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A quantitative study is made of the physical mechanisms responsible for the development of a
collective hydrodynamic instability of a charged-particle beam in an isotropic plasma. The
corresponding growth rate is calculated through an analysis of the dynamics of the motion of the
beam particles in the field of their radiation. The coherence of the beam particles is responsible for
a substantial amplification of the collective field excited by these particles. This field forms
coherent bunches by the Veksler-MacMillan self-phasing mechanism. This review is addressed to
specialists in plasma physics and microwave electronics.
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1. INTRODUCTION

Theoretical research on collective beam-plasma inter-
actions has its foundations in the classic studies by Akhiezer
and FaTnberg" (Ref. 1) and Bohm and Gross2 (see also
Refs. 3 and 4). This research has now emerged as an inde-
pendent direction in theoretical plasma physics: theoretical
microwave plasma electronics. The fundamental results of
this theory21 (see Refs. 4-34, for example) have served as the
foundation for the development of some novel research
methods and technical approaches and also for the develop-
ment of new research installations, instruments, and tech-
nology. Nevertheless, the physical theory of beam-plasma
instabilities cannot yet be regarded as complete, even for the
linear stage of the instabilities. The reason is that in its initial
stage of development this theory was dominated by a forma-
lized approach, which limited the possibilities for identify-
ing the physical mechanisms which are responsible for the
exchange of energy between beam particles and the rf fields
which they excite in a plasma. Consequently, these mecha-
nisms have attracted research interest since the very begin-
ning of the foundation of theoretical microwave electron-

ics. >>3~7 This interest subsequently was seen in an increase in
the number of new publications on this subject and also in an
improvement of their methodological level. Specifically, as
time has elapsed, we have witnessed in these publications a
gradual transition from the formulation of qualitative sug-
gestions regarding the physical nature of these mechanisms
to a quantitative reconstruction of the dynamics of the pro-
cess by which the instability develops, on the basis of an
analysis of the details of motion of and radiation from indi-
vidual charges of the beam in the plasma. This tendency is
seen most fully in Refs. 35-40, where the basic characteris-
tics of hydrodynamic collective processes were established
through an analysis of the field configuration and intensity
of the spontaneous emission of moving charges35"39 and also
the dynamics of their motion in the resultant driving field3'
(Refs. 35—40). The materials of the theoretical research in
this direction have not previously been put in systematic
form and generalized. One particular result of this situation
is that even for the classical hydrodynamic instability of a
monoenergetic beam in an isotropic plasma we still lack a
comprehensive identification and interpretation of the rea-
sons for the appearance of a threshold for this instability
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along the axis of perturbation wave numbers, the relation-
ship between the thermal motion and the coherence of the
elementary radiators, and the physical role played by collec-
tive effects in the frequency spectra of the excited waves. A
detailed analysis of these questions shows that their resolu-
tion requires an expansion of the methodological base of the
theory. The present review is basically an exposition of the
methods and results of this analysis.

2. CLASSICAL LINEAR THEORY OF THE COLLECTIVE BEAM-
PLASMA INTERACTION

2.1 Initial equations and analytic asymptotic expressions for
the spectrum of spatially periodic one-dimensional
perturbations

We assume that a charge- and current-neutralized
beam of electrons with a spatially uniform equilibrium den-
sity Nb, which remains constant over time, is moving
through a cold, homogeneous, isotropic, and weakly colli-
sional plasma with a steady-state equilibrium density Np.
The time evolution of the amplitudes of small one-dimen-
sional perturbations of this equilibrium state is described by
a self-consistent linearized system ofequations consisting of
the Poisson equation for the field (Ez) of the longitudinal
plasma waves which corresponds to the perturbation of the
beam and plasma charge density, p(z,t),

dvf(u, z, t), (2.1)

and a kinetic equation for the rf increment [f(v,z,t)] in-
duced by this field in the equilibrium velocity distribution of
the beam and plasma particles, fn(v),

JL
dt

_df_
dz -E, (») = - v / ,

where v is the effective collision rate.
We restrict the analysis to spatially periodic, small-am-

plitude, one-dimensional perturbations characterized by a
wave number k = kz. The corresponding equation for the
spectrum of natural waves of this system can be written as
follows8'' 1.13,18.24 j - o r t j ^ s i m pi e s t c a s e of a coid p i a s m a a n d a

Maxwellian velocity distribution of the beam particles with a
maximum at the point v = Vb:

1 (1
i I n 6
1*1 »T

• W
Ikv T

(2.2)

where

= co — kVb, a — Vj

Ate?)

= 2.71. (2.3)

Of primary interest here are the analytic asymptotic ex-
pressions for the solutions of this equation, w(k), which cor-
respond to the limiting case of beam densities which are rela-
tively low (in comparison with the plasma density). In
general, these asymptotic expressions do not depend directly
on the reduced beam density Nb /Np; instead, they depend
on the dimensionless parameter/z = (Nh Vb/Npv\ ), which
is determined by the relative intensity (Nh/Np) and the
thermal spread (vT/Vb ) of the beam particles. In particular,
in the case /x <̂  1 the complex beam-induced frequency shift
8 = 8' + i8" is proportional to the beam density and inverse-

FIG. 1, Sketch of the dimensionless growth rate Y^S'^ (*)/Max <5;'d (k)
as a function of the dimensionless longitudinal wave number X= k Vh /a>p.

ly proportional to the beam temperature:

i - ~ v V'2

(2.4)

If the thermal spread is comparatively small, and the
strong inequality fx > 1 holds, the complex beam-induced fre-
quency shift Shd is a nonlinear function of the beam current
density and is substantially larger than (2.4) in this case:

[2|r-(ftVb/(Op)|f
kVt,

k\'b

A'h \ l / 3

(2.5a)

(Op

(2.5b)

The sketch in Fig. 1 shows the qualitative behavior of

2.2. Some features of the methodological apparatus of the
classical theory

Expressions (2.4) and (2.5) reflect the essential fea-
tures of the analytic results of the self-consistent linear theo-
ry of the spectra of the beam-plasma instability. The func-
tional dependences of the growth rates of the beam-plasma
instability on the external parameters of the beam and the
plasma and also the perturbation wave number k which are
described by these expressions are well known and have been
presented in several places in the literature cited above on
the theory of collective beam-plasma instabilities. Neverthe-
less, the physical nature of these relationships went unex-
plained for a long time. The essence of the questions of fore-
most interest from the scientific-methodological standpoint
and from the applied standpoint can be reduced to two cen-
tral questions:

Specifically how are the radiation conditions and the
characteristics of the field of the spontaneous emission
of individual charges related to the basic parameters of
collective instabilities (the conditions under which they
occur and their growth rates)?
What are the physical mechanisms which lead to a sub-
stantial increase in the energy loss of each beam particle
in comparison with the energy loss of an individual ra-
diator under the same conditions?

