors will be linearly dependent. It follows from here that
every point in the region of the PTI will be mapped, as &, is
varied, into a d-dimensional linear region, and the dimen-
sion of the IS will equal

de=dp+d=2+h—n-+1. (4.12)

The relations (4.10) and (4.12) are the analogue of the
Gibbs rule for the region of existence of domain structures.
When the inequality (4.9) holds, in Eqgs. (4.8) there exists a
single-valued relation between £, and H. This means that in
a fixed external field H from the region of the IS all £, are
determined uniquely. If, however, n — 1> d, then at each
point in the region of existence of the IS a y-parametric fam-
ily of £, will satisfy Eq. (4.8), i.e., for fixed external param-
eters H and 7; domain structures with different relative per-
centages of the phases can be realized in the IS.

If the energy degeneracy is of a purely symmetric na-
ture, then the number of coexisting phases equals the index
of the subgroup of the low-symmetry state (n,) with respect
to the symmetry group of the paraphase—the symmetry
group of the magnet in the paramagnetic state in the same
magnetic field. (The exceptions from the formulated crite-
rion are the rare cases when the paramagnetic and magneti-
cally ordered phases are not related by a subgroup relation-
ship.) Thus in a cubic ferromagnet with H'” = O'six or eight
phases can coexist. In an easy-plane tetragonal ferromagnet
four phases can coexist on the line H'||Oz, H " < H,) (Ozis
the difficult axis and H. is acritical field.

It is obvious from what was said above that in the pres-
ence of both symmetric and accidental degeneracy a solution
of the system of equations (4.2) can exist even when the
number of equations (4.2) n — 1 exceeds the number of vari-
ables d + A in them. In this case the number of coexisting
phases can be greater than permitted by the Gibbs phase rule
(4.6). Breakdown of the inequality (4.6) means that the
number of vectors M, — M,, in (4.8) exceeds the number of
equations. For this reason, here, as above, for fixed external
parameters H and 7; a y-parametric family &,, where y is
given by the relation

y=n—1—d* (4.13)

d * is the number of linearly independent vectors M, — M,
in Eqs. (4.8), will satisfy Eq. (4.8). Here it should be kept in
mind that because of symmetric degeneracy d * can be less
than d.
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5. STRUCTURE OF THE INTERMEDIATE STATE

As pointed out above, the equilibrium parameters of the
n-phase IS are determined by the solution of the system of
equations (4.2)-(4.4).

When H varies arbitrarily both the relative fraction of
coexisting phases £, and the value of Hp ( and together with
it M® (Hp), L, (H,) will vary.

Transferring now to the study of the region of the IS
with arbitrary orientation of the external field, we distin-
guish the region of values of H for which the internal field
has some fixed value Hp (we denote this region by
{H|H, }). It is also possible to distinguish a continuous set
of values of H, for which the quantities £, are fixed:
{H]...&, ...}. Every point of the phase diagram of the magnet
in the region of existence of domains is characterized by defi-
nite values of Hy and &,, i.e., it is the intersection of the
regions {H|H, }, {H|...&,...}.

As H varies in one of the regions {H|Hp } the internal
states in the domains M'*’ (H,, ), L ¥’ (H;,) do not change,
and the system evolves only owing to the redistribution of
the relative percentages of the phases, i.e., a pure process of
displacement of domain boundaries occurs. Since the inter-
nal state in domains, just as the structure of the domain
boundaries, is determined by the value of H,, varying H
over the domain {H|Hj, } does not destroy the conditions for
the occurrence of processes that depend on the values of the
internal field and magnetic state of the system (for example,
the conditions for the existence of magnetic resonance).

As H varies over the domain {H|...£, ...} the system
will evolve only owing to the variation of H, and the asso-
ciated changesin M‘*’ (H, ) and L { (H,,), i.e., via changes
in the internal state in the domains. In the region {H|...£,. ...}
the quantities related with £, remain constant. The sets of
regions {H|£, £,...£, } will also contain regions in which ¢ of
the n quantities £, equal zero (¢ =1, 2,..., n — 1). It is easy
to prove that such regions describe boundaries between the
n-phase and (n — t)-phase domain structures. In particular,
for t=n—1 the region {Hp|..£;...} is the boundary
between the n-phase domain structure and one of the uni-
form states.

In an easy-axis ferromagnet when H tilts away from the
axis of easy magnetization in the region of PTI [M® (H,, )|
=M, =const (T=0),* ie, in the region {H|...&, ...},
only the orientation of M‘*’ (H,, ) changes. In the traditional
theory of magnetization of a ferromagnet this process is
called rotation of magnetization in domains.” In an arbitrary
magnet in the region {H|...£, ...} the moduli of M®’ (H,)
can also change. In addition, in {H|...&,...} as M® (H,)
changes the vector m,,. (2.9)—forming the surface of the
domain boundary—also changes. This means that in the re-
gion {H|...&, ...} the domain boundaries can turn. In an
easy-axis ferromagnet, however, the vector my, . is always
parallel to the direction of easy magnetization, so that here
there is no turning of the domain boundaries. An example of
an IS, where m,,. changes direction, is the domain structure
of the orthorhombic antiferromagnetic in the vicinity of
Morin temperature.®? It follows from what was said above
that for an arbitrary change in the region of existence of IS
three basic processes will occur in the magnet:

1) diplacement of the domain boundary;

2) change, associated with a change in the internal field
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FIG. 2. Lines of PTI H,, ...Hp between two phases (a) and the corre-
sponding region of the intermediate state (b). On the H, , H, diagram the
thick lines denote lines of constant internal field: H,H; — {H|H,. },
H H —{H|H,,}, the thin lines denote regions of constant relative per-
centages of phases: 1—{H|1;0}, 2—{H|[3; 1}, 3—{H|4; {, 4—{H|} 3}, 5—
{H‘O; 1} (the lines 1 and 5 denote the boundaries of the intermediate
state).

H,, in the internal state in separate domains; and,

3) turning of the domain boundaries along the vector
m,. (2.8).

The ideas introduced above regarding the region of con-
stant internal field {H|H, } permit constructing the region
of existence of the domain structure, employing the system
of equations (4.2), specifying the region of Hy, , the equilibri-
um values of magnetization in the competing phases (4.2)
and the equations (4.3). For fixed values of Hp from the
region of PTI with n phases the function H(£, ) has » — 1
degrees of freedom (the £, are coupled by the normalization
relation (4.4)). This means that Eq. (4.3) maps every point
in the region H, onto an (n — 1)-dimensional surface,
which is the region of constant internal field {H|Hj }.

We shall construct the region of existence of the domain
structure first for the simplest model of a two-phase domain
structure. Let the region of PTI H,, be a line in the plane
H ("H {",and let the equilibrium magnetizations in the com-
peting phases M'" and M'? also lie in the x, y plane. It fol-
lows from (4.3) that in this case the region of existence of the
domain structure for an ellipsoid, one of whose principal
axes coincides with the Oz axis, also belongs to the phase
plane /., H,. To preserve generality we shall study the seg-
ment of the line of PTI H,, H,, containing the point of
termination of PTI (the point H. ) (Fig. 2). To study the
domain structure around the point at which the phase transi-
tion terminates there is no need to specify the type of point. It
is important that at this point the difference between spin
configurations in the competing phases is lost, i.e., M
(He) =MP(He), L{"(H.)=L»(Hc). For some
point H,,, (see Fig. 2) Egs. (4.3) assume the form

H = H,, + 41N (EM® (Hpa) + (1 — &) MO(H,,)).
(5.1)

The vector equation (5.1) is a parametric definition (the
parameter is £,) of the segment of the straight line connect-
ing the points (see Fig. 2)

Hys = H,, + 47N M® (Hya);

« (3.2)
H,xn = Hp, + 40VM® (H,,),

which lie on the boundaries of the region of existence of the
domain structure. In an analogous manner Eq. (5.1) maps
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each point of the region of the phase transition H; into a
definite segment of the straight line. This construction is
made in Fig. 2. For the point H, at which the difference
between the phases vanishes, the fields H, and H,. are
equal, i.e.,, Eq. (5.1) transfers the point Hc into the point
H,, with the coordinates

Hee = Hpe = 4nNM (Hpe)., (5.3)

On each segment of straight lines of the type (5.1) &, runs
through a continuous series of values from zero (H = H,) to
one (H = H,). Connecting with lines the points with equal
values of £, we obtain the region {H|&,,&,}. In particular,
among them, there will be the lines {H|0;1}, {H|1;0}, which
form the boundaries of the region of existence of the domain
structure. It is obvious that all lines {H|£;£,} meet in the
point H.. (see Fig. 2).

We note that as the point of termination of the PTI is
approached the difference between the magnetization and
other internal parameters in separate phases decreased with-
out limit. It turns out that in a narrow region around the
critical point the inequality x,, € D is violated, i.e., the distri-
bution of the magnetization is strongly nonuniform over the
entire volume of the sample. The theory of such nonuniform
states was developed in Refs. 75 and 76 (see Sec. 13).

In Secs. 9-11 we shall calculate the regions of existence
of domain structures for concrete systems. Here we shall
discuss in greater detail some general characteristics of the
IS with an n-phase domain structure.

We start with an arbitrary two-phase domain structure.
In this case the condition of phase equilibrium has the form

O IMO(Hp) Hpl = @ [M® (Hp) Hp. ). (5.4)

This equation in the phase space of the components of
theinternal field H {°, H ,”, H ("’ defines a surface. Equation
(4.3), determining the dependence of the parameters of the
IS on the external field, has the following form for a two-
phase system:

H = H, + 4nN [EM® (H,) — (1 — E)M® (H,)]. (5.5)

An important result follows from Eq. (5.5): for a two-
phase domain structure every point in the region of the PTI
H; in the phase space of the external field H, , H,, H, trans-
forms into a segment of a straight line lying between the
points (Fig. 3):

H, = H, - 4aNMO (H,),
H, = H, + 4nNM® (H,).

(5.6)
(5.7)

A H,
AH, = 47 NM, (H;)

FIG. 3. Character of the mapping of the PTI point—H),. into the region of
the intermediate state for an n-phase domain structure.
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In other words, the relation (5.5) maps the surface of the
PTI into the region of existence of the IS, representing in this
case part of the space bounded by the surfaces H, (H; ) and
H, (Hp) (5.7).

We shall now study the domain structure with n> 2
phases.

If under the conditions of PTI three phases coexist, then
the condition that the potentials (4.2) are equal to one an-
other leads to two independent equations, which in the phase
space H” give the line of phase equilibrium. For n = 3 Egs.
(4.3) and (4.4) have the form

H=H, = 4V (§,M® (H,)

+ &, M® (Hy) + EM® (Hp) D). (5.8)

The four equations (5.8), together with two equations giv-
ing the line Hp, uniquely determine the external-field depen-
dence of the components of H;, and the relative percentages
of the phases &, &,, &5. Eliminating &, from (5.8) it can be
shown that a fixed value of H, is preserved if the values of
the external field on the H, , H,, H, diagram fall within the
plane triangle (Fig. 3) with the vertices

H, = H, -+ 4nNM® (H,), (5.9)

where k = 1, 2, and 3. On each side of the triangle one of the
&, vanishes, i.e., the sides of the triangles are the boundaries
between two of the three regions of existence of the IS. At the
vertices (5.9) two of three &, vanish, i.e., at these points a
transition into one of the uniform states is achieved.

