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A brief critical analysis of the general theory of relativity shows that its adoption leads to the
abandonment of a number of fundamental principles underlying physics. A relativistic theory of
gravitation is constructed. In it the gravitational field possesses all the attributes of physical fields,
and the theory agrees completely with the fundamental physical principles and also the available
experimental and observational facts. The consequences of the relativistic theory of gravitation,
including, in particular, the development of collapse and the evolution of the universe, are
considered.
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INTRODUCTION

From time to time papers have been published in this
journal presenting different views about the general theory
of relativity (GR).5'45 A detailed critical analysis of these
papers has been given in the specialist journals on theoretical
physics (Refs. 11,12,16-18, 36, and 46). But since the read-
er of Uspekhi has not been precisely informed about our
views, and much of what has been published in Uspekhi on
this question is based either on an insufficiently deep pene-
tration into the essence of the problem of gravitation or on
the desire, come what may, to fit everything into the old
channel of the general theory of relativity, we have felt the
obligation to share our ideas about the development of the
theory of gravitation with the readers of Uspekhi, preceding
this with a critical analysis of the difficulties of GR. Our
position is precisely formulated in the framework of the rela-
tivistic theory of gravitation, which agrees with the known
experimental data and is in complete agreement with general
physical principles; it can be changed only under the pres-
sure of new facts if they are found to be in disagreement
with it.

1. ANALYSIS OF THE BASIC PROPOSITIONS OF THE
GENERAL THEORY OF RELATIVITY

We shall see below that the adoption of the fundamental
conceptions of GR amounts to the abandoning of a number
of fundamental principles that underlie physics. In the first
place there is the abandonment of the conservation laws for
energy, momentum, and angular momentum and (in com-
plete agreement with the equivalence principle) the aban-
donment of the idea of the gravitational field as a physical
field of Faraday-Maxwell type. However, we shall first con-
sider briefly the history of the question.

The discovery by Poincare and Minkowski of the four-
dimensional world gave in principle the possibility of show-
ing that in the general case different frames of reference cor-
respond to different space-time metrics y^v (x) (dependent
on the coordinates x11 of the frame and not necessarily diag-
onal ). For example, in an arbitrary nonertial frame of refer-

ence S' the metric coefficients y'^ are functions of the co-
ordinates x' of this frame, and this leads to the appearance of
an acceleration of a free material particle with respect to S'
and inertia forces which are expressed in terms of the deriva-
tives of first order of the tensor y'^ with respect to the corre-
sponding coordinates. The kinematic nature of the inertia
forces is reflected in the fact that the accelerations "genera-
ted" by them in free material bodies do not depend on the
masses of these bodies. It is well known that gravitational
forces possess the same property, since, as experiments
show, the gravitational mass of a body is equal to its inertial
mass. This circumstance was used by Einstein, who conclud-
ed (Ref. 1, p. 231) that the gravitational field must be de-
scribed like the field of inertia forces, by a metric tensor g^,
though in a Riemannian space-time. Later, Einstein wrote:
"The entire theory arose on the basis of the conviction that in
a gravitational field all physical processes take place in ex-
actly the same way as without a gravitational field but in an
appropriately accelerated (three-dimensional) coordinate
system ("equivalence hypothesis")" (Ref. 1, p. 400). In this
central point Einstein abandoned the concept of the gravita-
tional field as physical reality, and this led subsequently to
insuperable difficulties in GR.

One of them, which follows directly from what has been
said above, is related to the nonlocalizability of the gravita-
tional field. It is well known that in all physical theories one
of the most important characteristics of a field has always
been its energy-momentum tensor density, which, following
Hilbert, one obtains by varying the density of the field La-
grangian with respect to the components of the space-time
metric tensor. Such a characteristic reflects the fact of the
existence of the field, namely, a nonvanishing energy-mo-
mentum tensor density in some space-time region is a neces-
sary and sufficient condition for the presence in it of a phys-
ical field. In GR the gravitational field does not possess such
a characteristic, and this is due to the fact that in Einstein's
theory the quantities gMV have a double meaning—on the one
hand they are field variables, on the other hand the compo-
nents of the space-time metric tensor. Because of this physi-
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cogeometrical dualism of gMV the expression for the density
of the completely symmetric energy-momentum tensor must
simultaneously represent the field equation. It is then ob-
vious that the density of the total symmetric energy-momen-
tum tensor of the system determined by the (generally co-
variant ) Hilbert manner must be strictly zero in the whole of
space-time, while outside the matter the density of the sym-
metric energy-momentum tensor of the gravitation field
must be zero. Thus, in GR the gravitational field outside a
source is devoid of a fundamental physical characteristic—
the energy-momentum tensor. As a consequence of this, GR
also lacks the conservation laws for energy, momentum, and
angular momentum of the matter and the gravitational field
taken together.

Understanding clearly the need for "energy-momen-
tum" characteristics of the gravitational field and conserva-
tion laws, Einstein introduced in 1918 the concept of the
energy-momentum pseudotensor r^ of the gravitational
field. However, in the same year Schrodinger2 showed that
by an appropriate choice of the coordinates of the three-
dimensional space all components of r* outside a homoge-
neous sphere can be made to vanish. Answering Schro-
dinger, Einstein wrote: "With regard to Schrodinger's
arguments, they have conviction by analogy with electrody-
namics, in which the stresses and energy density of any field
are nonzero. However, I can find no reason why this should
be the same for gravitational fields. Gravitational fields can
be specified without introducing stresses and an energy den-
sity" (Ref. 1, p. 627). This corresponded completely to his
earlier assertion: " . . . For an infinitesimally small region
the coordinates can always be chosen in such a way that
there will be no gravitational field in the region" (Ref. 1, p.
423); later he confirmed this point of view, asserting (see
Ref. 3, p. 124): "For any infinitesimally small neighorhood
of a point in an arbitrary gravitational field one can find a
local system of coordinates in a state of motion such that
with respect to this local coordinate system a gravitational
field does not exist (local inertial system)." These assertions
demonstrate that Einstein knowingly abandoned the concept
of the gravitational field as physical reality. At the same time,
it is readily noted that inertial forces and gravitational forces
are entirely different even in their mathematical structure;
for the Riemann-Christoffel curvature tensor R "v/3 for the
former is identically zero but for the latter it is not. Later, in
1948, Einstein revised his view of the equivalence principle
and no longer spoke of the equivalence of fields of inertial
forces and gravitational forces and merely noted that fields
of inertial forces are a special case of gravitational fields sat-
isfying, the Riemann conditions R "v/9 = 0. It appears that
this circumstance nevertheless escaped many.

Another fundamental difficulty in GR intimately relat-
ed to the identification of the gravitational field with the
metric tensor of a Riemannian space is the absence in it of
not only local but also integral conservation laws for energy,
momentum, and angular momentum. The first person who
noted this characteristic feature of GR was Hilbert, who in
1917 wrote4: "I assert. . . that for the general theory of rela-
tivity, i.e., in the case of general invariance of the Hamilton
function, energy equations that. . . correspond to the energy
equations in orthogonally invariant theories do not exist at
all. I could even note this circumstance as the characteristic
feature of the general theory of relativity." However, neither

Einstein nor other physicists reacted in any way to this re-
mark of Hilbert. The fundamental fact that in GR conserva-
tion laws for energy, momentum, and angular momentum
are in principle impossible because the Riemannian space
introduced in GR does not possess the maximal group of
motions of space-time escaped the notice of Einstein's con-
temporaries.

Some physicists still do not understand this." Other
physicists, recognizing the absence of conservation laws in
GR, regard this as a very important fundamental step in GR
in the development of physical ideas. But neither in the mac-
roscopic nor the microscopic world do we find a single ex-
perimental fact that directly or indirectly casts doubt on the
validity of the conservation laws for matter. Indeed, Einstein
himself recognized their fundamental importance very well.
In Ref. 1 (p. 299) he wrote :" . . . One must certainly require
that the matter and the gravitational field together should
satisty the energy-momentum conservation laws" and later:
"Experience forces us to seek a differential law equivalent to
the integral conservation laws for momentum and energy"
(Ref. 1 p. 651), and then: "I wish to show here that. . . the
concepts of energy and momentum can be established [ in
GR] just as clearly as in classical mechanics."

