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The results are presented of the ten-year development of the concepts of anharmonicity of the
normal modes that describe the vibrations of a continuous medium having two or more mutually
coupled subsystems. The results are discussed of experimental and theoretical studies of the
anharmonicity of the magnetoelastic normal waves in antiferromagnetics having weak
anisotropy and a large exchange field, such as a-Fe2O3, FeBO3, etc. In these crystals the
"effective" anharmonicity of the quasiacoustic branch of vibrations that arises from the
magnetostrictive coupling of the elastic and spin subsystems is especially large—larger by a factor
of 103 to 104 than that typical of a pure elastic medium. The corresponding effective moduli are
controlled easily, and over a broad range, by a small magnetic field (0.1-2 kOe). The
anomalously large ("giant") magnitude of the acoustic nonlinearity has enabled observing many
ultrasound analogs of the effects of nonlinear optics (frequency doubling of sound, stimulated
combination scattering of sound by sound, etc.). Realization in the near future of other analogs—
self-focusing of a sound wave, excitation of magnetoelastic solitons, etc., is expected.
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INTRODUCTION

As a rule, elementary excitations of differing physical
nature that exist in a solid interact with each other. When-
ever the interaction leads to a linear coupling of the excita-
tions, they are realized in crystals in the form of mixed nor-
mal modes. The set of studies of coupled excitations in a
solid, encompassing primarily the problems of the formation
of their "linear" characteristics (spectra, relaxation times,
coupling parameters) has considerably expanded in the past
decade into the field of nonlinear wave processes. Here a
number of unexpectedly strong nonlinear effects have been
predicted and discovered experimentally. The present arti-
cle aims to call the reader's attention to certain sharply
marked and very general features of the formation of the
nonlinear properties of a crystal due to the coupling of ele-
mentary excitations with one another, and to illustrate these
features with the example of the interaction of the vibrations
of a crystal lattice with the system of ordered spins of a mag-
netic. The objects to be examined here (nonconducting anti-
ferromagnetics ) are of independent interest—for nonlinear
solid-state acoustics and for applications in the field of func-
tional radioelectronics.

1. NONLINEARITY OF MIXED MODES AND EFFECTIVE
ANHARMONICITY OF THE ELASTIC SUBSYSTEM OF A
MAGNETIC

Practically any real physical systems with large enough
amplitudes of some particular excitations manifest nonlin-
ear properties. The characteristic scale that enables one to
consider an amplitude to be "large" depends on the physical
nature and the individual features of the interactions in the
system. In crystal-lattice dynamics the natural scale for the
amplitude of displacement of the nodes is the interatomic
distance aQ ~ 3 A. In nonlinear optics the scale for the ampli-
tude of the electric field of an electromagnetic wave is deter-
mined by the intensity of the intracrystalline electric fields
Ea~e/a2

0 ~ 109 V/cm. In the dynamics of the spin system of
a magnetically ordered crystal the role of the scale for the
amplitude of oscillations of the magnetization
AM = M — Ms is played by the magnitude of the equilibri-
um saturation magnetization Ms ~fiB/al ~ 103 G.

Smallness of the amplitude of an excitation as com-
pared with the characteristic scale is the necessary condition
for the approximation of the so-called weak nonlinearity and
for applicability of anharmonic approximations to describe
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nonlinear processes. For lattice dynamics this condition im-
plies the requirement of small deformations | ii \ 41. When it
is satisfied one can represent the density of potential energy
Fc of the deformed crystal as a power series in the compo-
nents of the deformation tensor it:

The admissibility of this representation is justified both
by the smallness of the attainable deformations and by the
relatively weak variation in the magnitude of the anhar-
monic moduli as they increase in order1: C("+ u /C ( n ) ~ 1-
10. This relationship of constants agrees with the existing
predictions on the mechanisms of interionic interactions in
crystals with different types of bonding. The upper bound of
the region of applicability of the anharmonic expansion cor-
responds to a characteristic density of excitation energy of
the order of 1010 erg/cm3, since C 2 ~ 10'2 erg/cm3. Under
the conditions of acoustic experimentation the deformations
are generally so small that usually the nonlinearity of the
elastic waves can be considered weak (| C (3lii | /1C(2) | < 1). On
the contrary, in the spin systems of magnetics the conditions
of strong nonlinearity are realized relatively easily. Rotation
of the magnetization by large angles ( 0 ~ | AM \/Ms ~ 1)
with respect to the equilibrium direction requires not very
significant expenditures of energy—of the order of the mag-
netocrystalline anisotropy energy (105-106 erg/cm3).
Moreover, in the rather frequently encountered weakly an-
isotropic magnetic materials, the energy difference of states
of strongly differing direction of magnetization is deter-
mined by an interaction of a different nature—the magne-
toelastic interaction, which amounts to about 102 erg/cm3.
Let us consider magnetoelastic crystals whose energy is writ-
ten in the form

Fim ^

Here B is the tensor of the magnetoelastic moduli. This inter-
action couples the spin and sound waves, so as to realize a
situation that is most interesting from the standpoint of non-
linear dynamics, in which excitations of different physical
nature and different "levels" of nonlinearity prove to be cou-
pled in the solid.

In any normal mode of coupled oscillations, generally
all degrees of freedom of the interacting "partial" (see Ref.
2) subsystems are simultaneously excited. If even one of the
subsystems or the coupling between them is nonlinear, the
normal modes will also be nonlinear. Under resonance con-
ditions, i.e., when the spectra of the partial subsystems inter-
sect, the energy will be partitioned equally among them. Evi-
dently, here the major contribution to the nonlinearity of the
coupled waves must be introduced by the subsystem for
which strong nonlinearity is realized at the least energy den-
sity of excitation.

Far from resonance each of the normal modes main-
tains to a considerable degree the physical individuality of
the partial subsystem to which it is closest in frequency. Nev-
ertheless the contribution of the interaction of vibrations to
the nonlinearity of a concrete mixed mode can prove deci-
sive. An example of such a situation in very simple dynami-
cal systems is the low-frequency mode of the normal vibra-
tions of two coupled pendulums of substantially different

O O l O O O O O B O 0|0 .
I I

FIG. 1. A very simple example of a dynamic system with strong effective
nonlinearity of the low-frequency normal mode (/, > /2) .

3

lengths (/, > l2) (Fig. 1). The amplitudes of the vibrations of
the subsystems in the mode under study are coupled by the
relationship <p2 = f(w1/,/«2/2)<Pi, where f = K/mcolco2 is
the coupling coefficient (0 < f < 1), while a, and co2 are the
"partial" frequencies, i.e., the frequencies of vibration of
each of the pendulums when the position of the other is fixed;
K is the stiffness of the elastic coupling. With strong enough
coupling the condition <p2 > <p, can be realized. Consequently
the nonlinearity of the low-frequency mode proves substan-
tial even at a relatively low amplitude of excitation of the
low-frequency subsystem (if <p2zz 1 with cpx 41).

To a certain degree analogous features are manifested in
the nonlinear properties of the so-called sound-like magne-
toelastic waves in magnetics, i.e., waves of the acoustic (gap-
less) branch of the spectrum of coupled excitations. If the
magnetic anisotropy is weak, sonic deformations of relative-
ly small amplitude can give rise to considerable deviations of
the magnetic moments from the equilibrium direction. The
magnetostrictive elastic stresses, which depend nonlinearly
on the amplitude of the spin oscillations, consequently prove
to depend nonlinearly also on the amplitude of the deforma-
tions in the acoustic wave. The nonlinearity of the depen-
dence of the elastic stresses on the strains amounts to noth-
ing other than elastic anharmonicity, which in this case is
introduced into the acoustic vibrations by the interaction of
the sound with the spin subsystem of the crystal. This "effec-
tive" anharmonicity, which reflects the nonlinearity of the
mixed modes, is the fundamental mechanism that deter-
mines the intensity of a number of nonlinear wave processes
in magnetics.