Thus for a three-phase domain structure the line of
phase equilibrium in the H'” phase diagram transforms in
the phase space H into a definite region of existence of the IS.

The conditions for coexistence of the four phases lead to
three equations, which, generally speaking, give in the H'"
phase space an isolated point. Equation (4.5) in this case
also determines uniquely the dependence of &, on the exter-
nal field (H,, is fixed ). The point of the phase equilibrium of
four phases in the H phase space corresponds to the region
within the triangular pyramid with vertices (5.9) (k =1, 2,
3,and 4). On each face one of the £, vanishes, two &, vanish
on the edges, and three of four £, vanish at the vertices. This
means that the faces of the pyramid are the boundaries
between the regions of coexistence of three- and four-phase
domain structures, the edges of the pyramid are the boun-
daries between two- and four-phase regions, and a transition
from a four-phase region into a uniform state occurs at the
vertices (5.9) (see Fig. 3). '

In the case of accidental degeneracy, as follows from
(4.6), for A =0 (H diagram) the number of coexisting
phases cannot exceed four. This restriction, as we have al-
ready mentioned, is removed in the case of symmetric degen-
eracy. Examples of the construction of phase diagrams are
given in Secs. 9-11.

6. THERMODYNAMIC STABILITY OF DOMAIN STRUCTURES

It was shown above (see the system of equations (3.2)
and (3.3)) that in the region of external-field-induced PTI
the extremum of the function giving the energy of the mag-
net (2.1) corresponds either to uniform states or states with
adomain structure. To determine the boundaries of thermo-
dynamic stability of the domain structure, it is sufficient to
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FIG. 4. The dependence of the equilibrium energies of the uniform states
of an ellipsoidal ferromagnet (I, II) and energy of a ferromagnet in the
intermediate state (1I1) on the external magnetic field.

find the domains of the external parameters in which the
equilibrium energy P, of the magnet, partitioned into do-
mains, is lower than the equilibrium energy in the uniform
states ©,.

We start with the simplest model: an easy-access ferro-
magnet in a magnetic field, parallel to the axis of easy magne-
tization. The energy (3.4) of a such system has the following
form®*:

@, = B(ME+M3)~HOM,

(6.1)
where £ is an anisotropy constant; for #> 0 and the Oz axis
is the axis of easy magnetization. For H'” = 0 a PTI occurs
between the states with M'"||0z(1) and M, = — M, (I).*
Let the ferromagnet be an ellipsoid, whose principal axes
coincide with the magnetic axes (¥ = N,, ). The equilibrium
energies of the ferromagnet in phases I and II equal

CDI = - M -I- 2ﬂNM2,

(6.2)
O = HM + 2aNM:.

The dependence of ®; and @}, on H is shown in Fig. 4.
The expression (2.10) for the nonequilibrium energy of
a magnet with domain structure has the form

O =— (MYH 4 2aN (M,
M) = (§1—'§2)M-

(6.3)

In writing down (6.3) we took into account the fact that in
this case the direction HJ|Oz coincides with the line of con-
stant field {H|0}. Minimizing with respect to A& = £, — &,
gives the equilibrium value of £, and §, =1 —§:

H

A =—onir -

(6.4)
Substituting A& (6.4) into (6.3), we obtain for the equilibri-
um energy of a ferromagnet, partitioned into domains,**

H?

Pow = —gi - (6.5)

For all values of H the function ®w (H) does not ex-
ceed P, (H), ®,;; (H) (see Fig. 4). The values 0<&, < <1,
are physically meaningful and this is'achieved in the interval
of fields |[H|<4wNM. Thus in the entire region of fields
where realization of a domain structure 0< &, <1 is physical-
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ly possible, its energy is lower than the energy of uniform
states; equality of the energies ®w and ®;, Py, is achieved
at the boundaries of the region of existence of domains
(H,, = + 47NM), where one of the competing phases is
completely forced out.

What are the physical reasons for the thermodynamic
instability of the domain structure? This question is most
easily answered for a ferromagnet in the field H = 0. Ac-
cordingto Ref. 1, for H = O partitioning into domains, with-
out changing the internal energy of the magnet (we recall
that H =0 is the field of PTI in which the energy of the
phase I equals the energy of the phase I1), lowers the magne-
tostatic energy. Comparing (6.2) and (6.5) we find that for
H = 0 the gain in energy accompanying a transition of the
ellipsoidal ferromagnet from the uniform state into a poly-
domain state equals the energy of the demagnetizing fields of
a uniform magnetized ellipsoid (2rNM 2V). In the finite
field |H| < 47NM the equilibrium states of a polydomain fer-
romagnet are formed by the competition of two interactions:
the minimum of the energies of interaction with an external
field corresponds to a uniform state with magnetization par-
allel to the field, while the magnetostatic energy is minimum
for a domain structure with &, = §, = 1.

Why then for H+#0 is the domain structure thermody-
namically stable right up to complete forcing out of one of
the competing phases? To answer this question we shall fol-
low the evolution of the state of a ferromagnet as the external
field is varied. It follows from (6.2) that in an ellipsoidal
ferromagnet for H < 0 the energy of the uniform state with
M is lower than the energy of the uniform state with mag-
netization M'". As the field is increased from the region
H < — 47NM the energy of the phase II increases, since the
direction of change of the field is antiparallel to the magneti-
zation vector. For H = — 47 NM in a uniformly magnetized
magnet with M'? the internal field vanishes, i.e., the condi-
tions for a PTI are realized. With a further increase of the
field there are two possible paths along which a magnetic
state can be realized. One path consists of preserving the
uniform state and the other consists of organizing a nonuni-
form state: in the field H > — 47NM the state with M™® can
be “diluted” by inclusions of regions with M‘". In so doing
the concentrations of the phases must be such that the condi-
tion for realization of a first-order phase transition H' =0
must hold. (Otherwise the energy of one of the phases will be
higher, and it will be forced out of the volume of the magnet
by the motion of the interphase boundaries.) In the process
of evolution of the domain structure the internal energy of
the ferromagnet does not change (because of the condition
H' = 0), and the external field performs work only against
magnetic-dipole forces (redistribution of charges on the sur-
face of the ferromagnet and formation of domain walls). In
other words, the formation of domains prevents the internal
states in a ferromagnet from changing as the field changes.
Outwardly a ferromagnet with a domain structure behaves
like a magnet with high susceptibility, determined solely by
its shape:

aMy 1

Xis =—4F = N’ (6.6)

while in the uniform state y =0 (neglecting the parapro-
cess). This specific compliance of a ferromagnet with do-

mains to the action of an external magnetic field is the reason
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that a domain structure is energetically favored over a uni-
form state.

We shall now go over to two-phase domain structures
with arbitrary spin-reorientational transitions. We shall
show that a two-phase domain structure in the IS with ener-
gy (2.10) can be described efficiently by a model of an easy-
axis ferromagnet with a domain structure. Let in some mag-
net the range of variation of the internal field in which an
external-field-induced PTI between two phases occurs, be
H,., and let the equilibrium values of the internal parameters
in the competing phases be M (Hp) L *(H,)
(k=1,2).

Using Eq. (3.3) and introducing instead of M'"(H,,)
and M“'(H, ) the quantities

= 4 (MO M) and ' = 5 (MO —M®), (6.7)
we rewrite the internal energy (2.10) as
@ (MO, LY, 0. OVE 4+ ¢ (M®, L, 0, 0)E,

=- %o (H,, )+ Hl’iM (HI’ )+ Hem' (H,,) (Ea_gz)v (68)

and we transform the magnetostatic energy into the follow-
ing form:

2 (M) ]\Af (M) =: 2nmNm -+ 2m (E, —E,)? M’Afm’ + 4nm’ Nm.
(6.9)

Taking into account (6.8) and (6.9) the energy of the mag-
net (2.10) acquires the following form:

D = @, (H,) + ¢! + Ag, (6.10)
where
@1 = 2nmNm— (H— H,)m (H,) (6.11)

is the energy of a uniformly magnetized ellipsoid with mag-
netization m in the field H — H,, neglecting its internal ener-
gy (3.3),

Ag= —Hw (£, —&) 2 (8, —E,)* w N’ (6.12)
and has the form of the energy of a ferromagnetic ellipsoid in
a polydomain state with the magnetization + m(H, ) in
neighboring domains, located in an “external” field

H-— H—H, —4nNm (H,). (6.13)

The fact that A (6.12) is functionally identical to the
energy of the ferromagnet, partitioned into domains, enables
using for the analysis of domain structures in the region of
spin-reorientational transitions the results obtained in the
calculation of the corresponding domain structures of a fer-
romagnet. In Sec. 7 below this will be employed in concrete
calculations. Here, however, it is important to note the phys-
ical essence of the energy transformation performed above.
The linearity of the equations of magnetostatics permits re-
garding the sample consisting of domains with magnetiz-
ations M'"', M'* as two magnets “‘inserted” into one another
and having the same shape as the sample, one of which has
the uniform magnetization m(H, ) while the other is parti-
tioned into domains with magnetizations + m’'(Hy) (6.7).
The physical reason for the presence of the term 47Nm(Hp )
in the effective field (6.11) is also clear: this quantity is nu-
merically equal to the demagnetization field, created by the
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first ellipsoid. For the second ellipsoid the field

H':4n1\71u (H,) (6.14)

plays the role of an “‘external”’ field and is added to H. As the
external field is varied along one of the lines {H|H} }, in the
process of redistribution of the relative percentages of the
phases the energy of the first ellipsoid @' (6.13) does not
depend on the state of the domain structure, while the sec-
ond ellipsoid behaves as a ferromagnet with domains having
the magnetizations + m’'(Hp ). For it the idea presented
above, that the formation of domains is energetically fa-
vored, as well as the calculations performed there, are valid.
In particular, the maximum advantage of a polydomain state
over a uniform state is achieved in the field H =0 (where
& =&,),1e, for

H=H, +4nNm (H,), (6.15)

and the advantage in energy constitutes AE = 27y N M -
Thus the advantage in energy gained by the formation of
domain structures in the region of spin-reorientational tran-
sitions is linked not with the full magnetizations in separate
phases M'", M?, but rather with the magnitude of the jump
in the magnetization AM = M"Y — M? = 2,,. (6.7). In the
above-examined model of a ferromagnet Hy, =0, M =0,
and the jump in the magnetization at a PTI has the maxi-
mum possible value |AM| = 2|M,)|. Correspondingly, the
advantage in energy gained at H = 0 is also maximum and
equals AE = 27 NM 2.

The fact that a regular domain structure is energetically
favored can be verified by comparing directly the energies of
an ellipsoidal sample partitioned into domains and an ellip-
soidal sample in the uniform state.®*

The magnetization in the IS is determined from the re-
lation (4.3):

4aNM) = H — H, (H). (6.16)

The magnetization(M) is a linear function of H only if
the external field lies in the region {H|H, }. For arbitrary
variation of H in the region of the IS H, and therefore
M (H, ) also will vary, and this will cause the dependence
(M) (H) to be more complicated.