The investigation (Ref. 1, p. 650) made by Einstein (in
the framework of GR) in 1918 and the subsequent math-
ematical confirmation in the same year by Klein7 of the re-
sults that Einstein obtained created the impression that the
energy-momentum problem in GR had been completely
solved. The conclusion of these studies, with insignificant
modifications, is still repeated in many textbooks and papers
without recognition of the fact that the arguments of Ein-
stein and Klein contained a simple but fundamental error.
The point is that the entity Ja, whose components Einstein
identified with the energy and momentum, is found on closer
examination to be a quantity that vanishes identically. A
further unsatisfactory consequence of GR is the nonunique-
ness of its predictions for gravitational effects. Such a con-
clusion can be drawn on the basis of the fact that for a chosen
arithmetization of space the Hilbert-Einstein equations
alone do not yet determine the metric of the Riemannian
space-time (in the general case their solution can contain
four arbitrary functions). The subsequent fixing of the met-
ric by the imposition on the obtained solutions of coordinate
conditions (which are always explicitly noncovariant) is a
procedure that is far from unique, since no restrictions at all
are imposed on the actual choice of the coordinate condi-
tions in GR, whereas the functional structure of the metric
coefficients depends strongly on the choice and is different
for different choices. This is the one side of the matter. On
the other side it follows from the theorem proved by Weyl,8

Lorentz,9 and Petrov,10 according to which for given equa-
tions of all timelike and all isotropic geodesies in any coordi-
nate system, i.e., for some chosen arithmetization of space,
the metric tensor of space-time in this system is determined
up to a constant factor,2' that different metric tensors in a
given coordinate system must lead to different predictions
for the motion of test bodies and light. And since in GR the
functional structure of the metric tensor in a given coordi-
nate system is different for different choices of the coordi-
nate conditions, the predictions of the theory will depend on
this choice, i.e., will not possess the property of uniqueness;
this is a further fundamental shortcoming of GR.
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We demonstrate the nonuniqueness of the predictions
in GR in two examples—the calculation of the inertial mass
and the example of the delay of a radio signal by a gravita-
tional field.

Suppose a static spherically symmetric body of active
mass M is the source of gravitational field. For what follows
we adopt an arithmetization of space for which the center 5
of the source has the value r—rs = 0 and any point of space-
time is given a set of numbers x1* (t ,x' ,x 2,xi). Then one of the
general exterior (relative to the body M) solutions of the
Hilbert-Einstein equations

(1.1)

where R MV is the Ricci tensor, R= R ^g^., and T^ is the
energy-momentum tensor of the matter (of all forms of mat-
ter except the gravitational field), will be the solution

or, in equivalent form,

here
2GM

dC tr)

(1.2)

0; (1.2')

2GM \ - l
rC1/2 I '

(1.3)

further r2 = - yknx
kx", g = det g^. = - BAC2; with re-

gard to the function C(r), it is required merely to be smooth
and such that

and otherwise it is fairly arbitrary.3'
Using the definition in GR for the inertial mass of the

body (or its total energy),

P° = lim <£ dshh°<>h,

in which dsk = — (xk/r)r 2 sin 6 dO d<p, and

h°°h = — 1 d
16nG dxn

we find after simple calculations

C—A

(1.4)

(1.5)

(1.6)

(1.7)

we obtain from (1.6) exact equality of the inertial mass P ° of
the body to its gravitational mass M. But if we take

(1.8)

dr

Choosing, for example,

where a is a free real parameter, then (1.6) gives the value

P° = (1 +ai) M, (1.9)

and this directly indicates the nonuniqueness of the predic-
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tions of GR for the inertial mass of the considered system4'
and does not agree with the experimental confirmation of the
equality of the gravitational and inertial masses, which, inci-
dentally, was taken by Einstein as the foundation of his theo-
ry. This result shows that not only local but also integral ener-
gy-momentum conservation laws do not hold in GR.

Turning to the illustration of the nonuniqueness of the
predictions of GR for the gravitational radio signal delay
effect, and retaining the arithmetization of space chosen
above, we take the position of the source of the radio pulses
(the earth) to be the point e(rc,<pe,de = 77/2), the position
of the receiver or reflector (Mercury) (which reflects
the signal back to the point e) to be the point
p(rp,cpp,8p = 77-/2), and the points of the surface of the body
M (assuming it to be spherical) to have the coordinate value
r = rf. For simplicity, we consider two special cases, taking
for the adopted arithmetization of space C{r) = 1 in the first
case and C(r) = [ 1 + (GM/r) ]2 in the second. Then in the
first case (a)

(1.10)

and in the second (b)

-GM
' - [ r + GM ) a t [ r-GM )

(1.11)
Since the substitution r — p — GM reduces the expression
(1.11) to the form (1.10),

(1.11')— p2 (d92 + sin2 9 dtp2

it might seem that the consequences of (1.10) and (1.11)
would be identical. In reality, this is not the case, since
(1.10) and (1.11') differ significantly; for whereas in (1.10)
the values r = rs = 0, r = rf r = rc p are by virtue of the
adopted arithmetization associated with the positions of the
center 5 of the body M and its surface and the positions of the
source and reflector of the radio pulses, in (1.11') these posi-
tions will will correspond to p — ps = GM, p = pf = rf

+ GM, p = pe p = rep + GM, and this will undoubtedly af-
fect the results of the calculations and lead to different conse-
quences of (1.10) and (1.11). This conclusion also follows
directly from the Weyl-Lorentz-Petrov theorem, since the
metric coefficients in (1.10) and in (1.11) differ and, there-
fore, the motions along the geodesies in the metrics (1.10)
and (1.11) will be quite different. This can also be shown by
direct calculation.

Using the standard methods and restricting ourselves in
the calculations to the first order in G, we obtain for the time
of propagation of a radio signal to one end (for <pp — <pc

> TT/2 and under the assumption that at the pericenter its
trajectory touches the point rf of the surface of the body M)
the expressions1314

(1.12)
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in the case of the solution (1.10) and periods1

(1.13)

in the case of the solution (1.11). For rf4,rep we then obtain
(to the chosen accuracy) the following expressions, taking
into account the deflection of the signal by the gravitational
field,

ta=-.R+2GM\n-!± •2GM,

, = R+2GMln —*

in which

: — r2, V/2

(1.12')

(1.13')

(1.14)

is the relative distance (along the straight line) between the
points e and p, and rl is the coordinate of the point of inter-
section of the straight lines joining e and p on the one hand
and S and the pericenter of the trajectory on the other.

Since by virtue of the adopted arithmetization the
numbers which occur in (1,12), (1.13) or (1.12'), (1.13')
are the same, we obtain the conclusion, confirming the one
drawn above, that the predictions of GR for this effect are
nonunique in the variables x **, the nonuniqueness arising
already in the first order in G!

We now show that the transition in the obtained results
from the arithmetization numbers to the observed physical
quantities does not change the conclusion of nonuniqueness.
For this, using, respectively, the metrics (1.10) and (1.11),
we calculate in the first order in G the physical radial dis-
tances (measured experimentally) from the surface of the
body M to the source e and the reflector/? of the radio pulses:

h
e.

» = \ (1.15)
rf

and the relative frequency shift (measured experimentally)
in the field of the body M:

Aco
(I) e , p

(1.16)

It can be seen that both the distances / and the relative
frequency shifts S are the same for the two metrics in the first
order in G. This means that the transition by means of (1.15)
and (1.16) in tab from r to the observed physical quantities /
and S leaves the conclusion of nonuniquenss of the predic-
tions of GR for this effect untouched."

There is a belief that if the time At of the gravitational
delay is expressed in terms of the times of revolution T of the
source e (the earth), the reflector/? (Mercury), and some
test body revolving around M in a circular orbit with r = rf,
then it will not depend on the choice of the metric, i.e., will be
the same for the metrics (1.10) and (1.11). We demonstrate
the error of this belief.

Suppose for simplicity that all the bodies revolve
around M in circular orbits. Then for the arithmetization of
space adopted above we obtain in the case of the metrics
(1.10) and (1.11), respectively, in the first order in G the

r3/2

(GJW)Va

r 3 / 2

(1.17)

(1.18)

It can be seen that in accordance with GR the times Tof
revolution of the bodies in their orbits in the variables x * are,
like the times t, different for the different metrics. If in
(1.17) and (1.18) we go over from the numbers r to the
observed physical quantities / and 8, then in these measura-
ble variables too the nonuniqueness of the theoretical values
of ^remains. The difference between the times T^a) and Tib)

of revolution corresponding to the metrics (1.10) and
(1.11) is explained here by the fact that although the phys-
ical radial distances to the orbit in the different metrics are
the same (in the first order in G), the speeds of the motion of
the body in it are different in the different metrics.16'17

If now the propagation times ta and tb are expressed in
terms of the times of revolution Ti") and T1-^, respectively,
and the notation L = [T(GM)W2/2ir]}/2 is introduced to
simplify the expressions, then for the two metrics the identi-
cal connection between t and Tis obtained:

t=(L*v-

(1.19)

To determine the actual gravitational delay At, which is the
quantity of true physical interest, we must in (1.19) also
separate the time t0 that would be required by the signal to
traverse the path from the emitter e to the reflector p in the
absence of the gravitational influence on the signal of the
central body M. This can be done by calculating the time t0

for the chosen arithmetization of space in the flat metric

(1.20)

and, using the connections (1.17) and (1.18), expressing it
in terms of the revolution times T. In the case of the metrics
(1.10) and (1.11), this gives186'

> = (LJ-£!)«/* + (L i -L ' J i /* , (1.21)

n-L, \ l / 2

Thus, the gravitational delay time At, determined by the dif-
ference between t and t0, is different in the metrics (1.10)
and (1.11). For GM,Li,Lf4Le,P>

Ata = 2GM In
Le + Lp-1

'•-2GM, (1.23)

(1.24)

where L0=cti
0"\ and this proves the error of the belief that

At is determined uniquely in GR when it is expressed in
terms of the revolution times.