A fact that appears important in principle from the
standpoint of possible generalizations is that the effective
anharmonicity substantially alters the characteristic scale
discussed above for the amplitude of deformations in the
nonlinear acoustic vibrations of a crystal. We can easily esti-
mate this change by using the following qualitative argu-
ments. We can consider a magnetoelastic wave to be weakly
nonlinear if both the elastic deformations and the relative
amplitudes of the magnetic oscillations (| AM|/A/S 41) ac-
companyibg the elastic wave are small in it. In the first
("harmonic") approximation the amplitude AM equals the
derivative of the effective magnetostrictive field

"/•'me

3M
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low-frequency dynamic magnetic susceptibility^. (Hence-
forth in discussing general problems we do not need to focus
attention on the tensor or vector nature of particular quanti-
ties. Hence we shall omit the corresponding symbols in for-
mulas, used to obtain estimates bearing in mind that appro-
priate contractions or essential components of tensors will
figure in the concrete relationships.) Weak nonlinearity of a
magnetoelastic wave corresponds to the condition
XBu^/M\ 4 1. It can be expressed in terms of the coeffi-
cients of magnetoelastic (magnon-phonon) coupling
f = (XB 2/C (2)M I)'n by the relationship
f 2u _ C a)B(~'»4 1. Finally, noting that the ratio B/Ca)~u0

determines the magnitude of the equilibrium ("spontane-
ous") magnetostrictive deformation, we derive the follow-
ing quantitative criterion for weak nonlinearity of a magne-
toelastic wave of the acoustic branch of the spectrum:
x = t, 2 |M_ /uo\ 4 1. The quantity x plays the role of the pa-
rameter of the anharmonic expansion of the energy density
of the crystal in the dynamic deformations. Usually the mag-
nitude of x does not exceed (10-102) | u __ |. In magnetostric-
tive ferroelectrics having the characteristic parameters
X ~ YMS /co/o, where a>f0 is the ferromagnetic-resonance fre-
quency, wehavef 2~y£2 /Ca )Mscof o ~10" 2 , | « o |~ 105,and
the magnitude of x is substantially larger: x~103\u_ |.
However, up to deformations close to the limit for break-
down of real crystals, the nonlinearity proves weak enough
and the conditions of applicability of the anharmonic expan-
sions do not break down. We should call attention to the fact
that materials with anomalously large magnetostriction,
such as the compounds of the rare-earth metals, do not con-
stitute a suitable object of study of nonlinear acoustic phe-
nomena, since in these materials appreciable coupling is at-
tained by increase in |«0|, and this diminishes x for given
values of |«_ |.

Employing the above relationships, we can estimate the
magnitude of the effective anharmonic moduli arising from
the coupling of the elastic and magnetic subsystems. In the
linear approximation ("zero-order" in the parameter x),
the magnetoelastic interaction is manifested primarily in the
renormalization of the velocity of the acoustic wave. This
renormalization can be put into correspondence with the
effective values of the elastic moduli:

The quantity

amounts to the magnetoelastic (more exactly—the magne-
toacoustic) contribution to the potential-energy density.
The first anharmonic term of the expansion of the energy
density in the deformations, which arises from the magne-
toelastic interaction, is of the following order of magnitude
in the parameter x:

Taking into account the values presented above of the mag-
netostrictive constants and the coupling coefficients for fer-
rodielectrics, we obtain the estimate AC (3I/C(2) ~ 10, which is
close to the ratio C (3)/C(2) in nonmagnetic crystals (we recall

that the coupling coefficient f is proportional to the magni-
tude of | «01 when f < 1). Thus, although taking into account
the magnetostrictive coupling leads to a relatively slower
convergence of the anharmonic expansion, the effective an-
harmonic moduli of lowest order

for ferroelectrics usually differ little from the corresponding
moduli of nonmagnetic crystals.

A different situation arises in crystals having strong
magnon-phonon coupling, which include, e.g., antiferro-
magnetics with a magnetic anisotropy of the "easy-plane"
type (EPAFs) and a high Neel temperature (7"N ), such as
hematite (a-Fe2O3, 7"N = 960 K; see Ref. 4) or iron borate
(FeBO3, TN = 348 K; see Ref. 5). For certain types of
acoustic vibrations the magnitude of the square of the cou-
pling coefficient f2 reaches tens of percent in these materi-
als,57 although the magnetoelastic interaction in them is
quite ordinary (the saturation magnetostriction u0 is of the
order of 10~5).8 Here the magnetic contribution to the an-
harmonic moduli can amount to AC 3 ~ (103-104) C'2) (see
the first estimates made in Ref. 7b). Such a strong anhar-
monicity, which exceeds the intrinsic anharmonicity of the
crystal lattice (C<£> ~ AC(3) > C(3)) can be called giant with-
out exaggerating.

Crystals of EPAFs are beginning to play an ever more
appreciable role in modern nonlinear magnetoacoustics.
Hence we shall treat in detail in the next section the features
of the nonlinear dynamics of these materials (for their linear
dynamics, see Refs. 9-12).

2. NONLINEAR MAGNETOELASTIC DYNAMICS OF
ANTIFERROMAGNETICS WITH ANISOTROPY OF THE
"EASY-PLANE" TYPE

The magnetoelastic vibrations in an antiferromagnetic
in the two-sublattice model are described phenomenologi-
cally by a coupled system of nonlinear equations of preces-
sion of the vectors of the magnetization of the sublattices M,
and M2 and the equations of elasticity:

V-iM11=[MnH,1 ( n = l , 2), (1)

(2)

Here the effective field is

6 f F AY

the displacement vector is £/,•, and the tensor of the elastic
stresses is

" " ~ 6(dUi;dx})

The energy density of the crystal is

dx
dUt_\
dXj I

In its magnetic component Fm we shall take account of the
energy of intersublattice exchange interaction, the Dzyalo-
shinskiT interaction, the uniaxial anisotropy energy (with
the effective fields respectively of// E , / / D , and / / A ) , and the
energy of interaction of the magnetic moments with the ex-
ternal field H:
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Fm = 2M0 [-J- -HD [ml]2 + -J- HKl\ - (mH)

a / dl, \2-|
~T~l~aI7) -I '

Here m = (M! + M2)/2Af0 is the ferromagnetic vector,
1=(M! — M2)/2Af0 is the antiferromagnetism vector,
a = v2

m /4HB y2, and vm is the so-called "limiting" velocity of
the spin waves (magnons), which is proportional to the ex-
change field and the square of the lattice constant.

The effective exchange field / / E ~kTyi/fiJi in crsytals
having a high enough Neel temperature TN considerably
exceeds the fields of the relativistic (HA) and exchange-rel-
ativistic (HD) interactions, just as it does the external fields
(H) used in experiments. For example, in crystals of a-
Fe2O3 the characteristic values of the fields are the follow-
ing: HE ~10 7 Oe,# D = 2 Xl04Oe, and # A := 2 xl02Oe. In
many cases, taking account of the actually existing hierarchy
of interactions in the spin system enables one substantially to
simplify the description of the nonlinear dynamics of antifer-
romagnets. In the first approximation in the parameter H /
/ / E < 1, where H — H D , H A, or H, it proves possible to re-
duce the system of precession equations to the equation of
motion for the antiferromagnetism vector 1 alone, since
/ 2 = l - m 2 s s l a n d » i < / 1 3 - l s :

$ a y* (1 - i>£V2l) - V1 {2 [Hi] + [HI)}
+ H (HI) + ffD [Hz] + (2HEffA + Hh) l,z - 2#EHme.

(3)
In this approximatioin it suffices to restrict the treat-

ment in the expression for the magnetoelastic energy density
to taking account of invariants of the type

(4)

Here B, is the tensor of magnetoelastic constants corre-
sponding to the antiferromagnetic vector.

The spin-wave vector of an EPAF, which can be found
from the linearized Eq. (3) or, as is usual, directly from the
linearized system (1), contains two branches. Their fre-
quencies without allowance for the magnetoelastic interac-
tion are given by the relationships

= f- [2HVHA (5)

(6)

One of the branches (the "antiferromagnetic" one,
ajak) has the relatively high activation energy
y (2H EHA)U2. For example, for a-Fe2O3 aa0 lies in the mil-
limeter UHF range.16 The other "quasiferromagnetic"
branch 2>/k amounts to the "soft mode" of the spin system,
whose activation energy is small, in line with the smallness of
the external field intensity. The activation branch of the
spectrum 5a k corresponds to vibrations with departure of
the vector 1 from the base plane and with change of the angle
of inclination of the magnetic sublattices. The soft mode 5 / k

corresponds to rocking of 1 in the base plane and precession
of the ferromagnetic vector m about the equilibrium vector
ms, as in a ferromagnetic. The interaction of the elastic sub-
system with the soft spin-wave mode gives rise to very strong
coupling. It determines the fundamental features of the mag-

netoacoustic properties of EPAFs. One can show that, under
ordinary conditions of not too high frequencies 5 < « a k and
weak magnetostrictive fields Hmc 4HA, where

1 dFme
H m e ~ 2M0 dl

we can neglect the departure of the antiferromagnetic vector
from the base plane in describing the magnetoelastic dynam-
ics (/z ;=;0). Then the equation of motion for / is reduced to
the form

(7)= (HI) ([HI], 4 HB) + 2//E [lHme]2 + TXHZ.