Differentiating (6.16) with respect to H we obtain for
the tensor of the magnetic susceptibility in the intermediate
state the expression

oH
4nNaﬂXB'.‘ =6a.‘<——0-—1-{ri—a . (617)

The first term on the right side of (6.17) is associated
with the displacement of the domain walls, while the second
is associated with the change in the magnetization in the
domains M‘® (Hp ). In the vicinity of PTI we shall write the

equilibrium magnetization in the k-th phase as follows:
M® (HD) = M® (Hp )+ y, (HO — H, ), (6.18)

where y, is the tensor of the internal susceptibility of the
k-th phase.

It follows from (6.18) that the susceptibility of a mag-

net in the uniform state equals

%= (g = 4n) L. (6.19)

In the region of existence of the IS, as H varies along
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FIG. 5. Magnetization curves for magnets in the re-
gion of magnetic-field-induced first-order phase tran-
sitions.!'* a) for an epitaxial ferrite-garnet film'%; b)
for the metamagnet Dy,Al;O, in the region of the
metamagnetic transition.
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{H|Hp }, according to (6.17)

% = (4nN)t. (6.20)
In Ref. 100 the tensor j is called the susceptibility of the
body, £, is the susceptibility of the material, and (47N) ~'is
the shape susceptibility. Employing this terminology we can
state that unlike the uniform state, in which the susceptibil-
ity of the magnet depends on both the susceptibility of the
material and on the shape susceptibility (6.19), in the inter-
mediate state (with H varying along ({H|H, }) the suscep-
tibility of the magnet is determined only by the shape suscep-
tibility. For arbitrary variation of H in the region of
existence of domains the susceptibility is determined by the
expression (6.17). Here, aside from the shape susceptibility,
asubstantially new term appears, associated with the change
in the field of the PTI (H, ). Its magnitude is determined by
the characteristic of the spin-reorientational transition,
namely, the dependence H, (H) and M®’ (H,).

The process of magnetization of a magnet, studied here,
is predicated on the realization of a thermodynamically
equilibrium domain structure in it, i.e., no coercivity and
hysteresis phenomena.

Figures S and 6 show the dependences (M) (H) for a
ferrite plate with the easy-axis parallel to the normal
(N = 1) and having a low coercivity H_{0.5 Oe'"' (a), and
for a spherical metamagnet Dy;Al;0,, (¥ = 1) in the re-
gion of the metamagnetic phase transition (b).''* Figure 6
shows the curves y (H) for Dy,Al;O,, in the region of the
metamagnetic transtion (a)''? and for the easy-axis antifer-
romagnet MnCl,-4H,O0 in the region of the spin-flop transi-
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tion (b)*' (both samples are spherical. In these magnets the
external field is parallel to the axis of easy magnetization,
i.e., H varies along the line {H|H,. It follows from (6.16)
and (6.20) that in the IS

H—H,

—r s =y (6.21)
which is in fact observed experimentally. The effect of the
shape of the magnet on the character of the dependence
(M) (H) in the IS is illustrated in Fig. 7, where the depen-
dence of the magnetization of MnF, in the region of the spin-
flop transition is shown for cylindrical samples: with diame-
ter 0.8 mm and height 2.5 mm (a) and with diameter 1.85
mm and height 0.2 mm (b) (the axis of the cylinder coin-
cides with the easy axis of the magent).'® The second sample
is actually a plate (N=1). For it the width of the IS is
AH,s = 47AM, while y,s = §. The first sample can be re-
garded as an ellipsoid of revolution with the ratio of the axes
a/b=3and l,and N =0.1.Forit AH ,; = 4wNAM issignif-
icantly smaller, and y,s = 10/47.

The results obtained in this section show that the for-
mation of all thermodynamically stable domain structures
(including also in an easy-axis ferromagnet) is based on
common physical processes:

When the conditions for the coexistence of phases, distin-
guished by the value of the magnetization vector M (field-
induced PTI), are realized in a magnet, an additional possi-
bility for reducing the thermodynamic potential appears in a
magnet with a finite shape: partitioning into domains of com-
peting phases. As the external field varies the condition of

=0,239

FIG. 6. The static susceptibility as a function of the
external field. a) in the region of the spin-flop tran-
sition in MnCo,, 4H,0 *'; b) in the region of the
metamagnetic transition in Dy,AlP;''* both
samples are spherical.
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FIG. 7. Magnetization curves in the region of the spin-flop transition in
MnF, (H, = 92kOQe) for two cylindrical samples.'? a) diameter 0.8 mm
and height 2.5 mm. b) diameter 1.85 mm and height 0.2 mm.

coexistence of the phases—their internal energies are equal—
is maintained in the magnet by means of redistribution of the
relative fractions of the phases.

7. EQUILIBRIUM GEOMETRIC PARAMETERS OF MODEL
DOMAIN STRUCTURES. STRIPED AND CYLINDRICAL
DOMAINS IN PLATES

The equilibrium values of the geometric parameters are
formed by balancing the terms in the energy (2.1) associated
with the nonuniformities of the internal states—domain
walls and the nonuniform part of the magnetostatic energy.

The shape and size of the domains of multiphase IS
largely depend on the internal states in domains and the ori-
entation of the vectors M‘* relative to the axes of the ellip-
soid. For this reason the calculation of the equilibrium struc-
ture of the IS is a quite complicated problem, and in each
specific case it must be performed, generally speaking, sepa-
rately. Virtually no such calculations have been performed
for multiphase domain structures with n > 2.

The situation for two-phase IS is substantially different.
As will be shown below, any two-phase domain structure
can be effectively described by a model of a two-phase do-
main structure of a ferromagnet. This makes it possible to
use many results of calculations of model domain structures
of ferromagnets.

In the “thin” wall approximation the energy density of
a magnet with a two-phase regular domain structure will
consist of the energy of the uniform states in separate do-
mains, the energy of the domain walls, and the magnetosta-
tic energy:

O =M™, LP, 0, O)E+oM®, LY, 0, 0)&

aS

25— A (M () B (1) 4V — (M, - MOE) H,

(7.1H

where g(H, ) is the energy density of the domain wall and §
is the total area of these walls in the magnet.

If the period of the domain structure is comparable to
the characteristic dimensions of the sample (the inequality
D <L isnot satisfied), then the nonuniformity of the internal
field, associated with the nonuniformity of the demagnetiz-
ing fields Hy, (r), is now significant over the entire volume
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of the magnet and, generally speaking, leads to nonuniform
distribution of M‘®, L in the domains. As a rule, how-
ever, within the region of existence of the domain structure
the change in the magnetizations of the sublattices M,, is
insignificant, i.e., the components of M, in the IS satisfy the
inequality

(Ma)i > X(g) (A HIS )jv (72)

where y( are the components of the static susceptibility
tensor for separate sublattices of the magnet. For a ferro-
magnet AH | = 87N |M] and the inequality (7.2) reducesto
Qle condition 4my,; € 1. Since the transverse components of
yina ferromagnet are inversely proportional to the anisotro-
py constant 3, the last inequality is equivalent to the require-
ment that the quality factor Q = 8 /41 be large. Under the
conditions of spin-reorientational transitions it often hap-
pens that | AM| € |[M| and the condition (7.2) turns out to be
weaker. If the relation (7.2) holds, the nonuniformity of the
spin states in the domains, even in the region DX L, can be
neglected and it can be assumed that, as before, states corre-
sponding to competing phases of a field-induced PTI are
realized in them. Thus, just as for a regular domain struc-
ture, the equilibrium values of the geometric parameters of
the IS are determined by minimizing (7.1) for fixed values of
M®, L5,

We shall write with the help of the quantities m(H,, )
and m(H, ) (6.7) the internal energy of an ellipsoidal mag-
net with a two-phase domain structure in the form (6.8) and
the magnetostatic energy from (7.1) in the following form:

—217 \ M (r) Hy(r) dV=2nm (H,) &M(H,,)

1H () %\ w' (r) hy (r) ¥,
(7.3)

where we introduced the distribution of the *““ferromagnetic™
moment m'(r) according to the relation

M (r) = m (H,) + u (), (7.4)

the magnetostatic fields H'y; (6.14) and h,, (r), generated
by a uniform ellipsoid and an ellipsoid partitioned into do-
mains, respectively, and we employed the reciprocity
theorem*

S Higw' (r) dV = ShM (r)  (H, ) dV.

Using the idea of ellipsoids “inserted” into one another,
the first term in (7.3) can be interpreted as the energy of the
demagnetizing fields of uniformly magnetized ellipsoids
with magnetization m(H,, ); the second term can be inter-
preted as the energy of an ellipsoid with the domains of mag-
netization + m’'(Hp) (6.7) in a magnetic field generated by
the first ellipsoid H,,; and, finally, the third term describes
the characteristic energy of magnetostatic interactions of an
ellipsoid with domain structure. Substituting (6.8) and
(7.3) into (7.1), we represent the energy (7.1) in the form
(6.10), and in addition Ag is functionally identical to the
energy of a ferromagnet with antiparallel orientation of fi in
neighboring domains in an “external” field H (6.13), writ-
ten in the *“thin” wall approximation,

o (Hp)S

A = \ haw!(r) AV +——— Hu' (H,) (8, —&,). (7.5)
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In the expression for Ag (7.5) the energies of the domain
walls can be put into the following form:

S ~
Pow= T2 _ ' (1, T (M, ) g, (1.6)
where
~ c(H
T(Hy )= — () 14 (1.7)

—..—411.,(2) (Hp)’ g=2—s—-

The quantity g has the dimension of length and is deter-
mined solely by geometric factors—the shape and size of the
sample and the domains. Conversely, the quantity /(H, ) is
an internal characteristic of the domain-containing material
and equals the ratio of the energy density of the domain walls
to the energy of the demagnetizing fields; /(H, ) also has the
dimension of length. For a ferromagnet |m‘| = M, and
[(0) = 0(0)/47M} is the so-called characteristic length.
For this reason, by analogy to a ferromagnet we shall call
I(Hp ) (7.7) also the characteristic length. From the forego-
ing discussion it follows that the problem of determining the
equilibrium geometric parameters of a model domain struc-
ture consisting of two phases with an arbitrary spin-reorien-
tational transition reduces to the analysis of the energy of a
polydomain ferromagnet in an effective displacement field

HD = (H — H, — 4am (H; ), (7.8)

and p is a unit vector in the direction m.

Thus far Ap (7.5) has been studied in detail for striped
and cylindrical domains in plane-parallel plates whose nor-
mal n is parallel to the easy axis in a magnetic field
Hi|n.>~'""%#%%In this case H varies along the line of constant
internal field {H|0}, so that the internal states in the do-
mains M'"||n, M® = — M‘" will not change as H varies in
the region of existence of the IS.

For a striped domain structure in a ferromagnetic plate
the equations for the equilibrium values of the geometric
parameters were derived in Refs. 86, 88, and 89. It is shown
in Ref. 89 that the transition of the striped domain structure
into a uniform state occurs by means of unlimited growth of
the period and dimensions of the favored phase and is
achieved in a field H*,*® determined by the system of para-
metric equations

H*=4M[Zarctg%—uln(1 + %)] )

(14 u? In (14 u?) —u?lnu2=2A. (7.9

The dependence of the field H* on the parameter A =1 /L
(where L is the thickness of the plate) is shown in Fig. 8. The
energy of the plate with single magnetic bubbles (MB) or a
lattice of magnetic bubbles can be obtained by solving the
corresponding magnetostatic problems.®~'" Such calcula-
tions and analysis of the conditions of stability of bubbles are
given in monographs and reviews of Refs. 9-11. We shall
present the limiting fields in which single bubbles and a lat-
tice of bubbles are stable as a function of A (see Fig. 8). H,,
is the collapse field; A, is the field of an elliptical instability
in a single magnetic bubble; H. determines the field in which
the period of the magnetic bubble lattice becomes infinite
and the lattice transforms into a system of isolated MB; and
H_, is the field of the elliptical instability of the MB lattice.