If the time t is calculated18 by going over right at the
start from the coordinates xh = (,t,r,6,<p) the variables £"
= (t,p,0,(p), wherepsr(C(r)) 1 / 2 and in which ds2 will be

determined by the expression (1.11'), then in the first order
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inG

(1.25)

(1.26)

Despite the resulting unique connection (given by the
expression (1.19)) between t and the experimentally ob-
served values of T, the delay time At will again be different
for the different metrics g^{r). Indeed, calculating t0, the
meaning of which was discussed above, in the original arith-
metization of space with the introduction of the flat metric
Y^v (r), and going over in the final result from r top, using
the connection r(C(r))x/2 = p, we again, taking into
account (1.26), arrive in the cases C{r) — 1 and
C(r) = [l + (GM/r ) ] 2 at the expressions (1.21) and
(1.22), i.e., for A; we obtain (1.23) and (1.24), respectively.
But if the time t0 is calculated by introducing the flat metric
yflr(p), taking p formally as radial coordinate, a nonuni-
queness in At arises from the nonuniqueness in the choice of
p = ps. For example, for/9s = 0 the value of t0 will be deter-
mined by the expression (1.21) and At by the expression
(1.23) (which does not agree, incidentally, with the experi-
mental data19), while for ps — GM we obtain the results
(1.22) and (1.24). In addition, it must be borne in mind that
the solution gliv (p) of the form (1.11') in the variables g" is
by no means the unique solution of the Hilbert-Einstein
equations. Indeed, for any particular form of C(r) the func-
tion/? = r{C(r))V2 can always be taken as one of the vari-
ables in terms of which the Hilbert-Einstein equations (1.1)
are expressed. But then it will also be solved by solutions of
the form (1.2) and (1.3) except that now the part of r in
them will be played byp and the part of C(r) by the function
C{p), i.e., the nonuniqueness in t and At will arise because of
the arbitrariness of C(p), as occurred earlier in the original
arithmetization x >'.

Bearing in mind that Eqs. (1.1) in the original arithme-
tization of space are satisfied by the class of solutionsl6

C(r)=[l

with arbitrary real parameter A, we can, choosing A, make
the gravitational delay time At in GR arbitrary, in particu-
lar, equal to zero; in the case of the Earth and Mercury At~O
forA- - 11.2.

We end by demonstrating the nonuniqueness of the pre-
dictions of GR for the gravitational delay effect in a thought
experiment. Imagine two test bodies, in each of which there
are a source, a reflector, and a detector of radio signals, sepa-
rated by a certain distance and fixed at the points e and/?, and
that at the point S, which is fairly close to the line ep but
approximately equally distant from e and p, there is fixed a
"needle" capable of reflecting signals sent to it and on which
one can when necessary place a (small) massive spherically
symmetric body M. Removing the body M from the "nee-
dle" to a great distance (to "infinity"), we use the times of
propagation of the radio signals between the individual pairs
of points to establish (taking rs = 0) the physical distances
rL, fromS1 toe, rp fromS to/7, andLo from e top. In principle,

this method can be used to realize a physical arithmetization
of the entire region of space occupied by our "facility." The
numbers r obtained in this manner can then be taken as the
values of the variable r in the Hilbert-Einstein equations.
Then the physical distances between arbitrary points of
space in the presence of the body M (when its center is fixed
on the "needle"') will be expressed in terms of the numbers
r, which are the radial distances from S to the chosen point in
the absence of M. Using for the adopted arithmetization of
space (1.10) or (1.11) as solutions of the Hilbert-Einstein
equations, we obtain for the time / of propagation of the
signal from e to p in the field of M the expressions (1.12') or
(1.13'), in which R will be equal to Lo. Thus, the gravita-
tional delay time At = t — t0 predicted by GR is nonunique.

This analysis shows that nonuniqueness of the predic-
tions for gravitational effects is an organic feature ofGR.

Thus, the absence in GR of conservation laws for energy,
momentum, and angular momentum, the abandonment of
the notion of the gravitational field as a physical field, and
also the nonuniqueness of the predictions for gravitational ef-
fects render GR a physically unsatisfactory theory and require
a fundamental review of ideas about gravitation.

2. THE RELATIVISTIC THEORY OF GRAVITATION71

Since the time of Newton it has been known that the
geometry of space is an inseparable part of physical theory.
According to the apt remark of Gauss, " . . . geometry
should not be considered with arithmetic, which exists pure-
ly a priori, but rather with mechanics." Therefore the study
of mechanical phenomena at low velocities (compared with
the velocity of light) is a test of not only the law of mechanics
but also of the Euclidean nature of the geometry that occurs
organically in Newton's theory.

The study of electromagnetic phenomena and the mo-
tion of particles with velocities near the speed of light made it
necessary to give up the concepts of absolute space and time
separately and led to the conception of a single four-dimen-
sional space-time, in which the scales of length and time
cease to be absolute but depend on the velocities relative to
the motion of the coordinate system. This naturally required
the transition from Euclidean geometry of space to pseudo-
Euclidean geometry of space-time.

Thus, as long as we considered nonrelativistic physical
processes the experiments confirmed the Euclidean struc-
ture of the geometry of space and the concept of time as an
independent parameter. But as soon as relativistic physical
processes were considered, experiments indicated a differ-
ent, pseudo-Euclidean structure of space-time.

The discovery of the pseudo-Euclidean geometry of
space-time enriched physics as a whole and was reflected,
first, in a generalization of Newtonian mechanics to the rela-
tivistic mechanics of Poincare, and then in all physical theo-
ries of both the macroscopic and the microscopic world ex-
cept gravitation. Moreover, in all theories fundamental
physical concepts such as energy, momentum, angular mo-
mentum, and their conservation laws were retained.

In 1921 Einstein, analyzing the properties of space-time
(Ref. 3, p. 85), correctly noted that " . . . the question of
whether this continuum has a Euclidean, Riemannian, or
other structure is a physical question that must be answered
by experiment and not a question of convention of the choice
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on the basis of simple expediency. In our opinion, the solu-
tion to this problem must be based, not on special observa-
tional data on the motion of light and test bodies, but on
deeper fundamental properties of matter irrespective of its
particular forms. Indeed, if the geometry of space-time were
determined by studying the motion of test bodies and light,
then in principle one could establish for it a Riemannian
structure. But this would automatically lead to the abandon-
ment of fundamental laws of nature—the conservation laws
for energy, momentum, and angular momentum—since
Riemannian space does not in the general case have the
group of motions required for their fulfillment.

It is our conviction that in establishing the structure of
the space-time geometry we should not use particular (and
different for different sources) facts about the motion of
light and test bodies but rather the most general dynamical
properties of matter—its conservation laws, which are not
only of fundamental importance but are also confirmed ex-
perimentally. It is obvious that the existence of the ten conser-
vation laws (for energy, momentum, and angular momen-
tum) objectively reflects the property of our material world
that is manifested in the homogeneity and isotropy of space-
time.

There are three known types of space that admit the
introduction often integrals of motion. They are the space of
constant negative curvature (Lobachevski! space), the
space of zero curvature (Euclidean space), and the space of
constant positive curvature (Riemann space). The first two
spaces are infinite, while the third is a closed space, although
it does not have boundaries. If of any theory, including the
theory of the gravitational field, we require that in it all ten
conservation laws should hold, then it is obviously necessary
to give up a Riemannian geometry of general form and
choose as basis one of the geometries listed above.8' Since all
currently known experimental data on the electromagnetic,
weak, and strong interactions unambiguously indicate a
space-time with pseudo-Euclidean geometry (which under-
lies the theory of the corresponding fields9') and there are no
facts that cast doubt on this, it is natural to assume that this
space is common to all physical theories, so that no excep-
tion is made for the gravitational field. Then fulfillment of
the conservation laws for energy and momentum and, sepa-
rately, angular momentum will be guaranteed.

On the basis of this, we formulate the basic propositions
of the relativistic theory of gravitation (RTG).

PROPOSITION I. As the fundamental, base, space in
the R TG we take the Minkowski space x^ with the metric

rvw.
This proposition reflects the property inherent in all

matter, irrespective of its nature, of the universality of the
conservation laws for energy and momentum and, separate-
ly, angular momentum.10)

PROPOSITION II. In the R TG the gravitational field is
regarded as a true real (with zero rest mass) physical field in
Minkowski space possessing all the attributes inherent in oth-
er physical fields; it is associated with a symmetric field tensor
<i>flv of second rank with representations corresponding to the
spin states 2 and 0.

