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This review describes the present state of the quantum chaos problem: The problem of
determining the specific properties of autonomous and nonautonomous quantum systems with
few degrees of freedom whose classical analogs have an unstable (stochastic) motion and also
that of determining the relationships between these properties and the characteristics of the
classical stochastic situation. The criteria for quantum chaos which have been established to date
are examined and compared for autonomous systems. These criteria make use of properties of the
energy spectrum, the wave functions in various representations, the matrices of operators other
than the Hamiltonian, and particular features of the evolution of time-varying states (wave
packets) in such systems. For nonautonomous systems, the conditions for the applicability of
classical dynamics for describing observables and certain specific quantum-mechanical effects
(tunneling through a separatrix and a global quantum resonance) are analyzed.
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The concept of stochastic (chaotic) motion in classical
dynamic systems with few degrees of freedom was estab-
lished in theoretical physics about a quarter of a century ago,
but interest in research on related phenomena continues to
grow. The primary feature of a stochastic situation is a sensi-
tivity of the phase paths of the motion to the initial condi-
tions. This sensitivity makes the behavior of the system es-
sentially unpredictable, and it requires a new approach to a
description of the motion—an approach which focuses on
the instability itself, i.e., its magnitude and the conditions
under which it occurs. Today, this approach has been devel-
oped well, and it has a rigorous foundation. ‘

The quantum chaos problem is the problem of studying
manifestations of a stochastic nature of dynamic systems in
their quantum-mechanical properties. Such research is of
fundamental interest: The difference between the methods
used for describing quantum and classical systems raises the
problem of the practical realization of the correspondence
principle. The task is quite general, since a classical stochas-
tic nature is inherent in nearly any Hamiltonian system. The
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task is thus one of studying the quantum-mechanical proper-
ties of semiclassical systems of a general type with a few
degrees of freedom. Among the possible applications, we
would first mention generating a description of highly excit-
ed states of atoms (in external fields) and of polyatomic
molecules.

Research on the quantum chaos problem is rapidly
picking up speed. Vector computers have emerged as an ef-
fective tool for an empirical study of the quantum properties
of model systems. Several general features have been estab-
lished and interpreted theoretically. The first experimental
studies appeared recently. Our purposes in the present re-
view are to describe the present state of affairs in the quan-
tum chaos problem, to call attention to some existing contra-
dictions, and to list the problems to be taken up next.

The terms “‘chaos’ and “stochastic nature,” and terms
derived from them are presently being used nearly synony-
mously to describe an unstable, random motion in a dynamic
system. The term “‘chaotic” is ordinarily used to describe a
random motion in a dissipative system, while “‘stochastic” is
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applied more commonly to Hamiltonian systems. '*° We will
be discussing only Hamiltonian systems in the present re-
view, but for classical systems we will speak in terms of *“sto-
chastic” properties, while for quantum systems we will
speak in terms of “‘chaotic™ properties, intending to make
use of this difference in terminology to emphasize the dis-
tinctions. A second argument in favor of this choice of words
is a convention which is materializing: in the papers which
we have cited, the combination “quantum chaos” is encoun-
tered twice as often as ‘‘quantum stochastic nature.”

1. INTRODUCTION. STOCHASTIC BEHAVIOR IN CLASSICAL
MECHANICS

The purpose of this section of the review is to summa-
rize briefly the definitions and the concepts of the classical
theory of stochastic motion of Hamiltonian systems, which
we will need in discussing the quantum chaos problem. Most
of the material in this section of the paper is contained in
textbooks™*? and monographs,'?*'3% to which we will be re-
ferring continually. The reader who is already acquainted
with the theory of a classical stochastic situation can go di-
rectly to Sec. 2.

1.1 Reguiar and stochastic motions

The dynamics of a classical Hamiltonian system with N
degrees of freedom is governed by the canonical equations of
motion

oH . 0H

l)iz—r]qi s szﬁ—pi

(I<i<N), (1.1)
where H(p,q) is a Hamiltonian." A function of the dynamic
variables F(p,q) such that we have {F,H} =0, where {, }
denotes the Poisson brackets (§42 in Ref. 9), is called an
“integral of the motion™: dF /dr = 0. If there exist N inde-
pendent integrals F;(1<i<N) such that we have
{F, ,F}} =0, then the system (1.1) is integrable. For an inte-
grable system one can introduce canonical action-angle vari-
ables (I,,6;) such that the Hamiltonian will be a function of
the action variables alone: H(p,q) = H(I) (§49 in Ref. 9
and §50 in Ref. 42). The motion of an integrable system is
quasiperiodic: The angular coordinates 6= (6,,....,05)
vary in time at a constant rate:
Ao, OH
de ar;
The quantities w, are the “frequencies” of the quasiperiodic
motion. The paths in the phase space of an integrable system
are bounded by an N-dimensional surface in a 2N-dimen-
sional phase space. A particular case of an integrable system
is a system with separable variables (§48 in Ref. 9). We will
also refer to integrable systems as regular.

In general, a system with two or more degrees of free-
dom is not integrable, and it may execute both a quasiperio-
dic (regular) motion and a stochastic motion. A distinctive
characteristic of stochastic motion is an instability, mani-
fested by an exponential divergence of close-lying paths. If
x(t) and x'(¢) are two paths in phase space which are close
att =0, then in the case of a stochastic motion we will have

(1.3)

=w; (1), o=

(1.2)

A)=|x@®)—X ()| ~ A (0) vt

if A(0) is sufficiently small. The quantity ¢, is the maximal
Lyapunov index and is defined formally by
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[for nearly all directions of the vector w = x(0) — x’(0)].
A system with a D-dimensional phase space is characterized
by a set of D Lyapunov indices o,, which are numbered in
decreasing order. They are defined in Ref. 130 (§5.2). Points
which belong to a common path have identical values of
o(x). For Hamiltonian systems, the Lyapunov indices are
symmetric:o; = — o; fori 4+ j=2N + 1. Twoofthe o; are
exactly zero in this case.

The motion of a system is called stochastic if the relation
o, >0 holds on a path, while it is regular if o, = 0.

Related to the Lyapunov indices is the Kolmogorov en-
tropy 4 (§1.6 in Ref. 129 and §5.2 in Ref. 130). For a given
stochastic path, 4 is the sum of the positive Lyapunov in-
dices:

(1.4)

o - (1.5)

For stochastic motion, the correlation function of the

dynamic quantities f(¢) = f(p,q) and g(¢) =g(p,q), de-
fined by

B(f, & = 0@4+vgt)r - F{)r (8 @))r,

(the angle brackets {...) ; mean a time average), tends to
zero with increasing 7

lim B (f, g; 1)==0.

T-»00

(1.6)

(1.7)

This property is called mixing (§1.5 in Ref. 129).
The power spectrum S(w) of the dynamic quantity f( )
is given by

S(fia)= 5= \ B(f, f; 1ye-iovdr. (1.8)

For motion with mixing, the power spectrum S(w) is contin-
uous, while for regular motion it is discrete:

S (f; 0) =2 b (@ —Qu); (1.9)
here the 4, form a countable sequence, and the frequencies
Q,. are combinations of the frequencies of the quasiperiodic
motion, ®,.

1.2. Measure of the stochastic component

For a general—nonintegrable—autonomous Hamilto-
nian system, there is a single integral of the motion: the ener-
gy F, = H. Accordingly, any path belongs entirely to an en-
ergy surface: a set of dimensionality 2NV — 1 on which the
relation H(p,q) = E holds. This surface contains regions of
regular motion, with ¢, =0, and also stochastic compo-
nents, i.e., regions with o, > 0. In a system with two degrees
of freedom, there may be several stochastic components (or
even an infinite number of such components). We distin-
guish them by means of an index k. Each stochastic compo-
nent generally has its own set of Lyapunov indices
Ok = (O1prensTan 14 )-

An important characteristic of stochastic motion is the
measure p, (E): that fraction of the volume of the (com-
pact) energy surface which is occupied by the & th stochastic
component. We will be numbering the stochastic compo-
nents in order of decreasing p. Systems with u, = 1, for
which the sole stochastic component fills the entire energy
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surface, are ergodic (§1.5 in Ref. 129 and §5.2 in Ref. 130).

The value of u (E) can be found by partitioning the en-
ergy surface into cells and by counting the number of cells
which are penetrated by the stochastic-motion path found
through a numerical integration of Eqs. (1.1). Another ap-
proach uses a calculation of Lyapunov indices for a large
number of paths, with randomly selected initial conditions.
The measure i, (E) is estimated as the fraction of paths with
identical sets o, (x) (o,>0).

If 4, <1, a stochastic motion is essentially indistin-
guishable from a regular motion. Modern computers [e.g.,
the IBM 370/168 (Ref. 202), the CDC Cyber 172 (Ref.
123), and the HITAC S810/20 (Ref. 191)] are capable of
determining i within an error Agz =~ (1-3)-10~2in a reason-
able time for a system with two degrees of freedom. We will
accordingly speak in terms of a significant stochastic behav-
ior if the relation z£, 2 0.1 is satisfied under the conditions of
the problem, and we will call the region of parameter values
in which this inequality does not hold the “region of regular
motion.” For estimates of £ (E), the quantity g (E) is fre-
quently used; this is the fraction of the area of one of the two-
dimensional cross sections of the energy surface which is
occupied by the stochastic component,*'?*

The stochastic aspects of the motion of a Hamiltonian
system are characterized if we know the measure £, (E) and
the values of the Lyapunov indices o, for each of the sto-
chastic components. We will call these quantities the “pa
rameters of the stochastic nature.”

1.3. Basic models

Of greatest importance to the quantum chaos problem
today are the properties of autnonmous systems with two
degrees of freedom and those of nonautonomous systems
with a single degree of freedom. In the present review we will
be dealing exclusively with such systems. For them, the in-
stability is determined by the single positive Lyapunov index
o,, which we will write below as simply o. The following
classes of systems have been studied in greatest detail.

1.3.1. Billiards. These are systems in which a point exe-
cutes a free motion in a two-dimensional region bounded by
one or several closed curves, being reflected elastically from
the boundaries. Examples of billiards in which the motion is
stochastic are Sinai billiards,”'* whose boundaries consist of
asquare of side L and a circle of radius R < L /2, with coinci-
dent centers, and stadium billiards,”**' whose boundaries
are parallel line segments of length 2a which are linked by
semicircles of radius r (Fig. 1).

These definitions specify single-parameter families of
systems (with the parameters ¥ = R /L and ¥ = a/r, respec-
tively). For arbitrary ¥ and E, the motion in these billiards is
ergodic (u, = 1), and the Lyapunov index ¢ depends on ¥
(Fig. 2).

1.3.2. Nonlinear oscillators. We call a “*nonlinear oscil-
lator” a system with a Hamiltonian H(p,q) which can be
approximated in some region of phase space by a positive
definite quadratic form

]1°—E+2(2m L’;’z’_(ﬁ),

i=1

(1.10)

but which does not coincide with it. Since the Hamiltonian
of a nonlinear oscillator contains at least three parameters of
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FIG. 1. a—Sinai and b—stadium billiards. The dashed lines show particle
paths.

independent dimensionalities (the particle mass m, the
small-oscillation frequency o, and the nonlinearity length /,
which is determined by the nonlinear term V= H — H,)),
these scale values are convenient to adopt as a system of
units. In the discussion below, we will write the Hamilto-
nians of nonlinear oscillators in dimensionless form, and we
will put the origin of our energy scale at E,,.

Here are some examples of the nonlinear oscillators
which are used in stochastic theory.

1) The Thiele-Wilson model,*

H = 2 [Pi+

(1—e )2 f-ap,p,. (1.11)

2) The Henon-Heiles model® (Fig. 3),

: 1 ) 2 ; 1 5
=2 - (Pi+ )+ 010 — 5 0o (1.12)
imt

A generalization of this model is the Eastes-Marcus
model*

H= Z‘

which represents a three-parameter family, to which system
(1.12) also belongs.
3) The Pullen-Edmonds model,”®

— (P1+ olg}) + X (g2, +ngd), (1.13)

H = Z

A dlstmctive feature of the last model (and an advan-
tage over examples 1 and 2) is that the motion is finite at any
energy. The Pullen-Edmonds model can be used to describe
(classical) massive Yang-Mills fields which depend on a si-
gle variable.®” The stochastic properties of Hamiltonian
(1.14) and its generalizations (with a potential which does
not contain terms of the type ¢; and/or which does contain

terms of the type ¢!) have been the subject of many stud-
ies'68,14l.2()3,21(1_22(),223

- (pi+ad) + ki (1.14)

G4r
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FIG. 2. The Lyapunov index o as a function of the shape parameter y of a
stadium billiard."'
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FIG. 3. a—Contour map of the potential energy; b—cross section of the
potential, for Henon-Heiles model (1.12). Here D is the threshold for an
infinite motion.

It is clear from the definition of nonlinear oscillators
that under the condition E € 1 the motion in such systems is
approximately regular, since the system is integrable in the
limit E—0. Accordingly, the stochastic nature is noticeable
only at high energies, E~ 1. For such systems, in a region
with a significant stochastic behavior, one observes essen-
tially only one stochastic component. We will denote its
measure by simply x. Both £ and o increase with increasing
energy for nonlinear oscillators (Fig. 4).

1.3.3. Nonautonomous systems with jolts. Among non-
autonomous systems, those which are important for the dis-
cussion below are systems whose Hamiltonians have the fol-
lowing form in terms of action-angle variables:

H=.’_;.+Kv(e)€(r), (1.15)
where
§() = i 8 (t—n), (1.16)

Nam = 00

and &(¢)—is the Dirac é-function. Such a system can be
represented as a plane rotator which is acted upon at con-
stant time intervals T by an instantaneous pulsed moment
of force [the moment of inertia of the rotator, J, and the
period of the jolts, T, have been set equal to unity in (1.15)].
For model (1.15), the relationship between the values of the
dynamic variables (7,8) and (J',0'), taken 'at the times
t=n+0andt'=n+ 1+ 0, can be specified analytically.
It is

I'=I+K2

7 6'=0-+1".

(1.17)
This mapping of a cylinder ( — « </ < o, 08 <27) into
itself contains comprehensive information about the motion
of the system after a long time. With v(6) = — cos 8, map-
ping (1.17) is called standard and has been studied in ex-
treme detail.*> We call model (1.15) with a periodic but
otherwise arbitrary v(8) a rotator with jolts, while with
v(0) = — cos @it is a standard rotator with jolts.