For all values of the parameter A the limiting fields are
related by the inequality
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FIG. 8. Boundaries of existence of domain structures in a ferromagnetic
plate.''* 1) H_,, 2) H,, 3) H*, 4) H., 5) H,,.

H,<H,<H*<H,<<H,<4nM. (7.10)

In the limit A — 0 all limiting fields approach the value 47M.
In the region A>1 the limiting fields are much less than
47 M. Here explicit expressions can be obtained for them®®:

H, ,=16Me¢ 1/2e-4,

sziﬁ-%e‘“/“e‘f‘, H* =4Mel/%e-A, (7.11)

H,—32e3%-A,  H,, = 16Me-11/8¢-A,

To calculate the equilibrium geometric parameters of
two-phase domain structures in a plate in the region of spin-
reorientational transitions it is sufficient to substitute the
values H(6.13) and 7(HP) (7.7) into the corresponding
equations obtained for a ferromagnetic plate. The problem
of the limits of existence of different types of domains can be
solved in an analogous manner, i.e., the limiting fields of a
ferromagnet H,;,, (7.10) are identical to the corresponding
limiting fields for spin-reorientational transitions, expressed
in units of the effective field H'®’ (7.8). From here we ob-
tain the following expression for the limiting fields under
conditions of spin-reorientational transitions:

H.=(H,+4nmH))p+ H,; (7.12)

the lower sign describes H'y;,, on the side of the low-field
phase and the upper sign corresponds to the high-field
phase. For H',,,, the inequality (7.10) remains valid, and all
limiting fields lie in the region of the intermediate state, giv-
en in the thermodynamic approximation by the expressions

H{=(H, + 4nMP (H) p, Hp= (H, +47MP (Hp)) p.

(7.13)

For a domain structure in the region of spin-reorienta-
tional transitions usually / < L. In this case H',,,, is virtually
identical to H | and Hj;, respectively, and the striped domain
structure is stable in virtually the entire region of existence of
the intermediate state, while MDs can exist in a narrow
neighborhood near the fields Hi and Hj.

We shall examine in greater detail the question of the
transformation of the plate from a uniform state into the
intermediate state. For definiteness we shall study the transi-
tion for a low-field phase with magnetization MV in the IS.
Since the existence of domain walls (neglected in the ther-
modynamic approximation) increases the energy of the
magnet with a domain structure, single magnetic bubbles
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will form not in the field H] (7.13), where H"” = H,, but
rather in some higher field H |, where already H ” > H;,.
Thus in the region of existence of single MBs of a high-field
phase in a low-field matrix the internal field exceeds Hp, and
hence p,(H) (6.10) can differ from ¢, ( Hp ) and can change
as H changes. In an easy-axis ferromagnet with 0> 1, for
which the limits of existence of MBs have been deter-
mined,’~'! the longitudinal susceptibility equals zero, so that
for a ferromagnetic plate in the field H||n @, (H) = ¢d(0)
(H'” = 0is the PTI field). In an arbitrary magnet this is not
the case, so that the change in ¢,(H) with the field affects
the values of the limiting fields in which MBs exist. In Ref.
90 it was proposed that the change in ¢,(H) be taken into
account by introducing into (7.5) an additional “‘displace-
ment field,”” which for the model under study can be written
as

Qo (H)—q (Hp)
Ha () =——7

Because of the inequality (7.2), in this case H , will
change insignificantly the values of the limiting fields
(7.12).

Generally speaking a PTI can occur also with respect to
some nonmagnetic parameter p. As shown in Ref. 90, in this
case, the existence of a displacement field H , can lead to the
formation of MB even without an external field.

We shall discuss the question of the domain structure in
magnets which are hot plates. Since the demagnetizing fields
are determined by the component of m(H,, ) normal to the
surface, for magnets the radius of curvature of whose surface
is significantly greater than D, the characteristic length will
be different in different sections of the magnet. Denoting by
n (r) the unit vector normal to the surface at the point r, we
obtain

a(H,)

~ ~ Im(H,)I®
= mwrmemr ~ G

(Hp)n(r)® °

It is obvious that now the equilibrium parameters of the
domain structure, including also the period, will be different
in different sections of the sample. In this connection, we
recall that the condition for the domain structure to be regu-
lar (see Sec. 6) is not predicated on strict periodicity of the
structure.

As is well known, in quite thick ferromagnets the do-
main structure at the surface is branched. '?' Models of ferro-
magnetic domain structures with different types of wedge-
shaped domains have been studied in detail in Refs. 8 and
121-123. The results of these investigations can be em-
ployed, with the help of the regular procedure studied in this
section, to analyze branched domain structures in the region
of spin-reorientational transitions.

8. RESONANCE PROPERTIES OF A MAGNET WITH DOMAIN
STRUCTURE

When a sample with domain structure is placed in a
uniform alternating magnetic field 4 (¢) ~exp( — iwt), non-
uniform, forced oscillations of the magnetization vectors of
the sublattices M, (r) will appear in the sample. The effec-
tive field acting on M, (r) consists of the external field
H + h(t), short-range fields (exchange, anisotropic, etc.),
as well as the long-range field of the magnetic-dipole interac-
tion Hyy + hy, (£).
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The alternating part of the magnetostatic field hy, (¢) is
generated by alternating magnetic charges on the surface of
the sample and on domain walls. Their existence leads to
three effects: the appearance of additional “rigidity” in the
spectrum, nonuniform broadening of the lines, and a differ-
ence in the polarization fields h(¢) and hy, (¢).

Thus far homogeneous resonance in magnets with a do-
main structure has been studied theoretically in great detail
for ferromagnets.'®? It has been shown that in ellipsoidal
ferromagnets with a regular domain structure there are two
“‘upper” resonance frequencies (®,, ®,) as well as a “low”
frequency (usually in the radio-frequency range) w, <w,,w,
associated with oscillations of the domain walls. The differ-
ence between the resonance frequencies w, and w, is deter-
mined by oscillations of the magnetic charges on the domain
walls. Since in a ferromagnet |H,, | and the anisotropy field
H , are of the same order of magnitude, while the resonance
frequency calculated neglecting the demagnetizing fields is
wy~H , , », and w, can, generally speaking, differ substan-
tially both from @, and from one another. The same pattern
will occur in the IS associated with the spin-reorientational
transition, for which Aw~|Hy | is comparable to w,. If,
however, Aw<w,, then the oscillations of the magnetic
charges on the domain walls do not appreciably affect the
resonance frequencies. In this case there is virtually no cou-
pling between the oscillations in different domains. For this
reason the resonance spectrum of the IS will consist of the
resonance frequencies of each of the coexisting phases w; in
the field Hy, as well as the spectrum of frequencies corre-
sponding to oscillations localized on the domain walls. In
addition, if a periodic striped domain structure with period
D can be realized in the IS, then an additional possibility
arises for exciting standing magnetostatic waves with wave-
length A ~D in separate domains. As the external field is
varied arbitrarily the internal field in the IS will vary in ac-
cordance with the relation (30), assuming one of the values
from the region of H,. The dependence of the resonance
frequencies on H will be determined by the dependence
H, (H), while the ratio of their intensities is proportional to
the ratio of the relative fractions of the phases &, . The reso-
nance frequencies are independent of the external field only
when H lies in one of the regions of constant internal field
{H|H,}. As shown above, the position of the regions
{H|Hp } in the IS is determined by the demagnetizing fields,
generated by the surface of the sample. For this reason, the
dependence of the resonance frequencies on the external
field is largely determined by the shape of the magnet. Since
the NMR resonance frequency wyyr 1s determined by the
internal field H'”, everything said above is also true for the
character of the excitation of NMR frequencies and the de-
pendence wyyg (H) in the IS.

Magnetic resonance in the IS has been studied experi-
mentally for the spin-flop transition in easy-axis antiferro-
magnets MnF,,”! CuCl,-2H,0,'"!%3!:52 NiNQ,,%, as well
as in the orthoferrite ErFeQ, in the region of the metamag-
netic transition.>**7-%

In Refs. 52-54, 57, and 58, where the condition
H, = const was realized, it was found that the magnetic res-
onance frequencies are independent of the external field in
the entire region of existence of the IS. Figure 9a shows the
dependence of the antiferromagnetic resonance frequencies
in the IS with a spin-flop transition for an MnF, plate.>® In
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FIG. 9. Dependence of the magnetic resonance fre-
quencies in the intermediate state. a) MnF, plate in
the region of the spin-flop transition for different
angles ¥**: 1) 0 4+ 5, 2) 107, 3) 20/, 4) 40’ (the first
order phase transition occurs for ¥<18'). b)
spherical orthoferrite ErFeQ, in the region of the
metamagnetic transition®*: 1) boundaries of the in-
termediate state; the broken line indicates the line
of second-order phase transitions; 2) temperature
dependence of the resonance fields at the frequency
w, = 50.0 GHz.

1
22 HH,T

the region of the IS (W< 18’) independent excitation of the
AFMR frequencies in separate phases of the domain struc-
ture is observed and @, does not depend on H(H varies along
the line {H|H; }). Magnetic resonance in the IS under con-
ditions of a metamagnetic phase transition in ErFeO, was
studied in Ref. 53. The fact that the resonance frequencies
depend not only on H but also on other external parameters,
for example, the temperature, was employed in Ref. 53. In
the (w, H, T) diagram the planes w = const intersect the
surfaces of the resonance frequencies w,; (H,T) along some
lines H,, (T). This fact makes it possible to employ a tem-
perature scan instead of a frequency scan, i.e., to determine
the lines H,,(7T) at a fixed frequency w,. In Ref. 53 the fre-
quency @, = 50.0 GHz, was employed. In ErFeQ, this is a
resonance frequency for both the antiferromagnetic
T= T, and ferromagnetic T = Ty > Thpy phases in
the temperature range of PTI. The independence of the reso-
nance frequency for each of the coexisting phases was ob-
served in the region of the IS in the H-T diagram (Fig. 9b).
Figure 10 shows the field dependence of the NMR frequen-
cies of Fe*’ nuclei in the vicinity of the metamagnetic phase
transition in ErFeQ;.>” In the region of the IS the NMR
frequencies are independent of the external field.

In Refs. 17, 18, 52, and 55 nonellipsoidal samples were
studied. Here the condition H,, = const is unachievable, so
that the resonance frequencies did depend on the external
field.

w,MHz
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FIG. 10. Frequencies of NMR on Fe®” nuclei as functions of the external
field in the region of the metamagnetic transition in ErFeQ; at T =2 K.%’
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9. DOMAIN STRUCTURE IN ORTHORHOMBIC
FERROMAGNETS

Proceeding now to the analysis of the IS with a concrete
external-magnetic-field-induced PTI, we shall present the
regular procedure employed to investigate such domain
structures theoretically:

1) The region of the PTI H,,, 7, and the equilibrium
states in the competing phases are determined by solving the
system of equations (4.1) and (4.2). The region of coexis-
tence of the domains and the structure of the IS are deter-
mined by solving simultaneously the equations (4.2), (4.3),
and (4.4).