The elimination from the states of the field 4>'<v of its
representations corresponding to spin values 1 and 0 is
achieved (see Refs. 24—27) by making W satisfy the field
equation

= 0, (2.1)

where D^ is the covariant derivative with respect to the met-
ric yv of the Minkowski space. This equation not only elimi-
nates from consideration the unphysical spin states of the
gravitational field Wv but also makes it impossible to elimi-
nate the metric yv of Minkowski space from the theory,'''
simultaneously making it possible to separate noninertial ef-
fects from manifestations of the gravitational field.

PROPOSITION III (geometrization principle). The
Lagrangian density of all forms of matter except for the gravi-
tational field is, by virtue of the universality of gravitational
interactions and the tensor nature of the gravitational field,
constructed in the RTG on the basis of contractions with an
effective tensor g^v determined by "adding" the gravitational
field Wv to the metric tensor ytiV in accordance with the rule

(2.2)

where

(2.3)

g=detgMV, y=detj' /JV; the derivatives of the nongravita-
tional physical fields <Pa that occur in the Lagrangian
•¥M ( S^V'^a)

 are assumed to be derivatives V^ covariant
with respect to the effective metric g**v.

The geometrization principle introduces into the theo-
ry, as a consequence of the universality of the gravitational
interactions and the tensor nature of the gravitational field,
the secondary concept of an effective Riemannian space with
metricgfv, which is defined (and this is very important) in a
single chart (sheet?). This space has a purely field origin; the
primary concepts in the theory are still the Minkowski space
with metric yv and the gravitational field <J>MV in it. The
geometrization principle of the RTG falls short of the equiv-
alence principle of GR, since in the RTG, as in other phys-
ical field theories, all physical quantities have a tensor (and
not pseudotensor) nature and, therefore, in particular, the
energy density of the gravitational field at a point cannot be
made to vanish by any coordinate transformations, although
the force effect of the gravitational field on a material point
can be compensated.

PROPOSITION IV. The Lagrangian density of the free
gravitational field is assumed in the RTG to be a quadratic
function of 'the derivatives ojfirst order DAgflv covariant with
respect to the Minkowski space tensor /fv\ it is also required
that under transformations of the gravitational field 4>''v of
the form

(x)-Dk[

(2.4)

where ev(x) is an infinitesimal 4-vector, J?g (y^v,
g *v,Dk g^) should change solely by a divergence (gaugeprin-
ciple):

Xt-^Xz+D^ix). (2.5)

The gauge principle makes the local noncommutative
gauge Lie algebra of supercoordinate transformations (2.4)
of the gravitational field the basis of the construction of J?' g.
One can readily show that the operators S£ form a Lie alge-
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bra by calculating, using (2.4), the Lie commutator:

where

(2.6)

(2.7)

It should be noted that by virtue of the universality of the
field equation (2.1) required by proposition II the gauge
transformations (2.4) will hold only on a manifold sv(x)
that satisfies the equation

g°-WaDt,e? (x) = 0. (2.8)

We note also that although the expression (2.4) for
Se f

JV(x) is formally, in its form, identical to the expression
for the infinitesimal increment o f f " under the coordinate
transformation

x»->• x» + l» (x), (2.9)

for the field 4>MV it is completely different from the infinitesi-
mal increment

'(*)+< ( a ) - £ > x < (2.i

which arises under the transformation (2.9). Thus, the
gauge transformations of the fields that we have introduced
have an entirely different content from the coordinate trans-
formations, and therefore fixing of the gauge cannot bear
any relation to fixing of the choice of the coordinate sys-
tem. 12)

The relativistic theory of gravitation can be constructed
uniquely on the basis of propositions I-IV.

The most direct way of constructing a scalar density
Jf g for the free gravitational field in Minkowski space satis-
fying proposition IV (with allowance for propositions I-
III) would be to represent it as a general superposition of all
possible "contractions of forms quadratic in the derivatives
of first order DAgliV with the tensors ga0 and fa/3. Adopting
the gauge principle, one can, after a lengthy investigation,
establish, as is shown, for example, in Ref. 28, the uniquely
determined form of J£'g. Here, we shall give a somewhat
different, simplified way to construct J?'g.

It is easy to show that under the transformations (2.4)
the quantities ( - g)'/2 and R = ( - g)'' 2R, where R is the
scalar curvature of the effective Riemannian space, change
in accordance with the law

(2.11)
R^R-i

and, therefore, satisfy the gauge principle. Representing R in
the form

(2.12)

or

where we have the third-rank tensor

),(2.12')

(2.13)

and the Christoffel symbols
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, = 4-«*"l (2.13')

we note that in (2.12) each group of terms behaves sep-
arately under general coordinate transformations as a scalar
density. At the same time it should be noted that whereas in
the complete expression R the dependence on the metric y^'
of the Minkowski space is identically eliminated, in the indi-
vidually considered first and second group of terms in (2.12)
it cannot be eliminated. Noting further that by virtue of
(2.1) the gauge principle is also satisfied by a scalar density
~ YMvitV' w e represent the Lagrangian density of the free
gravitational field in the form

, = Mfl + 0v<?»)-

(2.14)

Here, the divergence term with vector density Qv(x) con-
structed from gf" and D^g^ has been added in order to
eliminate (in accordance with proposition IV) from ¥g the
terms with derivatives higher than the first order. This is
done by the choice

As a result, we obtain a density that is a scalar with respect to
all coordinate transformations:

The values of the factors A will be established below.
In accordance with the principle of least action, we then

obtain the equation13'

with Ricci tensor

(2.16)

(2.17)

Determining now, using (2.15), the energy-momentum ten-
sor of the gravitational field in the Minkowski space:

, 2 ( -

where

(2.18)

we arrive, taking into account (2.16), at a different form of
the dynamical equations of the free gravitational field that is
equivalent to (2.16):

kij»
v-2k3g^-kiy*v = %\ (2.20)

To ensure that Eqs. (2.16) and (2.20) are satisfied identical-
ly in the absence of a gravitational field, we must set

A,j = — 2 A 3 , A4 = — 2 A 3 .

The values of/I, and A3 can be readily identified by trans-
forming (2.20) by means of (2.1) and (2.2) to the form
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1aDlfi
l" + 2^&v=-±i>?, (2.21)

and, even more transparently, in Galilean coordinates:

(2.21')

It is clear that the factor 2A 3 /A, = m2 is naturally associated
with the square of the graviton rest mass, while — I/A, must
in accordance with the correspondence principle be taken 14)

equal to \6TT, i.e.,

X<= ~ TfoT ' Xa = X * = — 2%3 = 1EK •

Thus, the Lagrangian of the free gravitational field in the
Minkowski space constructed on the basis of the gauge prin-
ciple has in the general case the form

16n

(2.22)

The dynamical equations of the gravitational field corre-
sponding to it, which augment Eqs. (2.1) to the complete
system of the RTG, can be represented in the two equivalent
forms

(2.23)

or
' -|_ yy.vga.ft yafig&v ^

(2.24)

It follows from (2.24) that a necessary (and sufficient) con-
dition for the existence of energy-momentum conservation
laws,

W = 0. (2.25)

for a gravitational field with nonzero rest mass is fulfillment
of the field equations (2.1). We particularly emphasize that
Eqs. (2.23) and (2.24) are not invariant with respect to the
gauge transformations (2.4). This means that the introduc-
tion into the Lagrangian of the mass term takes away from
the geometry of the effective Riemannian space-time, and
also the energy-momentum tensor of the gravitational field,
the gauge arbitrariness,151 making them uniquely deter-
mined in the indicated sense. Because the mass term elimi-
nates the degeneracy, its introduction can also be regarded
as a technical device used in calculations, with the rest mass
subsequently set equal to zero.

In the presence of other forms of matter, the total La-
grangian density can be represented by virtue of Proposi-
tions III and IV in the form

X = Zn (^v , «Da) + X, &\ ^v , D ^ v ) ) (2.26)

where 4>a are the matter fields (excluding the gravitational
field), and Jfg is given by (2.22). This leads to the equations

(2.27)
where T'"'= — 2(8Jf M/8gflv) is the energy-momentum
tensor density of the nongravitational forms of matter in the

effective Riemannian space, and T = TiVg)lv. But if, using
(2.26), we calculate the energy-momentum tensor density
of the matter and the gravitational field in the Minkowski
space,

' = - 2 (2.28)

then instead of (2.27) we can obtain a different form of the
dynamical equations:

(2.29)+ TO2(g»lv-Y|lv) =

which in its content is identical16' to (2.27). Taking into
account the field equations (2.1), we finally arrive at the
following system of equally valid basic generally covariant
dynamical equations of the RTG:

^DaD$»"+ m2OliV = 16JT^V, (2.30)

Djfr"=Q, (2.31)

or, in equivalent form,

(2.32)
Dvtg^ = 0. (2.33)

We especially emphasize that the physical fields which occur
in Eqs. (2.30), (2.31) or (2.32), (2.33) depend on the coordi-
nates of the Minkowski space, and that the metric tensor of
this space is contained in the equations organically, reflecting
the fact that the physical phenomena take place in the Min-
kowski space.