Attempts to identify the physical nature of this hydro-
dynamic bema-plasma instability have been undertaken re-
peatedly, starting with the pioneering study by Akhiezer and
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Fainberg1 (Refs. 3-8, 11-13, 21, 25, 26, 31, 35, and 40).
Because of shortcomings of the methodological apparatus of
the theory and the specific features of its historical develop-
ment, however, the corresponding final conclusions have
fairly often turned out to disagree to some extent with the
underlying assumptions. From the very beginning of its de-
velopment, the self-consistent theory of beam-plasma insta-
bilities has been based on the ideas and methods of the dis-
persion theory of linear perturbations in flows of liquids and
cases. For this reason, the models which have been used
most widely for the corresponding plasma systems are mod-
els of multicomponent fluids. In such models, each of the
components is characterized by Eulerian variables: the den-
sity and velocity of the particles, their charge, and their
mass. The choice of Eulerian variables is of substantial help
in simplifying the problem of incorporating self-consistent
fields; the Maxwell's equations (and Poisson equation) for
these fields are also written in Eulerian variables. The pri-
mary advantage of this approach is that it becomes a rela-
tively simple and quick matter to determine the conditions
for the occurrence of an instability and the behavior of the
growth rates as functions of the external parameters of the
system. The contributions from the individual beam parti-
cles to the quantitative characteristics of these conditions
and growth rates are hidden. Naturally, there are only limit-
ed possibilities here for monitoring the contributions of
spontaneous and induced emission of the beam particles to
the course of the instability and also the degree of coherence
of this emission. The only exceptional case is the limiting
case in which the beam current density tends toward zero, in
which case the strong inequality /n < 1 holds. In this limiting
case, the kinetic growth rate, (2.4), is determined unambig-
uously by the energy losses of the elementary beam charges
in the plasma and by their velocity distribution. This ap-
proach, which starts with the method of Einstein coeffi-
cients, was first taken in (the omitted) Ref. 5 [sic] for a
theoretical modeling of the magnetobremsstrahlung instabi-
lities of low-intensity beams of oscillators which are not in
phase and which are revolving in an external magnetic field.
That study served as the starting point for the development
of an independent direction in theoretical plasma phys-
ics,9'11'9 whose pursuit also yielded, in particular, kinetic
growth rate (2.4) for the Cherenkov instability of a stream
of free (not oscillating) charged particles in a cold, isotropic
plasma.42 In terms of the very physical nature of the initial
assumptions underlying the method of Einstein coefficients,
however, that growth rate is applicable only for describing a
limited class of kinetic instabilities, which correspond to
vanishing flux densities of the charged particles. It cannot be
used to model hydrodynamic instabilities which correspond
to nonzero beam intensities.5

Summarizing, we should say that even a qualitative
analysis of the methodological apparatus of the classical the-
ory of hydrodynamic beam-plasma instabilities reveals that
this apparatus is not adequate for dealing with the problem
of determining the physical nature of these instabilities. In
principle, the most comprehensive information about these
questions can be found by solving the three-dimensional ki-
netic equation for the beam particles by the method of char-
acteristics (in terms of Lagrange variables) and the three-
dimensional Poisson equation for the field which these
particles produce in the plasma, by a Green's-function meth-

od. That approach, however, is very complicated and has
rarely been taken (see, for example, Refs. 13, 35, and 43-
45). With regard to the nonlinear stage of the evolution of
hydrodynamic instabilities, on the other hand, in which
there is no way to avoid using Lagrange variables, the theo-
retical modeling demands a computational apparatus and
some additional and strong simplifying assumptions which
impose substantial limitations on the possibility of monitor-
ing the mechanisms by which energy is exchanged between
the beam particles and the fields which they excite.26'2830

Because of the complexity of the time evolution of the
hydrodynamic beam-plasma instability and the particular
way in which the methodological base of the corresponding
classical theory was established, the basic physical mecha-
nisms responsible for the occurrence of these instabilities
have thus remained hidden and have been studied to a lesser
extent than is required by the present scientific and method-
ological level of the theory and its applications.

2.3. Comparative analysis of the results and conclusions of
the classical theory.

The assertion which we made above, that the method-
ological apparatus of the classical theory of hydrodynamic
instabilities is not adequate for identifying the physical na-
ture of these instabilities, finds convincing support in a com-
parative analysis of the basic results and conclusions of the
earlier studies in this direction. For greater clarity, we will
take a more-detailed look at the physical content of the cor-
responding specific questions.

2.3.1. Threshold wave number. That there is a threshold
in the behavior of the collective hydrodynamic growth rate
<5£d as a function of the perturbation wave number k follows
from the solution of the general equation for the spectrum: A
beam instability can occur (the growth rate can be nonzero
and positive) only if the perturbation wavelength is suffi-
ciently large (see Ref. 13 and also Fig. 1 of the present pa-
per):

(•&•)

1/313/2
(2.6a)

That there is a threshold in the behavior of the growth
rate for the hydrodynamic instability, S^d as a function of the
wave number k is well known, but it has yet to be satisfactori-
ly explained. Attempts have been made, in particular, to ex-
plain this effect on the basis of a change in the nature of the
Coulomb interaction forces between the beam particles and
the plasma as the sign of the dynamic permittivity
£p = R e £ p = 1 — (co\/ca2) of the plasma changes (e.g.,
Refs. 33 and 46). It can be shown, however, that this expla-
nation does not reveal the essence of the mechanism by
which the beam particles interact with the field which they
excite. To see this, we note that, formally, the function
£p {co) changes sign at the point co — cop. It is negative spe-
cifically in the region in which the beam is unstable. How-
ever, it absolutely does not follow from this formal coinci-
dence that when the frequency crosses this value the sign of
the Coulomb interaction force of the beam particles changes.
Facts established previously35 provide evidence that there is
no substantial effect of the Coulomb fields of the beam parti-
cles in the plasma on the course of the hydrodynamic insta-
bility at relatively low beam current densities, at which the
strong inequalities iVb <JVP and / />1 hold. In fact, the
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bunching of the beam particles into coherently emitting
bunches, which is required for the onset of this instability, is
provided not by the Coulomb field of a beam (which is zero
in a plasma) but by the fields of the longitudinal plasma
waves which are excited by the beam in the plasma (polar-
ization oscillations of the plasma, which are synchronized in
space by the beam; Ref. 35 and Subsection 3.2 of the present
paper). Second, this wave field does not depend on the sign
of e'p (a). In turn, the latter determines (in the one-dimen-
sional̂  case which we are treating here) not the sign of the
field Ez but the sign of the longitudinal gradient of this field,
which is excited by the corresponding Fourier component of
the beam charge density, pb (z,&>):

4npb (z, (o)
Ep((O) (2.6b)

The explanation of the physical nature of the boundar-
ies of the beam stability region along the axis of the perturba-
tion wave numbers in terms of a change in the nature of the
Coulomb interaction forces of the beam particles thus can-
not be accepted as convincing. On the other hand, it follows
from the results of Ref. 35 that the crossing of the threshold
value of the perturbation wave number changes the sign of
the feedback effect in the system, and it is this change which
is the primary reason for the threshold in the dependence of
the growth rate S^d on the wavelength of the initial perturba-
tion.