2) The characteristic parameters of the energy density
of solitary domain walls with fixed boundary conditions
M* (H,), L ¥ (H, ) are calculated by the standard meth-
od.'

3) The magnetostatic energy of a sample with a given
shape is calculated for a selected model distribution of the
domains of separate phases, after which the equilibrium geo-
metric parameters are determined by minimizing the energy
(2.1).

4) The external-field dependences of H; and of the
equilibrium states in the domains, determined in the thermo-
dynamic approximation (see Sec. 4), permit studying the
dynamics and determining the resonance properties of a
magnet with domain structure.

We shall first study two-phase domain structures for
the example of domains in an orthorhombic ferromagnet
and domains in the region of the spin-flop transition in an
orthorhombic antiferromagnet (see Sec. 10).

For an orthorhomic ferromagnet the energy (3.5) has
the following form®*:

cb=_g-M;+£2- M?—HM. (9.1)
For B’ > B> 0 the Oz axis is the axis of predominant magne-
tization, while the Ox axis is the central axis. If H lies in the
x,z plane (let ¢ be the angle between H and Oz), then the
stable state of the system corresponds to M also lying in the
x,z plane (we denote by 8 the angle between M and Oz).
Based on the foregoing discussion, we rewrite the potential
(8.1) as follows:
pM?2

2

o= 8in2 0 — HM cos (8 — ). (9.2)
Analysis of the potential (9.2) gives the following results.®

Bar'yakhtar et a/. 824




/./Z
w¥
7
&
5
- -
/7’_,{.‘) Wy
4
3
2
4
a b c
The PTI line is a segment of the straight line
Hzl" = Oa | H.xl’ |< chl! Hm| = ﬁMoo (93)

The points H( + H,,,,0) are the critical points of the
PTI. The equilibrium states in the competing phases are giv-
en by the following equation:

cos Oy, ,= + [1 — (-H,_‘,:_)z]uz.

o 9.4)

From here the magnetization on the phase-transition line
equals

H,,
ME=MP=—
i H, \271/2 9:3)
MP=—M®=M, [1_ (H) ] )

The formation of the IS indicates that only thermody-
namically equilibrium states are realized in the system, i.e.,
metastable states are not formed in the volume of the mag-
net. In the region of existence of metastable states, however,
a characteristic restructuring of the domain walls occurs
(see Sec. 12), and for this reason we shall present for the
systems studied the equations for the lines of lability. In this
case the boundary of existence of metastable states is deter-
mined from the system of equations d®/df =0, d>®/
df? =0, and in the phase plane H ", H!” (Fig. 11) itisan
asteroid™

HP 4 qH3 = HY) (9.6)

Having determined the region of H;, (9.3) and the equi-
librium states in the competing phases (9.5), we employ Eq.
(4.3) to describe the domain structure. We assume that the
magnet is an ellipsoid, one of whose principal axes is the Oy
axis. In this case the existence of demagnetizing fields along
the Oy axis is excluded, and therefore the region of existence
of the intermediate state lies in the phase plane H, ,H,.
Equation (4.3) has the form

Hx:Hﬂ’. (1 +0_1Nxx)

AN M 28— 1) [1— ()],
y (9.7)

H,=QN,H, +4”N21M0[1 - (%‘—P—)Z]”Z '

col

here we introduced the quality factor Q = 8 /4. The system
of equations (9.7) together with (9.3) and (0.5) uniquely
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FIG. 11. Phase diagram of an orthohombic ellipsoi-
dal ferromagnet. a) in components of the internal
. field; b, c) in components of the external field (b:
N, =0;c: N, #0). Inb) the double hatching de-
notes the region of restructuring of 360° domain
e walls (see Sec. 12); the thick lines are for constant
z internal field and the thin lines denote regions of
constant relative fractions of the phases: 1—{H|1;
0}, 2—(H|J; . 3—(H|g; ), 4—(HIg: 1), S—(HI3

s}, 6—{(H|§; 1}, 7—{H|0; 1}.

determines &,, &,,Hp,M, (Hp ), M, (H; ) asa function of the
external field.

The boundaries of the domain structure are determined
by substituting the values ¢, = 0 and 1 into (9.7) and are
described by the equation of an ellipse:

I(Q + Nxx) Hz - Nszx]2 + (szHx - Nszz)2 = sz
(9.8)
4= (Q + Nxx) Qulsz "_0_1 N?cz

Eliminating &, from the system (9.7) we obtain equa-
tions for the regions {H|H, }, which in this case are families
of parallel straight lines

szHx'—Nszz: Hl’x [1\'712‘*‘0_i (Nxxsz_N?CZ)]' (99)

Thestraight lines (9.9) make with the H, axis the angle

@ = arctg(N,, /N,, ). The equations for the lines of constant

relative percentages of the phases {H| &,, £,} form a family
of ellipses

[(Q + Nxx) Hz - Nszx]2 (251 - 1)_2

+ (NeHly — N H,)* = 4% (9.10)

For £, =¢&, =1 the ellipses (9.10) degenerate into the
straight line

(Q+Nxx)Hz=Nszx1 (9.11)
which makes with the H, axis the angle
r_ Q+Nyx
Q' = arctg———-Nxz .
Equation (9.8), naturally, describes {H|1; 0} and

{H|0; 1}. All lines {H|£,, £,} (9.10) have two common
points:

Hy=+H.,(1 +Q'N,), H,==+Q'N_H., (9.12)

and fix the values of the external field for which H" equals
the critical value. This general property of the critical points
of PTI was discussed above (see Sec. 5).

Figure 11 shows the region of existence of the IS for
ellipsoids with N, =0(b) and N,, #0(c). As pointed out
above, for external fields in the regions {H|H, } only the
process of displacement of the domain walls occurs in the
intermediate state. It is obvious from Fig. 11 that in an ellip-
soidal magnet whose principal axes are the magnetic axes
N., =0 for H|| easy axis in the region of existence of the
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domain structure, the evolution of the domain structure oc-
curs owing to the displacement of the boundaries. If, how-
ever, the principal axes of the ellipsoid do not coincide with
the magnetic axes (N,, #0) even in the field H|| easy axis,
displacement of domain walls should be accompanied by ro-
tation of M in the domains.

Everything said above is also true for ferromagnets in
the form of a plate whose easy axis is tilted away from the
normal by an angle . In this case N,, = sin’e, N,, = cos’e,
N,, = —sin & cos a, and the lines of constant internal field
make with the H, axis theanglep = —a.

The phase diagrams of an orthorhombic ferromagnet
with IS examined above contain only the components of the
magnetic field.

As an illustration of the effect of a nonmagnetic param-
eter on the IS of a magnet we shall examine the IS of an
orthorhombic ferromagnet at finite temperatures. As above,
we shall assume that the vector H lies in the plane formed by
the easy (Oz) and central (Ox) axes. In this case the equilib-
rium states of the magnet are determined by minimizing the
free energy:

1
F=—2-6M:0'2
+% BM2at sin? 0 — HM o cos (0— ) — ks T (0), (9.13)

where § is the exchange interaction constant, (o) is the
entropy, and & 3 is Boltzmann’s constant.

It can be shown'?® that for a fixed temperature T < T ¢
(T is the Curie temperature) the straight-line segment

|HO<BM o (T)=Ho (T), HP =0 (9.14)

in the H'”, H " phase diagram is a line of PTI, on which
phases with 8, = arcsin(H "/H_,0(T)) and 6, = 7 — 8,,
coexist, while o(T) is a root of the equation

(8+B) o= — kT 3L (q). (9.15)
The region of the PTI in the H,, H,, and T phase diagram
(Fig. 12a) is distinguished by cross hatching, and the line

H,= 4 H,o(T) (9.16)

is’the line of critical points of PTL

It follows from what was said above that to describe the
IS at finite temperatures it is sufficient to make the substitu-
tion M,—~M,o(T), H,,, - H_, 0(T) in the relations (9.7)-
(9.12). It is obvious that in so doing all features of the IS
studied above (at 7= 0) are preserved. For an ellipsoidal

//ﬁ) ey

Hz M

b

FIG. 12. H-T phase diagrams of an orthorhombic ellipsoidal ferromag-
net. a) In components of the internal field; b) in components of the exter-
nal field. In Fig. 1(a) the region of FTI is cross hatched.
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sample the region of existence of the IS in the H,, H,, T
phase diagram is bounded by a surface whose sections by the
planes T = const are ellipses (Fig. 12b). If the principal axes
of the ellipsoid coincide with the magnetic axes, then in the
H,,T phase diagram we obtain for the boundary of the IS

H,, = F 4xN,, Mo (T). (9.17)

In the (H,,T) phase diagram the boundary of the IS is de-
scribed by the equation

Hl.z = :F (ﬁ + 4anx) Mﬂc (T)- (918)

Inthe (H,,T) phase diagram the region of existence of the IS
is the region of constant internal field with H, =0—
{H, T|0}. In this case the evolution of the IS in a magnetic
field occurs only owing to redistribution of the relative per-
centages of the phases (the process of displacement of DW),
while the magnetic susceptibility is determined only by the
shape of the sample (see (6.21)). In the (H,,T) phase dia-
gram the IS is a region of constant relative percentages of the
phases with £, = £, = §. Here the evolution of the IS in a
magnetic field occurs only owing to the change of state in the
domains (rotation process), while the magnetic susceptibil-
ity is given by

1

=BT anNax (9.19)

and is determined not only by the shape of the sample, but
also by the character of the change in the equilibrium states
in the region of the PTI. In the field H||Oz the phase transi-
tion into a uniform state on the line (9.17) occurs owing to
complete expulsion of the unfavorable phase. For H||Ox the
transition into the uniform state is associated with a loss of
difference between the states in separate domains. Figure 13
shows the experimental results for the boundaries of the IS in
the field H parallel (a) and perpendicular (b) to the easy
axis. As one can see in Fig. 12b the phase transition from the
IS into the uniform state occurs in finite fields for any orien-
tation of H.

