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This review covers the current theoretical concepts and experimental methods employed in
studying the two-dimensional electron density of states in a magnetic field. The authors discuss
the different factors that determine the energy distribution of the density of states in real systems.
They demonstrate the importance of the screening of random external potential fluctuations by
two-dimensional electrons and particularly the oscillatory dependence of screening on electron
concentration. When considering the various theoretical approaches and experimental methods,
the authors analyze their conditions of applicability and the self-consistency of obtained results.
They demonstrate that it is possible to evaluate experimentally the random potential amplitude
and range from the oscillations in Landau level broadening.
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1. INTRODUCTION

In semiconductors quasi-two-dimensional electron or
hole space-charge layers appear in channels located at the
interfaces in heterojunctions and metal-insulator-semicon-
ductor (MIS) structures.' In these channels electron motion
normal to the interface (along thez-axis) is constrained by a
narrow potential well, leading to a discrete electron spec-
trum in this direction. The electron gas can be considered
two-dimensional (2D-) if the energy scale associated with
the transverse quantization in the channel exceeds all other
characteristic energies of the electronic system (the Fermi
energy E,,, temperature T, cyclotron energy &wc, etc.).

Two-dimensional electronic structures have attracted
great attention in recent years not only because of their var-
ied and important applications in microelectronics, but also
because of the discovery of a fundamentally new phenome-
non—the quantum Hall effect (QHE), both integral2 and
fractional.3 For this discovery Klaus von Klitzing was
awarded the 1988 Nobel Prize in physics. The quantum Hall
effect (see review article [4]) occurs only in two-dimension-
al systems. In order to understand it on a microscopic level it
is essential to know the energy spectrum of 2D-electrons
D(E) in a transverse magnetic field, taking into account the
random defect potential present in real structures and the
screening of this potential by 2D-electrons.

When a transverse magnetic field H is applied to an

ideal 2D-electron gas the energy spectrum becomes fully dis-
crete because orbital motion in the plane of the layer (x,y) is
quantized-by the field:

where coc = eH/mc is the cyclotron frequency, mc is the
effective mass, Nis& quantum number. The density of states
(DS) in such a system consists of a series of equally spaced 8-
functions separated by fuoc. The electrons present in the sys-
tem fill these Landau levels from the lowest level up. The
number of electron-containing levels is denoted by the filling
factor v, which is determined by the ratio of the electron
concentration ns to the Landau level degeneracy per unit
area (2IT/H)"" ' (/H = WeH)wl is the magnetic length):

In real 2D-systems electrons are influenced by a ran-
dom potential produced by various defects (interface rough-
ness, charged impurity centers near the inversion layer,
etc.). Interaction with this random potential lifts the degen-
eracy and the Landau levels acquire a finite width. The dis-
tribution of a single-particle density of states is determined
by the types of inhomogeneities present, as well as the
screening of their random potential. The screening, in turn,
depends on the filling factor v. Studies of the DS as a func-
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tion of magnetic field and filling factor yield valuable infor-
mation on the range and amplitude of inhomogeneities in
real 2D-systems. In particular, this information is essential
for the understanding of magnetotransport in two-dimen-
stional space-charge layers in a wide range of level filling by
charge carriers.

To date, various experimental methods have been tried
for measuring the density of states of 2D-systems in a trans-
verse magnetic field. Most of these methods measured the
so-called thermodynamic density of states DT (EF)
= dns/dEF, which characterizes the integrated energy

spectrum. This quantity was deduced from the oscillatory
behavior of such thermodynamic quantities as magnetiza-
tion,8 electronic heat capacity,6 and also using thermally ac-
tivated transport.7 It turned out that Z?T (EF) exhibits a fair-
ly sharp peak near half-integral filling factors whose width is
in good agreement with estimated carrier mobilities (see
Ref. 1), but the DS does not become exponentially small
between Landau levels. This phenomenon was treated as a
"plateau" that formed a background to the Gaussian-shaped
DS peaks and various theories explaining the formation of
this plateau were proposed. Still, the observed DS behavior
could only be interpreted by invoking random potential
screening that oscillates with the filling factor v.

The single-particle density of states D(E) can also be
studied by the spectroscopic method8 based on spectral lu-
minescence measurements of 2D-electrons. The spectro-
scopic method makes it possible to determine how the ener-
gy spectrum is affected by the screening of random potential
fluctuations and to gather information on the amplitude and
range of the random potential itself.