2.3.2. Dependence of the maximum growth rate on the
beam density. A fact of particular importance to an identifi-
cation of the physical nature of this instability is that the
functional dependence of the maximum growth rate on the
beam density changes substantially as this density is raised.
This change is demonstrated, in particular, by a comparison
of growth rates (2.4) and (2.5a), (2.5b), which describe the
kinetic and hydrodynamic asymptotic behavior, respective-
ly, of this instability. Specifically, while at low beam densi-
ties ( m < l ) the maximum growth rate in (2.4) is propor-
tional to a dimensionless parameter, the reduced beam
intensity// (i.e., it is linear in the beam density iVb ), at suffi-
ciently high densities (m> 1) this growth rate increases in
proportion to the cube root of the beam density (see expres-
sion (2.5b) and Fig. 2]. This substantial change in the na-
ture of this dependence is evidence that at m ~ 1 there is a
switch from one mechanism for a collective interaction of
the beam with the plasma to another. The question of just
how the interaction processes differ on the two sides of the
point m = 1 (i.e., at m4,1 and m> 1), however, has not yet
been studied comprehensively in the literature on the theory

1/3

of beam-plasma instabilities. The most substantial initial in-
formation on this question comes from an analysis of the
details of the procedure for calculating the kinetic growth
rate from the energy loss of the beam particles in a plasma by
the method of Einstein coefficients5'91119 and from an anal-
ysis of the physical content of the conditions for the transi-
tion from the kinetic asymptotic behavior to the hydrody-
namic asymptotic behavior of the growth rate as the
parameter m is increased. Specifically, one can clearly see in
this procedure that the kinetic growth rate is proportional to
the sum of the intensities of the induced emission of the indi-
vidual beam charges" :

Ar
k = (k)]-1

(2.7)

(2.7')

(2.7")

FIG. 2. Sketch of the growth rate y = <5,',',.lx /<ov as a function of the param-
eter x = m, the reduced beam intensity.

where <up (k) is the probability for the spontaneous emission
of a longitudinal photon with a momentum /zk by an electron
with a momentum p. This probability is equal to the ratio of
the intensity for the spontaneous emission of this photon by
an electron, on the one hand, to the energy of the photon, on
the other. In addition, Nk is the number of photons which
have a momentum #k; this number is proportional to the
field intensity (the energy density). The function/J,(p) is the
distribution of beam electrons with respect to the momen-
tum p, and e and v are the energy and velocity of an electron,
respectively.

What is summed on the right side of (2.7) is not the
fields but the intensities of the radiation from the beam parti-
cles. The radiation field itself is characterized in this case not
by an amplitude and a phase but by the number of photons. It
follows that under these conditions the induced emission of
longitudinal plasma waves by beam particles is not coher-
ent.5'9 The reliability of the latter conclusion, which again
does not follow directly from the known results (which we
presented above) of a formal analysis of the two-fluid model,
(2.4), is confirmed by an analysis of the physical content of
the inequality 5"kin (k)4kvT which determines the range of
values of the external parameters of the system in which the
kinetic asymptotic behavior of growth rate (2.4) is applica-
ble. The ratio /T = vT/8"kin thus gives us the distance over
which beam particles whose initial coordinates differ by no
more than half the length of the excited wave, Ap = Vb/cop,
move apart from each other over the duration of the evolu-
tion of the instability Tr = (S"km )~ ' . It can thus be con-
cluded that the inequality <5"kin -4kvT is physically equiva-
lent to the requirement that the thermal separation of the
beam particles over this time (/T = vT/8") must be substan-
tially greater than the perturbation wavelength Ap: Ir >/tp

(Ref. 13). Since it is specifically this length which deter-
mines the maximum permissible dimensions of a coherently
emitting bunch of beam particles (§3), it follows unambigu-
ously from the inequality fi < 1 that under the conditions
under which the kinetic asymptotic behavior of the growth
rate is applicable {S'\in -4,kvT) the beam particles cannot
form coherently emitting bunches. It is this physical proper-
ty of the radiation from a set of beam particles which ex-
plains the fact that kinetic growth rate (2.4) describes this
collective interaction process only in the asymptotic limit in
which the beam particle density approaches zero.
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In light of the above arguments and estimates, we can
formulate a suggestion regarding the role played by coher-
ence effects in the onset of hydrodynamic instability of this
system. Specifically, it follows from the condition for the
applicability of the hydrodynamic asymptotic behavior of
the spectrum a(k) (m = (Z?y//T)3> 1) that the thermal
spreading of the beam particles, /T , turns out to be small in
comparison with the typical longitudinal dimensions of a
bunch (/T <Z)||). This spreading is thus incapable of pre-
venting coherence in the collective interaction of the beam
with the plasma. If this coherence does indeed prevail, then
the "turning on" of this effect as the beam intensity is raised,
at fi si 1, might explain the change in the functional depend-
ence of the growth rate on the beam current density (the
parameter m). An explanation along this line, however, can-
not be justified directly by the analysis which we presented
above of the results of the formalized theory for the two-fluid
model. The reason is that these results contain no informa-
tion about the structure of the field which is excited by the
individual beam particles in the plasma. A particular conse-
quence of this situation is that one cannot determine directly
from these results what the characteristic dimensions of a
coherent bunch would be in the plane perpendicular to the
velocity of the beam particles, and one cannot determine
whether this coherence extends to a train of bunches (and
what is the number of coherent bunches in such a case). In
order to resolve all these questions, it is necessary to study
the field configuration of the spontaneous radiation from a
single moving charge and from a flow of such charges which
is periodically modulated over space.

2.3.3. Mechanism for field intensification by a beam.
The elementary effects of the emission of a field by beam
particles are the only mechanisms by which kinetic energy of
the beam is transferred to the field.7'12'47 Accordingly, by
promoting or obstructing the conditions under which these
effects occur one can correspondingly intensify or weaken
the processes of development of beam instabilities.712 Of
particular importance in solving the problem of controlling
these instabilities is the circumstance that the number of
these elementary effects is known to be limited.712 Among
these effects, in particular, are the (Vavilov-) Cherenkov
effect, the normal and anomalous Doppler effects, transition
radiation, and bremsstrahlung. In terms of the basic physics
involved, the conditions required for the realization of the
first three of these effects in the nonrelativistic classical (i.e.,
not quantum-mechanical) theory reduce to the requirement
that the phase of the field remain constant in the proper
frame of the moving charge. A differentiation of this phase
with respect to time in the simplest case of one-dimensional
motion yields the following relations among the frequency of
the natural oscillations of the radiator (oscillator), fl0; its
directed velocity v0; and the parameters (the frequency coo

and the wave vector k0) of the field which it radiates (Ref.
40):

0 — k0V0 = sQ0 (s = 0, ±1 ) . (2.8)

The case 5 = 0 describes Cherenkov radiation for a free
charge (fl0 = 0), while the cases s = ± 1 correspond to the
normal ( + ) and anomalous ( — ) Doppler effects.