When we take account of the condition of conservation
of the modulus |1| = 1, the only dynamical magnetic vari-
able in Eq. (7) proves to be the angle <p of rotation of the
vector 1 in the base plane. Transforming to this variable al-
lows us to write the energy density of spin excitations wm

and the magnetoelastic excitation Fme in the form

^ *l, (8)

mt = (#i («) cos 2cp + i 2 (a) sin 2cp) u. (9)

The explicit form ofthe components of the tensor of magne-
toelastic constants Bn (a) (« = 1,2) depends on the con-
crete symmetry ofthe crystal and the angle a of orientation
ofthe external field with respect to the unique crystal axis in
the base plane. For rhombohedral symmetry, which many of
the experimentally studied EPAFs possess (a-Fe2O3,
FeBO3, MnCO3, CoCO3) having the space group D ^ and
the unique axis x||U2), the following relationships hold:

5, (a) - Bi (0) cos 2a + 52 (0) sin 2a,

B2 (a) = — Bt (0) sin 2a + B2 (0) cos 2a,

B , ( 0 ) M = — ^ - ( f i u - f i i . ) ( « « - » » » ) -

Bt (0) « = - (Bu - Blt) uxv - 2BltuM.

Thus it proves possible to describe phenomenologically
the magnetoelastic dynamics of EPAFs by using the four-
vector magnetoelastic displacement (U,<p), which satisfies
the system of equations of motion50

( (a) cos 2cp -f B2 (a) sin 2cp),-j

(11)

n- (v'sV\ - Ip) •-= 4" (r'wfo -HHU) sin 2rp

X (B.2(a)ucos2cp — fi, (a) u^ sin (12)

herew_ = « — uQ, and uQ = — [ci2)]^lBi(a) is the tensor of
spontaneous magnetostrictive deformations,

cofo = Y [H (H + Ho) + 2ffBffSsl"s

is the frequency of the ferromode of the antiferromagnetic
resonance (AFMR), H<°£= - (2/M0)B,(a)M0 is the
magnitude of the effective spontaneous-striction field; and
we have
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dVj

We should note that using Eqs. (11) and (12) does not
presuppose any restrictions on the amplitude of the spin os-
cillations. They are suitable for describing both weakly and
strongly nonlinear effects to which anharmonic approxima-
tions are inapplicable. We note also that one can derive Eq.
(12) directly from the relationships (8) and (9) by vari-
ation methods. It has the form of the well known double sine-
Gordon equation69 supplemented by nonlinear dynamical
couplings. It is encountered in the theory of nonlinear spin
excitations in liquid 3He and in the theory of self-induced
optical transparency. Antiferromagnetics are another exam-
ple of physical systems whose description can be reduced to
an equation of this type. Here the nonlinear dynamical cou-
plings considerably enrich the pattern of possible wave pro-
cesses.

3. COUPLED MAGNETOELASTIC WAVES IN
ANTIFERROMAGNETICS WITH ANISOTROPY OF THE
"EASY-PLANE" TYPE

Let us take up in greater detail the properties of coupled
magnetoelastic excitations of small amplitude. Their spec-
trum flk is determined by the well-known dispersion equa-
tion, which can be easily derived from the system (11), (12)
linearized over small deviations (p4,1:

'Sk^fk^Sk (13)

Here<wsk is the partial frequency of the concrete (S = 1,2,3)
elastic mode having the wave vector k and the polarization
e<5), and co^ is the partial frequency of the ferromode. The
adjective "partial" is essential—it means that the frequen-
cies cosk

 a n d &>fk that enter into (13) are calculated for a
fixed partner subsystem (see the text above accompanying
Fig. 1). For example, co^ is calculated for a "frozen" lattice
(for more details on this, see Ref. 12). Therefore it contains
the so-called magnetoelastic gap: co^ = (<D^
+ 2y2HEH(^)in. The magnon-phonon coupling coeffi-
cient fSk is determined by the relationship

Mo

(14)

The asymptotic linearity in k (i.e., when k^>km =com/
vm, Fig. 2) of the spin-wave spectrum in an antiferromagnet
determines the qualitative differences of the spectra of mag-
netoelastic excitations in crystals having a high and a low
Neel temperature TN , to which the "limiting" magnon ve-
locity vm is related by direct proportionality. In low tem-
peratures EPAFs (such as MnCO,, CoCO,, and CsMnF3),
TN is lower than the Debye temperature TD and the velocity
of spin waves is smaller than the velocity of sound (see Fig.
2b). Here the spectra of the "pure" (partial) spin and elastic
excitations to^ and a>sk intersect. The conditions for stron-
gest interaction are realized in the resonance region near the
intersection. In high-temperature EPAFs (TN > To ), for
which vm >vs, intersection of the "partial" spectra is not
realized. In this case the spin waves for any k are unambigu-

FIG. 2. Spectra of coupled magnetoelastic waves in crystals of an EPAF
(solid lines)—high-temperature (TN>Ta) (a) and low-temperature
(T N <r D ) (b).7c

ously separated into acoustic (moreexactly-soundlike) and
spin (magnonlike) waves, while the strongest coupling cor-
responds to the long-wavelength region of the spectrum
(k4o)m/vrn). We note for the discussion below that, in an
EPAF of the type of a-Fe2O3 or FeBO3, the relation holds
that V% 4, v2

m, and the frequencies of the acoustic waves satis-
fy the condition Vt\ ^co^ for any wave vectors k.

Magnetoelastic coupling renormalizes the velocities of
the acoustic waves and causes them to depend on the field
intensity. The acoustic waves contain a substantial admix-
ture of "nonresonance" spin excitations caused by the defor-
mations. Their amplitude can be found from the linearized
equation (11) with allowance for the condition

2Hy (15)

It is precisely these excitations, participating in nonlinear
interactions inherent in the spin system, that introduce an-
harmonicity into the acoustic vibrations. We can easily con-
vince ourselves that in weak magnetic fields, and namely
when H(H + / / D ) S 2H E HmS, the amplitudes of the nonre-
sonance excitations prove to be large {<p~ 1) even at defor-
mations of the order of the spontaneous deformations
(uk ~u0). The nonlinearity of the acoustic modes under
these conditions cannot be considered to be weak.

When uk <̂ w0 and <p4,1 the elastic-stress tensor can be
linearized and reduced to the usual form ak = C^ ' (k )« k ,
where the effective second-order elastic moduli, i.e., those
renormalizaed by the interaction, are determined by the re-
lationships"

(16)

(17)
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The spectrum and polarization of the magnetoelastic waves
of the acoustic branch are found here, as in ordinary elasti-
city theory, from an equation like the Green-Christoffel
equation:

/ f 0, (18)

where we have

The field dependence of the moduli C(J? (H) and of the
corresponding velocities of sound bear direct information on
the magnitude of the linear coupling of the elastic and spin
waves. In the simplest case of interaction of one elastic mode
(S) with the spin system, the field dependence of the velocity
of sound is described by the relationship

^Sk(-ff) = !>Sk(l — £lk (-ff))1/a. (19)

The specific participation of the exchange reaction,
which is characteristic specifically of antiferromagnetics,17

in the formation of the amplitudes of the interaction of the
excitations9 and the magnetoelastic activation of the spec-
trum of spin waves10 has the result that the coupling coeffi-
cient proves to be of the order of unity over a broad interval
of magnetic fields 0 < H{H +HD)S 2HEH££ that consid-
erably exceeds the monodomainization field of the crystal.
For hematite the characteristic field is
H* = 2HEH^/HD =0.5 kOe.