In the model of a standard rotator with jolts, at small
values’” K < K - = 0.9716, sequential points (/,,8,) lie on
lines which run around the cylinder or in narrow stochastic
layers; the range of I is limited in magnitude: |, — I,
< 4K '? for all n. In the case K > K -, the system goes into a
regime of a global stochastic behavior, where there exists a
stochastic component which is not bounded in terms of the
action variable J.
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FIG. 4. Energy-dependence (a) of the cross section of the stochastic com-
ponent i (Ref. 8); and (b) of the Lyapunov index o (Ref. 29) for the
Henon-Heiles model. The parameter ¢ is the ratio of the energy to the
threshold for infinite motion: € = E/D.

In this regime, the behavior of the distribution function
f(I,n) for an ensemble of systems can be described by a
Fokker-Planck equation (§6.2 in Ref. 129 and §5.2 in Ref.
130)

d 9
A F (o). (1.18)

For the model of the standard rotator with jolts, under the
condition X'» 1, the diffusion coefficient is** D= KX ?/2. Dif-
fusion in action space leads to an increase in the average
energy of the rotator, E = 12/2, over time:

(E () = L (1.19)

We call this form of the dependence (E(r)) a ‘‘diffusive
growth.”

2, STATEMENT OF THE PROBLEM

For what question is 9W the answer?
G.J. Morgan
[after translation into Russian and back]

The quantum chaos problem is the problem of deter-
mining the specific properties of quantum-mechanical sys-
tems whose classical analogs exhibit an unstable (stochas-
tic) motion.

If a classical system specified by a Hamiltonian
H(p,q,t) is integrable, we call the quantum-mechanical sys-
tem with the Hamiltonian H(p,§,!) “regular.” In many
cases, an integrable classical system remains integrable in
quantum mechanics—i.e., it has a set of ¥ operators which
commute with each other. If the classical integral of motion
Fcontains terms of the type p?q?, however, the circumstance
that , and g; do not commute in quantum mechanics means
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that the operator F constructed by the familiar rules from
the classical integral F may not commute with the Hamilto-
nian. One such example was studied in Refs. 94 and 114.

If the classical system H(p,q,?) can execute a stochastic
motion (in phase space there are regions in which the maxi-
mum Lyapunov index is positivie: g, > 0), we call the quan-
tum system with the Hamiltonian H(§,q,t) “chaotic.”

The quantum chaos problem has two basic aspects:
comparing the properties of quantum chaotic and regular
systems and comparing the dynamics of an observable classi-
cal system and its quantum-mechanical analog.

2.1. Comparison of regular and chaotic quantum systems

The features which distinguish quantum chaotic sys-
tems from quantum regular systems can be brought out by
asking three questions:

1. What properties distinguish a quantum chaotic sys-
tem from a quantum regular system?

2. Which parameters { of the quantum chaos describe
these properties?

3. How are the parameters § of the quantum chaos relat-
ed to the parameters o and i of the stochastic behavior of the
corresponding classical system?

In this regard, one analyzes primarily the properties of
autonomous systems which execute a finite motion. For
such systems, these questions were first posed in 1973 by
Zaslavskii and Filonenko'” and also by Percival.”' Even ear-
lier, in 1971, Pukhov and Chernavskii'’ asked whether an
unstable infinite motion would be possible in a quantum-
mechanical system.

The first of these questions is not trivial because one
cannot literally import the classical stochastic parameters o
and u into a quantum theory: These parameters are defined
in terms of the properties of phase-space paths of the system,
which have no precise quantum-mechanical analog. By con-
vention, each statement which establishes a difference be-
tween the properties of quantum regular systems and quan-
tum chaotic systems is called a guantum chaos criterion.

Many such criteria have now been proposed, but all are
applicable only in the semiclassical region, where the follow-
ing inequality holds for stationary states of the system, ¢,,:

E

Ln:(—z;n—g—a'{)m«l.

(2.1)

Here E, is the energy of the state, and a,, is a typical size of
the classically accessible region at the energy E,, . Deep in the
quantum region, where &, ~ 1, the stochastic nature of the
corresponding classical system is not manifested significant-
ly in the properties of the quantum system.

We will be using the dimensional quantities which ap-
pear in the classical Hamiltonian as units of measure in the
discussion below. If there are three independent scales (as
there are for nonlinear oscillators), the system of units is
determined unambiguously, and Planck’s constant # be-
comes a dimensionless parameter of the problem. For non-
linear oscillators with #i<1, we have &, ~1 for low-lying
states (E, <€1), while for highly excited states (E, ~1) we
have €, ~#'/", where N is the number of degrees of freedom.
If there are only two independent scales in the classical
Hamiltonian (as in the cases of billiards and uniform power-
law potentials’; see §10), the energy E, can be used as a third
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scale. In this case, # is the same as £, and can become arbi-
trarily small.

The second question—about the parameters of the
quantum chaos, {—is not identical to the first, since quanti-
tative characteristics have not been established for anything
like all the quantum chaos criteria. Some criteria are formu-
lated in a semiquantitative language (“‘large” or “small’’),
while others make use of the reader’s ability to distinguish
between regular and irregular systems of points and lines.
For certain criteria, the quantitative characteristics § are
determined in several ways, and the relationships among the
various definitions are not clear.

Finally, the third question has been pursued only ex-
tremely slightly so far. The uncertainty clouds not only the
nature of the relationship § = f{o,u) but even the question
of which stochastic characteristics of a classical system will
be the arguments of this relationship. The situation is that
the properties which have been studied in greatest detail are
those of nonlinear oscillators with two degrees of freedom.
For such systems, both 1 and o increase with increasing en-
ergy (Fig. 4). Accordingly, the increase with increasing E in
the strength of a characteristic which underlies a criterion
can be linked with an increase in the “extent of the stochastic
behavior,” but it cannot be related unambiguously to a de-
pendence on i or 0. Most authors tend to regard u but not o
as important for quantum chaos (Sections 3 and 8).

The quantum chaos criteria for autonomous systems
can be classified in four groups, which are based on the prop-
erties of (1) the energy spectrum, (2) the stationary states,
(3) operators other than H, and (4) states which are not
stationary. This is the order in which the criteria will be
discussed in Sections 3-6. We first note the following point:
Any criterion must resolve the question of which of the fol-
lowing assertions is to be chosen:

1. Quantum chaos is a property of one stationary state.

2. Quantum chaos is a property of a group of staionary
states with approximately equal energies.

Percival®' proposed the first resolution of this choice,
postulating the existence of stationary states of two typesin a
quantum chaotic system:

®Regular states (which belong to a regular spectrum),
which are related to a quasiperiodic motion of the classical
system. They have a set of quantum numbers in the number
of degrees of freedom. For regular states, the matrix ele-
ments of the operators are limited by selection rules.

*Irregular states (which belong to an irregular spec-
trum), which are related to a stochastic motion of the classi-
cal system. Such states do not have a definite set of N quan-
tum numbers; for irregular states there are no selection rules
for operators. This scheme has defined a paradigm, within
which the theory of quantum chaos has developed. Today,
the universal validity of this distinction is under doubt: A
large number of criteria use the second resolution of the
choice between alternatives.

2.2. Quantum effects in the dynamics of observables

Since quantum chaos is associated with the semiclassi-
cal region, the quantum chaos problem has another aspect:
comparison of the dynamics of an observable classical sys-
tem and that of its quantum analog at a small but nonzero
value of #.
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For autonomous systems, the qualitative difference in
the dynamics follows immediately from the circumstance
that the energy spectrum is discrete: Mixing property (1.7)
and the related continuous nature of the power spectrum
S(w) do not hold for such systems, by definition. On the
other hand, a dense discrete spectrum S(w) may differ from
a continuous spectrum only in an observation over a very
long time. There is accordingly a time scale 7(#) (7— was
#—0) such that at r € 7(#i) the classical and quantum obser-
vables are approximately the same, while at ¢ 2 7(#) there is
a substantial difference between them. In the quantum chaos
problem, there are accordingly the tasks of seeking 7(#) and
determining the dynamics of the quantum system at
t2Z 7(#).

Even more important is the question of how quantum
effects influence the dynamics for nonautonomous systems.
For them, there can be qualitatively different types of mo-
tion in the classical theory: motion with a bounded change in
the action variables during a regular and locally stochastic
motion, and motion with an unbounded diffusive growth of
these variables during a globally stochastic motion (Subsec-
tion 1.3.3). The qualitative changes made in this picture by
quantum effects were found by Casati, Chirikov, Izrailev,
and Ford*® in 1977 and have been the subject of active re-
search since then. The work in this direction is discussed in
Section 7.

2.3. Some applications

Who ordered chaos? More specifically, what use is it?
M. C. Gutzwiller
[after translation into Russian and back]

Stochastic behavior is a general property of dynamic
systems, while integrability is a rare exception, associated
with a very high symmetry, which can easily be destroyed by
some perturbation. It is true that the perturbation would
have to be fairly strong in order to make the stochastic na-
ture noticeable, but this is a condition limiting the parameter
values, not the type of system. Essentially any semiclassical
(#i<1) quantum system with few degrees of freedom and a
known Hamiltonian H(j,q,t) can, for certain parameter val-
ues, exhibit the characteristics of quantum chaos. The most
important actual examples of these systems are the follow-
ing:

1. Atoms in highly excited (Rydberg) states
(n=#""~100) in the presence of external fields—a mag-
netic field®*>'®” or an alternating electric field.'4*'7¢'92.21

2. Triatomic molecules (%~ ' ~ 100). Nonlinear oscilla-
tors (Subsection 1.3.2), which have been the subject of most
of the papers in the theory on quantum chaos, are studied for
the purpose of describing the vibrational spectra of mole-
cules in the region of pronounced excitation, where the an-
harmonicity of the vibrations and the interactions between
modes are important.

Other examples would include electrons which are
grazing along the surface of a metal in a magnetic field,'* an
atom or group of atoms interacting with a resonant mode of a
quantized electromagnetic field,**'**'** electrons in semi-
conductors with an anisotropic mass tensor in the Coulomb
field of an impurity,’' electrons above the surface of liquid
helium in an alternating electric field,'*” a magnetic moment
in an alternating magnetic field, "** and electrons in layered
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structures.'%® Theory has not yet been compared with exper-
iment in these problems.

3. PROPERTIES OF THE ENERGY SPECTRUM

There are two advantages in using the energy spectrum
to establish the criteria of quantum chaos. First, the spec-
trum does not depend on the choise of representation, so the
criteria are not afflicted by an arbitrariness. Second, a spec-
trum is amenable to experimental determination.

3.1. Sensitlvity of levels to perturbations

Percival?®' offered the following suggestion:

A1, The levels of the spectrum of a quantum chaotic
system are more sensitive than the levels of the spectrum of a
quantum regular system to the magnitude of a perturbation
applied to the system. #*’

This hypothesis has been tested in numerical experi-
ments.”® The Hamiltonian of the Henon-Heiles model,
(1.12), was written in the form

2
1 N 2 1
H=— 2 (pi+a)+a (ed— 5 ¢t) =Hy+aV
i=1
(in a system in which the units are the scales of the classical
Hamiltonian, # = a?). The susceptibilities of the eigenval-
ues E, () to changes in the parameter a were calculated:

d2E
Ya (n) = daan

3.1

(3.2)

With#~! = 129, it was found that at energies £>0.73, where
the classical system has a noticeable stochastic behavior
(#£>0.2), there are, along with small values of y, (which
monotonically continue the energy dependence of the sus-
ceptibility out of the region of regular motion), values of y,,
which exceed these small values by about an order of magni-
tude (in absolute value). Their appearance was discussed as
a confirmation of Criterion A1 (Fig. 5).

The value of y,, can be calculated by perturbation theo-
ry. It is expressed in terms of the matrix elements V,,, of the
operator ¥ between eigenfunctions of H and the energy val-
ues E, in the following way:

fa(W)=2 3 i,
m

n—Em

(3.3)

Percival himself related the increase in y, to the circum-
stance that a large number of terms contribute to the sum in
(3.3). A detailed analysis of system (3.1) with i~ ' =80
showed that in fact the opposite was true.®*"* Large values of

| B

L] :
3t

.
. s * e [
. o 8o oo .

2 2 . 1
0,4 0,6 0,8 1,0 &

FIG. 5. The susceptibility of levels to a change in the parameter y,, in the
Hamiltonian as a function of the normalized level energy £ = E /D for the
Henon-Heiles model.**
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Y. arise because of, and in the vicinity of, level quasicross-
ings (“‘avoided crossings”) as a is varied and are determined
by the one anomalously large term on the right side of (3.3)
(Fig. 6). The results of these studies were subjected to criti-
cism based on some new numerical calculations®”'%? for sys-
tem (3.1) with #~! = 138. That criticism, however, is not
convincing. In the first place, the critics restricted their
study to the first derivative, dE, /da, which, as we see in Fig.
6, is not anomalously large near an avoided crossing. On the
contrary, it is anomalously small. Second, the accuracy of
the numerical calculations by those authors seems totally
inadequate for drawing conclusions about fine characteris-
tics of a spectrum, as was pointed out in Ref. 87.

For values # '~100, the values of the regular
(**small”) susceptibilities and the positions of the avoided
crossings (but not the magnitudes of the splittings A, ) can
be determined fairly accurately in low orders of perturbation
theory.””*’

Criterion A1 has been tested by numerical calculations
also for systems with two”*'** and three'**?*' degrees of
freedom other than the Henon-Heiles model. In all cases,
large values of y, were found in energy regions correspond-
ing to stochastic motion. These large values were manifested
as sharp spikes above the background of the typical values.

Criterion A1 resolves the question in Subsection 2.1 by
choosing the second alternative: The quantum chaos is man-
ifested as a property of a group of levels, since the suscépti-
bility y, becomes large only in comparison with the neigh-
boring small values.