Here, as before, a necessary and sufficient condition for
fulfillment of the conservation laws

= 0 = 0 (2.34)

is fulfillment of the field equations (2.31) or, equivalently,
(2.33). The validity of the first of the equations in (2.34) is
readily established by means of (2.30) and (2.31). To estab-
lish the validity of the second, it is sufficient to take into
account in addition to (2.33) the identities

V »,Vuv = — GxnYov — G».vYwo>

In the case of a massless gravitational field (w = 0) , its dy-
namical equations in the absence of matter will have the
form

DaDfi (Y«P^v_|_ynv^P_yan^Pv_7av^|3n) = \Qn^
v. (2.35)

Here, the tensor y1"' of the Minkowski space is identically
eliminated, i.e., these equations do not contain17' the metric
Y"'\ however, if in them we take into account Eqs. (2.31),
then the tensor yttv will occur in the system of equations
without the capability of being eliminated.

Equations (2.35) are invariant with respect to the al-
lowed gauge transformations, although the tensor r J," of the
gravitational field is gauge noninvariant, like the gauge non-
invariant interval of the effective Riemannian space and its
curvature tensor:
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66 ds2 = dx i

this indicating that the effective geometry of space-time and
the field tensor t £v are undetermined in the absence of mat-
ter. 18) At the same time, because the change Se t £

v under the
gauge transformation (2.4) is, as is readily seen using
(2.35), transformed into the divergence of an antisymmetric
tensor of third rank:

the gauge arbitrariness of ?£v will not affect the integral
physical characteristics of the gravitational field being de-
fined.

In the presence of other forms of matter, the dynamical
equations take the form19)

AxCe(VaP£|lv + Ytlvg*fl— ya^v-yavg^) = 16JT^ \ (2.36)

and with allowance for (2.1) the complete generally covar-
iant system of equations of the RTG can be represented ei-
ther in the form

(2.37)

(2.38)

(2.39)

Dlig»" = 0. (2.40)

We note in passing that the form of Eqs. (2.37) and (2.38)
strongly resembles the form of Maxwell's equations in elec-
trodynamics in the absence of a gravitational field:

or in the equivalent form

0,
(2.41)
(2.42)

except that in electrodynamics the electromagnetic field Afi

is a tensor of first rank and its source is the conserved density
jf'(x) of the electromagnetic current, whereas in the RTG
the gravitational field 4>''v is a second-rank tensor and its
source is the conserved energy-momentum tensor density of
all the matter in the Minkowski space. Because of this, i.e.,
because of the fact that t^ also contains the energy-momen-
tum tensor density / £v of the gravitational field, the equa-
tions of even the free gravitational field will be nonlinear.

The dynamical equations (2.36), (2.37), or (2.39) of
theRTG, like (2.29), (2.30), or (2.32), are gauge noninvar-
iant, and this means that in the presence of matter the effec-
tive Riemannian geometry of space-time and the energy-mo-
mentum tensor of the gravitational field are determined
uniquely (have no gauge arbitrariness). Although the form
of Eqs. (2.39) is the same as that of the Hilbert-Einstein equa-
tions, they differ fundamentally from these equations, since in
all the equations of the RTG, including, of course, Eqs. (2.39)
and (2.40), the field variables are functions of Minkowski
space, and, moreover, the metric tensor y^'of the Minkowski
space occurs in an inseparable manner in any of the various
forms of the complete system ofR TG equations given above. It

is this fundamental circumstance that permits the RTG to
consider all physical fields, including the gravitational field,
in a single Minkowski space20'and specify the coefficients gMV

of the effective Riemannian space in a single chart (sheet?).
In particular, one can choose global Cartesian (Galilean)
coordinates. This is all reflected not only in the fundamental
conservation laws but also in the uniqueness (in contrast to
GR) of the description of all gravitational phenomena. For
given boundary and initial conditions, the basic system of
the RTG will possess the property of uniqueness, as a result
of which the physical quantities and predictions obtained by
means of it will also be unambiguous. With allowance for the
equation of state of the matter, the system (2.37)-(2.38) or
(2.39)-(2.40) becomes a closed system of equations deter-
mining the dynamics of both the field and the matter. It
follows from what has been said that in the RTG the Min-
kowski space is not a fictitious space, since it is manifested
both in the fundamental conservation laws and in the de-
scription of all gravitational phenomena; its characteristics
can always be determined by an appropriate analysis of ex-
perimental data on the motion of light and test bodies in the
effective Riemannian space. Already Fock said (Ref. 35, p.
296 of the Russian original) that "the decisive thing in defi-
nitions is not direct observability but the correspondence
with nature, even if this correspondence is established by
indirect ratiocination." Thus, observability must not be un-
derstood in a primitive but in a more general and deeper
sense as correspondence with nature.

Because of the importance in the RTG of the field equa-
tion (2.1), we shall add to what was said above a few more
words. As we have already noted, this equation has no con-
nection with the coordinate conditions of GR, and the free-
dom in the choice of the coordinates in the RTG is main-
tained. It not only selects, as is required by proposition II,
the physical states of the field corresponding to the represen-
tations with spins 2 and 0, but also, by virtue of the way in
which the Minkowski metric occurs organically, separates
everything due to the manifestation of the gravitational field
from everything that has no connection with the manifesta-
tion of the field. For example, if in the case of a static central-
ly symmetric massive source M we establish in advance an
arithmetization of space in which the center S of the source is
associated with the point rs = 0 (as is natural and generally
accepted), the unique simultaneous solution of Eqs. (2.37)-
(2.38) or (2.39)-(2.40) will be the solution (1.2) with the
function C(r) = [1 + (GM/r)]2, i.e., the metric (1.11).
The coefficients g^,. determining the metric (1.10) will not
satisfy (2.40) and therefore cannot be regarded as solutions
of the RTG. It follows from this that all predictions of the
RTG for gravitational effects in the given field will be
uniquely determined. In particular, for the time t of propaga-
tion of a radio signal from the point e to the point p in the
field of M (see Sec. 1) the RTG gives'3 the results (1.13) and
(1.13'), and not (1.12) and (1.12'). The introduction into
the theory of the field equation (2.1), which makes it impos-
sible to eliminate the metric of the Minkowski space from the
theory, finds its reflection in the description of all the phys-
ical phenomena and leads to physical consequences qualita-
tively different from those of GR. We shall demonstrate this
for the examples of the development of collapse and the evo-
lution of a Friedmann universe.

It is well known that in accordance with GR a star with
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total mass Mo > 3AfQ that has exhausted its nuclear fuel
must "collapse" during a finite proper time into a point ob-
ject with infinite matter density.21' Such objects, which have
become known as "black holes", are completely cut off from
an external observer in the sense that no physical signals
from the region bounded by the Schwarzschild sphere (with
radius r = 2GM0) can pass beyond its boundary; so-called
gravitational "self-closure" of the body occurs.22' Essential-
ly, this conclusion of GR is equivalent to the recognition of
forms of existence of matter in which it is in principle uncog-
nizable (since no physical information about the internal
processes in a "black hole" can be obtained in any way).

The RTG radically changes ideas about the evolution-
ary nature of gravitational collapse,36 and this occurs be-
cause of the field equation (2.1). We shall show when and
how this happens. In accordance with the RTG, the required
metric coefficients gMV, which are related, on the one hand,
to the required gravitational field 4>''v, and, on the other,
determine the interval ds2 of the effective Riemannian space,
must be functions of the coordinates x ^ of the Minkowski
world as primary variables. We choose x" = (t,r,9,cp) in
such a way that the center of the collapsing star corresponds
to r = rs = 0. Then with allowance for the symmetry of the
problem we can represent ds2 in the form.

ds2 = g00 (r, t) df2 + 2g01 (r, t) dt Ar + gn (r, t) dr2

— W* (r, t) (d92 + sin2 6 dcp2). (2.43)

Going over then from the primary variables x^ to the vari-
ables £v= (.T,R,d,tp) of the comoving system, i.e., setting

T = x (r, t), R = R (r, t), (2.44)

we transform (2.43) to

ds2 = d-r — e(0«' B) di?2 — W- (d9- + sin- 9 d(p-).(2.45)

In making this transition, we must also (and we draw partic-
ular attention to this!) match the region of allowed values of
T and R (or r and W) to the region of allowed values of the
primary variables t and r. This is achieved by the solution of
the field equation (2.40), which in the comoving coordi-
nates 4"v takes the form

(2.46)

with Christoffel symbols in the Minkowski space

It is well known that the simplest nonstatic solution of
Eqs. (2.39), or the Hilbert-Einstein equations (under the
assumption of zero pressure and spatial homogeneity of the
matter energy density:p = p(r)) is the Tolman solution37

(2.47)

(2.48)

in the interior region 0<i?<i?o and

in the exterior region R^R0; at the same time
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expco(T, (2.49)

here Ro= [ (9/2)GMori ] 1 / 3 determines the position of the
material surface of the collapsing object at r = 0.