The dispersion laws for the field radiated by the individ-
ual charges which are expressed by Eqs. (2.8) are the pri-
mary instruments for the diagnostics of the elementary

mechanisms by which a field is intensified by beam particles
in the classical theory of beam-plasma instabilities.1'7'12'40

The characteristics of the fields radiated by the moving
charges do not figure directly in the results of this theory
(see Subsection 2.3 above). Accordingly, these particular
mechanisms are identified in this theory solely on the basis of
the dispersion law <uo(/co), which leads to a maximum of the
growth rate of the corresponding instability at relatively low
values of the beam current density. In particular, if the right
side of the function ilo(ko) = co0(k0) — k0V0 vanishes, an
instability of this sort is regarded as a Cherenkov instability,
while if the inequalities O0(fc0) ^ 0 hold the instabilities are
regarded as those corresponding to the normal (fl0 > 0) and
anomalous (Cl0 < 0) Doppler effects. It is easy to show, how-
ever, that a criterion of this sort does not furnish an unam-
biguous answer to the question which was posed (identify-
ing the mechanism for the intensification of a field by a
beam) for beams of finite intensity. If we ignore the beam
current density (Nb ->0) on the right side of (2.5b), we
reach the conclusion that under these conditions there is a
Cherenkov amplification of the field of longitudinal plasma
waves by beam particles. For specifically this reason, and
also because the conditions which would be required for the
operation of alternative mechanisms for the spontaneous ra-
diation from these particles are not satisfied here, this insta-
bility was identified as a Cherenkov instability a long time
ago (Refs. 1 and 3; see also Refs. 4, 7, 8, and 12). On the
other hand, when the thermal corrections are taken into ac-
count on the right side of (2.5b), the corresponding function
^o(^o) goes negative:

Qo (k0) = o)0 (k0) - = - (op

1/3

It was on this basis that it was concluded in Refs. 21,31, and
40 that this instability results from an anomalous Doppler
effect. We will show below (Subsection 3.1.3) that these two
conclusions do not contradict each other, since they pertain
to very different regions of values of the external parameters
of the system.

We thus see that the results of the classical theory of the
two-fluid model do not by themselves give us an adequate
basis for unambiguously identifying the elementary mecha-
nism for the intensification of a field by a beam in the course
of a hydrodynamic instability of a monoenergetic beam in a
"cold" and isotropic plasma. Under these conditions, a
study of the structure of the field of the spontaneous radi-
ation from beam particles and of the mechanisms for the
inverse effect of this field on the beam becomes the basic tool
for studying the physical processes which are responsible for
the onset of hydrodynamic beam instabilities.

3. LAGRANGIAN DYNAMICS OF THE SPONTANEOUS
EXCITATION AND INDUCED ABSORPTION OF THE FIELD OF
LONGITUDINAL PLASMA WAVES BY BEAM PARTICLES

3.1. Configuration of the field of a charge in uniform
rectilinear motion in a homogeneous and isotropic plasma

An analysis of the picture of the field which is excited by
a charge in uniform rectilinear motion in a homogeneous
and isotropic plasma is of particular interest to research on
the coherence of the radiation from beam particles and on
the mechanisms for the inverse effect of this radiation on the
dynamics of the particles. Specifically, it is the structure of

754 Sov. Phys. Usp. 31 (8), August 1988 S. S. Kalmykova and V. I. Kurilko 754



the spontaneous-emission field of a moving charge which
determines not only the typical dimensions of a bunch of
coherently emitting particles but also the number of coher-
ently emitting bunches.4849 In turn, these parameters deter-
mine the resultant field which acts on each beam particle and
thus the efficiency with which the particles are grouped by
this field into coherently emitting bunches. A quantitative
analysis of the intensity and structure of the spontaneous-
emission field of an isolated charge in a plasma is thus a
crucial element of an analysis of the entire set of physical
processes which are responsible for the development of a
hydrodynamic beam-plasma instability.

We thus consider a particle of charge q and mass m
which is in uniform rectilinear motion along a path

Rs (t) = iXs + \YS + k (Z, + Vot) = rs + Vot,

in a homogeneous and isotropic plasma. Here s is the index
(number) of the particle, rs is its radius vector at the time
t = 0, and Vo is its directed velocity, which is oriented along
the Z axis of the Cartesian coordinate system.

Let us find the total field EZy (r,?;rs) which is excited by
this charge in the plasma, and let us calculate the force exert-
ed on this charge by the field which it produces:

e-»0

; t, r,)+EZx (R,-ke; t, r,)].

(3.1)

The picture of the field excited by this charge in the
plasma is determined by Maxwell's equations with a given
charge current

as the driving force.
The corresponding amplitude of the total induced field

EZi at observation point r at time t is determined by the
expression

oo +00

X

= —
c

exp[i(o(z-Zs(<))/Fo]

(Op

(3.2)

2i ep(co) = l —

. (t)
<o((o-Hv) '

F,*, p. = l(x - xsy + (y _ ysfYi\

It is easy to see that at each fixed value of the transverse
wave number ki the integrand in the integral over the fre-
quency has as singularities only simple poles, at the points

(3.3)
v<wp.

The first pair of poles here gives the Coulomb field of
the charge in the plasma, and the second gives the field of the
longitudinal plasma waves excited by this charge. We will
consider these fields separately.

3.1.1. Coulomb field. The configuration of this field is
given by

b

X sgn (z-Zs(t)). (3.4)

A point which will be important to the discussion below
is that this expression is antisymmetric with respect to the
plane Zs (t), in which the charge which excites this field is
situated. This property means that the field acting on the
charge, Ef""\ vanishes at the position of the charge. This
result is completely understandable from the physical stand-
point: As in the case of vacuum (<yp -»0), the Coulomb field
of the charge itself can neither retard nor accelerate this
charge. A second consequence of the asymmetry of the Cou-
lomb field of the charge, and a consequence which is no less
important than the first for the applications discussed below,
is that the resultant field acting on each individual charge of
an unmodulated and sufficiently dense beam vanishes: For
each of the neighbors of a given charge, one can always find
another neighbor which is positioned antisymmetrically (as
a mirror image) with respect to the first neighbor, so the
resultant field of the two neighbors vanishes.

3.1.2. Field of longitudinal plasma waves. In contrast
with the Coulomb field, this field is asymmetric with respect
to the z = Z , ( 0 plane:

z<Z,(t), (3.5)

where K0(x) is a modified Bessel function, and

As would be expected on the basis of the physical mean-
ing of this problem and the causality principle (which is
reflected in the radiation conditions41), this field vanishes in
front of the charge, and at low collision rates (v4,cop) it
takes the form of a quasimonochromatic wave which is trav-
eling behind the charge at a phase velocity which is precisely
equal to the velocity of the charge, v0. This aspect of the
structure of the longitudinal plasma waves excited by the
charge has a transparent physical meaning: In the spatially
homogeneous plasma which we are considering here, the
natural frequencies of each point in the plasma are equal to
each other. The field of these waves thus turns out to be
monochromatic in frequency in the limit v-» + 0. In the lab-
oratory coordinate system, the times at which the wave exci-
tation begins to move away from one plane, z = Zs(t), to
another along with the charge, and the initial phases of the
waves in each of these planes are fixed: They are equal to v
for the field E^ (a retarding field). It is thus the total field
of the longitudinal waves which has the form of a wave
which is traveling behind the charge at the velocity of the
charge itself. As it excites longitudinal waves in the plasma,
the moving charge of course loses kinetic energy. The resul-
tant field of these waves thus differs from the Coulomb field
in that it has a nonzero average value in the plane z = Zs(t),
and it is this value which determines the retarding force
which acts on the charge, (3.1):
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(3.5')
nun