Nakamura er al.'*® have suggested using the statistical
characteristics of the values of y for levels from a given ener-
gy iterval E, < E < E,—the mathematical expectation of the
magnitude of the susceptibility, |y|, and the variance
Dy =y 2 — (y)% According to Nakamura er al.,'****' large
values of [y| and Dy are not by themselves indicators of
quantum chaos. They suggested modifying criterion Al in
the following way:

Al,. The sensitivity of the spectra of quantum regular
systems and quantum chaotic systems to perturbations
differs in the 7 dependence of the relative size of the suscepti-
bility fluctuations in a given energy range:

8(Ey By k) =(Dy)*2 | x| (3.4)
In the limit #i— 0, this function increases for quantum chao-
tic systems but decreases for quantum regular systems. #

So far, this assertion has been tested for only a single
model in the region #i~' £ 20; a dependence g(#) ~# * has
been found. The difference between small and large suscepti-

FIG. 6. Avoided crossing of energy levels upon a change in the parameter
in the Hamiltonian. Here A is the magnitude of the splitting.
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Al

bilities in this example is of record size (more than three
orders of magnitude), while the # remains comparatively
large. We are forced to suspect that this example is an excep-
tional case, and we must postpone evaluating the generality
of criterion Al,.

That there are large values of y in a quantum chaotic
system at #~' £ 100 is beyond doubt. However, the connec-
tion between these values and a classical stochastic nature
cannot be regarded as unambiguously established. Noid
et al.%! have pointed out that an isolated avoided crossing of
levels may be analogous not to a stochastic component with
a large value of ¢ but to a resonance: a regular motion with
commensurable frequencies. The relationship between
avoided crossings and classical resonances was studied in
Refs. 119 and 122. According to Noid,*' a distinctive feature
of a quantum chaotic system is not the presence of avoided
crossings but their high density:

Al,. The picture of the dependence of the levels of a
family of Hamiltonians H(«a) on the parameter « has isolat-
ed level crossings (or avoided crossings) for a quantum reg-
ular system and overlapping avoided crossings for a quan-
tum chaotic system (Fig. 7). #

This criterion is supported qualitatively by numerical
calculations; quantitative characteristics have not been es-
tablished for it. In particular, there is no definition of the
width in @ of an avoided crossing. The relationship between
an overlap of avoided crossings and an overlap of resonances
(which leads to the appearance of a global stochastic behav-
ior, according to the Chirikov criterion**) which was pro-
posed by Uzer er al.’* is apparently not a profound one. An
overlap of resonances may occur at fixed parameter values of
a Hamiltonian (with a change in, for example, the energy),
while an overlap of avoided crossings depends in a funda-
mental way on the variability of . Furthermore, A1, has the
limitation that it refers not to a given Hamiltonian but to a
family, and it cannot answer the question of the degree of
quantum chaos for a given H(a,). Finally, we note that
there is a direct contradiction between Al, and Al,: For a
pattern of overlapping avoided crossings, in the limit -0
we would be left with g(#) ~1.

It is possible that the distance between neighboring lev-
els will increase to the extent that avoided crossings overlap
(see Section 4), with the result that “large’ susceptibilities
decrease. With increasing degree of stochastic behavior of a
classical system, the value of [y| for an energy interval of a
given width would thus initially increase and then decrease.
This behavior of [y| as a function of the extent of the stochas-
tic behavior was reported in Ref. 179; it is compatible with
the data of Ref. 25, but it requires further confirmation.

FIG. 7. Pattern of levels £, of a single-parameter family of Hamiltonians,
H(a). in a region of overlapping avoided crossings.
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It is thus most likely that the increase in the sensitivity
of the eigenvalues of a quantum system to the magnitude of a
perturbation in a region of classical stochastic behavior is a
transitional property, which disappears in the semiclassical
limit i— 0. This circumstance strips Al of its value as a crite-
rion, but not of its physical interest. The region %' ~ 100 is
typical of systems which are accessible experimentally. Ac-
cordingly, the susceptibility to physically realizable pertur-
bations (e.g., a polarizability) may thus also have anoma-
lously large values.

3.2. Statistics of the energy spectrum

The basis for the study of the statistics of the energy
spectrum of quantum chaotic systems has been the statistical
theory of spectra which was derived in order to describe the
structure of the spectra of complex nuclei. A bibliography of
the basic work on the statistical theory of spectra is given in
the review by Zaslavskii,** which is devoted to the statistics
ofan energy spectrum in connection with the quantum chaos
problem (see also the review by Brody ez al.”?). This theory
examines the properties of the distribution of eigenvalues for
matrices with random elements which belong to certain sta-
tistical ensembles. It has recently been established that the
conclusions of the statistical theory are also valid for the
spectra of complex atoms'”® and triatomic molecules.''

The basic prerequisite for using the methods and mod-
els of the statistical theory of spectra to describe quantum
chaotic systems is the concept of a complex, pseudorandom
structure of the energy spectrum. This concept also agrees
qualitatively with the concepts developed in Subsection 3.1:
If the positions of levels vary in a complex way upon a
change in the parameters of the Hamiltonian, there is no
physical interest in a detailed description of the system of
levels. More important are the stable average characteristics
of the system of levels. The study of the statistics of an energy
spectrum thus utilizes the second of the alternatives in Sub-
section 2.1, treating quantum chaos as a property of a group
of states.

3.2.1. Distribution of level spacings. The simplest char-
acteristic of the structure of an energy spectrum is the distri-
bution function of the relative size of the spacings between
levels, S, :

Sp=(Exn—Enq) p(E,), (3.5)

where p(E) is the density of levels. It is assumed here that
p(E) varies only slightly over distances of the order of the
distance between levels: dInp(E)/dE<1. This condition
holds in the semiclassical case. The distribution function
P(S) of the random quantity .S is normalized by the condi-
tions

x

{ P(s)yas 1. \ SP(S)ds- 1.

]) 0

(3.6)

If the level positions are uncorrelated, P(.S) is given by the
Poisson distribution
Po(S)=exp(—S). (3.7

In this case, in the limit S —0 we have P(.S) #0; this behavior
of P(S) is called *‘level bunching.”
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For Hamiltonians with random matrix elements H,,

-the probability for finding two closely spaced levels (S<1)

issmall, along with S. The origin of this /evel repulsion can be
seen in the very simple example of a Hamiltonian H which is
a second-rank matrix. The distance (A) between the levels
of this Hamiltonian is given by A’= (H,, — H,,)’
+ 4|H,|*. If the system is invariant under time reversal,
one can choose a basis in which the matrix H is real:
H,, = H,,. The distribution A will then be determined by
the statistical properties of the variables z, = H,, and
z, = (H,, — H,;)/2. If we assume that the z; are indepen-
dent random quantities for which the probability distribu-
tion W, (z) is nonzeroin thelimitz—0 [ W, (0) £0], then we
find P(A) ~ A in the limit A — 0. If we assume that the z; are
normally distributed quantities with identical variances, the
normalized level spacing S = A/A (A is the mean distance
between levels) has a Wigner distribution (Fig. 8)

PW(S)z%Sexp(—%SZ). (3.8)
Expression (3.8) gives a good description of the properties
of the series of levels of complex systems with fixed exact
integrals of motion (the total angular momentum J and the
parity 7 in the cases of atoms and nuclei).

A key roleis played in the statistical theory of spectra by
the concept of an ensemble of matrices—Hamiltonians
which have statistically independent components and whose
statistical properties remain invariant under any transfor-
mations compatible with the discrete symmetries of the
Hamiltonian. For the models which we mentioned in Sec-
tion 1, used to describe the motion of spinless particles in the
absence of a magnetic field, the Hamiltonian is invariant
under time reversal. A class of systems of this sort is associat-
ed with an ensemble of real symmetric matrices which are
invariant under arbitrary orthogonal transformations:
Gaussian orthogonal ensemble (GOE).

Although the P(.S) distribution for a Gaussian orthogo-
nal ensemble formally differs from a Wigner distribution,'?
quantitatively the difference is small, and it can be ignored in
view of the amount of data available today. It was shown in
Ref. 120 that a reliable discrimination of these distributions
would require a set of . / "~ 10° levels, while series of several
hundred levels are available for quantum chaotic systems
today. However, the model of Gaussian orthogonal ensem-
bles makes it possible to establish characteristics of the spec-
trum other than P(S) (Subsections 3.2.2. and 3.2.3).

The question of the properties of the distribution of lev-
el spacings for quantum chaotic systems was first taken up

P P
10 I,HL
a5 0,5+
1 1 R i
g 1 2 S g 1 2 N
a b

FIG. 8. Limiting forms of the distribution of level spacings, P(S): a—
Poisson distribution; b—Wigner distribution.
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by Zaslavskif and Filonenko,'® who proposed a dependence
of P(S) on the Kolmogorov entropy 4 of a model system.
This dependence was subsequently generalized by Zas-
lavskii®! to the case of arbitrary semiclassical stochastic sys-
tems. We will not dwell on those papers here for two reasons:
First, Zaslavskii's theory has been presented in detail in sev-
eral places in the literature (Refs. 31, 43, 81, and 129). Sec-
ond, the proposed dependence [in the limit S -0, P(S) ~S*,
where v~/ '] has not found support in numerical calcula-
tions. The question of a dependence of the properties of the
spectra of quantum chaotic systems on the extent of the in-
stability of a classical system (i.e., on o, or A) is not com-
pletely clear at this point (Subsection 8.3).

The results of a numerical study of the distribution
P(S) for spectra of various quantum systems which are in-
variant under time reversal are compatible (at least semi-
quantitatively ) with the criterion

A2, The distribution of level spacings P(S) is (a) a
Poisson distribution, (3.7), for integrable systems of a gen-
eral type in the semiclassical limit, -0, and (b) a Wigner
distribution, (3.8), for highly stochastic systems (u=~1). #

Position A2-a was advanced by Berry and Tabor. It has
been supported by numerical calculations (for two models),
and a theory has been derived for it on the basis of a semiclas-
sical quantization.*

The occurrence of level bunching for integrable systems
has been confirmed qualitatively by most studies. Quantita-
tively, the convergence of P(S) to a Poisson distribution
may be rather slow. For example, numerical calculations for
a rectangular billiard have shown that again at a number of
levels "~ 10° the behavior of P(S) at S < 0.1 contains sta-
tistically significant deviations from (3.7) (Ref. 180); these
deviations fade away with a further increase in. 4" and be-
come negligible at . #7=2.5-10° (Ref. 186). This slow ap-
proach to asymptotic behavior appears to be a specific fea-
ture of a rectangular billiard.?*® The significant deviations of
P(S) from a Poisson distribution which are observed for
certain integrable systems®** and certain approximately in-
tegrable systems'®* can probably be explained on the basis
that the corresponding models are only slightly semiclassi-
cal.

Not included in the category of systems of a general
type are multidimensional harmonic oscillators for which,
because of the equidistant nature of the partial-oscillation
spectrum, an effective level repulsion arises, with character-
istics which depend on the arithmetic properties of the fre-
quency ratio. The nature of P(S) in such systems was stud-
ied in Refs. 35 and 198.

Position A2-b was advanced by Casati e a/.>* This posi-
tion has been supported by numerical calculations for ergo-
dic systems: a stadium billiard**-** and a Sinaj billiard.”"-'*
The results reveal a similarity between P(S) and a Wigner
distribution; particularly good agreement was found in Ref.
139. The distribution P(S) takes this form for pseudointe-
grable billiards™ and related billiards'*® (polygons). A
strong level repulsion has been observed in many cases for
nonlinear oscillators also. The Pullen-Edmonds model—
two harmonic oscillators coupled by a fourth-degree poten-
tial, (1.14) (Refs. 153, 161, 174, and 203)—and generaliza-
tions of this model which include terms of the form g% and ¢}
in the potential (Refs. 184, 200, and 232) have become the
most popular models for research on the statistical proper-
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ties of energy spectra. In some papers, the authors have sim-
ply asserted that level repulsion occurs.'%'#5:293 We will ex-
amine some approaches to a quantitative description of
repulsion below.

In several systesm, changes in the parameter values are
accompanied by a change in the motion from nearly regular
(1 =0) tonearly ergodic (1 = 1). During such a change, the
form of P(S) should change continuously from a Poisson
distribution to a Wigner distribution. Several methods have
been proposed for an interpolation of the transition. Chrono-
logically the first was the criterion

A2,, The distribution P(S) for a quantum chaotic sys-
tem can be described by the Brody distribution®’

Py (B; S)=ASPexp (— BS'*P), (3.9)

where we have §—-0inthelimity—~Oand f=latu=<1. #
The constants 4 and B in (3.9) are determined by nor-
malization conditions(3.6):

A=(1+p)B, B=Ti*s (2B}, (3.10)

148
where I'(z) is the (Euler) gamma function. In the case
B = 0, the Brody distribution is a Poisson distribution, while
at B =1 it is a Wigner distribution. A Brody distribution
was introduced in Refs. 86 and 110 for describing the statis-
tics of level spacings in quantum chaotic systems (Fig. 9).
The natural assumption that the functional dependence
[B(u) is monotonic agrees with the results of the calculations
of Refs. 153 and 208, but it is doubtful that the relationship
B(u) is of universal applicability (Section 8; Fig. 10).

Another interpolation method was proposed in Refs.
135 and 174:

A2, The distribution P(S) for a quantum chaotic sys-
tem is given by an expression P,, (S) which depends on the
values of the measures i, for all M components of the regu-
lar and stochastic motions at the given energy . #

Three postulates are used in the derivation of an expres-
sion for Py, (S): 1) The level density p( E) is a superposition
of partial densities p, (E) for all regions of the regular and
stochastic motion; i.e.,

M

P(E)=i§1 0: (E), (3.11)
where M is the number of such regions. Here p, ~u,, where
4, 15 that measure of the phase-space region which corre-
sponds to the given component. 2) The positions of levels
belonging to different components p, (E) are not correlated.
3) In the stochastic components, P(.S) is given by a Wigner

Q
B

0,5 05

FIG. 9. Interpolation forms of the distribution of level spacings P(S). a—
Brody distribution with 2 = 0.5; b—Berry-Robnik distribution P, with
u, =0.25,
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FIG. 10. The Brody parameter S as a function of the measure of the
stochastic component u, for the (smoothed) Pullen-Edmonds mod-
el.'**!*! The vertical bar shows the size of the error.

distribution, while in the regular components it is given by a
Poisson distribution.