At the end of the 1960s interest arose in the question of
the character of the (H,T) diagrams of ferromagnets in the
vicinity of the Curie temperature. It is known from the self-
consistent field theory that in an unbounded isotropic ferro-
magnet in the (H,T) phase diagram the Curie point is an
isolated point of a second-order phase transition.** Indeed,
in any finite field the ferro- and paramagnetic phases have
the same symmetry. In this connection one talks about the

#,0e n H, Qe
.
400+ 200 ~\\
\\
L L b
\
200} \ 100 \
1 1 1 1 \ L L 1 l\ 1
623 625 Tk 14 16 18 TK
a b

)MI

FIG. 13. H, T diagrams of spherical samples of nickel (H || easy axis
(a) and Cu(MH,),Br,-2H,,0 (HL easy axis)'*? (b).
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smearing of the PTII by a magnetic field. The singular be-
havior of a ferromagnet in a nonzero field in the vicinity of
T was first observed in Ref. 137. The theoretical explana-
tion of this phenomenon was given on the basis of the model
of an isotropic ferromagnet. It was shown in Ref. 138 that
the equilibrium energy of such a magnet, even taking into
account the dipole-dipole interaction, in the thermodynamic
limit is independent of the shape of the sample. On the other
hand, the energy of demagnetization of a uniformly magne-
tized ferromagnet depends strongly on the shape of the mag-
net and the direction of M in it. It follows from this that the
equilibrium state of an istropic ferromagnet with H=0 is
not uniform,'*” and in addition the scale of the nonuniformi-
ty is much smaller than the characteristic dimensions of the
sample. In Ref. 139 it was suggested that the PTII observed
in the vicinity of T'¢ in a nonzero field is a phase transition
from the nonuniform state into a uniform state. The hypoth-
esis has been reliably confirmed in numerous experimental
and theoretical studies.”>~"7-'%"

We note that in the transiticns discussed above anisot-
ropy plays the determining role. Unlike the infinite degener-
acy of the ground state in the isotropic model, in an aniso-
tropic ferromagnet with H” =0 there is only a finite
number of stable states (phases) between which a PTI oc-
curs in a magnetic field. The (H'”,T) phase diagrams of a
ferromagnet contain a region of PTI, bounded by lines of
critical points, which are actually lines of PTII and termi-
nate at 7,.." In finite ferromagnets the existence of field-
induced PTI and the demagnetizing action of the surface of
the magnet lead to the formation of an IS, which in its turn is
responsible for the existence of phase transitions (in finite
fields) from the IS into the uniform state, and in addition for
arbitrary orientations of H.

It should be kept in mind that in weakly anisotropic
ferromagnets (for example, in some cubic ferromagnets) the
IS can have an irregular character: because of the smallness
of the anisotropy the inequality D> x,, may not hold, and
then the distinction between a domain and its wall is lost. In
this connection the nonuniform state of an isotropic ferro-
magnet can be regarded as the limiting case of an anisotropic
ferromagnet with a vanishingly small anisotropy energy E , :
as £, — 0 broadening of the domain walls in the entire vol-
ume of the magnet will establish a complicated nonuniform
distribution of M(#). In addition, the inequality D> x, is
violated, this time for a different reason (see conclusions), in
the vicinity of the lines of termination of PTI (lines of PTII).
The characteristics of the IS in this region were studied in
Refs. 75-77.

Summarizing the foregoing discussion we can assert
that in a finite ferromagnet the formation of an IS leads to
the existence of an IS in the vicinty of 7. in finite fields with
arbitrary orientation of the external field. Exceptions are
magnets with limiting shapes (thin plates and long cylin-
ders). For some orientation of the crystallographic axes an
IS may not form in such magnets; this leads to smearing of
the phase transition by the external field.

10. DOMAIN STRUCTURE OF ORTHORHOMBIC
ANTIFERROMAGNETS NEAR A SPIN-FLOP TRANSITION

We shall study a two-sublattice orthorhombic antifer-
romagnet without the Dzyaloshinskil interaction (the sys-
tems 1 ( — ), ( — ) according to E. A. Turov’s classifica-
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tion'?®). The ground state of such an antiferromagnet in a
magnetic field, tilted into the plane formed by the easy and
central axes (the (x,z) plane), was studied in Refs. 104-112.
Asshown in Ref. 111, if the exchange interactions are much
stronger than the relativistic interactions, then to describe
the magnetic properties in the vicinity of the spin-flop transi-
tion it is sufficient to retain the following terms in the anisot-
ropy energy &, :

2 Oa=—Byi— B,li— (By—P)m3, (10.1)
where 1 = (M, — M,)/2M,, is the antiferromagnetism vec-
tor,m = (M, + M,)/2M, is the total magnetization vector,
M, and M, are the magnetization vectors of the sublattices,
IM, | = M,, and A is the intersublattice exchange interac-
tion constant.

For B, + B, >0 Oz is the easy axis. With the exception
of very particular ratios between the anisotropy constants of
different orders (see, for example, Ref. 112 on this point ) the
stable state of the system in a magnetic field lying in the (x,z)
plane corresponds to M, and M, lying in the same plane.
Outside the vicinity of the Morin point usually B,> B,. In
this case after minimizing with respect to m, the energy of
the antiferromagnet can be represented in the form

1
H3
H
h— |

P

F—

(Dzé asin? 20— (h, — 1) cos 20 — h, sin 20,

. B 8 (10.2)
H|):27\4B‘/2M0, = Bi +T ,
where @ is the angle between 1 and the Oz axis.

The fact that the potential (10.2) is functionally identi-
cal to the energy of an orthorhombic ferromagnet (9.2)
makes it possible to employ the results presented in Sec. 9.
For this, it is sufficient to make the substitution H, —#4,,
H, -h, — 1,B—-aintherelations (9.2)-(9.4) and (9.6). It
is obvious that the phase diagram of an orthorhombic anti-
ferromagnet in the coordinates (4, ,h, — 1) is identical to
the corresponding (H, ,H,) diagram of the orthorhombic
ferromagnet. In particular, the region of existence of meta-
stable states is bounded by an astroid, the coordinates of
whose cusps are

(—a; 1), (2; 1),
O; k), (05 hy),

where sy =1 —aandh =1+a.

For a > 0 the line of PTI is a segment of the straight line
h, =1, |h,| <a (Fig. 14a), on which phases with different
values of the components m, coexist''':

(10.3)
(10.4)

mih @ = my, - my, = (By+ Bg)V2 [1 £ (1—+2)]1/2,
hx
V=

a

(10.5)
mip —m® = my, = (B, + Byt v, :
For a <0 the line of PTI is a segment of the straight line
h, =0, |h, — 1| <|a| (Fig. 14b), on which the states with /
tilted away from the easy axis by angles of + @ coexist. For
these states the quantity m, assumes opposite values:

(hg—h ) (k) —hs) q1/2
mip = — mip = [ TR Bam ) g
* ¥ hy—hy '
hz—h
mP =m® = Z— i (10.6)
hy—h
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FIG. 14. Phase diagrams of an orthohombic ferromagnet in components
of the internal field. a) for a > 0; b) for a <0.

The existence of states with different values of the vec-
tor mon the lines of PT1 leads to the formation of an interme-
diate state in the region of the spin-flop transition.

For an ellipsoidal sample with a> 0 Eq. (4.3) can be
written as

he = (a + q_lNa:x) v

+ ¢V, (B —E) (1 — V) 4 gV, (10.7)

hz = q_iNxzv'l' q_isz (Ei —gz) (1 - ’Vz)“2 -+ 14 9"’sz q= % .

(10.8)

The relations determining the structure of the IS of an
antiferromagnet are analogous to the relations (9.7)-
(9.10), derived for an orthorhombic ferromagnet. Figure 15
shows the region of existence of the IS of an ellipsoidal ortho-
rhombic antiferromagnet (a>0) with #,, =0 (a) and
N,, %0 (b). Unlike a ferromagnet, here the region of exis-
tence of the IS is shifted along the 4, axis (N,, = 0), while
for NV,, #0it is also shifted along the 4, axis. To understand
this we turn to the above-introduced representation of ellip-
soids “inserted” into one another. An orthorhombic antifer-
romagnet with a domain structure in the region of a spin-flop
transition can be regarded as a uniformly magnetized mag-
net with magnetization m, (10.5) and another one of the
same shape with “ferromagnetic”” domains that have a mag-
netization + m,; (10.5). We can say that an ellipsoid with
“ferromagnetic” domains is subjected to an additional “ex-
ternal” field, h, = 4mNm,, generated by the magnetization

by b bz

a

FIG. 15. Phase diagrams of an orthorhombic ellipsoidal antiferromagnet
witha>0.a) N, =0;b) N, #0.
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FIG. 16. Oscillograms of the longitudinal component of the magnetiza-
tion (a) and the magnetic susceptibility (b) in NiWO, in the region of the
spin-flop transition for different angles ¥**: 10’ (1), 32 (2), 54' (3), 74
(4),98' (5), 120’ (6) (for <72 a first-order phase transition occurs).

m, (10.5). This is what leads to the displacement of the re-
gion of the IS.

Experimental studies of the IS in the region of a spin-
flop transition were performed in MnF,,'*2"%2 CoF,,*
CuCl,-2H,0,'"'#! CdAI1O,,**4° MnCl,-4H,0,*'
NiwO0,,*?* (C,H;NH,), CuCl,.** Figures 6 and 7 show the
dependence of the magnetization of MnCo,-4H,0"' and
MnF," in the region of the spin-flop transition in a magnetic
field oriented parallel to the easy axis. The parameters of the
IS accompanying a spin-flop transition in an oblique field
were studied in the easy-axis antiferromagnet NiWO, (Fig.
16).*? In complete agreement with the theory in the interval
|| <72' y1s = N remains constant, and the jump in the

FIG. 17. Photographs of the domain structure in the region of the spin-
flop transition in an MnF, plate.?' The dark regions indicate the spin-fiop
phase and the light-colored regions indicate the antiferromagnetic phase.
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magnetization drops monotonically as ¥ increases (see the
formulas (6.19) and (10.5)).

Figure 17 shows photographs of the domain structure
in the region of the spin-flop transition for an MnF, plate.?!

11. DOMAIN STRUCTURE OF ORTHOFERRITES NEAR
SPONTANEOUS PHASE TRANSITIONS

We shall study the properties of an IS with a multiphase
domain structure (n > 2) for the example of an orthoferrite
in the region of smooth spin reorientation (a,c reorienta-
tion). The energy density (3.4) for an orthoferrite in this
region equals®”'!3-116

® = K, sin*® + (K, — K,) sin? 6 — Hm, (11.1)

K, and K, are effective anisotropy constants, expressed in
terms of the anisotropy, the Dzyaloshinskil interaction, and
the exchange interaction constants, and 6 is the angle
between the spontaneous magnetization vector m and the ¢
axis.

In the rare-earth orthoferrites studied the a,c reorienta-
tion occurs smoothly in a definite temperature range.”” This
process is described by the potential (11.1) with K,>0. In
the absence of a field the region of smooth spin reorientation
is realized in a temperature range  where

— K, <K (T) < K,, and in addition in the equilibrium state

K,
cos 20 = T (11.2)

If Hj|c, then the angular phase exists for K, <K, and
|H| < |H |, where
HY = + 2(K,—K,)m, (11.3)

while the equilibrium states 6 in the angular phase are given
by the equation

1 K, Hm
cos36——2—(1—{——Kj)cosﬁ— X, =0.

(11.4)

In an analogous manner the following results can be
obtained for Hlja. The region of existence of the angular
phase K, > — K,, |H| < |H !*’|, where

HP =+ 2(K+ Ky m, (11.5)
while 6 is determined by the equation
sin®0 — 1 (1— ) sinf— 22 =0, (11.6)
2 2

In accordance with the general result proved above, the
regions of existence of angular phases studied here are sur-
faces of external-field-induced PTI. Indeed, for example, for
H||a, in the region bounded by the straight lines (11.5) the
states of the orthoferrite in the angular phase, given by Eq.
(11.6), are doubly degenerate: the solution of (11.6) is @ and
7 — 6. A magnetic field H||c removes this degeneracy: the
state with m, making a smaller angle with H, becomes ener-
getically favored. This means that the region of existence of
the angular phase with Hj|a is a region of PTI induced by the
component of the field parallel to the ¢ axis (H, ), and the
PTIoccursat H, = 0. Analogous arguments can also be giv-
en for the iegion K, <K,, H, =0, |H,| < |H *|. Thus the
regions of existence of angular phases in the phase space H,,
H,, K, are surfaces of PTI, while the straight lines (11.3)
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FIG. 18. H",H'", K, phase diagram of an orthoferrite in the region of
smooth spin reorientation. The cross hatching denotes regions of first-
order phase transitions, the broken lines denote lines of termination of
first-order phase transitions.

and (11.5) are lines of termination of PTI—critical lines.
Figure 18 shows the H,, H,, and K, phase diagram of an
orthoferrite. The regions of PTI (angular phases) are cross
hatched, and the broken lines are the critical lines of PTI
(11.3) and (11.5). The region H =0, |K,| < K, (the region
of smooth spin reorientation) is the intersection of two sur-
faces of PTI, i.e., it is the region of coexistence of four phases
(from (11.4)):

62 = = eiv

0;=0,+mn, 0,=0,4 x.