The acoustic modes that satisfy the condition of limit-
ing strong coupling fSlk..o(.flr-«0)-»l a r e of fundamental
physical and practical interest. The existence of such modes
in a crystal that is isotropic in its magnetic properties
(though not necessarily in its magnetoelastic properties) in-
volves losses of stability of the equilibrium state with respect
to slow rotation of the magnetization in the xy plane by an
arbitrary angle (with a corresponding change in the sponta-
neous deformation), In many ways the situation is analo-
gous to an orientational phase transition70'8 and allows in-
teresting analogies with systems having spontaneously
broken symmetry.12

Measurement of the field dependence of the velocity of
sound is one of the fundamental methods of experimental
study of the coupling of acoustic with spin waves. Figure 3
shows the data of measurements of the velocities of certain
types of running bulk and surface acoustic waves in hema-
tite21. l92° Also shown there are the results of measurement of
the intrinsic frequency of acoustic vibrations of the "con-
tour-shear" mode for a resonator made of a-Fe2O3 in the
form of a disk cut in the base plane.21 The results of calcula-
tions performed b^ the methods of elasticity theory using the
effective moduli C{J[

)(k->0,H) are presented at the same
time. The differing symmetries of the tensors Cl2) and Ĉ ir*
lead to removal of the degeneracy of the spectrum of trans-
verse waves propagating along the trigonal axis of rhombo-
hedral EPAFs. One of the normal modes is characterized by
strong coupling, whereas the other one does not interact lin-
early with the spin system (see the curves / ' and / " in Fig. 3).

The interest in the properties of the contour-shear mode
arises from the fact that, according to the calculations,2' spe-
cifically it satisfies the criterion of limiting strong coupling.
The field dependence of its frequency is described by a rela-
tionship analogous to that derived in Refs. 13 and 18 for

Output

3 H, kOe

FIG. 3. Dependence of the normalized velocities (curves 1 and 2) and
acoustic-resonance frequencies (curve 3) on the magnetic field intensity
in a-Fe2O3, /—volume transverse waves (7—e'|lx||H,2" 1—e"||x||H");
2—surface waves (2 —Hx = TT/4, 2"— H||x)2 ' ; 3—resonance of the
shear mode over the contour of the thin disk. Dots—experiment,2' lines—
calculation. Insets—geometry of excitation and reception of magnetoelas-
tic waves.

running waves:
i /2

Here the frequency

(o,0 =

differs from the experimentally measured antiferromagnetic
resonance frequency by the amount of the magnetoelastic
gap. The data presented in Fig. 3 imply that the magnetoe-
lastic interaction leads to a variation in the frequencies and
velocities of the bulk acoustic waves by a factor of practically
two (i.e., fourfold for the corresponding dynamical modu-
li), while the variation in the velocities of surface acoustic
waves reaches 35%. Such a substantial renormalization of
the acoustic parameters is direct experimental proof of the
strong coupling of the elastic and spin waves in a-Fe2O3

crystals. Magnetoelastic waves in FeBO3 possess analogous
properties.6 Similar strongly coupled modes are the funda-
mental objects of experimental studies in the nonlinear mag-
netoacoustics of high-temperature EPAFs.

The gist of this section, which would be difficult to be-
lieve without the presented proofs, is: a quite small change in
the magnetic field, e.g., from 0.03 to 2 kOe, can alter the
dynamical stiffness of an antiferromagnetic by a factor of
four.

4. EFFECTIVE ANHARMONIC ELASTIC MODULI OF
ANTIFERROMAGNETICS WITH ANISOTROPY OF THE "EASY
PLANE"TYPE

In the lowest order of perturbation theory, anharmoni-
city of excitations of the acoustic branch of the spectrum
arises from the nonlinearity of the magnetoelastic interac-
tion, as well as from pure elastic nonlinearity.'3 The expan-
sion of the magnetoelastic energy density of (9) in a power
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series in the amplitudes q> of the spin oscillations contains the
anharmonic term

F'^=—2B,u(p2. (20)

Equation (20) describes processes of interaction of one
sound wave and two spin waves. Upon taking account of the
spin oscillations of (15) that accompany the sound wave, we
can easily isolate the contribution to the energy density of
the acoustic excitation, which is proportional to the cube of
the deformation. One can correlate this contribution with
the tensor of the anharmonic elastic moduli AC(31 '3:

(21)

(<0fo/Y)4

For simplicity we have restricted the treatment to the long-
wavelength region of the spectrum, i.e., co<icom s ; ^ . Using
the characteristic parameters 5~10 7 erg/cm3, HE/
M0~104, and (a>m/y)2~ 107 erg/cm3, we obtain for a-
Fe,O3 at H~ 1 kOe the estimate presented above of
AC(3>~ 104 C(2)~ 1016 erg/cm3.

Equation (21) describes processes of interaction of
three acoustic (soundlike) waves. A number of experimen-
tally observable nonlinear acoustic phenomena require ac-
count to be taken of a higher-order effective nonlinearity to
describe them. The magnetic and magnetoelastic energies of
the crystal contain anharmonic terms of all orders in the
amplitudes of the magnetoelastic excitations. The effective
fourth-order elastic moduli are formed by three fundamen-
tal mechanisms: four-wave interaction of non-resonance-ex-
cited spin waves, magnetoelastic interaction with participa-
tion of a sound wave and three nonresonance spin waves, and
the interaction of (20) in second-order perturbation theo-
ry.2425 The first two mechanisms correspond to the follow-
ing terms in the energy density:

Taking into account all the contributions cited above, the
anharmonic terms of the expansion of the energy density of
interest to us are reduced to the standard form25:

4!

Here we have

£-. (23)-48(^)HE \ 3 (252:

Concerning the symbols (B)", see footnote 1). We can easi-
ly note that the expansion of the energy density of the acous-
tic excitations in a power series in the deformations has the
structure discussed above of a power series in the parameter
x = £2\u/u0\. For a-Fe2O, with H~0.5 kOe we have
x~ 104|«_ | and AC(4)~ fo20 erg/cm3.

The anomalously large magnitude, specific symmetry,
and strong dependence of the effective elastic moduli on the
magnitude and direction of the magnetic field facilitate the
experimental detection and identification of the magnetoe-
lastic mechanisms of many nonlinear acoustic processes.

5. EXPERIMENTAL NONLINEAR MAGNETOACOUSTICS OF
HEMATITE

In the past decade single crystals of a-Fe2O3 have be-
come the principal object of intensive study of nonlinear
acoustic phenomena in magnetically ordered materials.
Strong coupling of the elastic and magnetic subsystems is
realized in hematite at room temperature in weak magnetic
fields (HS1 kOe) and in a frequency interval overlapping
practically all the ultrasound region. Modern technology al-
lows one to obtain large, high-quality single crystals of he-
matite.64 To a considerable extent all this has facilitated the
development of experimental magnetoacoustics.

Direct experimental measurements26 of the effective
third-order anharmonic moduli have been performed on
synthetic single crystals of «-Fe2O3 of dimensions 5 x 4 mm2

in the base plane and 13 mm in length along the C3 axis. The
quality of the crystal was sufficiently high: for the soundlike
wave being studied having A;~600 cm~', the quality factor
was Qk =a)k/&.cok = k/ak ~ 3 x 103 for a "turned-off"
field H = 3 kOe of magnetoelastic coupling (ak is the decay
coefficient for the power of the wave). The nonlinear moduli
were determined from the change in the velocities of the
acoustic waves under a relatively weak static deformation of
the crystal. We note that the anomalously high tensosensiti-
vity of the velocities of sound in EPAFs had been predicted
also in Ref. 7b—on the basis of analysis of the doubly linear
effects of static elastic stresses on the antiferromagnetic reso-
nance frequency and the magnetoelastic coupling. In Ref. 26
the geometry of experiment was chosen taking into account
the strong magnetoelastic anisotropy of hematite, owing to
which the anharmonic moduli AC45J and ACi55 have the
largest magnitude31 (with H parallel to the twofold axis
U21| x). In determining these components of the tensor AC(3),
one can use a transverse wave with polarization e||x and
wave vector k||z. Here one must create static stresses of two
types that are homogeneous throughout the crystal: tensile
{ayy ) and shear (ayz). An acoustic wave at the frequency 30
MHz was excited and detected with piezotransducers. The
variation of the velocity of this transverse wave Su, upon
deforming the crystal was measured from the change in the
phase of the signal in the receiving transducer. The results
were processed by using the relationships

)55,-. i - [Cu ( C j t - c l s ) S „ (H) + CiiCiiS1 (H)],

(H) +
(24)

Here

c

s

we

I -

have

P (6"J) i!

p£r
Cua,,z

The subscripts || and i correspond to tensile and shear defor-
mations. The results of the measurements and of calculation
of the modulus AC45,(//)26 are presented in Fig. 4.