In this review we consider all the above topics. We ana-
lyze both the theoretical aspects of random potential proper-
ties that affect the densities of states of 2D-systems and the
experimental results of DS measurements in a transverse
magnetic field obtained by various means.

2. THEORETICAL CONCEPTS

First let us consider a number of questions related to the
very idea of the density of states. In the simplest case of an
ideal Fermi gas the problem reduces to finding the energy
spectrum (i.e. solving the Schrodinger equation) of a single
particle in a random potential. By definition, given a system
that occupies a sufficiently large area the number of states
per unit energy interval and unit area averages out to the
density of states D(E). This quantity does not depend on
temperature or the position of the Fermi level EF; it is relat-
ed to the carrier concentration «s in a 2D-system by the
integral

over the coordinates and averaged over the random potential
realizations

na(Er)=JD(E) c\E. (2.1)

The thermodynamic density of states DT (EF) = dns/dEF

equals the value ofD(E) at the Fermi level at T = 0.
When electron-electron interaction is taken into ac-

count the energy spectrum of a many-particle system be-
comes exceedingly complex and, strictly speaking, unrelated
to the spectrum of a single particle. In this case, the single-
particle density of states at any temperature is determined by
the imaginary part of a retarded Green's function collapsed

For an ideal gas this quantity concides with definition (2.1).
When particle-particle interactions are taken into account,
however, D(E) becomes parametrically dependent on EF

and T. This is the fundamental characteristic of the energy
spectrum of many-particle systems. A powerful method us-
ing Green's functions with diagram techniques exists for
computing D(E).9 In particular, this method has been
adapted for magnetic field calculations.10 In certain condi-
tions it accommodates direct experimental optical measure-
ments (applications to 2D-systems are discussed in Sec. 4 of
this review).

The relation (2.1) between D(E) and concentration ns

holds for all values of T and EF even when particle interac-
tions are taken into account, but since D(E) now depends on
the position of the Fermi level Dr(EF) no longer coincides
with D{.EF) at zero temperature.

A consistent calculation of electron-electron interac-
tions by perturbation theory methods generally assumes that
the Coulomb energy at the characteristic distance between
electrons is small compared to the broadening of their ener-
gy distribution. In a magnetic field a measure of the interac-
tion's weakness is usually taken as the ratio of the magnetic
length to the Bohr radius a* = xh2 /me1 {x is the permittivi-
ty of the medium). In reality the ration lH /a* is not small (>
1 for heterostructures and > 3 for MIS-structures) and elec-
tron-electron interaction effects can be significant. In partic-
ular, electron-electron interaction should broaden the Lan-
dau levels because of quasiparticle decay, just as in an
ordinary Fermi liquid9 (this decay is forbidden in the high-
est occupied Landau level because of energy constraints, but
in the lower-lying levels it is small only according to the
parameter lH/a*).

A rigorous analysis of the electron-electron interaction
is crucial in treating the ground state of a two-dimensional
electron system at fractional filling factors. Many such cal-
culations, which we shall not discuss, have been performed
in the course of studying the fractional QHE.4

Currently the only practical approach for quantitative-
ly studying the two-dimensional Landau levels in a random
potential involves the self-consistent field approximation.
The self-consistent potential is made up of the original ran-
dom potential and the electrostatic potential arising from
the spatial redistribution of electrons; when calculating the
level broadening and charge density in this potential the
electrons are treated as noninteracting. The errors arising in
the self-consistent field method from neglecting correlation
and Fermi liquid effects are probably insignificant compared
to the additional approximations that are usually employed.
There are no experimental indications of any significant re-
normalizations of measured physical properties, and this
also gives grounds for optimism.

Below we shall list the currently available theoretical
results pertaining to the single-particle density of states.
First, we consider several practically important random po-
tential models. Second, in order of ascending difficulty, we
consider level broadening in the absence of electron-electron
interaction, linear screening of a weak random potential,
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and, finally, the nonlinear effects that occur when level
broadening becomes comparable to inter-level spacing.
Most of the cited theoretical studies analyze the questions
pertaining to the single-particle density of states D(E), i.e.
to the width and shape of the Landau levels at a fixed filling
factor v. The thermodynamic density of states is usually esti-
mated from the semiqualitative considerations set out in
Sec. 2.4.