(11.7)

In other words, the region of smooth spin reorientation
is a line of PTI between the four phases (11.7). Figure 19
shows the (H,, H,) diagrams of orthoferrite, obtained by
the section of the H,, H,, and K, diagram by the plane
K,(T) = const (so as not to clutter the figure, the lines of
lability of separate phases are not drawn). In the region
|K,|>K, H", H!” qualitatively corresponds to the phase
diagram of an easy-axis ferromagnet (Fig. 11), while for
|K|> K, the fourth-order anisotropy in (11.4) can be ne-
glected, and (11.1) transforms into (9.2).

Since in the region of smooth spin reorientation a PTI
occurs between two and four phases, they will correspond to
two- and four-phase domain structures.

The regions of four-phase degeneracy (H” =0, |K||
< K,) are given by Eq. (11.7). For H lying in the o, ¢ plane,

Hz LA

Hr Hz

[« d

FIG. 19. H \”,H {” phase diagrams of orthoferrite in the region of smooth
spin reorientation. a) K, < — Ky b) K, <K, <0; c) 0<K, <K, d)
K >K,.
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FIG. 20. H,, H. phase diagrams of an ellipsoidal orthoferrite. a)
K < —K:;b)K,<K <0,¢)0<K, <K5d) K, >K,. The interior of the
parallelogram in Figs. b and c is the region of existence of the four-phase
domain structure (H'” =0); four regions with a two-phase domain
structure are contiguous to it. In the regions of existence of the two-phase
domain structures lines of constant internal field (segments of straight
lines and lines of constant relative fractions of the phases) are drawn.

Egs. (4.3) have the following form:

by = 4numN o (E, — 8y — &5 + E4) cos B
+4nmN,, (& + By — &3 — E4) sin 6,

h, = 4nmN ., (51— & — &3+ E)cos @
+ 4nmN,, (&, + Es — &3 — Ey) sin 8,

§1+§2+§3+§4=1-

Together with Eq. (11.7) the system (11.8) determines
&, as afunction of H and K, (7). In the (H,, H,) diagram
the region of existence of the four-phase domain structure is
a parallelogram (Fig. 20).

At the vertices of the parallelogram a transition into the
uniform state occurs (here one of the £, equals 1, and the
others equal 0). On each side of the parallelogram two of the
four quantities £, vanish in pairs, i.e., these segments are
boundaries of four- and two-phase domain structures. The
system of equations (11.8) contains three equations for four
unknowns &, . This means that the solutions are not single-
valued, as discussed above (see Sec. 5): in a given external
field different sets of &, will satisfy the system (11.8). In this
case n = 4,d = 2 and, therefore, ¥ = 1 (see Eq. (4.13)), i.e,,
the one-parameter family £, will satisfy the system (11.8).

We shall now describe the region with a two-phase do-
main structure. For example, for the PTI line H,, =0,
0< H,, <H® the equations (4.3) assume the form

(11.8)

H, = H, +4aV,, (&, + &) m cos 6
+ 4nN,, (E, — E,) m sin 9,
H,=4nN,, (§, + E,) m cos B
+ 4nlNyy (€1 — &5 ) m sin 6,
& + g, =1.

(11.9)

Together with Eq. (11.4) the system (11.9) also gives the
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dependence of the internal parameters on H. Unlike the
four-phase domain structure, where H”> = 0 in the entire
region of its existence, and the system evolves only owing to
the redistribution of the relative percentages of the phases, in
the two-phase domain structure the internal states in the
domains will also change as H changes. Eliminating £, from
(11.9) we obtain the lines {H|Hjp }, which form a family of
straight lines

Ny (Hr,—H,)—dam cos,8 (N . N,,— N2)=H_.N,,,

(11.10)

parallel to the corresponding side of the parallelogram.

Eliminating H p, and 8 from the system (11.9) we ob-
tain an equation for the regions {H|£,, £,} and, in particular,
the boundaries between the region of existence of the two-
phase domain structure and the uniform state-——{H| 1;0},
{H|0;1}. The structure of three other regions with a two-
phase domain boundary is determined in an analogous man-
ner. The (H,, H,) phase diagrams of an ellipsoidal sample
were constructed from computational results (Fig. 20).

Weshall trace the evolution of the (H ., H, ) diagram of
orthoferrites as X, (7T) varies. For |K,(T)| <X, the phase
diagram contains a region with a four-phase domain struc-
ture (parallelogram) and four adjacent regions with a two-
phase domain structure (see Fig. 20). As K,(7T) approaches

+ K, the parallelogram is compressed, and for X,(7T)
= + K, it constricts into a segment. For |[K,(7)| > K, only
a region with a two-phase domain structure, analogous to
the domain structure of an easy-axis ferromagnet (compare
Fig. 11 with Fig. 20, a and d), exists. .

Since the components of the tensor N are determined by
the ratio between the axes of the ellipsoid and their arrange-
ment relative to the magnetic axes, the shape of the magnet
strongly affects the dimensions of the region of existence of
the domain structures. Thus, for example, if the sample stud-
ied is a plate whose normal is parallel to one of the crystallo-
graphic axes (@ or¢), then one should expect a domain struc-
ture related only-with the demagnetizing action of the
projections m® on the axis parallel to the normal. In this
case the region of four-phase domain structure will not ap-
pear at all. In practice, however, because of the finiteness of
the transverse dimensions of the plate, owing to the demag-
netizing action of its faces the four-phase domain structure
can be observed.”' Since magnetooptical studies of domains
are performed on samples in the form of plates, plates cut out
at an angle to the magnetic axes a and ¢ are most useful for
observing the four-phase domain structures of an orthofer-
rite. Thus plates with @ = 0-10° («a is the angle between n
and the ¢ axis) were employed. The results of experimental
studies, as well as qualitative description of the evolution of a
four-phase domain structure as a function of 7, undertaken
in Ref. 70, are in complete agreement with the results pre-
sented. It follows from (11.8) that for H = O in the region of
smooth spin reorientation &, = &,, £, = &, and the relative
percentages of the phases &, &;, and &,, £, can be arbitrary.
This arbitrariness in the distribution of the relative fractions
of the phases is explained by the shape “‘hysteresis,” discov-
ered in Ref. 70, of the domains (Fig. 21). The behavior of the
domain structures of orthoferrites, observed in Ref. 70, in
the fields H|{n and Hln can be interpreted as a successive
transition from a four-phase domain structure to a two-
phase structure, and then into a uniform state. The existing
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FIG. 21. Domain structure of the orthoferrite Sm,, ;s Tb, ,s FeO, in the
region of smooth spin reorientation (210-300 K) at different tempera-
tures (a-h) in the fietd H = 0"": 295K (a); 270K (b); 251 K (¢); 245K
(d); 217K (e); 228 K (f); 255K (g); 295 K (h). The states in a—e were
obtained by cooling the sample with simultaneous magnetic *‘shaking’;
the states in f—g were obtained while heating the sample.

data, however, are not sufficient for quantitative comparison
with theory. It would be useful to study experimentally the
evolution of domain structures in the region of smooth spin
reorientation with an arbitrary orientation of the field in the
ac plane, including using plates with & =~ /4, when the de-
magnetizing fields along the a and ¢ axes are of comparable
magnitudes.

The region of existence of an angular phase of ferrites,”’
is also the region of external-field-induced PTL°' and there-
forean IS is realized here. Such domain structures (so-called
high-field domains) were observed in Refs. 65 and 66, and
the theory was constructed in Ref. 61.

12.EVOLUTION OF DOMAIN WALLS IN THE REGION OF SPIN-
REORIENTATIONAL TRANSITIONS

In the foregoing discussion we examined thermody-
namically stable domain structures. However, domain walls
can exist even outside the region of external-field-induced
PTI. In this case the formation of domain structures is not
thermodynamically advantageous, since the increase in the
energy of the system owing to the formation of nonuniform
states (domain walls) is not compensated by a gain in the
energy of other interactions. Such domains nonetheless ap-
pear in the process of formation of an ordered state and are
termed kinetic domains.®> Examples are domains in a collin-
ear antiferromagnet with antiparallel orientation,''® sepa-
rated by 180° domain walls. In an easy access ferromagnet
360° domain walls, separating sections of the ferromagnet
with collinear orientation of M, can exist outside the region
of PTI.

If the kinetic domain walls contain spin configurations
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corresponding to metastable states of the spin-reorienta-
tional PTI, then the structure of domain walls undergoes
characteristic changes in the vicinity of such a transi-
tion,32:97-108.117-119 ye ghall study this phenomenon within
the framework of the simplest model: for a flat domain wall,
whose magnetic states are fixed by one configurational vari-
able 6. In the “thin” wall approximation the potential (2.1)
for this case reduces to the following®*:

o= { [a(F)+0@®)]ds, (12.1)
where x is a spatial coordinate, oriented along the normal to
the domain wall; a is the nonuniform exchange interaction
constant; ®(8) is the uniform part of the energy density. The
structure of the domain wall 8(x) is determined by varying
the functional (12.1) with the standard boundary condi-
tions'

d6

X=400

=0, Bropoo =07, Brmw =16},

dz

where 69 and 6} are the equilibrium values of © in neigh-
boring domains. The Euler equation for (12.1)

2
has the first integral
de y2
alo=) =00)—Dy,,
(dr) ( min (12.3)

Oy =D (6;) = P (63).