These postulates lead to the following expression for
P,,(S) under the assumption that there is only a single re-
gion of regular motion, with a measure g, :

M - N
Py (S)=—(%- (e—u,s [T erte (Lz" piS)) ,
i=2

(3.12)

where

2 4

Va

e~ dt.

erfe () == (3.13)

Re_—g

Position A2, is amenable to a quantitative test. Such
tests were carried for various models in Refs. 161, 191, and
200. The results showed that the value u, of the (unique)
measure of the stochastic component which is found by fit-
ting P(S) by a distribution P,(S) differs from the value x.
which is found through numerical calculations for a classical
system. The difference is particularly large at small values of
4. (Fig. 11). Consequently, criterion A2, is only semiquan-
titatively valid for the models which have been studied. The
reason for the limited accuracy may be that the systems
which have been considered have not been sufficiently semi-

classical.>*? Alternatively, the pertinent point may be that in
1,0 _/lq ,o/
4
/’{ -
7/
¥
/7
a5 9 7 -
¢
//
% o~1
7/
e -2
/
/
'l 4
0 2,5 1,0z

FIG. 11. The parameer p, found from a fit of P(S) by a Berry-Robnik
distribution P as a function of the measure of the stochastic component,
... 1—For an oval billiard"’'; 2—for a nonlinear oscillator.'**
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Refs. 161 and 191 i was taken to be the resultant measure of
the stochastic components, without an analysis of the possi-
bility of a partitioning of the stochastic region into several
components.

Attempts have been made to generate a theoretical de-
scription of the level-repulsion effect on the basis of an iso-
morphism between, on the one hand, the behavior of the
levels of a system with a Hamiltonian H# = H, + ¢V upon a
change in £ and, on the other, the time evolution (with a time
t=¢) of a one-dimensional gas of classical particles which
interact through a time-dependent repulsive poten-
tial.'2* 163208231 Although these investigators have man-
aged, by means of various assumptions, to bring the original
problem to a point close to the problem of the thermodynam-
ic equilibrium of a one-dimensional “Coulomb” gas, which
is equivalent to the Gaussian orthogonal ensemble,'? and
although they declared on this basis that P(S) takes a
Wigner form at sufficiently large values of &, the procedure
which they have used is not very convincing. In Refs. 120
and 163 the properties of the matrix elements of the pertur-
bation ¥ were postulated, while in Refs. 208 and 231 they
were not specified at all. As a result, the conclusions reached
there also apply to integrable systems. So far, there have
been no theoretical calculations of P(.S) for a specific Hamil-
tonian which are amenable to a comparison with numerical
calculations.

3.2.2. Spectral rigidity. A characteristic of the extent of
ordering of the levels in a spectrum over a scale large in
comparison with the level spacing is the spectral rigidity
A, (L), which is defined below.

For a sequence of levels £, normalized to a unit density
(¢, =€, , +5,), one introduces a step function n(e),
which is equal to the number of levels with €, <e. By con-
struction, n(g) is a ladder with a unit average slope. The
function A,(x,L) is defined as the minimum square devi-
ation of (&) from a straight line on the interval (x,x + L):

x+L
Ag(z, L)}= 'z— ming, p S

x

— Ag== B)2 de.
(n (e)— Ae )2 de (3.14)

The value (A,(x,L)),, averaged over the values of x from a
region in which the nature of the fluctuations in the spec-
trum can be regarded as fixed, depends on L alone and is
denoted by A;(L).

The function A;(L) describes the ordering of a spec-
trum over large regions: The slower the increase in A;(L)
with increasing L, the less likely it is that the spectrum will
contain closely spaced clusters of levels and lacunas with a

4,
1,0f a
o5t §
L
1 L.
g 10 20

FIG. 12. The spectral rigidity A,(L). a—For a regular system; b—for a
Hamiltonian belonging to a Gaussian orthogonal ensemble.
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reduced level density. For an equidistant sequence of levels
we would have A, (L) = 1/12. For randomly distributed un-
correlated levels we would have (Fig. 12)

Ay(L) = 15 (3.15)

For a Gaussian orthogonal ensemble, A, (L) takes the fol-
lowing asymptotic form at L> 1:

Ay (L) & - In L—0.00687. (3.16)

The use of A;(L) as a characteristic of a quantum chaotic
system was first proposed by Haller et al.''’ Here is the cor-
responding criterion:

A3. The spectral rigidity A,(L): (a) for integrable sys-
tems has the form in (3.15), characteristic of a sequence of
uncorrelated levels, and (b) for highly stochastic quantum
chaotic systems (u~ 1) is given by expression (3.16), which
corresponds to the matrices of a Gaussian orthogonal en-
semble. #

The nature of the onset of dependence (3.15) with in-
creasing L was studied for integrable systems in Refs. 180
and 186. For chaotic systems with x~1—the Sinai bil-
liard'** and a nonlinear oscillator''°—good agreement with
expression (3.16) was found.

The transitions between the limiting forms of the spec-
tral rigidity were studied in Refs. 168 and 202. For this pur-
pose, a new method for parametrizing the statistics of the
spectrum in intermediate cases was introduced. That new
method uses the model of a Gaussian orthogonal ensemble
as the starting point. The matrices X, which belong to a
Gaussian orthogonal ensemble and which have the matrix
elements X, are associated with the matrices Y (a,k), with
the elements

where a and k are parameters. In the limit a— 0, the ensem-
ble { Y} transforms into a set of diagonal matrices with ran-
dom elements and a Poisson-statistics spectrum. In the limit
a— o0, the ensemble { Y} is the same as a Gaussian orthogo-
nal ensemble. The calculations of Refs. 168 and 202 show
that the values of a found by fitting A,(L) to the results of
the numerical calculations lead to good agreement between
the histograms of P(S) and the distribution P, (S) calculat-
ed for the matrices ¥ with the same value of a (in the cases
studied, the values were 3.5<a<7.5 and & = 2; a variation of
k had nosignificant effect on the results). The results lead to
the criterion

A2,-A3,. The spectral properties of a quantum chaotic
system—the distribution of level spacings, P(S), and the
spectral rigidity A;(L)——are the same as the properties of
the spectra of an ensemble of matrices { ¥}; we have a—0in
the limity—»0anda— e at u=1. #

The specific functional dependence a(u) has not been
determined for this criterion. Seligman and Verbaarschot*"
have introduced another method for parametrizing the tran-
sition of the spectral rigidity between limiting forms, on the
basis of the prerequisites of criterion A2,. The function
A, (L) found by that method agrees at L & 25 with the results
of numerical calculations, with a relative error 6A; %0.05.

3.2.3. Correlations in level spacings. Yet another set of
parameters characterizing the structure of an energy spec-
trum is given by the correlation coefficients C(#) describing

(3.17)
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the correlation among the sizes of the energy intervals sepa-
rated by a fixed number of levels:

D Sun—1)(Si—1)
1,2 (Sian—1* 2 (Si—12]"

C(n)=
(3.18)

The simplest of this set is the quantity C(1): The inequality
C(1) <0 means a tendency for neighboring intervals to be
systematically larger and smaller than the mean, while
C(1) >0 means that the sizes of the neighboring intervals
deviate predominantly in a single direction from the mean.
For the matrices of the Gaussian orthogonal ensemble we
would have C(1) = — 0.271. Calculations for a quantum
chaotic system have yielded — 0.14>C(1)> — 0.32 (Ref.
110) and C(1) = — 0.30 (Ref. 139). Although the absence
of correlations has not been studied for integrable systems,
by analogy with A2 and A3 it is natural to postulate the
criterion

A4. The correlation coefficient of neighboring level
spacings, C(1), (a) is zero for integrable systems and (b)
has the same value as for the spectra of a Gaussian orthogo-
nal ensemble for highly stochastic (z =~ 1) quantum chaotic
systems: C(1) = — 0.271. #

There has been no study of the nature of the transition
of C(1) betwen limiting values.

Hirooka et al.'>® have proposed using a plot y(x) which
images points with coordinates x, = A,,y, = A, , ; where
A, =E, , —E,, toanalyze the structure of a spectrum.”’
The following has been proposed:

Ad4,. A plot of the functional dependence A, , | (4, ) is
aregular array of points for the spectra of integrable systems
and a random distribution for the spectra of quantum chao-
tic systems. 3

This approach was discredited in Refs. 134 and 147,
where various examples were used to demonstrate that the
plot is disordered for completely integrable systems. We
would note, however, that a plot of this sort (with an appro-
priate normalization) contains all the information which is
used in criterion A4.

3.2.4. Systems which are not invariant under time rever-
sal. All the examples discussed in Subsections 3.2.1-3 have
referred to the case in which the Hamiltonian is invariant
under time reversal. Systems which do not have this invar-
iance are associated in statistical spectrum theory with a
Gaussian unitary ensemble of Hamiltonians: an ensemble of
Hermitian matrices with independent elements whose statis-
tical properties remain invariant under arbitrary unitary
transformations. The distribution of level spacings for a
Gaussian unitary ensemble, P, (S), is given (approximate-
ly) by

PU(S)z%Szexp (—%SZ) , (3.19)

and the spectral rigidity at L> 1 has the asymptotic form

1
272

It was shown in Ref. 201 for a system with the Hamilto-
nian

Az (Ly =~ In L+ 0.058. (3.20)

H= —;_ (P4 _qu)2+% (P2t aq)® + gl + Gaf; — %y (g3—qq9)®
(3.21)
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that the statistics of a spectrum can have the properties of
both a Gaussian orthogonal ensemble (in the case a,, =0,
in which the Hamiltonian can be written in the form of real
symmetric matrices) and a Gaussian unitary ensemble (in
the case a@,,70) in the region of parameter values corre-
sponding to a highly stochastic motion (u =0.98 + 0.02).

The conditions for the transformation of the statistics of
aspectrum from a Gaussian orthogonal ensemble to a Gaus-
sian unitary ensemble upon a violation of the invariance of a
Hamiltonian under time reversal were studied in Ref. 210 for
a highly stochastic billiard penetrated by a filament carrying
a magnetic flux ®. That model has the advantage that the
classical dynamics is independent of the magnitude of the
flux, while the spectrum and wave functions of the quantum
system depend on @ (the Aharonov-Bohm effect). It has
been shown that the statistics of the low-lying levels with
indices n €. /"y = 0.44(e®/#ic) ~* (eis the charge of an elec-
tron, and c is the velocity of light) preserve the nature of the
Gaussian orthogonal ensemble but transform into the statis-
tics of a Gaussian unitary ensemble with a further increase
in n.

The types of statistics of a spectrum when a system has
composite symmetries which include the operation of time
reversal as one of the elements were studied in Ref. 224.

4. PROPERTIES OF THE WAVE FUNCTIONS OF STATIONARY
STATES

It was shown in the preceding section that the proper-
ties of the spectra of the Hamiltonians of quantum chaotic
systems are similar to the spectral properties of certain
classes of random matrices. Accordingly, again in the case of

the wave functions®’ of the stationary states of these systems

we would naturally expect to see manifestations of random-
ness properties—in contrast with the regular properties of
the wave functions of integrable systems. The choice of the
wave functions of a stationary state as a subject of study
predetermines the choice of the first of the alternatives in
Subsection 2.1: The concept of a quantum chaotic nature
applies to a single state.

In contrast with a spectrum, the form of a wave function

depends on the basis in which it is determined. The following
two representations are the ones of most importance for the
quantum chaos problem:
1. In many problems the Hamiltonian is of the form
H = H,+ V, where H, is the Hamiltonian of an integrable
system. For such systems it is natural to use the (countable)
basis {¢}—the complete (orthonormal) system of eigen-
functions of the Hamiltonian H,—and to study the proper-
ties of the coefficients a,,,, in the expansion of , which is a
normalized eignfunction of the Hamiltonian H:

Yo = 2 apymPme (4.1)

We call this form of a wave function the “H, representa-
tion.”

2. The second is the coordinate representation, since in
it the behavior of ¥(q) can be clearly compared with the
picture of the orbits of the classical motion of a particle in
coordinate space.'?’

In addition to these representations, the quantum chaos
problem uses a description of states by means of a Wigner
function"'** W(p,q). A Wigner function has several proper-
ties in common with the classical distribution function

608 Sov. Phys. Usp. 31 (7), July 1988

W (p,q) in phase space. This similarity between Wand W,
was pointed out in Ref. 34 and verified by numerical calcula-
tions in Refs. 59 and 229. In the limit #—0, this similarity
follows in a natural way from the correspondence principle.
In particular, it has been proved'®’ that in the limit %—0 the
eigenfunctions of a Hamiltonian are localized in phase-space
regions which contain invariant sets: surfaces of regular mo-
tion or stochastic omponents.

4.1. Properties of wave functions in the A, representation

The properties of the wave functions of quantum chao-
tic systems in the H|, representation were first studied by
Nordholm and Rice.?* For several nonlinear oscillators (in-
cluding the Henon-Heiles model), the coefficients in the ex-
pansion of the wave functions of the stationary states
¥, (4,,q,) in the basis |k/ ) = ¢, (¢,)@,(g,) were found nu-
merically; here @,, (¢) is the wave function of level m of a
harmonic oscillator:

Yo (94, G3) = S @n; 1Pk (90) 91 {q,)- (4.2)

Used as a characteristic of the properties of the set of coeffi-
cients {a} was the degree of distributedness of ¥y among the
various basis functions, ranked qualitatively from locality
(only one of the coefficients a is large) to globality (all the
coefficients ¢ from the region of quantum numbers
k + ! = constareidenticalin order of magnitude) (Fig. 13).
The calculations made it possible to formulate criterion

B1. As the behavior of the classical motion becomes
increasingly stochastic there is an increase, on the average,
in the degree of distributedness of the wave functions of the
corresponding quantum chaotic system. #

Parameters which quantitatively determine the degree
of distributedness of wave functions were not introduced in
Ref. 24. Such parameters can be taken from the theory of
disordered systems in solid state physics, e.g., the participa-
tion ratio'*

Pn=2(anmf‘ (4.3)

or the entropy®
So=— 2| aum I} apm |2 (4.4)

m

A similar approach—describing the degree of distributed-
ness of ¥ by means of an entropy calculated in a basis of
coherent states—was taken in Ref. 133. The complexity C,
of the state 3, —the effective number of basis states making
up ¥, —can be determined from C, =P, 'orC, =exp S,.
Although a large value of C does not give us a sufficient

FIG. 13. Diagram used in determining the distributedness of the wave
function . The hatching shows the region of the quantum numbers k and
[ which contribute substantially to . I—Global state; 2—local state.
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condition for a quantum chaotic nature, it is an important
characteristic of ¥ in the given basis.

One approach to the study of the degree of distributed-
ness of the eigenfunctions of a system with a Hamiltonian

H=0(p, q) +Hs sy 0) +V (a1, 62)

involves a conversion of stationary states ofj-\l, into unstable
quasistationary states and a determination of how the decay
rate (I") of state 1, depends on the energy E,. If T'(E)
calculated for quasistationary states of H is a monotonic
function, this circumstance is taken as an indication of the
globality of the states in the region under consideration ( Fig.
14). On the contrary, a significant nonmonotonic behavior
of I' (E) would indicate a pronounced difference among the
states in terms of the degree to which the energy is concen-
trated in a given partial oscillator {(mode selectivity).