In GR there are no restrictions on the range of variation
of the variable W, which has the meaning of a radial coordi-
nate. It can therefore have all values from zero to infinity.
Hence, using the equation

W3 (t) p (T) = W3 (0) p (0) (2.50)

and (2.47), we arrive in GR at the following law of variation
of the energy density with the time r:

p(x)=p(0) (2.51)

from which it follows that after a finite proper time T= T0

all matter has collapsed into the point W = 0 and its energy
density p(r0) has become infinite.

In the RTG the meaning of Wis different, since W con-
tains not only the metric characteristics of the Minkowski
space but also the physical characteristics of the gravitation-
al field 4>MV, which satisfies the field equations (2.46). In the
case of the solutions (2.47)-(2.49), they are transformed to
the form

d

d I W

(rrr')=¥(^r')-2rr' (2.52)

where/' = df/dR, f= df/dr.
We follow the dynamics of the material surface of the

collapsing object setting in (2.48) R = RQ, i.e., Wsxl = Wf.
Then Eqs. (2.52) are solved by

t-tt = t-'l C>GM0W,)V* + 2GM0 In

(2.53)

(2.54)

where t0 is introduced to synchronize the measurement of
the times r and t from zero. It can be seen from this that by
virtue of the field equations of the RTG the region of allowed
values of Wr is bounded below231:

W, > 2GM0, i.e., r, > GM0 = re. (2.55)

With allowance for (2.48), it follows from this for R = Ro

that in accordance with the RTG any position of the surface
of the collapsing object (rf > rg) will always correspond to a
reading r of the proper-time clocks strictly less than r,,241:

: < T c = T0--iGA/0. (2.56)

Using the conservation law for the total energy in the

(2.57)

R T G

r}(j)e(%) -rj (0) e (0)

and noting that by virtue of (2.48) for R = Ro

(2.58)

we obtain for the energy density e{r) averaged over the vol-
ume the expression
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Therefore, the maximal mean energy density of the collaps-
ing body allowed in the RTG is finite and equal to

em a x^e(Tc) = - | ^ _ . (2.60)

The obtained results can be explained by following the
dynamics of the surface layer of the collapsing body. For this
it is sufficient to find its velocity drf/dt and acceleration
dV/df2. We can do this readily by noting that for R = Ro we
have in accordance with (2.48) and (2.53)

AWf _ Ar, _ __ / 2GM0 \ 1/2
dt ~ dr ~ { Wf I '

and by virtue of (2.54) and (2.61)
rf-GM0 dL

d t ~ r'f + GM0

Therefore,

dr/ r/ — GM0

~~AT =
2GM.

_ GM0(rf-GM0)(r/-5GM0)

(2.61)

(2.62)

(2.63)

It can be seen from this that as the body collapses the nega-
tive acceleration of its surface layer is replaced at rf = 5rg by
a positive acceleration, and that as T->TC, i.e., rf->rg, its ve-
locity and acceleration tend to zero (see also Ref. 38).

Thus, according to the ideas of the RTG a collapsing
body can contract only to a definite finite size, tending as-
ymptotically to a state with finite radius (always larger than
rg ) and finite density, i.e., no gravitational self-closure of the
body occurs and the interior region of the body has a definite
structure and remains in principle accessible to study. Sum-
marizing, we can say that the RTG denies the existence of
both static and nonstatic spherically symmetric bodies with
radii less than or equal to rg.

The picture of collapse that we have considered is a
classical idealized picture. A more systematic treatment of it
must take into account quantum processes, which begin to
play an important part when rf^rg (see, for example, Ref.
39), and, of course, the real equations of state of the matter
(nonzero internal pressure, etc.). All these factors will
hinder the process of contraction and, therefore, the sizes of
real collapsed bodies will exceed the ideal size. Therefore,
according to the RTG the time evolution of a collapsing ob-
ject is not terminated by the ending of its contraction (dur-
ing a finite proper time and a finite time of the external ob-
server) but goes over to a new stage with normal subsequent
flow of both the proper time and the time of the external
observer.

It is helpful to note that in the general case too, the
physical space-time region ft of variation of the variables £v,
in which the solution of the Hilbert-Einstein equations is
obtained, must be established by the connection between £'
and the coordinates x? of the Minkowski space found by
solving the field equations (2.40). Here it is necessary to
seek only those solutions that establish a one to-one corre-
spondence of £l and xfl (with Jacobian of the transformation
everywhere nonzero), since only such solutions enable one
to regard the variables £ v as one of the possible coordinate

systems of the Minkowski space. The region ft* of the vari-
ation of £v determined solely on the basis of the solutions of
the Hilbert-Einstein equations is not in the general case iden-
tical to the region ft. In other words, whereas in the variables
x? with metric tensor y^v (x) Eq. (2.39) will have a solution
g^ (x), the solution g'^ (£) in the variables |"v with metric
tensor

sV
- Y a H I

will hold only in the region ft C ft*.
In the special case of the considered problem of gravita-

tional collapse

Y33 (?) = Y*. sin* 8 - - (W - GM0)
2 sin* 9,

and the elements of the tensor xkn that determined the inter-
val d/2 are equal to xkn = —ykn + (yokyo,,/y(X)), for exam-
ple,

It can be seen from this that for W = 2GMQ the quantities
y^v with/i, v = 0, 1 become singular, and with allowance for
(2.61) xu = 0 . However, neither the one possibility nor the
other is allowed either physically or mathematically. Thus,
the variables £v are variables of the Minkowski space only if
W>2GM0.

We now consider the evolution of a Friedmann universe
that follows from the RTG, retaining a nonvanishing gravi-
ton mass.

In the general case the space-time interval ds2 must with
allowance for the assumed symmetries be taken in the form

ds2 = B (t) At2 — A (t, r) {Ax2 + Ay- ^2.64)

where t,x,y,z are the coordinates of the pseudo-Euclidean
space, i.e., r 2 = x2 + y2 + z1. Using the field equation
(2.33), we can readily show that the function A will not
depend on r, and

B (t) = A 3 ( t ) . (2.65)

Byvirtueofthelatter g00 = l;andsincealso f00 = 1, we
have by virtue of (2.2) 4>()<> = 0. Substituting this in (2.30),
we conclude that in accordance with the RTG the total ener-
gy density of the matter and the gravitational field in a Fried-
mann universe must always be equal to zero, and that the
universe itself is infinite and "flat." This conclusion also re-
mains valid for zero rest mass of the graviton. In contrast to
the RTG, GR admits three models of a Friedmann universe:
the model of a closed universe with finite volume and two
models of an infinite universe. The choice of the particular
model depends essentially on the mean matter density in the
universe, which in GR cannot be predicted.

We consider the evolution of the universe under the
assumption that T1"' in (2.32) can be approximated by the
energy-momentum tensor density of an ideal fluid,

f"v = (-f,yn [((, -f p) u»uy — (2.66)
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wherep(t) and/?(f) are its density and isotropic pressure.
Sincew"«vgMV = 1 and uk = 0, it follows that u° = A ~3/2(f).
Going over in (2.32) to the proper time AT=A

 3 /2(/) df and
introducing for convenience the dimensionless scale factor
R(r) = {A(r))1/2, we obtain the equations40

which can also be reduced to the form25'

1 dfl
R di dx

(2.67)

(2.68)

(2.69)

To close the system, we must also specify the equation of
state of the matter. In the simplest case, we can take42

= Vp (T). (2.70)

regarding v < 1 in different time stages of the evolution of the
universe as a constant (different for each stage) quantity.
Under this assumption it follows from (2.69) that

(T)
(2.71)

where a (v) is a constant of integration corresponding to the
particular stage.