When discussing the literature we shall give preference
to analytical results and qualitative ideas that shed light on
the physical picture. Studies devoted to numerical realiza-
tion of complicated self-consistent calculations shall get
brief mention only.

2.1. Random potentials

Spatial inhomogeneities present in real 2D-channels
differ both in their physical origin and in their contribution
to the effective random potential. Crystal structure imper-
fections and, probably, surface roughness create a relatively
short-range potential whose quantitative properties are
largely unknown. One of the more experimentally important
sources of the random potential is the charged impurity cen-
ter distribution in the vicinity of the channel. The long-range
Coulomb potentials of charged centers overlap and add up to
a smooth random potential with a long characteristic length.

We shall restrict our attention to Gaussian-type ran-
dom potentials discussed in most theoretical studies. In ad-
dition to their simple correlation properties that make for
easier calculations such potentials are important for purely
physical reasons: they result from the overlapping potentials
of a large number of weak, randomly distributed scattering
sources. For example, the potential created in the plane of
the channel by Coulomb centers is Gaussian to good accura-
cy on the scale of the order of or greater than their separa-
tion.

A general property of random Gaussian potentials is
their symmetry: that is, they are equally likely to go above or
below the mean value. Potentials created by strong, short-
range scatterers, nonsymmetric, but this appears to be prin-
cipally important only in studies of two-dimensional chan-
nel mobility, cyclotron resonance, and the like. For Landau
level broadening calculations these factors can be modelled
by short-range Gaussian potentials with sufficient accuracy.
The symmetry of Gaussian potentials poses no problem in
this case because so far very few experiments12 have indicat-
ed an asymmetric density of states about the mean positions
of the Landau levels.

The random Gaussian potential in the plane of the
channel U(r) with a mean value of zero is completely de-
scribed by the pair correlator

(r is the two-dimensional radius vector). The Fourier trans-
form of this correlator

<?k = \ Q (r) exp (— ikr) d V

determines the Fourier component distribution of the poten-
tial:

Uk = \ U (r) exp ( — ikr) d2r.
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An important characteristic of the random potential is its
dispersion, i.e., the mean-square value F:

^ i . (2-2)

A mathematically Gaussian random potential is defined as a
potential in which the probability of a random fluctuation
u{r) is proportional to

exp ( - f U (r) q-1 (r - r') U (r') d2r dV ) ,

where Q ~' (r — r') operator is the inverse of Q{r — r'), and
hence has Fourier components Qk '.

A concentration n (R) of scatterers randomly distribut-
ed in space (Rs{r , z} is the three-dimensional radius vec-
tor) creates a random potential with the correlator

(U (R) U (R')> = j V (R, Ro) V (R', Ro) n (Ro) d
3i?0

- ( J V (R, Ro) n (Ro) d*Ra) ( j F (R\ Ro) n (Ro) d»Rt) ,

(2.3)

where F(R, Rn ) is the potential at point R due to a scatterer
located at Ro. If the distribution of scatterers n(z) is homo-
genous in the plane

\ V(R, R0)exp(—ikr)d2
n (zn) dzn.

We emphasize that the characteristic length scale of the po-
tential correlations is determined solely by the properties of
the scatterers and does not depend on their concentration.
The extent to which the resulting potential is indeed Gaus-
sian does depend on the scatterer concentration, however.

Now let us describe several practical random two-di-
mensional potentials. The simplest and most conventient po-
tential (because it does not diverge in the long wavelength
limit and falls off quickly at short wavelengths) has a Gaus-
sian correlator:

(2.4)

According to (2.3) this purely theoretical potential can arise
from a randomly distributed collection of scatterers with in-
dividual potentials V(R,R0) ~ exp [ - (R - R())

 2/d2 ].
Hopefully, given the appropriate choice of parameters, the
correlator (2.4) can adequatly describe the effective poten-
tial created by surface roughness. Another frequently used
"white-noise" potential consists of a Gaussian potential
with the correlator

Q (r) = wb (r), Qk — w = const

which can be treated as the limiting form of potential (2.3)
with a small correlation length but high dispersion:

d -*• 0 , w.