Calculations of the I' (E) dependence for various mod-
els®®”” have shown that a change in the coupling constant
describing the coupling of oscillators is accompanied by a
transition from a local to a global behavior of the wave func-
tions, simultaneously throughout the entire energy region.
The existence of a region of a transition of the system to a
significant classical stochastic behavior and the position of
this region play no role in the behavior of I'(E). A similar
approach was taken in Ref. 101, where a study was made of a
Henon-Heiles system with a term added to the Hamiltonian
to describe irreversible transitions into the continuum under
the influence of a constant perturbation. The main conclu-
sion drawn from the numerical calculations was that the de-
cay time I' ~'increases with increasing E in an approximate-
ly exponential manner, exhibiting no anomalies in the
transition to a significant stochastic behavior near £ = 0.6.
Further studies showed that the decay rate of local states
may be either less than or greater than the decay rate of
global states, depending on the choice of H,, (Ref. 105). The
dependence ' (E) is thus not very convenient for determin-
ing the degree of distributedness of ¥.

The conclusion drawn from this research was that there
is no causal relationship between stochastic behavior and a
distributedness of the wave functions in the H,, representa-
tion: globality serves as a necessary but not sufficient condi-
tion for quantum chaotic behavior. This result is understan-
dable: The globality of the wave functions is evidence of
nothing mare than the circumstance that the eigenfunctions
of H and H, are not similar, and this situation can be ar-
ranged even for integrable systems. As an example we might
take H and H,, to be the Hamiltonians of linear oscillators

4.5)

LgI’ . Lo I .

13 13

a b
FIG. 14. Sketch of the decay rate of a quasistationary state, I', as a func-
tion of the energy E. a—With mode specificity (the eigenfunctions of H

differ markedly in composition); b—without mode specificity (all the
states are global).
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which differ in frequency, the direction of the normal oscilla-
tions, and equilibrium position (shifted oscillators).

A criterion which is close to B1 was proposed by Stratt
et al.>' That criterion uses the distributedness of ¥ in the
basis of natural orbitals—with the functions ¥,,(g;) in ex-
pansion (4.2) chosen in such a way that the expansion con-
verges extremely rapidly. This requirement leads to the diag-
onal representation

VY (g4s Ga) = % w20, (1) O (92} (4.6)

for which the following position is established:

B1,. In an expansion of the eigenfunction ¢ in natural
orbitals (4.6), the sequence w,, becomes convergent more
slowly in the transition from a regular motion to a stochastic
motion of the classical system; C(¢/) increases. #

Criterion B1, is supported by numerical calculations.
This approach overcomes the counterexample of shifted os-
cillators. The sequence w,, is not universal, however; it de-
pends on the variables g; in terms of which the system is
described. A transformation from, say, Cartesian coordi-
nates to polar coordinates alters w,, and thus the extent of
the quantum chaotic nature of the given state.

It has been proposed™® that what is important for quan-
tum chaos is not the fact that a large number of coefficients
a,, differ from zero, but the pseudorandum behavior of
these coefficients; more specifically,

B2. For the wave function ¢, of a chaotic state, the
coefficients a,,,, are random quantities, with a normal distri-
bution. #

This assertion was made by Buch ez al.,* who carried
out a numerical study of the statistical behavior of @,,,,, for a
nonlinear oscillator. It was found that there is satisfactory
agreement between their distribution W (a) and a normal
distribution under conditions such that the classical motion
is approximately ergodic.

Again, an approximate agreement of the distribution
W{(a) with a Gaussian distribution does not qualify as a suf-
ficient condition for quantum chaos, since this approximate
agreement is also possible for integrable systems (for exam-
ple, let H, and H be the Hamiltonians of one-dimensional
linear oscillators with shifted equilibrium positions). How-
ever, there evidently is a pseudorandomness of a,,, in the
region of pronounced stochastic behavior.

It was shown in Ref. 182 that the values calculated for
the maximum coefficients w, = max(la,,, |*) for a group of
close-lying states at the known value of C, under the assump-
tion that the random coefficients a,,, have a normal distri-
bution, agree with the results of quantitative calculations for
a single series of levels of a complex system (the J™ =1"
series of the neutral Ce atom). In this approach, one studies
the properties of a group of states which form an ensemble in
which the distribution w, is calculated, so one chooses the
second of the alternatives in Subsection 2.1. Unfortunately,
this quantum system has no simple classical analog.

The question of transforming from regular to stochastic
motion of a quantum system in order to determine the condi-
tions for “‘quantum integrability’” has been studied”*''*'"¥
for Hamiltonians of the form H = H, + V. Those authors
believe that a criterion for chaotic nature can be based on the
square of the maximum scalar product of the unperturbed
and perturbed wave functions: 7, = max|(¥,|¢,,) "
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B3. For regular states of a quantum chaotic system we
have 5, > 1/2, while for chaotic states we have 7, < 1/2. #

Criterion B3 essentially establishes a quantitative
boundary between local and global states. The satisfaction of
the condition

N> 5 (4.7)

makes it possible unambiguously to assign N quantum
numbers to the state of the perturbed system; it also ensures
the convergence of iterative solutions of a Brillouin-Wigner
perturbation theory for ¢ and E (Ref. 113).

The threshold involved in the appearance of quantum
chaos for a given state which was postulated in B3 seems
doubtful: It was mentioned in Ref. 118 that as 7 varies from
0.51 to 0.49 there are no qualitative changes in the physical
properties in system H. Criterion B3 looks inadequate for
two more reasons: 1) Condition (4.7) may be violated for
many states, while the system will remain integrable (an
example is provided by the same oscillators, H, and H, with
shifted equilibrium positions); 2) condition (4.7) may also
be satisfied by chance in a case in which the classical system
is highly stochastic.''* Even for random a,,,,, , with ¢, which
are not very complex (C, <10), there is a significant proba-
bility for the satisfaction of condition (4.7).

The nature of the relationship between the coefficients
a,,, describing the wave functions in the H,, representation
and the parameters of the classical stochastic situation thus
has not been established. An increase in the complexity of C
is a necessary but not sufficient condition for classifying a
state as chaotic; it has not been found possible to introduce
an objective definition of the degree of randomness of a set of
numbers {a,,, }.

4.2 Properties of wave functions in the coordinate
representation

4.2.1. Integrated properties of wave functions. The dif-
ference between the properties of regular and stochastic
states for wave functions in the coordinate representation,
#(q), was first mentioned by Berry** on the basis of a semi-
classical approach. An analysis of a regular quantum state as
an analog of classical motion on an N-dimensional torus led
to the conclusion that there is a singular (in the limit %—0)
behavior of ¥(q) near caustics—boundaries of the region of
classical motion in coordinate space. According to Ref. 107,
the integrals

I, = | 1¥(0) |*"dg

(m is an integer) increse without bound in the limit % — 0 for
regular states for m>2. In contrast, for chaotic states under
conditions corresponding to an ergodic classical motion, in
which the classical density W (p,q) uniformly fills an ener-
gy surface in phase space (W (p.q) ~3[E — H(p,q) 1), the
probability density p(q) = |#(q)|* vanishes near the bound-
ary of the classically accessible region in the limit #-0 (in
the case N> 2; it is a constant in the case N = 2). Integrals
(4.8) remain finite (Fig. 15).

B4. Near the boundaries of the classically accessible re-
gion, the probability density exhibits the behavior p(q) — «
for regular states and remains bounded for highly chaotic
states. #

This criterion refers to the case #—0. It is thus difficult

(4.8)
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F1G. 15. The behavior p(q) near the boundary Q of the classically accessi-
ble region. Here g,, is the distance along the normal to the boundary. a: For
a regular state. b: For an ergodic state. 1—A =2; 2—N = 3.

to verify numerically, and no such attempts have been made.

On the basis of a qualitative intepretation of the wave
functions of a chaotic state as a superposition of a large num-
ber of plane waves with uncorrelated phases, Berry®® hy-
pothesized that ¢(q) in such states was a random function of
q with a Gaussian distribution of 3. There is a similarity
between this suggestion and criterion B2.

An attempt to test this assertion was made by Shapiro
and Goelman, '*” who calculated the distribution function of
values of the wave function, W(), for a stationary state ¥,
of a stadium billiard (7~ 10*). It turns out to be bell-shaped
with a maximum near y = 0, providing a qualitative verifi-
cation of Berry’s hypothesis. Information about the shape of
W (i), however, cannot yet be used as a criterion for quan-
tum chaos, since the form of this distribution for the wave
functions of integrable systems is not known.

4.2.2. Local properties of wave functions. A criterion
based on the topography of a /(q) contour map, primarily of
the nodal lines, on which the condition ¢¥(q) = 0 holds, has
become quite popular because of the clarity of representa-
tion.” The nodal lines of the wave functions of a two-dimen-
sional ergodic system (a stadium billiard) were first calcu-
lated by McDonald and Kaufman,*® who pointed out an
irregularity in the directions of the nodal lines (Fig. 16). The
corresponding criterion is

BS. For regular states #,, the system of nodal lines
¥, (q) is a lattice of quasiorthogonal curves (or approxi-
mately so—having narrow avoided crossings of nodal lines),
while for a chaotic state such a representation is not allowed.
#

This criterion was proposed by Stratt et al.*' and illus-
trated by examples for nonlinear oscillators. The properties
of the map of nodal lines of a chaotic state are described as a
random behavior of lines of nodes.

FIG. 16. Nodal lines for a single quadrant of the eigenfunction v, (q)
(1~ 600) in a stadium billiard.*"
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Criterion B5 does not hold for all systems. Regularity of
nodal lines is not an exclusive property of regular systems.
Even for a stadium billiard, in which the classical motion is
ergodic, calculations'>*'" have revealed a regular pattern of
¥, (q) contour lines. The reasons for this regularity were
studied in Ref. 175. Another type of regular characteristics
¥, (q) of this system is the category of “‘scars,” which are
regions of an anomalously high probability density along the
contours of closed classical paths. This type was observed in
Ref. 154, For a classical ergodic system also ¥(q) may thus
have regular features in the quantum case.

On the other hand, the complex nodal structure of the
wave functions may result from something other than a sto-
chastic behavior. In particular, some of the states which
were classified as chaotic in Ref. 51 were interpreted in Ref.
145 as corresponding to a quasiperiodic classical motion.

The pattern of nodal lines is a form of representation of
the properties of 1(q); its relationship with other character-
istics of a system has not received much study. We might
note, however, that Korsch''® has established a relationship
between the change in structure of nodal lines upon a change
in a parameter in a Hamiltonian with an avoided crossing of
levels. The sole advantage of that picture is its clarity, and
then only in the case of two-dimensional configuration
space. The situation with regard to lines of force in electro-
statics is similar.®’ It therefore appears less promising to
develop criteria based on the properties of nodal lines.

The common deficiencies of all the criteria based on a
study of wave functions are obvious. In the first place, ¢ is
not an observable, so such criteria cannot be applied to ex-
perimental data (although they could be used in numerical
calculations). Second, there is some arbitrariness in the
choice of representation. Third, a quantitative measure of
the extent to which a given eigenfunction is chaotic has yet to
be established for any of the criteria which we have present-
ed. The advantage of clarity does not make up for these dis-
advantages.

5. PROPERTIES OF OPERATORS OTHER THAN
HAMILTONIANS

A criterion based on the behavior of the magnetic mo-
ments of operators other than H follows from the absence of
selection rules for operators in a quantum chaotic system,
which was pointed out by Percival.”'

C1. If the motion of a classical system in a given energy
region is regular (quasiperiodic), the matrix elements 4,,,

of the ‘‘good” operator 2, calculated between the eigen-
functions ¢, and ¥, of states with energies belonging to this
region, and zero—except for a few combinations of m and n.
If the classical motion is highly stochastic, then we have
A,,. =0 for nearly all states, and the values of 4,,, vary
randomly with m and n. #

Criterion Cl1s adirect corollary of B2 (if 4 is the opera-
tor which projects onto one of the states of the basis {(p},
then C1 is the same as B2). However, C1 is more closely
related to experimental data. The concept of a good operator
includes, for example, polynomials of p, and g, in particu-
lar, the dipole moment d = eq. The intensities of lines in the
emission spectrum can be used to learn about the magni-
tudes of the dipole-moment matrix elements. At the transi-
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tion from the regular motion to stochastic motion, many
lines, with an irregularly varying intensity, appear in the
emission spectrum. This conclusion was supported by nu-
merical calculations®' for a nonlinear oscillator (Fig. 17).

One of the corollaries of C1 which were found in Ref.
165 is the conclusion that the temporal fluctuations of the
expectation Xalues {A(?)) of operators which do not com-
mute with A are small in the stochastic region. Peres'®*
traced the transition from a regular behavior to a random
behavior of the diagonal matrix elements of a simple opera-
tor as the degree of stochastic nature of the classical motion
was varied. Similar properties have been found for the
Green’s function G,,,,,, where m and n are the indices of the
basis functions.'®® The distribution of the matrix elements,
W(A), was studied in Ref. 148. In agreement with C1, this
distribution has asharp peak at A = Qin the region of regular
motion. This peak spreads out as the system goes into the
region of stochastic motion.

It was suggested in Ref. 115 that the inequalities
|4, | €14, |5 |4, | hold for chaotic states #,, and #, which
are nearly equal in energy and for nearly any operators A.
This suggestion has yet to be verified.

Criterion C1 is so far only qualitative, since parameter
values which would make it possible to describe the extent to
which a given set of matrix elements are chaotic have not yet
been established.

6. PROPERTIES OF NONSTATIONARY STATES

Important information on the properties of quantum
chaotic states emerges from a study of the evolution of non-
stationary states: wave packets. A wave packet localized in a
small region of phase space (Ap;Ag, ~#) is a close analog of
a point in phase space which describes the state of a system in
the classical theory.