where A is the Coulomb logarithm.
With increasing distance (ps) from the path of the

charge, the field of the longitudinal plasma waves, (3.5),
falls off exponentially with an argument KL = k. which is
exactly equal to the reciprocal of the longitudinal wave num-
ber: KX = D |j~'. These parameters determine the characteris-
tic longitudinal (||) and transverse (1) dimensions of the
region in which the given charge can excite longitudinal
plasma waves in a process which is coherent with the neigh-
bors of the charge: D ^ = DL = K[ ' = Ap = . For the
field of longitudinal plasma waves, this coherence not only
prevails in the vicinity of the moving charge but also propa-
gates along its path, over the field damping length
L || = 2irV0/v: Each charge which is moving a distance /„
which is equal to the length of a longitudinal wave,
Ap = 2-irVo/cOp (/„ = nAp, where n is an integer), behind the
charge under consideration will excite in the plasma the
same field as that which is excited by the preceding
charge.48'49

By examining the picture of the field of the longitudinal
waves which are excited by a moving charge in an isotropic
"cold" plasma we have thus shown that the typical dimen-
sions of the region in which this field is coherent (the typical
dimensions of a coherently emitting bunch) are determined
unambiguously by the wavelength of these waves and that
the number (~#) of bunches which are exciting the plasma
in a fashion coherent with the given bunch is determined by
the ratio of the plasma frequency cop to the collision rate v:
max Jt = 2cop /v.

3.1.3. Field intensification mechanism. This mechanism
is essentially a spontaneous Cherenkov excitation of a field
of natural longitudinal waves of the plasma. The governing
role played by longitudinal plasma waves here can be seen in
the fact that in the limit v-» + 0 this field is represented by
the residue at the point co = cop and is therefore monochro-
matic in frequency. That the collective interaction of the
charge with the plasma is of a Cherenkov nature follows
unambiguously from the circumstance that the phase veloc-
ity of any Fourier component of this field and of the total
sum of these components is exactly equal to the velocity of
the charge, Vo: V^ = cop (k)/k = Vo. On the other hand,
none of the other elementary mechanisms for the excitation
of a field which we listed above could operate under these
conditions. Specifically, transverse waves in the plasma in
the transparency region of the plasma can not be excited by
the Cherenkov mechanism, since they have phase velocities
which are greater than the velocity of light, c
( V%r) = c/ep

/2,e'p >0). For the normal and anomalous
Doppler effects to occur, the particle would have to be an
oscillator. Bremsstrahlung would require a nonuniform or
nonrectilinear motion of the charge in external force fields.
Transition radiation would require that the medium be inho-
mogeneous. We thus see that the Cherenkov excitation of
longitudinal waves of the homogeneous plasma is, under the
conditions assumed here, the only mechanism which could
be responsible for the transfer of kinetic energy from the
beam particles to the field.

We should stress that the conclusion which we have just
formulated regarding the Cherenkov interaction of a low-

density beam and a plasma under these conditions does not
contradict a conclusion, which we mentioned above (Sub-
section 2.3.3), which was reached in Refs. 21, 31, and 40:
that the anomalous Doppler effect plays a governing role in
the collective interaction of intense electron beams with iso-
tropic plasmas. The explanation is that the oscillatory mo-
tion of the beam particles in their self-field, which is charac-
teristic of the latter effect, is important for beams of finite
intensity in that range of their parameter values in which the
resultant frequency of these oscillations, flo(k), is high in
comparison with the growth rate: flo(ft)><5£d. The latter
requirement is satisfied not only in intense relativistic elec-
tron beams40 but also in that finite neighborhood of the
threshold wave number k, in which this growth rate vanish-
es [see (2.6) and Fig. 1) ]. It is this limiting case which was
examined in Ref. 21 and in the monograph by Nezlin.31 With
regard to the resonant point coM = cop at which the growth
rate 8£d (&>M) reaches its maximum, which is given by
(2.5b), we note that the inequality fto><5i'd does not hold at
this point: According to this formula, the maximum growth
rate MaxS '̂a is larger by a factor of VT than the beam fre-
quency shift fl0 (cop). It follows that over the rise time of the
instability near the resonant point coM = cop there is not
enough time for the oscillatory nature of the motion of the
beam particles in their self-field, described by Eq. (2.8'), to
be manifested.

In summary, the primary reason for the apparent dis-
crepancy between the conclusions of Refs. 1, 3,4, 7, 12, and
25, on the one hand, and Refs. 21,31, and 40, on the other, is
a difference in initial assumptions. Specifically, the authors
in the first group of papers considered low-intensity beams
and perturbation wavelengths corresponding to a neighbor-
hood of the maximum of the growth rate, while the authors
of Refs. 21, 31, and 40 considered the neighborhood of the
threshold wave number k, (A:, — k<^Max[S'^d/V0]; see
Refs. 21 and 31) and intense relativistic beams, for which the
growth rates are small in comparison with the typical fre-
quencies of collective longitudinal oscillations of the beam
particles.40

3.2. Field of a sinusoidally modulated beam

Knowing the picture of the field of an individual
charge, we can establish all the basic characteristics of the
field which is excited in a plasma by a beam of moving
charges whose density is sinusoidally modulated. For this
purpose we consider a beam of identical charged particles
which is of uniform density. Each particle has a charge q and
a mass m and is moving in the plasma at a velocity VQ. The
total field produced by this system of charges at a fixed point
in the plasma with coordinates r at the time t is in general
equal to the sum of the fields of the individual charges:

If the beam particle density is sufficiently high, and the
strong inequality NbA p > 1 holds (physically, this inequali-
ty means that the relative contribution of shot noise is
small), we can switch from a summation to an integration on
the right side of the latter equation, allowing for the nonuni-
form distribution of the charges along the coordinates rs in
their rest frame. For this purpose we express the number
{AQS) of identical beam particles around the point rs in
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FIG. 3. Sketch of the mutual phasing of the perturbations of (1) the beam
density h(cp), and of the corresponding collective fields ± Ez(<p),
under the condition (2:) kVo<col, and ±E2(<p) under the condition
(2") k Vo < cop. The ovals at the maxima of the beam particle density are
schematic representations of bunches.

terms of the density of these particles at the point nb (rs):

AQs (r.) = nb (r,) drs. (3.6')

We incorporate the sinusoidal nature of the modulation
of the beam in velocity and density in our problem by setting
(Fig. 3)

nh(r,) = No sin kzs);
(3.6")

here h and g are the depths of the density and velocity modu-
lation of the beam, respectively, A = 2ir/k is the spatial peri-
od of the modulation, and No and VQ are the equilibrium
(unperturbed) density and velocity of the beam particles.