Analysis of Eqs. (2.67) and (2.68) shows that form 7̂  0
the factor R varies with r cyclically, increasing to R mux < 00
and then decreasing to Rmm >0; the lower bound is due to
the inequality v < 1, while the upper bound arises because of
the monotonic decrease of the density p{r) with increasing
R (r) . We agree to measure the time r from some state with
R = Rmin and divide the half-period of evolution of the uni-
verse from this state to the state with R = Rmux into three
stages: Stage I corresponds to values 1/3<v< 1 (if, of
course, it is actually realized), stage II corresponds to
v = 1/3, i.e., to the radiation-dominated stage in the evolu-
tion of the universe, and stage III corresponds to v~0, i.e.,
the nonrelativistic stage. It is obvious that if stage I is real-
ized, then only at a very early stage of the evolution and
evidently (in accordance with the hypothesis of Markov41)
at a limiting (Planck) value of the matter density (pPi

= G" 2 = 5'10wg/cm3).
Approximate integration of Eq. (2.67) with allowance

for (2.71) in the stage I gives

(2.72)

for (R-Rmm)/Rmin< land

for Rmin 4R4ZWHi + v) and neglecting R and r of the pre-
vious stage where

,. _ :'.2aGa (v) (2.74)

In stage II for R$>Z l / 2 , i.e., neglecting/? and r of the first
stage,

11(1) ^ T ' / 2
1/4

(2.75)

while in stage III for r > r n , where r n is the time of evolution
of the universe from the beginning of the "expansion" to the
onset of the nonrelativistic stage,

*(T,*(-f
1/3

sin2/3 / 3 (2.76)

The last expression will be valid, as additional estimates
show, for r < r0, where

(2.77)

can be regarded as the half-period of evolution of the uni-
verse during which it goes over from the state with maximal
density to the state with mimimal density, after which the
opposite process of "contraction" commences; such cycles
will be repeated continually.

It should be noted that the graviton mass tn plays a role
in the evolution of the universe only in the very beginning
(see (2.72)) and the very end (see (2.76)) stages of its ex-
pansion (and contraction); in the remaining stages it has no
actual effect. However, it is only through the nonvanishing
mass that cyclical evolution is realized—for m = 0 the uni-
verse will evolve monotonically to a state with zero matter
density (and at each time its density will be equal to the
critical density).

From the condition that the age of the contemporary
universe, rc = 2/3H0, where Ho is the Hubble constant,
cannot exceed the half-period r0, we obtain an upper bound
for the graviton mass:

~10-Mg. (2.78)

And since in accordance with (2.67) the contemporary
matter density p{r) =pc{r) +pm, where pc(r)
s(3/8wG)(/J//?)2s(3/8ffG!)/ /2(r)s2-10-2 9 g/cm3

&ndpm xm2/\6vG s2.44- 1O~29 g/cm3, this leads to a pre-
diction for the maximal possible amount of hidden mass of
matter in the universe, which exceeds by about 90 times the
observed mass.

For the experimentally verifiable parameter a
• — RR/R2 of the deceleration of the expansion of the uni-
verse the RTG gives the value

(2.79)

which also depends on the graviton mass.
An increase in the accuracy of the measurements of the

Hubble constant and the deceleration parameter would en-
able us to draw more definite conclusions about the mass of
the graviton, which plays, as can be seen from the above, an
important part in the evolution of the universe and in other
gravitational processes.

We also consider briefly the emission of gravitational
waves. Investigating this question, Einstein wrote: "One
could suppose that through an appropriate choice of the co-
ordinate system one can always achieve the vanishing of all
components of the gravitational field energy, and this would
be extremely interesting. However, it is easy to show that in
general this is not so" (Ref. 1, p. 631). It can be seen that
Einstein expected the possibility of the vanishing of the ener-
gy of gravitational radiation on the basis of the equivalence
principle that he advanced; he therefore regarded the expect-
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ed result as "extremely" interesting. But he did not succeed
in establishing it. I was nevertheless shown in Ref. 44 that
gravitational radiation, as defined in GR by Einstein, can
indeed be annihilated by an appropriate choice of an allowed
coordinate system. However, if this is so, then, recognizing
the validity of Einstein's formula for quadrupole radiation,
one cannot regard it as a consequence of GR. It was Ein-
stein's deep physical intuition that led him to the construc-
tion of this formula rather than the logic of his theory. Gen-
eral relativity cannot lead to the conclusion of the existence
of gravitational waves, as is confirmed in Ref. 44.

Einstein's formula for quadrupole radiation follows
naturally from the RTG. This is explained by the fact that in
the RTG the gravitational field is a real physical field that,
even locally, cannot be annihilated by a choice of the coordi-
nate system. According to the RTG there can exist in nature
gravitational waves that transport energy and momentum,
and they can be detected experimentally.

At first glance it might seem that the introduction of
Minkowski space does not agree with the effect of the
"change" of the frequency of photons in a gravitational field,
since in accordance with the conservation laws the total en-
ergy <y, =£„•„ of a photon emitted by an atom at point 1 of
the gravitational field must remain unchanged everywhere.
The apparent paradox is very easily explained. Following,
for example, Ref. 39 and writing down in Minkowski space
the Dirac equation (for simplicity for a hydrogen atom in
the approximation of a fixed nucleus) in the gravitational
field of a static centrally symmetric source M with rs = 0, we
can readily see that it is not the energy E of the electron that
plays the part of the quantized quantity but rather Po

= E{f+ / / _ ) x n , where/± = 1 + (GM /r), and the coordi-
nate r can be regarded as the coordinate of the nucleus of the
atom in the gravitational field of M (for the case of field
inhomogeneities that do not have an effect over distances of
the order of atomic distances). Therefore, the energy spec-
trum of the hydrogen atom takes (in the Schrodinger ap-
proximation ) the form

1/2
(2.80)

This result could have been foreseen by noting that in a grav-
itational field the role of the electron rest mass, which occurs
in the Rydberg constant R, must be played by its rest energy
m(f_/ / + )1/2 in the field. Thus, the energy (or frequency)
of the photon emitted by the atom (in a definite transition)
will be determined at the point r, by the expression

/ . ( ' . )

1/2
(2.81)

where co0 is the corresponding frequency of the radiation
"when the field is switched off." At the point r2 the same
electron transition will give a photon of frequency

(2.82)f-
U ('-2)

Since in an experiment one compares frequencies corre-
sponding to identical transitions, an observer at the point r2

will find for a photon that reaches him from the point rx a
frequency a), not equal to co2 with

and this is usually interpreted as a change of the frequency in
the gravitational field.

Analyzing the question of the observability of Minkow-
ski space on the basis of fundamental principles,2' we can say
that the unambiguous and deep connection between the ex-
perimentally verified conservation laws and the structure of
space-time reflects precisely the objectivity and observabi-
lity of the properties that are inherent in Minkowski space,
i.e., the experimentally confirmed fact of the universality of
the conservation laws reflects the objectivity of Minkowski
space and its observability.

SUPPLEMENT

The authors of the recent preprint Ref. 47 show that in
GR transformations of the radial variable do not change the
results of the predictions for gravitational effects. By itself
this fact is trivial and does not need proving. However, it in
no way leads to the conclusion drawn by the authors of
uniqueness of the predictions of GR for gravitational effects.
In their arguments, the authors omitted the most important
thing—they did not note the fundamental difference be-
tween coordinate transformations of solutions and the mul-
tiplicity of equally valid solutions of the Hilbert-Einstein
equations in given coordinates, an example of which is pro-
vided by the solutions (1.10) and (1.11). Their conclusions
are therefore incorrect. In a given arithmetization the times
ta and tb of propagation of a radio signal from e to p, repre-
sented in integral form

/„ = \ drfa(r)+\ fir/n(r),

t,, - \ Arfb(r)+ \ ( l r / 6 ( P ) ,

(1.12")

(1.13")

where

rjj(r-2GA/)-|-l/2

»-2GM)J

r — GM (r + GM)3(ro-GM) -I"'"
and r0 and r0 correspond to the pericenters of the signal
trajectory, contain as upper limits the same arithmetization
numbers re and rp. The arithmetization numbers do not bear
any relation to the concepts of length; they simply label the
points of the manifold. In Ref. 47 the multiplicity of solu-
tions of the Hilbert-Einstein equations in given coordinates
is essentially ignored, and therefore the criticism of the auth-
ors in no way refutes our proof of the nonuniqueness of the
predictions of GR. We consider this question once more.

Making in (1.13") the substitution r = r — GM, we ob-
tain

• G . U — - • (2.83)

+GM

\ drfb(r).

and, subtracting from this (1.12"), we find in the first order
in G and for r0 -4 re, rp

rt,i-GM Tp+CM

I,-la- \ Arfa(r)+ \ drfa(r)»2GM.
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This is the essence of our conclusion of nonuniqueness of the
predictions of GR. Since in the first order in G the behavior
of clocks in the case of the metrics (1.10) and (1.11) is the
same, this result must also be interpreted as nonuniqueness
of the predictions of GR for the time of propagation of a
radio signal from e to p in experimentally observed quanti-
ties.