In a classical system, a continuous power spectrum of
the dynamic variables arises in the transition from a regular
motion to a stochastic one. This continuous spectrum causes
a damping of correlations. This is not the case for a quantum
system with a discrete energy spectrum. Any state W(0) in
such a system exhibits a quasiperiodic behavior’: For any
small 8, one can find a return time (recurrence time) ¢, (&)
such that at the time ¢, the system returns to its original

state within an error better than é:
1— (¥ (tw) | ¥ (0)) | <8, (6.1)

It is true that this quasiperiodicity is largely formal in na-
ture. The return times become exceedingly long for complex

J“ 1l

w b w

FIG. 17. The emission spectrum I{w) of quantum chaotic systems in (a)
regular and (b) chaotic states.

P. V. Elyutin 611

RO



packets. One estimate was given in Ref. 99 for a packet of the
type

C
¥ (t) =011ﬁ Z ¢n (q) e_im“t' 1

n=1

(6.2)

which consists of C stationary states ¥, with equal weights.
In this case the return time is, in order of magnitude,

Ly (8) ~ (w)~t 812 (%)0/2, (6.3)

where
o= (CtY o)z

n
is the mean square frequency, and ¥ is a constant of the order
of unity {y = 2mexp( — 1) = 2.31]. For the example with
§=0.1,C=50and @ = 10" s, the return time turns out
tobe t,, (8) ~ 10'*—longer than the age of the universe. Sim-
ilar estimates were found in Refs. 111 and 212.

The only return times which are of interest in practice
are those which lie inside the region of applicability of the
model of a Hamiltonian system with few degrees of freedom,
with ¢, 37, where 7 is the relaxation time. This condition
imposes a restriction on the values of C for which recur-
rences can be observed. Specifically, these values must be a
few units. Under the conditions of the numerical example
given above, we would have C<1.46l g(w7). A packet con-
sisting of a sufficiently large number of stationary states may
thus evolve in an essentially irreversible way over time inter-
vals of physical interest.

A consequence of the quasiperiodic nature of the evolu-
tion of states for systems with a discrete spectrum is quasi-
periodicity of the entropy® and of coarse observables.>'”
However, no estimates of the recurrence times 7, (8) of the
values of the observables 4 (p, q) are available. On the basis
of general considerations, we would expect that the times
t,(8) might be much shorter than the return times for the
state, ¢, (8).

The quantum chaos criteria can be based on the proper-
ties of the motion of wave packets over time intervals small
in comparison with ¢, . Packets which occupy a small vol-
ume in phase space are made up in the case #i<1 of many
eigenfunctions of the Hamiltonian- C> 1. Such criteria ac-
cordingly use the second of the alternatives in Subsection
2.1—that which assigns quantum chaos to a group of states.

6.1. Autocorrelation function of a wave packet

Brumer and Shapiro®™ have pointed that a packet auto-
correlation function

P)y=1(¥@®)1¥©O))2 (6.4)

can be used to establish a criterion for quantum chaos. The
behavior of P(¢) has been studied in most detail for a Gaus-
sian wave packet: a state with the wave functions
2
1 1 —Ne b~
¥ (qy, 12, 0) =V 'H1 exp [_Eﬁ (01— 0:)* + =5 pid :} .
1=

(6.5)

We will call the phase-space point with the coordinates ( p,,
P~ G, §-) the “center of the packet.” The form of the wave
functions in (6.5) was not chosen at random. In the first
place, such a packet can be prepared experimentally (e.g., in
molecules, in the course of electronic transitions from a vi-
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brational ground state®”). Second, it is specificaily the form
(6.5), which is responsible for the minimum in the product
Ap;Ag;. The autocorrelation function of a Gaussian packet
was studied in Ref. 56 for a Henon-Heiles model with
#~' = 80. It turned out that even if the initial packet had
comparatively large phase-space dimensions the behavior of
the autocorrelation function would differ sharply depending
on whether the center of the packet belonged to aregularora
stochastic region (Fig. 18).

D1. The autocorrelation function P(t) of a Gaussian
wave packet (a) exhibits pronounced fluctuations of a
damped-recurrence type if the center of the packet belongs
to a region dominated by regular paths or (b) has small,
irregular fluctuations if the center belongs to a stochastic
component. #

These conclusions were confirmed in Refs. 74 and 102.
A qualitative analysis revealed how the functional depend-
ence P(t) in the regular region depends on the ratio of fre-
quencies of the quasiperiodic motion for paths on which the
center of the packet lies. The difference in the time evolu-
tions of Gaussian packets in a quantum system and their
classical analogs—Gaussian density distributions in phase
space—was studied in Ref. 144.

Completely different results are found in the initial
shape of the packet is specified by an expansion

¥ (qr O) == 2 an¥, (q),

where ¢, are the eigenfunctions of the Hamiltonian I/}, and
the a, are a set of coefficients which either depend on E'in a
regular way>*'® or are random.”* This case, however, is of
little interest from the physical standpoint. First, as was

shown in Ref. 93, for a quantum chaotic system a packet of

(6.6)

A‘ P

b

FIG. 18. Behavior of the autocorrelation function of the wave packet,
P(t). a—The center of the packet belongs to a regular region; b—the
center of the packet belongs to a stochastic region.

P. V. Elyutin 612




the type in (6.6) with a regular envelope ¢, = a(E,,) has, at
values of E in the region a pronounced stochastic behavior,
an extremely complex, pseudorandom density distribution
in configuration space p(q) = |¢(q)|*. In a sense, it is al-
ready in a chaotic state. Second, no method is known for
preparing states of the type in (6.6) experimentally.

6.2. Transition of a packet into another state

Additional information about the properties of quan-
tum chaotic states can be found by examining the evolution
of the overlap of a Gaussian packet with states ® which dif-
fer from W (0). One aspect of this problem was first taken up
in Ref. 48, where it was shown that the time average of the
overlap of states ® and ¥,

P(¥ Q)= lim (5 { [ (¥ () @O 12dr),

o

(6.7)

will differ depending on whether @ is taken to be the initial
state of the packet, ¥ (0), or the function ¥’ = RW¥(0),
which is found from W(0) by using one of the symmetry
operations R which leave the Hamiltonian invariant:

P(¥|¥)>P(¥|RY). (6.8)

Inequality (6.8) means that there is no ergodic behavior
(equality of time averages and averages over phase space)
for the motion of a packet in a quantum system with symme-
try also in the case in which the classical system is ergodic.
The time evolution of the transitions of packet (6.5) between
given regions of phase space was also studied in Ref. 60.
Stationary states ¥, (q) were studied in the role of ¢ in
Refs. 57, 58, and 92. In this case the overlap probabilities

Po=1(¥(q, & | ¥, (@)1

will be constant over time (Fig. 19). The following criterion
has been proposed:

D2. For a Gaussian wave packet, the overlap coeffi-
cients p, exhibit the following behavior as # varies: a) They
vary markedly and nonmonotonically if the packet belongs
to a region of regular motion; b) they vary only slightly, and
the variation is monotonic, if the packet belongs to a region
of stochastic motion. #

Criterion D2 is similar to D1, since it presents informa-
tion on the behavior of the autocorrelation function P(t)
expressed in spectral language:

(6.9)

oo
S((O)z—;?t— \ P([) elol df — Z\Pna((ﬂ’_(ﬂn)- (610)

-

The spectrum S(w), which contains several strong lines,
leads to pronounced recurrences of P(¢), while for a dense
spectrum of a random motion the fluctuations in P(r) are
small.

As a measure of the complexity of the sequence p,,, the
following entropy has been proposed®*'”":

S=—-2pnlnp,,.
n

The quantity .S, however, tells us about the complexity of the
packet, not about the behavior of p, as a function of n. Fur-
thermore, the assumption that p, varies slowly does not
agree well with the results of Refs. 183 and 214, where the
specificity of the composition of a Gaussian packet in an
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FIG. 19. Presumed form of the overlap coefficients p, for a Gaussian
packet in (a) a regular region and (b) a stochastic region.

a

ergodic quantum chaotic system (in a stadium billiard) was
established. It was shown in those studies that a packet
which executes a motion along the normal to rectilinear sec-
tions of a boundary at small values of f consists primarily of
the wave functions ¢, (q) of a pseudoregular stucture (Sub-
section 4.2). On the whole, criterion D2 does not seem to
have a really convincing foundation, and it has no apparent
advantages over D1.

A different approach to a description of the transition of
a Gaussian packet into other states was proposed in Ref. 117.
For a state whose initial form is (6.5), the parameter

2
Q) -—-{LL Ag; (1) Aps (t)s (6.11)

is calculated, where Az(¢) is the mean square deviation of Z
from its expectation value at the time ¢. The quantity {) may
be thought of as a coarse phase volume occupied by a Gaus-
sian packet at the time ¢. Here is the corresponding criterion:

D3. The coarse phase volume £(¢) increases much
more rapidly in a stochastic region than in a regular region.
#

The numerical calculations carried out in Ref. 117 sup-
port D3 for the Henon-Heiles model on a small time interval
(£<30, i.e., about five periods).

6.3. Stability of the evolution of packets

The evolution of wave packets consisting of eigenfunc-
tions of a Hamiltonian H was studied above. How the nature
of this evolution changes when a small perturbation is im-
posed on the system was studied in Ref. 166, where a system
with a Hamiltonian H' = H + V was studied along with H.
Used as a parameter was the quantity

Ry ) =1{¥x ()| ¥u (t)) |2 (6.12)

where ¥, (¢) and ¥, (¢) are solutions of Schrodinger equa-
tions with the respective Hamiltonians H and H ' and with an
identical initial condition W(0). The assumption that the
behavior of the quantity R, (¢) is different in regular and
stochastic cases is based on the circumstance that a pertur-
bation ¥ mixes the wave functions of many states in the ini-
tial packet, since there are no selection rules in a quantum
chaotic system. Being richer in spectral composition, R, (¢)
will fluctuate less.

D4. For a given ¥, the expectation value {(R(¢)) will be
greater, and the fluctuations in R(¢) more pronounced, for a
state which belongs to a regular region than for a state which
belongs to a stochastic region. #
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This criterion has been verified at a qualitative level by
calculations for a model of rotators with nonlinear coupling.

Analysis of the evolution of wave packets is a method
which is sensitive enough to establish not only the difference
in the properties of quantum regular systems and quantum
chaotic systems but also the structure of different regions in
the phase space of a quantum chaotic system in a narrow
energy interval, The information obtained by this approach
complements the concept (Section 4) of the structure of the
wave functions of stationary states of a quantum chaotic sys-
tem. On the other hand, a study of nonstationary states also
involves a second aspect of the quantum chaos problem:
comparing the dynamics of classical and quantum systems
with identical Hamiltonians.

7. QUANTUM CHAOS IN NONAUTONOMOUS SYSTEMS

Nonautonomous systems with a single degree of free-
dom and a periodic perturbation

where f(t) =f(t+ T) and T = 27/w, are extremely con-
venient models for studying the appearance and develop-
ment of stochastic motion. In the classical theory, one can
distinguish three problems:

1) The motion in the stochastic layer near the separa-
trix of an isolated nonlinear resonance (Chapter 5 in Ref.
129 §3.5 in Ref. 130).

2) The stochastic motion which arises upon the overlap
of two nonlinear resonances (§4.5 in Ref. 130).

3) The transition to a global stochastic motion which
arises upon the overlap of an infinite number of resonances
which span an unbounded region of the action variable (§4.2
in Ref. 129 and Chapter 4 in Ref. 130).

These problems also have analogs in quantum theory.

For systems with a Hamiltonian which is periodic in
time, as in (7.1), there exists a complete set of quasienergy
states: solutions of the Schrodinger equation which are of the
form

Ve (g, )=exp { — i) 9 (0. 9), (7.2)

where ¢, (¢,t) = ¢.(g,t + T) and € is the “quasienergy.”"®
The quasienergies € and the quasienergy wave functions ¢,
are largely similar to the energy spectrum and eigenfunc-
tions of autonomous Hamiltonian systems. In particular, the
discrete nature of the quasienergy spectrum means that the
evolution of an arbitrary state ¥ (g,0) will be quasiperiodic.
It also rules out an unbounded growth of the action and
energy variable.”>'"!

The establishment of the fact that the quasienergy spec-
trum is discrete would make it possible to extend to the case
of nonautonomous quantum systems the criteria which were
formulated in Sections 3-6 for autonomous systems. The
first two of the problems listed above can be examined in
models with a Hamiltonian H which has a finite number of
levels of a discrete spectrum; the effect is to guarantee that
the quasienergy spectrum will be discrete. For models which
allow formulation of the third problem, the nature of the
quasienergy spectrum is known only in particular cases.

The chaotic properties of nonautonomous quantum
systems with a periodic perturbation have been the subject of
comparatively few studies. The existence of a motion with
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mixing in such systems was originally observed in Refs. 109
and 125; it was studied for various models in Refs. 152, 162,
and 225. A continuous power spectrum and a damping of
correlations are apparently exhibited even by a very simple
and by no means semiclassical system: a two-level atom in a
bichromatic field.?* In the balance of this section of the re-
view we will consider only systems with a periodic perturba-
tion.

7.1 Nonlinear quantum resonance

For a slightly anharmonic system (a nonlinear oscilla-
tor), whose spectrum can be represented locally as

E,=hoy(n+pr?)  (n>1, |Bl < 1), (7.3)

a nonlinear quantum resonance consists of an approximate
agreement of the frequency w of the field which is acting on
the system and one of the transition frequencies in the sys-
tem:

dE,

On = =0y (1 4-2Bn). (7.4)

The condition @, = @ determines the resonance level r. The
properties of quasienergy states of an anharmonic oscillator
(7.3) in the presence of a resonance of this sort, for a model
with a perturbation of the form

Vv (g, )= vA(q) coS f, (7.5)

were first studied by Berman and Zaslavsky.** In a system of
this sort, there can be a packet, localized in energy space,
consisting of states which have been captured into a nonlin-
ear quantum resonance.” If the perturbation ¥ has nonzero
matrix elements v,,, = v, = const only for transitions be-
tween neighboring levels, n and n 4 1, one can determine the
form of the quasienergy solutions by reducing the problem to
aone-dimensional Schrodinger equation in the energy repre-
sentation.”” There exist about (v,/3)'’? different solutions
@. (n,t) which are localized near the resonance, i.e., which
are made up of functions with indices close to ». The number
(C) of levels which contribute substantially to these states
(which are captured into the nonlinear resonance) ranges
from a minumum C,;, ~ (v,/83)''* (Ref. 128) to a maxi-
mum C,,, ~ (v,/3)"? (Ref. 32).