Carrying out the integration on the right side of (3.6)
over all the initial coordinates of the particles, using the field
of an individual charge, (3.5), and the weight coefficients
(3.6') and (3.6"), we finally find the following expression
for the total field of one-dimensional longitudinal plasma
waves which are excited by a slightly modulated beam of low
density (h41; N04Np):

(3.7)

OJM --= kV0.

Only the field of the longitudinal waves, (3.5), makes a
nonvanishing contribution to the right side of the latter
expression; the amplitude of the resultant Coulomb field of
the beam in the plasma is zero as a result of the mutual coher-
ent cancellation of the vacuum Coulomb field of the beam
with its "image" in the plasma (in a plasma screen; see the
Appendix).

Comparing the field of the modulated beam, (3.7), with
the field of an individual charge, (3.5), we see the following:
The frequency of the field excited by a beam of this sort is
equal to the frequency at which it is modulated in the labora-
tory frame of reference; the amplitude of this field does not
depend on the coordinate in the plane z = const; and this
amplitude is generally much greater than the amplitude of
the field of an individual charge and increases as the beam
modulation frequency approaches the plasma frequency.
Physically, all these characteristics of the field of the sponta-
neous emission of a modulated beam in a plasma can be ex-
plained not only qualitatively but even quantitatively in
terms of effects of the coherence of the radiation from the
beam particles, both within the bunches formed by the mo-
dulating signal (3.6") and among these bunches.

In the absence of beam modulation (h->0), the fields of
the longitudinal waves of two elementary charges, one lag-
ging behind the other by a distance equal to half the length of
a plasma wave, add together coherently and out of phase, so
their resultant field is zero. It is for this reason that the resul-
tant field of the longitudinal waves excited by an unmodulat-
ed beam in a plasma is identically zero. The grouping of the
particles into bunches which is described by (3.6") disrupts
this mutual interference cancellation of the fields of the ele-
mentary charges and produces a nonzero resultant field
(3.7), which is proportional to the depth (h) of the density
modulation of the beam, to the beam density No, and to the
charge of the beam particle, q. On the other hand, this group-
ing into bunches imposes on this field a frequency coM which
is determined unambiguously by the spatial period of the
beam modulation. This is why the frequency of the beam
field, (3.7), differs from the frequency of the field of an indi-
vidual charge, (3.5). With regard to the relative amplitude
of the beam field given by (3.7), we note that even if the
perturbations of the beam density are small (hN0 A 3

p > 1)
this amplitude will be substantially greater than the ampli-
tude of the field of an individual charge, (3.5), specifically
because of the coherent summation of the fields excited by
the individual charges. Physically, the coherence effect is
incorporated in and described by the procedure outlined
above of integrating field (3.5) over the entire volume of the
initial Lagrangian coordinates of the beam particles. This
procedure might be thought of as being carried out in two
steps: an integration over a cylindrical shell with a thickness
equal to the spatial period of the beam modulation, A = 2ir/
k, and a summation over the set of all these shells in succes-
sion ahead of the elementary charge under consideration.
The first of these steps gives a quantitative description of the
coherent summation of the fields excited by all the elemen-
tary charges which make up one of the bunches in the period-
ic train. The corresponding coherence coefficient C turns
out to be equal to the ratio of the amplitude (Abch ) of the
field produced by this bunch, (3.7), to the amplitude of the
field of an individual charge, (3.5):

C =
* a

A ) ' = (hN0) (3.7')

The first factor on the right side of this expression de-
scribes the perturbation of the beam density (the bunch den-
sity), while the second describes the volume of this bunch;
their product gives us the number of particles in a bunch.
The factor A describes the Coulomb logarithm, which deter-
mines the energy loss and the field of an individual charge.
The second step incorporates the coherent summation of the
fields excited by the periodic train of beam bunches47'4* and
contributes the following:

(Op (3.7")

Physically, the magnitude of the right side of the last
expression can be explained on the basis of a disruption of
the phasing between the natural waves of the plasma (with
the frequency cop) and the force driving them (the beam
bunches, which are following periodically with a frequency
<yM): Under the condition a>p > \a>p — a>M\, over a time
equal to ^# periods of these waves, their phase difference
increases by an amount of the order of ir/2 (in magnitude).
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The resultant amplification of the field as a result of the
coherent summation of the fields of the elementary radiators
within each bunch (C) and among bunches ( ^ ) is equal to
the product of the intensities of these two effects:
Ktot = CJ{.

We have thus shown that in the case under considera-
tion here, of a nonresonant hydrodynamic instability, the
coherent summation of the fields of elementary Cherenkov
radiators, which the beam particles constitute, results in a
substantial intensification of the resultant field produced by
the beam of charged particles in the plasma (the intensifica-
tion is with respect to the field of the longitudinal waves of an
individual charge).

3.3. Inverse effect of the field on the beam

Up to this point we have been discussing only the field
of the spontaneous emission51 from the beam particles for a
given motion of these particles. We have essentially ignored
the inverse effect of this field on the motion of the beam
particles, i.e., the induced absorption of the energy of this
field by the beam. In this subsection we consider the induced
interaction of a modulated beam with the field which it ex-
cites, and we show that the resultant growth rate due to this
effect is precisely equal to the growth rate calculated on the
basis of a hydrodynamic analysis of the two-fluid model.

Since the field of the modulated beam described by
(3.7) is determined in terms of Eulerian variables, we will
use these variables to describe the motion of the beam parti-
cles below; i.e., we use the hydrodynamic velocity
v(z,t) = Vo + Lv(z,t) and the corresponding density
n(z,t) =N0 + An(.z,t):

v (z, t) = Vo [1 + g (t) cos (kz — o)M*)];
n (z, t) = JV0 [1 + h (t) sin (fez — coM*)l-

(3.8)

Here we have introduced dimensionless depths of the
density and velocity modulation of the beam, h(t) andg(f),
respectively, which depend on the Eulerian time t.

Substituting (3.8) into the equation of motion of the
beam particles in resultant field (3.7),

mi>Av(z, t)^ z, t), ^-^+Vo^ , (3.8')

and into the continuity equation

D An(z, t) + N0 -?—Av(z, 0 = 0 , (3.8")

we find the following system of two first-order, linear, ordi-
nary differential equations for the dimensionless amplitudes
gU)andA(t):

2 K -
h =

(3.9)

(3.9')

From the condition that this system should have no tri-
vial (vanishing) solutions we unambiguously find the ana-
lytic asymptotic expressions for the corresponding growth
rates:

(<5f ld ) * = {2 1 1 -T
0)M < lDp

/ * ' 0)p

(3.9")

It is easy to see that these asymptotic expressions are

precisely the same as the corresponding results of an analysis
of the hydrodynamic model in the limiting case
u<<5f,'d< (̂6>p — coM)4,cop [see (2.5a)]. Furthermore, in-
corporating the circumstance that the number of coherent
bunches near the resonant point (aM = o>p) is finite in
(3.9"), we find a resonance growth rate (2.5b). The mini-
mum value of the magnitude of the frequency difference
(<yp — 6>M ) is determined by the magnitude of growth rate
8£d, which in turn determines the resonance number of co-
herent bunches, ^ r e s : Min [ \cop — aM \ ]
= \Sres\x^'^s

ici}p. Substituting these relations into the
right side of (3.9"), we find an estimate of the resonance
growth rate which is precisely the same as the corresponding
classical result (2.5b), in terms of its dependence on the ex-
ternal parameters: (<5;'dres) =43[a)2

bcop/\6]in.