The use of static deformation for determining the dy-
namical fourth-order elastic moduli (e.g., from its influence
on frequency doubling of sound) involves a fundamental dif-
ficulty. The static deformations that cause the change in the
velocity of the magnetoelastic wave owing to fourth-order
anharmonicity alter the direction of the equilibrium magne-
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FIG. 4. Dependences of the effective third-order elastic moduli on the
magnetic field intensity (solid line—calculation by Eqs. (21)) .26

tization. Since the magnetostrictive field that determines the
gap in the spectrum of spin waves does not hinder static
remagnetization, in contrast to high-frequency remagneti-
zation, the deviation of the magnetic moments (and the
changes in the velocity of sound associated with them) in
static and dynamic deformation can differ substantially. Ac-
cordingly the need arises of distinguishing the dynamic and
quasistatic moduli. As H->0 and near orientational phase
transitions, the latter diverge proportionally to
l/(&4, — 2y1HEHmS)", where n is the order of the expan-
sion of the energy density in the components of the static-
deformation tensor that are associated with the change in the
direction of the vector 1 in the linear approximation.25

Measurements of the field dependence of the dynamic
moduli AC5555 and AC6656 have been performed while using
the effect of nonlinear frequency shift (NFS) of the magne-
toelastic oscillations of a thin plate.2425 In the experiment
the acoustic vibrations of a monocrystalline resonator in the
form of a disk 0.35-mm thick and 5.5 mm in diameter cut in
the base plane were studied. The NFS was measured from
the distortion of the shape of the resonance line upon in-
creasing the amplitude of the vibrations (a recording of a
characteristic shape of an acoustic resonance line is shown in
Fig. 5a). The magnitude of the NFS of the acoustic vibra-
tions is proportional to the fourth-order elastic moduli:
AC5555 for the depth shear mode and AC6666 for the contour
shear mode. Figure 5b compares the results of measure-
ments and calculation of the field dependence of the param-
eters AC(4)(i7)- The calculations were performed by using

Jtr. ) (<of0/T)6

(25)

In agreement with the theoretical ideas on the features of the
effective elastic anharmonicity, the experiment performed
on hematite demonstrates the anomalously large magnitude
and strong field dependence of the anharmonic elastic mod-
uli of EPAFs.

One of the first confirmations of the concept of effective
elastic anharmonicity was the strong field dependence dis-
covered in a-Fe2O3 of the amplitude of the second acoustic
harmonic generated by a running elastic wave.27 A wave at
the frequency of 37 MHz was excited at one end of the speci-
men. At the opposite end the acoustic signal was received
with a resonance piezotransducer tuned to the doubled fre-
quency. Figure 6 shows the results of measuring the depen-
dence of the power of the second-harmonic signal on the
power of the pump wave and the field dependence of the
efficiency of conversion, which is proportional to a>^s(H),
in agreement with the theory.13 The decline in the efficiency
of conversion with decreasing field in weak fields is ex-
plained by the increase in damping of the acoustic waves as
the homogeneity of the magnetization distribution over the
volume of the specimen breaks down—primarily owing to
crystal-structure defects, since the disorientation of the mag-
netization near a defect increases with decreasing field.

At the same time an effect was discovered in hematite of
acoustic detection by running waves.1327 The essence of the
effect consists in generation of a sound wave at the frequency
of the envelope of the amplitude-modulated acoustic signal.
The field dependence of the power of the detected signal that
was found was also proportional to co^^iH). Generation of
the second acoustic harmonic of a surface magnetoelastic
wave was found later28—also for a-Fe,O3.

A convincing demonstration of the strong acoustic non-
linearity of hematite was the observation of the effect pre-
dicted in Ref. 13 of stimulated combination scattering
(SCS) of running acoustic waves.29 Upon propagation of a
"pure" transverse pump wave of frequency cop and wave
vector k parallel to the trigonal axis, a threshold process was
observed of generation of backward-running magnetoelastic
waves at the combination frequencies <a, and a>2, namely
such that cox + a>2 = cop.

-2

4042,4 4047,8 (Qn/2H), kHz

a

AC,6666

FIG. 5. Nonlinear frequency shift and hysteresis of the
amplitude-frequency characteristics of acoustic reso-
nance of the thickness-shear mode observed for differ-
ent values of the amplitude of the alternating ac field
(h2/ht = 2, H= 2 kOe).24 b—Field dependences of
the effective fourth-order elastic moduli (curves—cal-
culation by Eqs. (24), (25)).24'

•ssss

720 Sov. Phys. Usp. 31 (8), August 1988 V. I. Ozhogin and V. L. Preobrazhenskir 720



FIG. 6. a—Dependence of the power of the second acous-
tic harmonic on the square of the power of the pump wave
in a-Fe2O3.27 b—Field dependence of the efficiency of
conversion of sound into the second harmonic (line—cal-
culation).27

The conditions for space-time synchronization for this
process are illustrated in Fig. 7a. Since the velocities of mag-
netoelastic waves (with polarization e12 ||H||x) substantial-
ly depend on the field intensity (see Fig. 3), the combination
frequencies corresponding to the synchronization condition
also depend on the field. Figure 7b shows the data of the
measurements and the results of calculation of the field de-
pendences of the generation frequencies. Calculation13 of the
magnitude of the threshold deformation within the frame-
work of the theory of effective anharmonicity for the process
being discussed yields the following relationship:

(1—J
c4 4

HE (2B14y)»
(26)

Here L is the length of the specimen.
A calculated estimate of the threshold deformation

( M ; ) ^ ( 3 . 5 + 1.5) XlO~7 for # ~ 0 . 5 kOe agrees in order of
magnitude with the result of measurement of (uc

p)
~ ( 8 ± 4 ) x l O ~ 7 . In the same geometry and also for a-
Fe2O3 under synchronization conditions, a threshold-free
process was observed of merger of magnetoelastic waves into
a running pure-sound wave that was the reverse of the SCS.30

Hematite and other antiferromagnetics with giant

acoustic nonlinearity are unique objects for observing acous-
tic analogs of nonlinear optical phenomena—including
those discussed, e.g., in the review of Ref. 31.

When a high-frequency magnetic field h(t) homoge-
neous throughout the specimen acts on a crystal of a-Fe2O3,
a number of parametric acoustic phenomena can occur.32

The parameteric coupling of sound with an alternating field,
just like the effective interactions of elastic waves, is mediat-
ed by the excitation of the spins. In an alternating field paral-
lel to the magnetizing field (the so-called parallel pumping
(h || 4,H), the following term in the energy density is respon-
sible for the parametric coupling:

"Pll (27)

Upon substituting into this the amplitudes of the nonreson-
ance spin oscillations of (15), we obtain the following
expression for the coupling of the acoustic waves with the
field:

(28)
(COJO/7)1

The magnetoelastic interaction of (20) also determines the
coupling of the sound with the transverse pump field hL (0-
Taking into account the nonresonance excitations of the spin
system caused by the transverse field (<ph = (H + HD)/

FIG. 7. a—Diagram of the conditions of synchronization for acous-
tic stimulated combination scattering.11 b—Field dependence of
the combination frequencies of transverse magnetoelastic waves in
a-Fe,O, (p—&>p, 1—<y,, 2—co2, lines—calculation).29

0,1 0,4 H, kOe
b
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1 2 3 /y,kOe FIG. 8. a—Dependence of the amplitude of the re-
duced threshold field on the constant magnetic-
bias field; the reduction point is H = 1.6 kOe.32 b—
Spectrogram of parametric generation
(«p = 2fln ).32c—Spectrogram of parametric gen-
eration of magnetoelastic vibrations in a nondegen-
erate regime (a>p = &„ + {!„, ).32

(c0m/y) ~2hl and by the sound (15), we find

(29)

The parametric interactions (28) and (29) allow a graphic
physical interpretation. The effective elastic moduli
AC {2)(H) (and this implies also the frequencies of the acous-
tic spectrum and velocities of sound) depend on the magni-
tude and direction of the external magnetic field. Modula-
tion of the external field in magnitude or in direction leads to
modulation of the elastic parameters of the crystal and para-
metric couplings with the energy wp = wp^ + wpi, where

(30)

When the amplitude of the ac field with the frequency co
exceeds a critical value, e.g., A || >hc =Q~lQ./(dQ./dH) (Q
is the Q-iactov of the acoustic mode), a parametric instabil-
ity arises in a-Fe2O3 crystals of the magnetoelastic acoustic
modes with the frequency il = co/2. An analogous effect has
been observed earlier in the ferrite garnet Eu3Fe5O12.