The solutions which have been studied to date corre-
spond to a regular motion of the classical system within a
resonance, far from the separatrix. The solutions which cor-
respond to a motion near the separatrix—and only here is
there stochastic motion in a classical system—have essen-
tially escaped study. The one attempt which has been made
in this direction has been that by Petrosky and Schieve.'”’

7.2 Interaction of nonlinear quantum resonances

The problem of the interaction of nonlinear quantum
resonances is conveniently studied using a two-resonance
model, whose Hamiltonian can be written as follows in terms
of action-angle variables:

H:—zl—;—+¥’[cos (04 v1) + cos (6 — v1)) (7.6)

(below we assumeJ = 1 and v = 1). Hamiltonian (7.6) also
comes under study in the problem of the behavior of a slight-
ly anharmonic system asin (7.3) when subjected to a bichro-
matic perturbation.®® The degree of interaction of the reson-
ances is determined by the dimensionless parameter
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s =2(¥)""? [in the original units, s = 2( ¥ /Jv*)"/?]. In the
classical theory, the stochastic layers near the separatrix of
the main resonances [w(])= 4+ 1] overlap at
s = 5 = 0.70. In the region of an overlap of resonances, nu-
merical calculations have been carried out to study the fol-
lowing topics for the system (7.6):

1) The spreading of packets prepared from the station-
ary states localized between resonances.®®%

2) The behavior of the correlation functions of the coef-
ficients in the expansion

WO, t)y=2 A, (1) e*? (1.7)

and the nature of the damping of the correlations for various
values of s (Refs. 66, 84, and 194).

3) The power spectrum of a two-resonance system.

Qualitatively, the results of these studies reduce to the
assertion that the dynamics of a quantum system becomes
increasingly complex as nonlinear quantum resonances
overlap. This conclusion also follows, in a natural way, from
the correspondence principle. Quantitative characteristics
of the degree of complexity have not been established. Corre-
sponding results were found in Ref. 223 for an interaction of
resonances in another model (a particle between rigid walls,
with a sinusoidal field as perturbation).

A qualitative feature of a quantum two-resonance sys-
tem is the possibility of a transition from a state which is
localized near one resonance to the vicinity of the other as
the result of a tunneling through a separatrix: a process
which involves a large number (on the order of 2/#) of
quanta of the external field. This process is possible at any
5 <S¢, although it is improbable. The transition probability
is exponentially small; at s <1, it is

W~exp[—%(1_,%) 1n%].

84,106

(7.8)

The ratio of the probability densities near the first and sec-
ond resonances is of the same order of magnitude. A tunnel-
ing between resonances under the condition s & s has been
observed?"® in numerical calculations.

7.3 Quantum rotator with jolts

The particular features of the evolution of a nonautono-
mous quantum system in the transition of its classical analog
to a global stochastic motion have been studied in most de-
tail for the model of a rotator with jolts (Subsection 1.3.3).
There are basically three such features: a limitation of the
diffusive energy growth by the finite time interval; the possi-
bility of an unbounded growth of the energy in the absence of
a classical global stochastic behavior, if the parameters are
chosen in a special way; and an instability of a regime of
accelerating modes in the quantum case.

7.3.1. Limitation on the energy growth. Numerical cal-
culations on the time evolution of a standard quantum rota-
tor with jolts,

H=+1I* - Kcosb-8 (), (7.9)
which were first carried out in Refs. 36 and 46, have shown
that the energy growth (E ) ~ ¢ which is characteristic of the
classical system occurs in the quantum system only on the
limited time interval 1< 7,: At t~7,, the rate of diffusion
among levels decreases, while at 7> ~, the growth in the ener-
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gy comes to an essentially complete halt (Fig. 20). An esti-
mate of the time taken for the transition from the classical
regime to the quantum regime,*

K\2

T A (T)

has been confirmed satisfactorily by numerical calcula-
tions'?’ for the interval 5<X /#<100. Expression (7.10) re-
ferstothe case K> 1. Near the threshold for a global stochas-
tic behavior, at KS K. = 0.9716, the transition time is
7,~# "7 in order of magnitude, where y = 3.04 (Ref. 150).
A quantum kinetic equation for systems with jolts was stud-
ied in Refs. 40 and 44. In general, the correlation functions of
the dynamic quantities for a standard quantum rotator with
jolts fall off no more rapidly than a power law’™:
B(r)Z(K/®)~ "2 A corresponding result was found in
Ref. 83 for a system with a slight nonlinearity subjected to a
pulsed perturbation. The question of saturation of the
growth of E is still open: In the numerical calculations of
Ref. 146, the tendency toward a slow growth of £ (against
the background of intense fluctuations) persists up to the
longest times which were studied, ¢ ~ 10",

7.3.2. Global quantum resonance. The very first stud-
ies’**® found a superdiffusive growth of the energy of a stan-
dard quantum rotator with jolts. This phenomenon has sub-
sequently been studied in detail®*'**:

(7.10)

E (1) ~ nt*. (7.11)

This growth arises under the global resonance condtion
#i= 47 (b /a), where ¢ and b are mutually simple integers.
Such a value of # makes the energy of the excitation quan-
tum, fiw = #-27, commensurable with any distances be-
tween the  energy levels of the  rotator,
E,=#n"/2J =#n"/2. It also gives rise to a continuous
quasienergy spectrum. The value of the coefficient 7 in
(7.11) depends on both the value of K and the order of the
resonance, a. The estimates

(£ (e ).

(a>>£h) n~x0.2a (—(%)2

(7.12)

<E>

g T, t

FIG. 20. Growth over time of the average energy in the model of a stan-
dard quantum rotator with jolts. |—According to the classical theory;
2—according to numerical calculations.'”*
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found in Ref. 52, have been supported by numerical calcula-
tions. > !3¥

A global quantum resonance in a standard quantum
rotator with jolts sets the stage for an unbounded growth of
the energy of the system even in the case K < K_,i.e.,inacase
such that the energy of the classical system can vary over
only a restricted interval. However, a global quantum reso-
nance is a specific property of system (7.9), associated with
the exact multiplicity of all the level spacings. A very simple
example of global quantum resonance is the unbounded
growth in the energy of a linear oscillator in a resonant
field.'® The same property is exhibited by a model with a
spectrum which is equidistant but not bounded from below;
this model was studied in Ref. 133. These examples show
that a global quantum resonance is also possible for regular
systems, so it is not related to the quantum chaos problem.

7.3.3 Tunneling from accelerating modes. Under the
condition KR 2, a growth of the action which is linear in
the time (|/ | = Kt) and a growth of the energy which is qua-
dratic in the time ({(E )=~ (Kt)>/2) arise in the classical
model of a standard rotator with jolts under special initial
conditions (/,=0, 6,~ + 7/2). This motion regime, which
is stable with respect to small perturbations, is called ‘*‘mo-
tion in an accelerating mode.” Farrelly'*” has shown that in
the quantum model the tunneling through a separatrix from
an accelerating mode into other states leads to a decrease in
the probability for being in the accelerating mode, P, (¢),in
accordance with

P,(t)=P,(0)e-v. y=exp (__i(&) .

< (7.13)

7.4. Relationship with the Anderson localization theory

The saturation of the energy growth in the model of a
standard quantum rotator with jolts forces the assumption
that in the absence of a global quantum resonance the
quasienergy spectrum of this model is discrete, and all the
quasienergy states are localized in the H, representation; i.e.,
their amplitudes fall off exponentially outside a certain
range of values n. This circumstance can be illustrated by an
analogy, pointed out in Refs. 86 and 87, with Anderson lo-
calization in one-dimensional chains.”

Localization is the appearance of a discrete spectrum
for a quantum system which represents a particle in a ran-
dom potential U(q), which fills an infinite region of space.
The possibility of such a localization was pointed out by
Anderson” for a strong-coupling model [a particle on a lat-
tice with random node energies E,, which are distributed in a
known way, with a characteristic distribution width # and
constant matrix elements for the transition (¥) between
neighboring nodes . In a one-dimensional chain of this sort,
all the states are localized if there are any (arbitrarily slight)
disorder (a small value of W /V).* The theory of Anderson
localization has been the subject of the reviews of Refs. 26,
39.

We denote by @ (8) half the sum of the values of the
periodic part of the quasienergy solution for a quantum rota-
tor with jolts respectively before and after a jolt:

¢(0) =3 [q (0, - 0)+ 06, +O).

The Fourier amplitudes u,— the amplitudes of @(0) in the
H, representation—

(7.14)
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tn =g | $(8) e~ d0 (7.15)

satisfy the equation
v —

Toun+ 2o Untinsn = Eun, (7.16)
where

Uy=U,= U@ er0ds, UE®)=—tgErO

[ hm?2 = y
Tn=tg (gr—"5)» E=U, (1.17)

Equation (7.16) may be interpreted as an equation for the
amplitudes of the wave functions in the strong-coupling ap-
proximation in a one-dimensional chain with node energies
T,, and amatrix element U, fora transition to the k th neigh-
bor. The theory of Anderson localization deals with models
with random T,,. In Eq. (7.16), the T, are pseudorandom,
although in many regards they are similar to the values
which would be obtained from a random-number gener-
ator.'®!

In the absence of a global resonance, with an irrational
#/2m, the values of the “‘energies’! T, at the nodes have
Cauchy distribution

1
W (T) =gy (7.18)

For model (7.16), with a distribution of this type for the
diagonal matrix elements, and with a transition matrix ele-
ment which is nonzero only for nearest neighbors,

Up=nb4,4 (7.19)

(the so-called Lloyd model'?), an explicit expression is
available for the localization index ¥ (E,x), which deter-
mines the rate of the exponential decay of the wave function
at large distances'®:

v == Arch [—,17 ((E 4+ )2+ 112+ (E— )2 + 111/2}].
(7.20)

If v(8) is chosen in a special way, one can satisfy (7.19) ina
model of a rotator with jolts. Expression (7.20) then gives a
satisfactory description of the decay law which has been
found in a numerical simulation for the wave functions in the
1, representation (Refs. 89 and 90; see Fig. 21 of the present
paper). The case of a discontinuous v(8) leads to a long-
range interaction among nodes (|U, |>const-|k|~'), a de-

5rnR,
0 t-
-5+
=10 11 L L
g 5 0 n 15

FIG. 21. The normalized amplitude R, = |Reu, u%| of a quasienergy state
in the model of a quantum rotator with jolts as a function of n. Straight
line—Theoretical; broken line—connects the points found by numerical
calculation *”
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localization of states, and an unbounded growth in the ener-
gy of the rotator.'** In the case ¥ € 1, the localization index is
related to the classical diffusion coefficient D, by'**??’
y=2#/D. This relation has been supported by numerical
calculations. The structure of a wave function in the case of a
global resonance was studied in Ref. 181.

Although the analogy between a quantum rotator with
jolts and one-dimensional chains is not mathematically rig-
orous (certain aspects of it, associated with the specific dif-
ferences between quasienergies and energies, are discussed
in Ref. 146), and although we do not have a rigorous proof
that the spectrum is discrete (certain limitations on the na-
ture of the spectrum were established in Refs. 143 and 178),
essentially all the available data provide evidence in favor of
a discrete nature of the quasienergy spectrum in the model of
a standard quantum rotator with jolts in the absence of a
global resonance.

Feingold et al.'®” have studied the statistics of the qua-
sienergy levels of this system. They showed that the distribu-
tion function of the level spacings P(S), does not generally
exhibit level repulsion; it is similar to a Poisson distribution
function, as in the case of the Anderson model. In the case of
global resonance, under the auxiliary condition of periodic-
ity in I, the level statistics change from Poisson to Wigner.”"’
A corresponding transition for another model (an infinitely
deep potential well whose width varies periodically) was es-
tablished in Ref. 218.

7.5 Stochastic ionization and quantum effects

Of major interest from the standpoint of the possibility
of comparing the conclusions of the quantum chaos theory
with experiment is the problem of the behavior of the hydro-
gen atom in a monochromatic external field. Such a system is
described by the Hamiltonian

H::%pz—%-}-ézcoswt (7.21)

(in this section, we are using a system of units with e, #,
m = 1). The possibility of treating a highly excited hydro-
gen atom (with a principal quantum number 7> 1) as a clas-
sical system, and of treating the process of ionization in a
field of frequency @ €n~” as a consequence of a diffusion
among energy levels (in the action variable I = n#), was
first pointed out by Leopold and Percival.*” This approach
has been taken in many studies (see the review by Delone
et al.'"?).

Many important features of (7.21) are retained in the
simpler system in which H,, has a single degree of freedom:

H=% pi—st€zcosor  (s0). (7.22)

Such a model can describe the evolution of system (7.21) if
the initial state has parabolic quantum numbers, n, > n,~ 1,
m=0.

The classical theory predicts that for the system
(7.22), at a value of the field #" exceeding the critical value
AP

103,159

éE ~ % nylw1/s (7.23)

(n, is the principal quantum number of the initial state),
diffusion among levels arises, with a coeflicient which de-
pends on n:
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D ~ 2€2n3w77/3.

(7.24)

This diffusion leads to ionization of the atom over a time of
the order of 7, ~ (n2D) ™' [expressions (7.23) and (7.24)
were derived under the assumption ;)Ea)ﬂé} 1]. The time
restriction which arises in quantum mechanics on the appli-
cability of the classical evolution laws of expectation values
(Subsection 2.2) naturally suggests the following question:
Under what conditions can the ionization process in model
(7.22) be described by the classical theory? The question of
the quantum corrections to stochastic ionization was posed
in Ref. 97.

At a qualitative level the situation is clear. On the one
hand, diffusion among levels is possible in the system de-
scribed here (under the condition @>1) if the amplitude of
the alternating field, &, exceeds the quantum localization
threshold'42"*

(7.25)

Eq~ 0,407/,

On the other hand, in a system of this type ionization is
possible in the quantum case, first, because of direct multi-
photon transitions to the continuum and, second, because of
multiphoton transitions from n, to states with » large
enough to ensure global stochastic nature and subsequent
classical ionization (see ‘“‘tunneling through a separatrix” in
Subsection 7.2). The role played by multiphoton transitions
in the time evolution of the ionization of system (7.22) was
studied in Refs. 142, 176, and 192. Depending on the partic-
ular combination of parameter values, the dominant ioniza-
tion mechanism may be either diffusion among levels
(which is amenable to a classical description) or purely
quantum excitation mechanisms.