But we shall now give all the arguments on the basis of
the principles adopted by those who hold views similar to
those of the authors of Ref. 47 and show that our conclusion
of nonuniqueness of the predictions of GR does not depend
on this. Thus, suppose two investigators (let us call them
Chuk and Gek) have obtained instructions from the same
experimentalist to calculate the time of propagation of a ra-
dio signal from the earth (e) to Mercury (/>), expressing it in
terms of physical quantities at the disposal of the experimen-
talist, for example, the radial distances / '"g' from the earth,
mercury, and pericenter to the surface of the sun and the
gravitational frequency shifts S^ffi. Suppose also that, guid-
ed by personal motives, Chuk decided to do the calculations
on the basis of the metric (1.10), while Gek took the metric
(1.11), replacing all r by f. Then in accordance with their
plans Chuk and Gek would obtain the results

\ ^ / o ( r ) ,

'= \ &rfb(r)+ J d?fb(r)

with the functions/, (r) and/fc (r) determined above. Mak-
ing calculations of the integrals in the first order in G, Chuk
obtains the result (1.12) with rf in it replaced by r0, while
Gek obtains the result (1.13) with rep in it replaced by rep

and rf by f0. Expressing then the arithmetization numbers
repfi and rep0 in terms of the physical quantities / ̂ g ' and
(5lp!o' proposed by the experimentalist, and using (each in
his own metric and in the first order in G) the connection

where k = e,p,0 and p = r in Chuk's case and p = f in Gek's
case, they would obtain accordingly for the arithmetization
numbers the same values. Meeting when they come to the
experimentalist, Chuk and Gek would suddenly find that the
functional connections they obtained between tep and /(exp)

and (5<exp> were different. Thus, the nonuniqueness of the
theoretical predictions would be manifest. The data of the
measurements tep, l(

e™$\ and <5£"g' supplied to the experi-
mentalist make it possible by combined efforts to establish
that the experimental data agree with the formula obtained
by Gek and not by Chuk (if on their left- and right-hand
sides the results of the observations are substituted in place
of tep and / l"p) and Si"p)). Thus, Chuk's formula would be
found to be unacceptable for its adoption as basis. In our
opinion, this is due to the fact that the choice of the solution
of the Hilbert-Einstein equations is physically not identical
to choice of a particular element in the equivalence class of
diffeomorphic metrics. It is because of this difference that

the ambiguity in the predictions of GR for gravitational ef-
fects arises.

We note in conclusion that in their section "Note Add-
ed" the authors actually confuse arithmetization numbers
with distances. The numbers of the space arithmetization are
nothing more than the names of objects; in the case M = 0
and Af 7^0 they are the same, and therefore A = A ' and
B = B'. What is important is something different—the dis-
tance between the points A and B for M / 0 is not, of course,
equal to the distance between these points when M = 0 be-
cause of the change of the metric coefficients, i.e., the change
of the geometry. Thus, the thought experiment that we pro-
posed at the end of Sec. 1 remains valid. As regards formulas
(2.8) and (3.7) ofRef. 47, they were given in our paper cited
by the authors of Ref. 47 in Ref. 9 of the second paper. (Their
formulas follow from Eqs. (31a) and (32a) of our paper for
X = — 1). In this connection we should also note that their
criticism of Weinberg's method, which we also follow in the
calculation, is without basis.

In 1986, Ya. B. Zel'dovich and L. P. Grishchuk pub-
lished in Uspekhi a number of critical remarks about the
RTG.5 The editorial board of the Uspekhi did not acquaint
the authors of the RTG with this paper before its publication
and did not suggest that they should comment on it in the
same number. In the middle of 1987 we sent a paper to
Uspekhi. Recently, in April 1988, we became acquainted
with a new paper of Zel'dovich and Grishchuk, which is an
answer to our paper and is published in this present issue. We
shall give a detailed critical analysis of their paper specially.
Here we merely note that it contains numerous errors, and
therefore its conclusions concerning the RTG and GR are
completely incorrect.

1 'In particular, the authors of Refs. 5 and 6 are confused when they assert
(Ref. 5, p. 695 of the Russian original and p. 780 of the translated
article) that GR has " . . . all attributes— . . . energy-momentum ten-
sor, and conservation laws."

2)From the physical point of view this means that by studying the motion
of test bodies and light one can experimentally establish the structure of
the space-time geometry.

"It is precisely this arbitrariness (for given arithmetization of space) that
leads in accordance with the Weyl-Lorentz-Petrov theorem to the am-
biguity in the predictions of GR.

41 For more details about the indeterminacy of the inertial mass in GR and
its dependence on the choice of the three-dimensional coordinates, see
Refs. H a n d 12.

"Therefore the assertion of the authors of Ref. 5 (on p. 706 of the Russian
original and on p. 786 of the translated article) that in the given effect
" . . . there is no ambiguity in the predictions of GR and no contradic-
tions with it" must be regarded as incorrect.

"Here, LL is introduced formally, although if the pericenter of the signal
trajectory is sufficiently far from the surface of the body M it can be
perfectly well realized by means of an auxiliary test body revolving
around Min a circular orbit with r=ri.

"For many of the questions touched upon in this section, we follow main-
ly Refs. 20 and 21; they can also be found in Refs. 16 and 22-29.

8)Some aspects of the theory of gravitation in Minkowski space were
considered earlier; see, for example, Refs. 30-34. However, they were
all incomplete. Even the authors who originally set out on an original
path in the construction of a theory did not carry on to the end and
turned to a different path that did not give finished conclusions.

"The physical equations describing the properties of matter always also
contain organically the structure of space-time determined by the met-
ric tensor; the meaning of the assertion that some particular phenome-
non takes place, for example, in Minkowski space finds its precise re-
flection in the way in which the Minkowski metric is contained
organically in the corresponding equations.

'c)It also follows directly from this proposition that the special theory of
relativity is valid in both inertial and noninertial frames of reference.20

The widely held opinion, which goes back to Einstein, that special rela-
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tivity holds only in inertial frames of reference is a confusion.
11 'By virtue of what has been said, Eq. (2.1) cannot have any relation to

coordinate conditions.
l2)The gauge principle does not require invariance of the theory with re-

spect to the gauge transformations (2.4); this is an important difference
between gauge transformations in the RTG and gauge transformations
in electrodynamics.

'3>As is shown, for example, in Ref. 27, allowance for the "constraint"
(2.1) does not change the result.

'•"We have chosen a system of units with c = fi = G — 1.
'"Without the mass term, Eq. (2.24) is gauge invariant (see below).
16'One can show that (2.29) can be converted identically into (2.27) and

vice versa.
'"This follows from the fact that for m = 0 the Lagrangian (2.22) of the

free gravitational field is transformed with allowance for (2.12) into a
sum of two terms, one of which does not contain the metric coefficients
Y1™, while the other, which depends on y1"1, can be expressed as the
divergence of a vector and therefore does not influence the equations.

18)In this the gauge transformations (2.4) differ significantly from the
gauge transformations in electrodynamics, which do not affect observ-
able physical quantities.

"'Equations (2.36) can be transformed identically into Eqs. (2.39).
2O'Attempts to introduce into GR, without going beyond its ambit, the

Minkowski metric by, as is proposed, for example, in Refs. 5 and 6, the
simplest separation of the metric tensor g''v of the Riemannian space
into the two parts of (2.2) without the introduction of any new physical
hypotheses do not stand up at all to criticism, since the dynamical equa-
tions expressed using the separation (2.2)—they take the form of
(2.36)—will actually contain the Minkowski space metric yllv ficti-
tiously, since they can be identically transformed to the Hilbert-Ein-
stein equations (see (2.36) and the footnote relating to it). Therefore,
in such an approach it is in principle impossible for there to be any talk
of the Poincare group of motions or conservation laws. All this is rather
obvious if one bears in mind the incompatibility of the concepts of a
Riemannian space and a global Minkowski space, and also the fact that
a theory that does not contain the given metric organically cannot de-
scribe phenomena in the space-time determined by this metric. In the
RTG the Riemannian space is an effective space that owes its origin to
the physical gravitational field, and the Minkowski space metric y'"'
occurs organically in the theory by virtue of the field equation (2.1).
This is the fundamental difference between the RTG and GR.

211 Wheeler regarded gravitational collapse and the resulting singularity as
"one of the greatest crisis of all times of fundamental physics."

22)Black holes do not have a material surface and bodies that fall into them
encounter nothing but "empty" space when they cross the Schwarzs-
child sphere. Not even light can escape from the interior region of a
black hole through its Schwarzschild sphere.

2"Each internal layer will tend to its own limiting position.
24)Thus, in accordance with the RTG the solutions (2.47)-(2.49) are

physically invalid when Or , . . All this shows that the assertions of the
authors of Ref. 5 (on p. 704 of the Russian original and on p. 785 of the
translated article) to the effect that every solution of the Hilbert-Ein-
stein equations satisfies the field equations (2.40) are groundless.

"'Similar (but forp = 0) equations were obtained in Ref. 41. However,
because the authors of Ref. 41 did not give the gravitational field the
meaning of a real physical field in the fundamental Minkowski space,
their theory of gravitation with nonzero graviton rest mass was, as the
authors themselves concluded, not generally covariant (in contrast to
our theory, which is always generally covariant). In addition, their
approach to the construction of the theory is essentially heuristic and
not based on rigorous physical and mathematical principles that lead
unambiguously to a definite structure of the Lagrangian and the equa-
tions.
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