33 Un-
der the conditions of the experiment the amplitude of the
parametric interactions characterized by the quantity
3ACa)/dH is substantially larger for a-Fe2O3 than for the
ferrite. Moreover, in hematite the effect is observed over a
considerably broader range of magnetic fields.

Figure 8a shows a spectrogram of parametric genera-
tion and the field dependence of the threshold field for the
acoustic depth-shear mode of a disc acoustic resonator made
of a-Fe2O3 (the plane of the disk is parallel to the base
plane). The pumping and recording of the instability were
performed by an induction method. The line in Fig. 8a shows
the result of calculation of the dependence of hc from the

data of independent measurements of Q(H) and
Sl(H) = n ( « ) ( l - £ 2 ( # ) ) 1 / 2 of the studied specimen.
For the characteristic values Q s 104, HTZ 0.5 kOe, and H " ' /
{dH/dH)^02 kOe~\ the threshold field has the magni-
tude hc s 0.5 Oe.

When the resonance conditions are satisfied and with
an intense enough external agent (pump), one observes the
so-called nondegenerate threshold processes of parametric
generation of magnetoelastic modes—at the combination
frequencies fln + fim = ®P (see the spectrogram, Fig.
8b).32

Past the threshold of parametric excitation, the effects
of nonlinear self-action of acoustic modes manifest them-
selves. In particular they are found from the difference of the
values of the frequency detuning (A&>s — cop — 2fln ) with
respect to the parametric resonance at which sound genera-
tion arises and disappears. A characteristic recording of the
hysteresis dependence of the amplitude of a parametrically

7BBZ 7686

FIG. 9. Dependence of the amplitude of parametric magnetoelastic vibra-
tions on the pump frequency for different degrees of supercriticality h /
K?lh/h, = 1.63 ( / ) , 1.27 (2), and 1.02 (5).
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FIG. 10. Characteristic dependence of the amplitude of parametric gener-
ation of magnetoelastic vibrations on the pump frequency under condi-
tions of automodulation.25

excited oscillation on the detuning is shown in Fig. 9. A
manifestation of self-action and nonlinear intermode inter-
actions proves to be the automodulation of the over-thresh-
old amplitude of deformations observed in a-Fe2O3

32 in the
parametric generation of sound (Fig. 10). The effect arises
at values of the magnetic field, supercriticality, and frequen-
cy detuning defined for the given mode.

The parametric effects in running acoustic waves also
include the frequency shift discovered in hematite of a wave
in a non-steady-state, monotonically varying magnetic
field.19

Recently phenomena were observed in a-Fe2O3 of para-
metric amplification and front reversal of running magne-
toelastic waves in a high-frequency magnetic field34—this is
also one of the examples of realization of optic-acoustic anal-
ogies in the spirit of the concepts summarized in Ref. 31.

The experimentally observable phenomena of genera-
tion of long-wavelength nonresonance excitations of the spin
system in a field of nonlinearly interacting acoustic waves
are associated with the interactions of (28), (29), and
(30).35 The acoustic waves give rise in the crystal to oscilla-
tions of the magnetization p(t) that depend nonlinearly on
the elastic deformations. The quadratic components of the
ac magnetization can be calculated by using (30):
|x(2) = — diVp/dh. When harmonic sound waves with wave
vectors identical in magnitude propagate in opposite direc-

tions ( k 2 = — k,), spatially homogeneous oscillations of
the magnetization are excited in the crystal at the sum fre-
quency. In the case of amplitude-modulated waves, the time
envelope of the integral of the magnetization over the length
L of the interaction region amounts to the convolution func-
tion of the envelopes of the interacting waves:

ii (t) ~ J "i (I) "i (I - 2vt) d£ •

(We assume that L is larger than the spatial extent of the
acoustic pulses.) The effect of acoustic convolution was ob-
served in a crystal of a-Fe2O3

35 upon interaction of trans-
verse bulk waves propagating along the trigonal axis. Sound
waves of frequencies co ~ 30 MHz were excited at opposite
ends of the crystal by piezotransducers made of LiNbO3.
The spatially integrating detection of the signal of magneti-
zation oscillations was performed by an induction method.
Figure 1170 shows characteristic oscillograms of the convo-
lution signals from one pair (a) and from two pairs (b) of
acoustic pulses. In agreement with the theoretical concepts
of mediated interactions of the type of (28) and (29), intra-
mode interactions of coupled waves (e,||e2||x||H) were ob-
served in the experiment with excitation of a longitudinal
component of the magnetization fi^ ~uxz

2 and intermode
interactions of the coupled and the pure sound waves
(e,|[x||H; e2le,) with excitation of a transverse component
fiL~uxz uyz. The efficiency of conversion (for fixed polariza-
tions of the emitters) shows a sharp dependence on the mag-
nitude of the external field (Fig. 12) and on its direction (see
Ref. 35). Here the character of the interactions is described
by the discussed mechanisms of the interactions. The extre-
mum on the curve of Fig. 12 arises from the onset of detuning
of the wave numbers Ak = \kt j — \k2\ as the field varies. In
the experiment the increase in amplitude of the spin oscilla-
tions with decreasing field (//<0.5 kOe) is restricted, in
addition, by the increased damping of the sound.

Effects of acoustic convolution in a-Fe2O3 have been
observed also in the nonlinear interaction of surface magne-
toelastic waves.36'37 The internal bilinear factor of the pro-
cesses, i.e., the ratio of output electromagnetic power to the
product of the acoustic powers of the interacting signals, in
fields # = 0 . 5 kOe amounted to about - 30 dB.m ( - 10
dB.m corresponds to 0.1 mW at the output for 1 mW at each
of the two inputs).

In closing this section we note the experimental results
in the field of nonlinear magnetoacoustics obtained with an-
other high-temperature EPAF-FeBO3. Under transverse
UHF pumping under conditions of antiferromagnetic reso-
nance in iron borate, parametric instability of sound was

FIG. 11. Oscillograms of magnetoacoustic convolution
signals in bulk waves in a crystal of a-Fe-,O, (L = 13
mm).70 I—pulses at the input of the transducers (dura-
tion l//s), 2—pulses of the convolution at the receiving
coil.
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FIG. 12. Dependence of the amplitude of long-wavelength spin oscilla-
tions at the frequency a = <u, + a>2 on the magnetic field intensity
(e,||x||H,e2||y;I. = 0.75 mm).35

observed.3839 The effect was treated theoretically in Ref. 40.
Recently the excitation of a parametric acoustic echo by a
high-frequency magnetic field was discovered in FeBO3.

41 It
was noted in an excellent review on iron borate,5 and this
viewpoint cannot but be shared, that FeBO3, just like a-
Fe2O3, will serve in many regards as an extremely conven-
ient object for studying numerous effects engendered by the
very strong dynamic coupling of the elastic and magnetic
subsystems of this EPAF.

It is pertinent to call attention to the fact that magnetoe-
lastic interaction can substantially modify the acoustoopti-
cal properties of the crystals being discussed. Oscillations of
the magnetic moments in the field of a sound wave lead to
modulation of the magnetooptical birefringence (Cotton-
Mouton effect) by forming specific "effective" acoustoopti-
cal parameters of the crystal that depend on the magnetic
field. Such an acoustomagnetooptical modulation has been
observed42 in a-Fe2O3 in the near infrared range, where he-
matite is optically transparent. We can naturally expect to
observe an analogous effect in FeBO3 caused by the strong
Faraday rotation of the plane of polarization of light and by
the magnetoelastic interaction, including also the visible op-
tical range (A ~ 0.5 /nm) where iron borate has a transparen-
cy window.

6. ACOUSTIC NONLINEARITY NEAR A SPIN
REORIENTATION

Favorable conditions for forming a giant magneto-
acoustic nonlinearity are realized in the vicinity of the mag-
netic orientational phase transitions approach to which
gives rise to an anomalous growth in the magnon-phonon
coupling owing to a decrease in the activation energy of one
of the branches of the magnon spectrum.