The first experimental data on the excitation by a mi-
crowave field of hydrogen atoms polarized by an auxiliary
static electric field & ¢ (with the result that the geometry of
the motion of the electron is effectively one-dimensional)
were obtained by Bayfield and Pinnaduwage'’’ in 1984,
With the parameter values 7, = 60, @ = 0.19 — 0.26 and
% 2 10% ., the distribution among levels of the atoms excit-
ed by the field over a time T'=3.7-10" 7 s is of a smooth,
nonresonant nature. This circumstance has been discussed
as an indication of diffusion among levels. The ionization
threshold differs by a factor of two from that found in the
classical approach: The discrepancy can be attributed to a
contribution from four- and five-photon transitions.'’® Sub-
sequent experiments by Van Leeuwen et al.?"" (n, = 32-74,
@ = 0.05-0.6; ¥ 2 10%, revealed that the ionization thresh-
old (corresponding to the ionization of 10% of the atoms
over a fixed time) agrees well with results calculated on the
basis of the classical model.'*® This agreement can be ex-
plained in terms of proximity of the thresholds for global
classical stochastic behavior and for substantial delocaliza-
tion of the quasienergy wave functions under the conditions
of such experiments.”” For other values of the parameters,
quantum effects may be important.

Another entity which can be described by the Hamilto-
nian (7.22) is an electron above the surface of liquid heli-
um’* in an alternating field. The possibility of using such a
system to study quantum chaos was pointed out in Ref. 97.
The behvaior of an electron above the surface of liquid heli-
umﬁuring pulsed excitation [the cos wfin (7.22) is replaced
by 8(¢)] was studied theoretically in Refs. 137 and 138. An
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additional feature here—not found in the case of the hydro-
gen atom—is the possibility of imposing a static electric field
[adding a term ¥V, = & ;z) to the Hamiltonian (7.22)] to
squeeze the electron toward the surface and to limit the pos-
sibility of ionization. Classical and quantum calculations on
the properties of such a system were carried out in Refs. 132
and 173. It was shown that in the region of parameter values
accessible experimentally some nonlinear resonances may
appear, spanning a large number of levels (C~ 10%). This
circumstance would make it possible to study the properties
of quantum chaos in a highly semiclassical regime. Corre-
sponding experiments, however, have yet to be carried out.

8. CONCLUSION. THE NEXT PROBLEMS

The quantum chaos problem is far from being exhaust-
ed. The number () of papers on this problem which are
published per year has been increasing in accordance with
N~exp(At), where 2 = 0.23 yr™, since this problem was
formulated. Such a value of 4 is much larger than the growth
index of the entire number of scientific publications
(4 =0.046 yr~'; Ref. 10), but it is close to the growth index
of the cheapness of computer calculations (4 = 0.25 yr™/;
Ref. 172). This circumstance is not surprising: Many of the
studies (about 70% of those cited in this review) have been
devoted to numerical “‘experiments” on quantum chaotic
systems. The rapid accumulation of numerical data is of a
basically extensive nature (new models of quantum chaotic
systems are always being studied), and to some extent it is
depreciated by the way in which the results are most com-
monly presented—in a way which is appealing to the eye and
which shows only qualitative characteristics. Suffice it to say
that up to 1985 the papers on the quantum chaos problem
did not use statistical criteria to test hypotheses: The y * test
was first used in the context of this problem in Refs. 180 and
201. The very next problem should thus be to make the tran-
sition from a qualitative to a quantitative description of the
properties of quantum chaotic systems. Making this transi-
tion will require answering the following question:

8.1. What parameters describe quantum chaos?

Further progress in numerical research on the proper-
ties of quantum chaotic systems requires introducing good
parameters. As an example, we can cite the distribution of
level spacings P(S), which is the characteristic of the spec-
trum of quantum chaotic systems which has been studied in
most detail. Under the condition ¢ 5 1 the parameters, 5, p,,
and a (Subsection 3.2.1) correlate well with that fraction
(z2) of the phase space which is occupied by stochastic paths.
In no case, however, it is possible to establish a functional
relationship £(x), since these quantities are found by com-
paring P(S) with the functions of a certain family, while the
question of whether P(.S) belongs to this family has not been
solved. *

For a hypothesis-free parametrization of P(.S), we need
a quantity which should be (1) an inherent characteristic of
the array of numerical values of the energy levels, (2) of an
integrated nature and amenable to highly accurate calcula-
tions at the existing sizes of the series, . /7, and (3) sensitive
to level repulsion.

Using the moments

M, =\ §"P(S)dsS,
St R (8.1)
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as parameters of P(.S), as proposed in Refs. 131, 167, and
191, is ineffective. The moments meet the first of these re-
quirements completely; with some labor they meet the sec-
ond (since the M,,, especially the higher ones, up to M, in
Ref. 191, are determined by the maximum values of S, which
are of a fluctuating nature); but they fail completely to satis-
fy the third requirement.

These requirements are met best by the quantity A,
which is defined for a given P(S) by

A={Ins-P(s)ds+c.
0

(8.2)

There is a similarity between A and the parameter Q(#) in
statistical spectrum theory.”? The Euler constant
C = 0.5772 has been added to the right side of (8.2) to gen-
erate A =0 in the case of a Poisson distribution. For a
Wigner distribution we would have A =0.409. At
" = 500, the quantity A is determined within an absolute
error AA S 1072 By way of comparison, the Brody param-
eter B at the same vlaue of 4" is calculated within an error
larger by an order of magnitude.'*3-2%

The problem of parametrizing the properties of wave
functions has not been solved. As was mentioned back in
Section 4, the complexity C, is insufficient to describe the
properties of the eigenfunctions 3, : We still need a charac-
teristic of the degree of randomness of the coefficients a,,, .
The situation is the same with regard to the parametrization
of the properties of the matrix elements of arbitrary opera-
tors and the evolution of wave packets.

Clearly, until some good parameters are established in
these approaches we will also be unable to speak in terms of
the identification of a quantitative relationship between
quantum chaos and classical stochastic nature. Along the
approach to the quantum chaos problem, which has been
pursued to the greatest extent so far, and which starts from a
study of the structure of the energy spectrum, where the
parameters have been determined in one way or another, the
next question to be taken up is the following:

8.2. Is the model of a Gaussian orthogonal ensemble
universal?

As was shown back in Section 3, many numerical calcu-
lations confirm that the spectral properties of highly sto-
chastic quantum chaotic systems are approximately the
same as those of the matrices of a Gaussian orthogonal en-
semble. On the other hand, there are counterexamples,
which prevent us from concluding that this approximate
agreement is a universal property of quantum chaotic sys-
tems.

Another question which is not completely clear is that
of the structure of the spectrum of a hydrogen atom in a
strong magnetic field 5°. The dependence E, (.%") which
was found in Ref. 65 for the region of stochastic classical
motion is a regular pattern of levels with exponentially small
splittings at avoided crossings [A ~exp( — an), where n is
the principal quantum number], similar to the pattern of the
spectrum of integrable systems.**>*” Again in the stochastic
case, the distribution P(.S) here is similar to a Poisson distri-
bution” (Ref. 199). An attempt has been made’ to relate
the sizes of the splittings to the properties of the stochastic
nature of the classical system.

A distribution P(S) with a large peak in the limit §—0
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was found in Ref. 184 for a highly stochastic nonlinear oscil-
lator. That result is based on a misunderstanding: The asser-
tion that P(S) is of a Wigner nature refers to a series of levels
with identical exact quantum numbers. In the construction
of P(S), doubly degenerate states referring to different series
were erroneously taken into account in Ref. 184, However,
any arbitrarily weak perturbation which disrupts the exact
symmetry of the Hamiltonian will lead to a small splitting of
the degenerate levels and will make P(S) double-humped.
The parameters of the stochastic motion of the classical mo-
tion, on the other hand, will not change substantially (Fig.
22).

The possibility of an excess of nearby levels with an
exponentially small splitting, associated with tunneling be-
tween classically isolated regions, was discussed in Ref. 121.

On the other hand, one can cite integrable systems
which are characterized by level repulsion. For example, for
a Hamiltonian with two degrees of freedom,

H= 5+ L+ (14 1)+ 4RI,V (8.3)

(the I, are action variables), the semiclassical spectrum

which is obtained through the substitution I, = n.#i, n, >0, is
2

E (ny, ng) == {ny+ ny + [+ my) 2+ dngd¥3. (8.4)

This spectrum exhibits absolute level repulsion'”":

lim P (S) = 8 (S —1).

-0

(8.5)

These counterexamples show that there is no general
relationship between the shape of P(S) and the stochastic
motion of a classical system. There is a way to combat coun-
terexamples: They have to be made “local” (i.e., made to
contradict individual lemmas of the proof) and eliminated
by adding reservations under the conditions of the
theorem.'' With regard to the problem of the structure of the
energy spectrum of a quantum chaotic system, this approach
poses the problem of determining the conditions under
which criteria A2, A3, and A4 hold. This problem has an-
other aspect, associated with the following question:

8.3.What role does o play in quantum chaos?

It is presently believed that a transition of the spectral
structure of a quantum chaotic system between limiting
shapes is associated with a change in z but not in . The main
argument against a dependence on ¢ is the approximate
agreement between the spectrum of many systems with u =~ 1
and the spectra of Gaussian orthogonal ensembles.?’? There

0 1 2 S

FIG. 22. Sketch of the distribution function of level spacing, P(S), in a
stochastic system when there is a slight violation of a discrete symmetry.
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are two objections to this argument. First, as we have already
mentioned, this approximate agreement is not a general
property of quantum chaotic systems. Second, a change in
the structure of the energy spectrum of a quantum chaotic
system [an increase in the Brody parameter /3 of the P(S)
distribution] has also been seen in a region in which the
classical motion has remained ergodic (z = 1) but the Lya-
punov index o has continued to grow.

Identifying a dependence of the spectral properties of a
quantum chaotic system on o (or proving an independence)
will require studying the spectra of single-parameter families
of ergodic (u = 1) billiards and two-parameter families of
nonlinar oscillators, in which there is the possibility of inde-
pendent variations in 4 and ¢. The model of a standard quan-
tum rotator with jolts is also extremely convenient, under
the further condition of periodicity in 7 (Refs. 181 and 217),
since for it the index o behaves in accordance with o = In(K /
2) at K> | and can be made arbitrarily large. So far, no cal-
culations of this sort have been carried out.

Rk

Research on the quantum chaos problem is presently
concentrated around the large store of data from numerical
calculations on various physical systems. On the whole,
these calculations are mutually consistent. The nature of the
differences between the quantum properties of chaotic and
regular systems (particularly the properties of their energy
spectra) has been established extremely thoroughly by these
calculations. In general, today we have a better understand-
ing of the properties of ergodic systems than of the nature of
the changes in the parameters at the transition from a regu-
lar motion to an ergodic motion. In the future, we can expect
numerical calculations to provide, in adition to a “quantifi-
cation” of the description of the results and progress toward
more semiclassical systems (#< 107 %), an increase in the
activity of research on systems with N> 3 degrees of freedom.

In the theoretical approach, it can be asserted that we
have a qualitative understanding of most of the basic proper-
ties of quantum chaotic systems. Much has been achieved at
the level of semiquantitative estimates, which are in satisfac-
tory agreement with the results of the numerical calcula-
tions. An important role is being played here by the heuristic
aspect of a randomness of the wave functions and matrix
elements of simple operators for highly stochastic systems.
This heuristic aspect makes it possible to invoke the ideas
and methods of the theory of random matrices. A quantita-
tive description, however, especially one based on the first
principles, has so far been developed only for a small number
of isolated parameters of particularly simple models. Mak-
ing further progress in the theoretical description of quan-
tum chaotic systems appears to require a parallel develop-
ment of methods for calculating the characteristics of the
stochastic motion (o and ) in classical systems.

Finally, experimental research on the properties of
quantum chaos lags well behind the numerical and theoreti-
cal work and is essentially still in an initial stage. The diffi-
culties which are being encountered here appear to be tech-
nical ones, but they derive from a fundamental
circumstance: Quantum chaos is an asymptotic property, so
a study of it reduces to determining the quantum character-
istics of systems which are definitely close to being classical
systems. Hence the experimental accuracy must be quite
high. The theoretical work which has already been done sug-
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gests that the efforts of experimentalists in the immediate
future will be concentrated on research on stochastic ioniza-
tion, the dynamics of a system of levitated electrons, and the
properties of highly excited states of atoms in a strong mag-
netic field.

I wish to thank L. V. Keldysh and D. N. Klyshko for
useful discussions and also N. S. Maslov for assistance in the
data support for the present review.

""Up to Subsection 1.3.3 we will consider only autonomous systems for
which the equation dH /8t = 0 holds. Formally, a nonautonomous sys-
tem with & degrees of freedom can be represented as an autonomous
system with N + 1 degrees of freedom (§1.2 in Ref. 130).

>'Here and below, the # means the end of the formulation of a criterion.

YAs a point of curiosity, we note that diagrams of this sort are used in
quantitative art to analyze works of music. In that application, A, is
chosen to be the frequency interval between successive notes.”*' For
works by Bach, the plot looks chaotic.

*"We will be using the abbreviations WF for wave function and EF for
eigenfunction.

Y1t is to be understood here that #(q) can be chosen to be real. For
complex wave functions of systems which are not invariant under time
reversal, an analog of nodal lines would be dislocation points of wave
functions, at which the condition |#(q)| = 0 holds. A growth of the
number of such points with the level index n for quantum chaotic sys-
tems was established in Ref. 211.

“According to Feynman er al.,>* the field-line concept does not contain
the most profound of the principles of electrodynamics: the superposi-
tion principle. With appropriate modifications, this comment also ap-
plies to the i#(q) nodal lines.

"'The problem of the excitation of a nonlinear oscillator from the ground
state to the vicinity of a nonlinear quantum resonance has been studied
in extreme detail.”7=*-30-3738

“'The relationship between stochastic nature of a classical system and
Anderson localization was studied in another context in Ref. 82.

“In a later study™® it was shown that these features disappear as the
system becomes increasingly semiclassical. Calculations with. / ‘2 10"
levels have shown that P(S) makes a transition from a Poisson distribu-
tion to a Wigner distribution. The calculations also reveal agreement of
A, and C(1) in the ergodic limit with the values of the model of a Gaus-
sian orthogonal ensemble.

'"™This result does not contradict position A2-a, since in the limit #—0 the
Hamiltonian (8.3) drops out of the class of systems of the general type.
We might add that a spectrum with property (8.5) was regarded in Ref.
98 as an attribute of a quantum system of an ultimately chaotic nature.
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