The distribution ©(x) and the energy of the domain wall
@, are determined by direct integration of (12.3)"**:

a0
¢ = z(—“——)"zde (12.4)
=\ @@ —oan ’ :
8
8y
by = S ((D (9)_‘(Dmm)l/2 s, (12.5)

3

6

N

-1

It follows from Euler’s equation (12.2) that the points
of inflection of the function €(x) are found from the equa-
tions d®/d6 = 0 (the roots corresponding to the stable state
of the system (8¢, 65) which are realized in the domains,
naturally, must be excluded from these solutions). If the
values of @ corresponding to the new phase belong to the
starting domain wall, then on transition into the region of
metastable states they, being solutions of the equation d®/
df =0, will lead to additional inflections in the function
6(x).Thus the character of the functions 8(x) is qualitative-
ly different inside and outside the region of the metastable
states. Outside the region of metastable states in the interval
[69,65] the equation d®/d6 =0 has one root, corre-
sponding to the maximum of ®(8). This value of 8 deter-
mines, in this case, the only inflection point of the function
@(x) (Fig. 22). The region of existence of metastable states,
in the interval [69, 67 ], already contains at least three ex-
tremal values of the function ®(8): one (8% ) corresponds to
a local minimum (metastable state), while the other two
correspond to a maximum of () (see Fig. 20). As the field
of the PTI is approached the energy of the metastable state
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FIG. 22. Schematic view of the one-dimensional potential
#(0) and the corresponding distribution #(x) in a soli-
tary plane domain wall separating the states 8¢ and 89.
a) Outside the region of metastable states associated with
a first-order phase transition into the phase 8%; b, ¢) in-
side the region of metastability (b: H'” #H,; c:
H" =H,).

decreases (®(69) — ®,..,) 0. It follows from Eq. (12.3)
that in this case (d®/dx) 00 -0, i.e., the change in 6(x) in

the vicinity of 8 slows down (Fig. 22). Finally, in the field
of PTI ®(69) = P,;,, and according to (12.4) the region
6 = 69 expands in an unbounded fashion. To avoid misun-
derstandings, we recall that in the model of isolated domain
walls, studied here, the stable state of the system (the do-
mains themselves) is assigned an infinite width. For this rea-
son, the process of unbounded expansion of the region
8 = 09 in reality merely means that at H” = H, a domain
of a “new” phase forms.

The change in the form of the distribution 8(x) accom-
panying a transition into the region of metastable states as
well as the character of its further evolution have a simple
physical interpretation. In the domain wall all states § havea
higher energy than the equilibrium states. The greater the
difference (P(8) — ®,,;,) the more “quickly” the system
strives to leave this state. Equation (12.3) is actually a math-
ematical formulation of this assertion. For this reason, the
strongest change occurs in the region of values correspond-
ing to maximum ®(8). Conversely, at the point correspond-
ing to a metastable state the energy of the system is lower
than that of neighboring states. For this reason it is energeti-
cally advantageous for a large part of the wall to be in states
close to the metastable state. As the phase-transition field is
approached this tendency intensifies, a domain of a new
phase forms in the field Hp and the remaining parts of the
wall transform into new domain walls, separating domains
consisting of the “o0ld” and “new” phases. This means that
the domain walls in the “old” phase serve as centers of nu-
cleation of the ‘‘new” phase. The formation of domains from
domain walls of the “old”” phase was observed in Refs. 33,
34, and 48. Reference 126 is devoted to the detailed experi-
mental study of this question.

We shall examine this question on the example of an
orthorhombic, ellipsoidal ferromagnet, whose H,, H, dia-
gram is shown in Fig. 11. In a magnetic field H|| (easy axis)
for H, > Hy, = BM + 4wN,, M 360°domain walls can exist in
the sample. In the field H, = H, the internal field becomes
equal to the field of lability (H!” =BM) and expansion
around the value @ = 7 (metastable state) starts in the 360°
domain wall. As the field decreases this process develops
right up to values of the external field H, = 47N,. M, when
the field in the sample becomes equal to the PTI field
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H " = 0. Here the region with 8 = 7 transforms into a do-
main, and the sections of the 360° domain wall [0,7], [7,27]
transform into two 180° domain walls, separating domains
with the intermediate state @ = 0, & = 7. An analogous pro-
cess also occurs in an inclined external field in the entire.
range of H, for which H” assumes values from the region of
metastable states. In the H, H, phase diagram the boundary
separating the region of fields where the described evolution
of 360° domain walls occurs is determined by the simulta-
neous solution of Egs. (4.3) and Eq. (9.6), which gives the
lability boundary. In Fig. 11 the region, where restructuring
of 360° domain walls occurs, is marked by oblique cross
hatching.

Thus we can draw the following conclusion: if spin con-
figurations corresponding to a ‘“‘new” phase of a spin reor-
ientational transition are realized in the domain walls of a
magnet, then in the range of the external field when H'”
corresponds to the region of metastable states the restructur-
ing examined here occurs in the domain walls. This mecha-
nism of restructuring of domain walls was formulated in
Refs. 32 and 117. The change in the 180° domain wall in the
region of metastable states accompanying a spin-flop transi-
tion in an easy-axis antiferromagnet was studied in Refs. 108
and 118. The evolution of domain walls in the region of spon-
taneous spin-reorientational transitions in orthoferrites was
studied in Refs. 97 and 119.

In Refs. 108 and 118 the unfortunate term “transitional
domain structure” was employed to denote the region of
metastable states in which restructuring of the domain walls
occurs; this region was actually identified with the region of
the IS, the idea of which for magnets was introduced in Ref.
12. This error was repeated in a number of other publica-
tions, including the monographs of Refs. 98 and 120. We
must therefore make the following clarifying remarks.

In the region of metastability under the conditions sti-
pulated above, the structure of a magnet changes in an insig-
nificant part of the magnet (in the domain walls); in the
process the magnetic state does not change over the main
volume (in the domains). The formation of a thermodynam-
ically stable domain structure (IS) is associated not with the
existence of metastable states, but rather with the presence
of energy degeneracy accompanying realization of the con-
ditions for PTI in the magnet. A domain structure exists in
the range of external fields where the screening action of the
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demagnetizing fields generated by the surface of the sample
permits preserving within the sample the conditions for
PTI — HY” = H,. For this reason the region of existence of
IS is determined by the shape of the magnet as well as by the
condition for realization of PTI, and is completely indepen-
dent of the character of the metastable states.

A characteristic feature of external-magnetic-field-in-
duced PTI in magnets is that the region of coexistence of
several phases is contiguous to regions of coexistence of a
larger number of phases. For example, in an orthoferrite
with smooth spin reorientation (see Sec. 11) the regions of
PTI between two phases are contiguous to the region of PTI
with four coexisting phases. If the IS of the low-phase transi-
tion in domain walls contains spin configurations corre-
sponding to one of the coexisting phases of a multiphase PT1,
then in the region of metastable states the structure of the
domain walls undergoes changes analogous to those de-
scribed above for kinetic domain walls.

In spite of the fact that the restructuring of domain
walls preceding the formation of IS occurs in an insignificant
volume of the magnet, this process can be studied, for exam-
ple, based on the change in the character of resonance in the
domain walls. As far as we know, such experiments have not
yet been performed.

13. CONCLUSIONS

In this review the physical processes and basic asser-
tions of the theory enabling a unified description of the mag-
netic properties of thermodynamically stable domain struc-
tures in magnets were presented. This theory is based on the
following thesis: a necessary condition for the formation of all
thermodynamically stable domain structures in magnets is
the existence of an external-field-induced PTI in the system.
States corresponding to competing phases of a given transi-
tion are realized in the domains.

The generality of the physical nature of domain struc-
tures opens up the possibility of using the well-developed
methods of the theory of ferromagnetic domains to study the
magnetic properties in the neighborhood of spin-reorienta-
tional transitions. On the other hand, the results of investiga-
tions in domains near spin-reorientational phase transitions
can be employed to gain a deeper understanding of the be-
havior of domain structures in ferromagnets and magnets
with spontanious magnetization.

A transition is now occurring from the period of discov-
eries of magnetic domains near spin-reorientational transi-
tions to the systematic study of their properties. It is not
surprising that at the first stage investigators were interested
in those aspects of the behavior of new domains that distin-
guish the letter from the usual domains. As is clear from this
paper, the unusual nature of the behavior of such domain
structures lies not in their special nature, but rather in the
specifics of phase transitions, with which the formation of
such domains is linked. We hope that the theory developed
in this paper enables purposeful studies of magnets with do-
main structure.

Finally, we want to indicate the limits of applicability of
the theoretical methods, employed in this review, for de-
scribing domain structures.

It was assumed in the analysis of domain structures that
thermodynamically equilibrium states are realized in the
system, i.e., there is no coercivity and there are no hysteresis
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phenomena. To construct a theory of regular domain struc-
tures it was important that the inequalities x, < D<K L(2.3)
hold. As calculations for a plate show, the inequality D € L is
always violated as the region of saturation is approached
(see Sec. 7). Moreover, in sufficiently thin plates even at the
center of the IS (H = 0, £, = &,) the equilibrium period can
be comparable to the characteristic dimensions of the sample
and even much larger than the sample. For DX L the nonun-
iform part of the magnetostatic energy is already significant
in the entire volume of the magnet. This means that the con-
dition H*” = H; no longer holds, and nonuniform states
arerealized in the domains. If in the region of existence of the
IS the inequality (7.2) holds, then the effect of the nonuni-
formity on the formation of the internal states in domains
can be neglected, and it can be assumed that M®), L *> are
determined, as before, from the system of equations (4.1). In
any case the domain structure with these states can be re-
garded as a model structure, whose energy is higher than the
true energy. For this reason the calculations of the transition
fields on the basis of such an approximation can be regarded
as a first step of a perturbation theory.

As the critical point of the PTI is approached the in-
equality x, <D is violated, since the height of the potential
barrier separating the equilibrium states as well as the differ-
ence of the magnetizations in separate phases approach zero.
In the process the relative contribution of the magnetostatic
energy to the energy of the system decreases without limit,
and finally becomes comparable to the energies associated
with the nonuniformities. In this region the ““thin” wall ap-
proximation is inapplicable: the distribution of M©’, L (%)
is strongly nonuniform over the entire volume of the sample.
The characteristics of the domain structure in the region of
the critical points are studied by special theoretical meth-
ods.75—80

The systematic solution of the problem of domain struc-
ture with non-180° walls requires taking into account in the
thermodynamic potential the elastic and strictional interac-
tion energies.'?' Their contribution to the energy of the sys-
tem equals, in order of magnitude,

’
(4

where c is the elastic modulus and A is the magnetostriction
constant. If

AEMZ (AJ] 2
cn < :Wo) !

then the magnetoelastic interactions can be neglected com-
pared with magnetic-dipole interactions. Usually A~1,
AM3/cr~10""%, For this reason, the magnetostrictional
interactions can play an appreciable role only for AM /
M, 51072, The effect of the magnetostriction interaction on
the region of the intermediate state of a magnet was studied
in Ref. 63. It was shown that the magnetostrictional interac-
tion leads to narrowing of the region of the IS, and under
certain conditions can even lead to total blocking of the IS.

We shall briefly discuss the question of the character of
the domain structure in nonellipsoidal samples. In an ellip-
soid, everywhere where D € R, the uniformity of the internal
field H” = Hp ensures that uniform internal states will be
realized in separate domains M'*’ (H; ), L (¥’ (H, ). Insam-
ples of a different shape the internal field is nonuniform, so
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that as Hy varies over the volume of the magnet the internal
states in the domains, and hence the equilibrium period and
other geometric parameters, will also vary. In those sections
of the magnet where H'” £ H,,, a uniform state will be real-
ized. Thus in nonellipsoidal samples the domain structure
will have a complicated character: the regions of uniform
magnetization can be contiguous to regions with different
types of domain structures.

In spite of the fact that everywhere in this review we
discussed a domain structure in magnets, all the chief funda-
mental results are also applicable to materials in which first-
order phase transitions induced by an external electric field
E occur as the electric polarization P varies (ferroelectrics,
etc.). It should be noted that strictional effects are more
important here than in magnets. In addition, unlike mag-
nets, in the study of domain structures in ferroelectrics the
effect of free electric charges must be taken into account.
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