The orientational transition in a-Fe2O3 at the Morin
point TM = 262 K (see Ref. 4), which is caused by sign
reversal of the uniaxial anisotropy, is apparently a first-or-
der transition and essentially is not manifested in acoustic
nonlinearity. According to the experimental data,43 the anti-
ferromagnetic branch of the spin waves responsible for this
transition, although it softens at TM, yet has an activation
energy that still remains very high. Hence the coupling of
sound with the waves of the antiferromagnetic branch is
manifested weakly at the Morin point.44 The situation might
differ if one could stabilize one of the phases while approach-
ing the point of lability with respect to the magnetic field—at
this point the mode responsible for the transition "softens"
most strongly.

TmFeOj,
H=0

•# *%93,5 34,5

85 90 95 100 T,K

FIG. 13. Temperature dependence of the amplitudes of the first and sec-
ond harmonics of sound at the output of a TmFeO3 crystal near the spin-
reorientation points T, and T,.45

Experimentally the appearance of strong acoustic non-
linearity near an orientational phase transition (second-or-
der! ) has been demonstrated by observing an effect of gener-
ation of the second acoustic harmonic in the orthoferrite
TmFeO3.

45 The TmFeO3 crystal has an orthorhombic struc-
ture (the b axis is the "hard axis" for the magnetic moments
of the sublattices), and the temperature of antiferromagnet-
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FIG. 14. Dependence of the amplitude of the second acoustic harmonic on
the amplitude of the pump wave in TmFeO, (AT= 7*— Tt ).45
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ic ordering is TN = 630 K. In the absence of an external
magnetic field, changing temperature leads to reorientation
of the spins from the a axis at 7> Tt = 94 K to the c axis at
r<T 2 = 82 K. At r , < T< T2 the vector 1 rotates smoothly
in the ac plane from the one axis to the other. The tempera-
tures T{ and T2 are second-order orientational-transition
points, near which the activation energy of the spin-wave
modes is depressed (the mode becomes "soft"), as is con-
firmed experimentally by measuring the antiferromagnetic
resonance frequency.46 In the vicinity of the temperatures Tx

and T2 a sharp increase has been observed in the efficiency of
generation of the second acoustic harmonic (Figs. 13, 14).
With increasing power of the pump wave, the output of the
second harmonic is saturated and even declines owing to
conversion of the energy of the incident wave, not only into
the second harmonic, but also into a multitude of higher
harmonics.

7. ON THE QUANTUM THEORY OF NONLINEAR
INTERACTIONS OF COUPLED EXCITATIONS

The interaction of elementary excitations determines
many thermodynamic and kinetic properties of crystals. As
a rule, description of these properties requires one to apply
quantum-statistical methods. The coupling of excitations
gives shape to the effective nonlinear interactions, whose
amplitudes can have an anomalously large magnitude and
unusual dispersion properties. The selection rules for such
interactions are often controlled by the external conditions,
e.g., the orientation of the external field with respect to the
crystallographic axes. All this introduces certain specifics
into a number of phenomena that arise in crystals in the
presence of coupling of subsystems.

The concept of the effective nonlinearity as being the
nonlinearity of mixed elementary excitations is the basis for
constructing its quantum theory.47"49 In a second-quantiza-
tion scheme the transition to a representation of mixed
modes is performed by diagonalizing the bilinear component
of the Hamiltonian operator taking into account the cou-
pling of the subsystems.9'47 This has the form

2
k, S

3

S
(31)

Here b / k ,bsk ,ck, and ck are the operators for creation and
annihilation of phonons and magnons, and we have
*7sk = fsk^sk^fk )' /2- The operators for creation and
annihilation of mixed excitations d A\ and dAk are connect-
ed to the operators for the "pure" excitations by the unitary
transformation:

± dj..-k),

k= 2
>.=o

(32)

(33)

Here PA k and RA k are the transformation coefficients given
in Ref. 47. Far from the intersection point of the "pure"
spectra, the coupling of the terms with A = 1,2,3 with the
operators ck

+ and c _ k in Eq. (32), which is the quantum
analog of Eq. (15), governs the nonresonance (virtual) exci-
tation of magnons by quasiphonons. Therefore every nonlin-

ear process in the system of magnons is also a source of non-
linearity in the system of quasiphonons. Thus, an interaction
of the type of (20) with participation of one phonon and two
magnons studied phenomenologically is described by a con-
tribution to the Hamiltonian having the form47

>_ph (k, q)

. (34)

When we take account of the transformation (32),
(33), this interaction is the source of three-particle pro-
cesses in the system of quasiphonons:

2
k. q

(35)

Here /, k, and v are the polarization indices of the quasiphon-
ons, while the amplitude 4*^ of the interaction is expressed
in terms of the parameters of the quasiphonons and the effec-
tive elastic moduli, just as in ordinary lattice dynamics:

q) = — •+q) \

(36)

Here Jo is the exchange energy; Vk = flAk/k; /?, 2 =Bh2v0;
and v0 and Mv are the volume and mass of the unit cell.

We can make the construction perspicuous by using the
graphic representation for the vertex parts of the Feynman
diagrams (Fig. 15). The diagram of Fig. 15a illustrates the
interaction (34). The straight and wavy lines correspond to
magnons and phonons. We can conveniently treat the trans-
formation to the representation of the coupled waves, with
formation of an effective vertex of interaction of quasiphon-
ons (which corresponds to the double line), as the result of
joining the phonon and the magnon lines. This merger is put
into correspondence with the factor {Gg^/co^ ) in the ana-
lytic expression for the vertex with subsequent replacement
of the phonon parameters (frequencies and polarizations)
by the quasiphonon parameters. The description of any in-
teraction of quasiphonons mediated by spin interactions is
constructed analogously. The construction of the amplitude
of the interaction of four quasiphonons corresponding to the
effective fourth-order anharmonicity of (23) is illustrated in
Fig. 15b.

FIG. 15. Diagrams for vertices arising from effective anharmonicity of
third47 (a) and fourth25 (b) orders.
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We note that the discussed mechanisms of effective
nonlinearity are not specifically of a quantum type, whereas
the processes of interaction of quasiparticles caused by them,
including those with participation of thermal excitations,
can be of doubly quantum character, as happens in relaxa-
tion-kinetic phenomena. Taking account of the quantum-
statistical properties of the spin-phonon system is necessary
in describing the observable temperature and field depen-
dences of the macroscopic effective elastic moduli them-
selves. To solve this problem as applied to a broad tempera-
ture range (TSTN), a quantum theory has been
proposed,48-49 based on the diagram technique for spin oper-
ators.65"67

A specific spatial dispersion of the interaction ampli-
tudes (i.e., their dependence on k) caused by the dispersion
of magnons is characteristic for effective anharmonicity.
Dispersion restricts the phase volume of the interacting exci-
tations to the region of small wave vectors km 5&)ro/um,
since phonons with wave vectors of the order of the Debye
value practically do not interact linearly with magnons
(£*-*„-»0)- In this regard the effective anharmonicity of
the elastic subsystem, which is giant in the long-wavelength
region of the spectrum, is weak in the short-wavelength re-
gion and hence gives rise to relatively small energy losses of
acoustic waves in processes of their scattering by short-
wavelength (thermal) excitations.

The contribution of effective anharmonicity to the
damping yk of sound is determined by the relationship47

For hematite an estimate of the acoustic g-factor Q=CLk/
2yk yields Q ' ~ 105-106 for k4,km. Here it is pertinent to
note that the experimentally measurable acoustic losses in
crystals ofa-Fe2O3 are substantially higher25 (Fig. 16). Ap-
parently this is explained by the defect content of real crys-
tals, which corresponds to the results of comparing the
losses upon passage of sound through a specimen of a-Fe2O3

and relaxation times of the sonic field in experiments on re-
versal of the wave front of sound.34 We should note that
crystals of hematite containing an admixture of Al3 +, which
is isomorphous to trivalent iron, have a relatively higher Q-

factor, owing to the decreased concentration of Fe2 + ions
usually present in hematite in an amount of about 1%.68

8. OUTSIDE THE ANHARMONIC APPROXIMATIONS

The arguments presented in Sec. 1 imply that, for mag-
netics having a strong enough magnon-phonon coupling
( f ~ l ) , the region of applicability of anharmonic expan-
sions is limited to elastic deformations close in magnitude to
the deformations of spontaneous magnetostriction. Such de-
formations are usually far from the limits for breakdown of
real crystals and are relatively easily attained under the con-
ditions-of acoustic experimentation. In this regard it is of
interest to study magnetoelastic excitations whose descrip-
tion lies outside the framework of anharmonic approxima-
tions and which involves the need for exact solution of
strongly nonlinear systems of the dynamic equations (11)
and (12). Under certain conditions the nonlinearity and dis-
persion introduced by the spin system into the magnetoelas-
tic excitations can compensate one another. Consequently
the possibility arises of formation of isolated coupled magne-
toelastic waves—magnetoacoustic solitons.71 Such waves as
applied to EPAFs were first studied in Ref. 50. Their differ-
ent modifications, problems of stability, and the character of
evolution of soliton solutions have been studied in Refs. 51-
54.