The procedure described above for summing the fields
of the spontaneous emission from the elementary radiators
of a beam35"39 and for dealing with the inverse effect of the
resultant field on the beam (the induced absorption of the
resultant field by the beam6'; Refs. 35-40) is thus successful
in incorporating and describing quantitatively the basic
physical processes which are responsible for the collective
beam-plasma interaction under conditions such that the
thermal motion of the beam particles is inconsequential.

3.4. Mechanism for the grouping of beam particles into
coherent bunches

We have explained the elementary mechanism for the
intensification of a field by a beam (Subsection 3.1), and we
have established the coherence of the spontaneous emission
from the bunches of beam particles which are formed by a
modulating signal (Subsection 3.2). In the present subsec-
tion we wish to determine the physical nature of the appear-
ance of a boundary on the instability region along the wave-
number axis. We will show that the answer to this question
comes from an analysis of the mechanism by which the beam
particles are grouped into coherently emitting bunches. It is
this grouping process which is, as we showed above, a neces-
sary condition for the onset of hydrodynamic beam instabil-
ity: It provides the intensification of the field emitted by each
charge through a coherent summation of the fields of the
particles forming the coherently emitting bunch. This
grouping process is essentially the key element of the mecha-
nism for the inverse effect of the field on the motion of the
beam particles: With increasing depth of the density modu-
lation of the beam (A), the amplitude of the field emitted by
the beam (3.7), increases, and this field causes a more in-
tense grouping of the beam particles into coherent bunches
(i.e., increases the modulation depth h), according to
(3.9"). The qualitative physical arguments presented above
simply explain the governing role played by the mutual pro-
motion of the spontaneous-emission process and the process
of the induced absorption of the field by the beam particles—
it does not reveal the essence of the mechanism for this in-
verse effect of the field on the beam. Accordingly, this expla-
nation does not, in particular, answer the question which we
posed above: Why does this grouping process occur (why is
the feedback in the system positive) only at sufficiently large
wavelengths (A > Ap = 2TTK0/«P )? We will show below that
this threshold in the dependence of growth rate (2.5) on the
perturbation wavelength stems from the discontinuous de-
pendence of the sign of the effective feedback in the system
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FIG. 4. Sketch of the relative orientation of (1) the exciting bunch, and
(2,3,4,...) the bunches which it focuses, a—kM = a>p/V0; b—kM >cop/

on the ratio of this wavelength to the plasma wavelength35

Ap = 2wVo/cop.
This dependence can be explained qualitatively and

quantitatively in terms of the Veksler-MacMillan self-phas-
ing mechanism.51"55

For a qualitative illustration of this dependence, we
consider the effect of the field of the spontaneous emission of
an individual point bunch on the stability of the longitudinal
(phase) motion of the following bunches. It can be seen from
Fig. 4 that under the strict equality A =Ap each following
test bunch falls precisely at the boundary between the re-
gions of focusing and defocusing phases of the field of longi-
tudinal waves of the plasma which is excited by the emitting
bunch: The squares of the local phase oscillation frequencies

a£»ot)
(3.10)

vanish at this point.
If, on the other hand, the equality A = Ap does not hold,

each following test point bunch falls either in a region of
defocusing phases of this field A <Ap,(il% <0) orinaregion
of focusing phases (A>Ap,Q% >0). It is this distinction
which is responsible for the particular dependence of the
sign of the feedback on the sign of the difference {k — kp):
The grouping of the beam particles into coherent bunches
which is required for the onset of an instability is possible
only in the case of long waves.35

For a more comprehensive and more rigorous quantita-
tive explanation of the effect (the threshold in the depend-
ence of the growth rate on the perturbation wave number),
we first note that in a first approximation in the small param-
eter of the problem (<5j[d [coM \e'p (coM) | ] ""' 41) the phase
velocity of the emission field is precisely equal to the equilib-
rium velocity of the beam particles:

_ Reco(fc) _

10b

) • ) ] •

In this case the equilibrium (synchronized) phases of
the field, <ps, in which the charged particles can move in
synchronism with the wave, are multiples of an odd number
of quarter-wavelengths53"55 (Fig. 5):

«)-«(*)*
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= 0, ± 1 , ± 2 ,
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(3.10')

FIG. 5. Positions of synchronized phases under the condition Vo = Vpl

Physically, the points cp <p
+} correspond to minima of

the potential of wave field (3.7), while the points q> ^,"' cor-
respond to maxima. In general, only one of the two values of
the synchronous phase on each field period (i.e., for a given
p) is stable.53"55 The stability condition is that the sign of
(3.10), the square frequency of the phase oscillations of par-
ticles which deviate slightly from a synchronous particle, be
positive.26'53"55 Substituting field (3.7) into the right side of
this expression, we easily see the following. The phases cp lp

+ J

which correspond to those maxima of the beam density
which are determined by the beam modulation law [see
(3.8")] are stable only for perturbations in the long-wave-
length region (o)M =EZ = kVQ<cop) (Ref. 35):

)= ±
2(cop —COM)

(3.10")

We thus see that the existence of a boundary on the
beam stability region along the axis of perturbation wave
numbers is explained unambiguously by a specific feature of
the Veksler-MacMillan self-phasing mechanism, which pro-
vides a grouping of the beam particles into coherent bunches
by the field which they emit only in the case of long waves.

3.5. Mechanism for energy transfer from the beam to the field

The Veksler-MacMillan self-phasing mechanism,
which forms the coherent bunches, does not by itself explain
the transfer of kinetic energy from beam particles to the field
which is required for the onset of instability. It is directly in
the stable synchronous phase <p ^J' of the field (3.7) that the
amplitude of the field which retards a bunch is zero. As they
are grouped in this phase at strict synchronism of the wave
with the beam ( Fph = Vo), the particles leading the wave are
slowed by the excited field, while the lagging particles are
accelerated. As a result, in the linear stage (at small field
amplitudes and at small displacements of the beam particles
in this field) there is no transfer of energy from the beam to
the field. For such a transfer to occur, the bunch would have
to shift into the region of retarding phases of the field, lead-
ing the wave in the process, during the onset of instability.26

It is easy to show that this phase slippage of a bunch is pro-
vided automatically as a result of a collective effect, a de-
crease in the phase velocity of the wave excited by the beam
with respect to the beam velocity. Specifically, it follows
from (3.7" ') and (2.5") that a lowering of this type occurs
throughout the region of unstable values of the perturbation
wave numbers. The sign of the relative phase shift of the
bunch, A, over the instability rise time determined by this
effect, T{ = (5j,d )~ ' , is positive:

A = k(V0—V^(k))T,=i o(- > 0. (3.11a)

This result means that the bunch leads the wave, mov-
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FIG. 6. Sketch of the phase slippage of bunches.

ing into the region of its retarding field (see Ref. 26 and Fig.
6 of the present paper). The amplitude of this displacement
increases monotonically as the beam modulation frequency
(<uM ) approaches the resonant frequency (cop) and as the
equilibrium beam current density No increases. At the reso-
nant point itself, it reaches a maximum which does not de-
pend on Na:

A(fe) = COb-O)M

(COp-toftf)'/2

/ 3
(3.11b)

The effect of the Veksler-MacMillan self-phasing
mechanism, which groups the beam particles into coherent-
ly emitting bunches in the case of long-wavelength perturba-
tions (kV0 <cop), is thus intensified by the movement of the
bunches formed in this manner into retarding phases of the
field which they excite, as a result of a dependence of the
phase velocity of this field on the beam particle density (a
purely collective effect7). It is easy to see that under the
condition co<ap[l + (.N0/Np)

1'3]312 the condition
F* = a/k < Vo (Ref. 26), which is a necessary condition for
this motion to occur, and which imposes a lower limit on the
region of unstable perturbation wave numbers k, does not
contradict inequality (2.6), which places an upper limit on
this region.

We will complete this section of the paper by refining
the scope of the concept of self-phasing which we used
above. Veksler and MacMillan predicted and described a
mechanism of phase grouping of nonisochronous oscillators:
The charged particles which are circulating along closed cir-
cular equilibrium orbits in cyclic resonant accelerators are
oscillators of precisely this type. In the adiabatic approxima-
tion, however (i.e., at small values of the ratio of the phase
oscillation frequency to the frequency of the field of the ac-
celerating resonant wave), the intensity of the phase group-
ing does not depend on the curvature of the equilibrium orbit
of the charge. Evidence for this conclusion comes from the
fact that in both cyclic and linear resonant accelerators the
dynamics of the phase motion of a charge is described by the
same mathematical-pendulum equation in this approxima-
tion.53"55 For these reasons, the mechanism which we have
discussed here for the longitudinal grouping of beam parti-
cles into coherent bunches by the field which they them-
selves emit is actually a particular case of the Veksler-Mac-
Millan self-phasing effect.

4. CONCLUSION

Summarizing the results of this review, we can describe
the key steps in the onset of a collective hydrodynamic insta-

bility of a nonequilibrium beam-plasma system in the follow-
ing way. The initial-perturbation signal groups the beam
particles into a periodic train of coherent bunches. The typi-
cal linear dimension of the region of coherent field of each
charge is equal in order of magnitude to the plasma wave-
length. Consequently, the number of particles in each coher-
ent bunch is proportional to the amplitude of the perturba-
tion of the beam particle density and to the cube of the
plasma wavelength. This train of coherent bunches excites
longitudinal waves in the plasma at the beam modulation
frequency as the result of the spontaneous Cherenkov emis-
sion involving these waves. The induced Cherenkov absorp-
tion of the resultant collective field causes a growth of the
initial depth of the beam density modulation (a growth in
the number of coherent beam particles in each bunch). A
necessary condition here is that the perturbation wavelength
be greater than the plasma wavelength: Only under this con-
dition will the bunches form in stable phases of the excited
field. In this case the dynamics of this distributed system is,
from the physical standpoint, completely analogous to the
dynamics of a mathematical pendulum near the upper equi-
librium point. Specifically, the angular displacement of the
pendulum from its equilibrium position is analogous to the
depth of the density modulation of the beam, and the deflect-
ing force of gravity is analogous to collective field (3.7),
which amplifies this modulation. Because of the linear in-
crease in the force with increasing perturbation amplitude,
the latter grows exponentially over time, with an argument
which is proportional to the square root of the stiffness of the
deflecting force (the acceleration due to gravity; the equilib-
rium density of beam particles). Since the phase velocity of
the wave which is excited is always lower than the beam
velocity, the bunches formed in this manner lead the wave,
moving away from the zero phase into a retarding phase.

The scientific and methodological importance of the
quantitative explanation offered above for the key steps in
the onset of the beam-plasma instability is not restricted to
the particular case of this instability, since all hydrodynamic
beam instabilities develop essentially in accordance with this
scheme: in a process involving the formation of coherently
emitting bunches by the driving field of their collective emis-
sion.35"40 The specific features of each instability are deter-
mined only by the particular type of spontaneous emission
which is responsible for the intensification of the field. Our
only reason for selecting this particular beam-plasma insta-
bility is that the explicit analytic expressions for the Green's
function of the Poisson equation, which describes the field of
an individual charge in a plasma, take the simplest form in
this case.

We wish to thank N. I. Aizatskii, B. M. Bolotovskii, M.
V. Nezlin, A. A. Rukhadze, K. N. Stepanov, Ya. B. Fain-
berg, and V. N. Tsytovich for stimulating discussions of de-
tails of the physical content of these questions.

APPENDIX. COULOMB FIELD OF A SINUSOIDALLY
MODULATED BEAM IN AN ISOTROPIC PLASMA

The resultant Coulomb field of a beam with a modula-
tion (3.6) is described by an expression analogous to (3.7):

CCoul)
-* zlot
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in which the configuration of the Coulomb field of an indi-
vidual charge is determined by (3.4).

We integrate first over zs and then over kx. These opera-
tions give us the amplitude and phase of the Coulomb field of
a sinusoidally modulated filament at a distance ps = const
from it:

"For a quantitative description of this effect, we would also need to incor-
porate the self-field of the beam (in addition to the field radiated by the
beam particles, is'1'") on the right side of (3.8') (Refs. 40 and 44, for
example).

t; p,) =

where

(ftp.) -

(A.2)

) , (A.3)

_ / cop . A M \ 1/2

The first term in square brackets on the right side of
(A.3) is nonzero even in vacuum (in the limit iVp —0). It
describes the Coulomb field, slightly modulated by the pres-
ence of a plasma, of a linear filament with a charge described
by sinusoidal law (3.6b). It can be seen from (A.3) that this
field falls off exponentially with increasing distance from the
filament, ps, with the index of the exponential term being b.
We will call this field, which remains nonzero even at a van-
ishing plasma density (Np~>-0), the "quasivacuum" field.
Physically, the second term on the right side of (A. 3), which
vanishes in the absence of a plasma (Np = 0 ) , incorporates
and describes the screening of the quasivacuum field by the
plasma, i.e., the image field of the sinusoidally charged fila-
ment in an unbounded plasma. The sign of this field is oppo-
site to that of the quasivacuum field. The configuration of
this purely plasma field is similar to the configuration of the
quasivacuum field: It also falls off exponentially with in-
creasing distance from the filament, although the index of
the exponential is different and is determined by the plasma
density and the beam velocity (a = a>v / VQ). The amplitudes
of the two components of the Coulomb field are of such a
nature that their resultant amplitude is exactly zero:

b

The physical meaning of this result is that the screening
of the Coulomb field of this filament is complete, as it would
be in an ideal superconductor.
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