We shall analyze the conditions of formation of magne-
toacoustic solitons by using Eq. (7) with the example of
waves propagating in rhombohedral EPAFs along the tri-
gonal axis. If the wave is a steady-state one, i.e., U = U(£)
and q> = <p{§), where g=z — Vt, then we can eliminate the
dynamic deformations from the system of equations (11),
(12) and reduce it to the "double sine-Gordon" steady-state
equation:

p -^- — A sin cp + y D sin 2q>. (37)

Here we have

//,kOe

FIG. 16. Field dependence of the damping of magnetoelastic vibrations at
the frequency 0.5 MHz in crystals of a-(Fe, xK\x )2O,.25

VSt suS t (1 — f 2 ) 1 / 2 is the velocity of the soundlike wave.
Following Ref. 55, we can easily establish the intervals of
velocities V of waves corresponding to soliton solutions and
the qualitative features of the motion of the magnetic mo-
ments by using the evident analogy of Eq. (30) with the
equation of motion of a particle of mass mp and momentum
p = mpd<p /<?£ in a force field having the potential

7(<p) = A (cos <p — 1) + -~ D (cos 2(p — 1).

In crystals of EPAFs having a high Neel temperature (a-
Fe2O3, FeBO3), for which vm > us,, the attainable velocities
of motion of solitons in the z direction must satisfy the condi-
tions: V2 < VSt

2orvm
2> V2>vst

2. In these cases the effective
potential has the characteristic form shown in Fig. 17a. An
isolated wave on the background of the equilibrium state of
the crystal (^sO) corresponds to motion of the "particle"
in the potential well F(<p) from the point (q> |̂ _ _ w = 0 for
/>!<?--» = 0 ) to the point (<H<r- + « =2ir f o r

p\$~ + „ = 0), i.e., continuous rotation of the magnetic mo-
ment in the wave by the angle 2ir. A solution of the given type
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uf0

Vmk ofEq. (30) has the form5

FIG. 17. a—Dependence of the effective potential on the angle <p of devi-
ation of the vector e from the equilibrium direction.25 b—Regions of exis-
tence for the velocities of solitons in a high-temperature EPAF
( "(",„ >vs,

amounts to the well known "2ir kink" of the "double sine-
Gordon" equation50:

(38)

Here the characteristic dimension of a soliton is £0 = [mp/
(D + A) ] ' / 2 . For the a-Fe2O3 crystal with H = 0.5 kOe and
V4 FSt the magnitude of §0 is ~ 10^3-10~4 cm, while the
maximum deformations in the wave are of the order of 10~5.
We should pay attention to the fact that the velocities of
solitons take on values that do not coincide with the phase
velocities of linear magnetoelastic waves. In the cok plane
each value yph = co/k of the harmonic wave can be put into
correspondence with a straight line passing through the co-
ordinate origin with a slope equal to tan a = vph. The re-
gions in which these straight lines can lie are left uncross-
hatched in Fig. 17b. In turn, the crosshatched regions
correspond to the attainable velocities of solitons
( V— tan a ) . Such a segmentation of the cok plane is valid
for any directions of propagation of magnetoelastic waves, if
we do not take into account relaxation, which amounts to a
generalized result of the action of the nonlinear interactions
not taken into account in (11), (12).

In low-temperature EPAFs for which vm <vSi

(MnCO,, CoCO,), solitons correspond to velocities
t>st > y> Psi o r V<vm (Fig' 18b). In the former case the
solitons also have the form of a 2TT kink, and in the latter case
their structure proves qualitatively different. The character-
istic form of the effective potential of a "particle" of mass
\mp | for the range of near-sonic velocities vSt > V> VSt is
shown in Fig. 18a. A soliton corresponds to motion of the
"particle" from the point <p = 0 (forp = 0) to the point £>max

with subsequent return to the point <p = 0. Here the solution

(39)

In contrast to a 2-ir kink, the given type of solitons can be
realized for any deviations from equilibrium (<pmax <̂  1). In
this case the result goes over into the known soliton solution
of the modified Korteweg-de Vries equation (see Ref. 55).
From the experimental standpoint it seems interesting to es-
timate the time r during which such a soliton evolves from
the initial steplike magnetoelastic perturbation moving with
the velocity FSt.

51 For the typical low-temperature EPAF
MnCO3 we find r = £0/| V- VSi | ~ 10~6, and the length of
specimen necessary for a pulse experiment does not exceed 1
cm. Estimates of r for an elastic soliton with a nonlinear
elastic lattice or for a magnetoelastic soliton in a ferromag-
netic having a moderate magnetoelastic interaction yield
r~0.1 s, thus demonstrating the advantages of nonconduc-
tive EPAFs for direct observation of isolated magnetoelastic
waves. We must note that soliton solutions of the original
system (11), (12) for magnetoelastic waves of small ampli-
tude with near-sonic velocities also exist in high-tempera-
ture EPAFs, but for other directions of propagation.5' How-
ever, in these crystals such excitations prove to be unstable
with respect to transverse perturbations of their front.52'54

One of the variants of the development of this instability
turns out to be self-focusing of the magnetoelastic excita-
tions.52 Its physical cause is the decrease in velocity of the
excitation with increase in its amplitude, which causes an
accumulating deflection of the wave front in a direction op-
posite to the direction of propagation. A detailed analysis of
the initial distributions of the amplitude from which the self-
focusing wave is formed has been performed in Ref. 53.

The evident qualitative differences between solitons of
the types (38) and (39) (see Figs. 17 and 18) allow a certain
topological treatment. The solitons of (38) have a nonzero
topological charge ( 1/2-IT $V<p-dl— I), where the integra-
tion is performed over a contour closed at infinity penetrat-
ing the base plane. By analogy with the vortex states in ex-
tended Josephson structures, such excitations can be
classified as vortex excitations. For the solitons of (39) the
topological charge is zero.

In the case of the excitations of (39) a crystal with fixed
boundary conditions (cp | l = ±L = 0 ) can be converted by
continuous transformation to the equilibrium state. Under
the same conditions for excitations of the form of (38) the
transition to equilibrium involves overcoming a finite energy
barrier due to the exchange interaction. Accordingly the so-

FIG. 18. a—Dependence of the effective potential on the angle <p of
deviation of the vector e from the equilibrium direction.25 b—Re-
gions of existence for the velocities of solitons in a low-temperature
EPAF (vm <us, ).

25
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litons of (38) are topologically stable—in contrast to the
solitons of (39). A calculation of the spectra of their local-
ized excitations25 shows that the given type of solitons is
stable not only topologically, but also dynamically, which
allows us to expect a possible experimental observation. For
example, it seems possible to create a vortex soliton excita-
tion by continuous rotation of the intensity vectors of an
external magnetic field near the opposite boundaries of the
specimen (z = +L) about one another by the angle 2TT.

We note that strongly nonlinear spin excitations are
substantially magnetoelastic even in crystals with relatively
weak magnon-phonon coupling if their velocity of propaga-
tion is close to resonance with the sound velocity. In particu-
lar, such a situation arises in the orthoferrites in the motion
of domain boundaries with near-sonic velocities.56'57

CONCLUSION

As we see it, the ideas presented in the review on the
effective nonlinearity of mixed modes are highly general in
character. Not only magnetoelastic, but also electron-nu-
clear-spin and electron-nuclear-magnetoelastic waves, fer-
roelectromagnetic, and ferroelectric-magnetoelastic waves,
polaritons, and other types of coupled oscillations can play
the role of mixed excitations. Nonlinear processes in such
systems have been intensively studied in recent years58"63—
mainly theoretically. An expansion of the experimental
studies of strong effective interactions in coupled systems
would facilitate the further development of our views of the
mechanisms of formation of the dynamical properties of sol-
ids and their functional potentialities in technical applica-
tions.
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