Potentials created by randomly distributed charged
centers usually exhibit a power-law dependence of the corre-
lator Qk in a wide range of wavelengths. The details of this
dependence are determined by the distribution of impurities
in the perpendicular direction to the channel n(z), by the
inhomogeneity of the permittivity in this same direction
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^(z), by the presence of a metallic electrode (gate), and so
forth (everything is taken to be homogenous in the channel
plane). When all these factors are taken into account, the
general form of the random potential correlator in the z = 0
channel plane

<?k= ^ Gk(0, zo)n(zo)dzo,

is expressed via the Green's function Gk {z,z0) of the Poisson
equation, i.e., the solution of

that decreases as z-> + oo. The presence of a conducting
electrode is formally equivalent to setting x(z) to infinity at
the appropriate value of z.

We now list the simplest and most common cases drawn
from the various semiconductor systems in which two-di-
mensional channels have been realized. Singly charged
centers uniformly distributed in the homogenous medium
with concentration n3 create a random potential in thez = 0
plane that has the correlator

< ? * = - (2.5)

These same centers, distributed in the plane of the channel
with a two-dimensional concentration n2, yield a correlator

(2.6)

which contains fewer long wavelength harmonics and more
short wavelength ones. In both cases the dispersion (2.2) of
the potential is infinits, but for correlator (2.5) integral
(2.2) diverges at the lower limit by a power law, whereas for
correlator (2.6) the divergence of (2.2) is logarithmic at
both limits.

Typically, in heterostructures there exists a charge-free
(spacer) layer of thickness h near the channel, which leads
to an exponentially decreasing correlator in the short wave-
length region:

• exp (—

Taking the finite width of the channel into account should
have approximately the same effect.

In MIS-systems the permittivities of the semiconductor
xs and the insulator kd (where most of the charges are locat-
ed) are typically different. A screening metallic electrode is
usually present as well. Then, correlators (2.5) and (2.6)
take the form

1 — Akh exp (— 2kh) — exp (— Akh) (71a)
n 77. 777C77. i ... . \ - l n v « / OI.M12 » *• ' '

where x = (xs + xA )/2, h is the insulator thickness, n., is
the charge concentration in the insulator. The short wave-
length divergence disappears and the dispersion (2.2) of the
potential created by spatially distributed charges (2.7a) be-
comes finite (using silicon paramters: *s = 11.5, x& = 3.9,
Ts;4.1 (10~'" cm2«.,A)l/: MeV). A correlation in the spa-
tial impurity distribution has a similar effect.

2.2. Noninteracting electrons

The single-particle solution of the Landau level broad-
ening problem is probably the simplest possible and is cur-
rently well known. However, the conditions a real system
must satisfy in order for this solution to hold are quite strin-
gent. In order to neglect electron-electron interaction not
only must the parameter satisfy 1H /a* 4,1, but the screening
of the random potential must be weak, which happens only
at integral filling factors v (see Sec. 2.3). Moreover, the level
broadening must be small compared to inter-level spacing,
for otherwise potential screening becomes significant even at
integral v (see Sec. 2.4). Even though the above conditions
usually cannot be satisfied, the single-particle approxima-
tion results for the shape and broadening of the Landau lev-
els and their dependence on the nature of the random poten-
tial are still of certain interest.

In the absence of electron-electron interaction, the per-
turbation picture of the electron Green's function consists of
a sequence of unifilar, i.e., loop-less, diagrams containing
different impurity lines. If the level broadening is small zero-
order approximation Green's functions can be taken to be-
long to the same level. The phase multipliers that appear at
intersections of impurity lines make the summing of dia-
grams difficult in the general case, and all computations em-
ploy additional approximations of one sort or another.

The first step in this direction were studies by Ando,"
which simply omitted inconvenient diagrams with intersect-
ing impurity lines without any practical justification. The
resulting so-called self-consistent Born approximation
yields DS peaks of a semielliptical shape. For the N th level
the density of states

hD(E) = < 2IV

(2.8)

is finite in a finite energy interval and turns to zero else-
where. The width TN is expressed via the random potential
correlator:

(2.9)

where LN is a Laguerre polynomial. Energy is reckoned
from the positions of the unbroadened Nih Landau level.

The physically unrealistic sharp edges in the density of
states (2.8) emphasize the crudeness of the self-consistent
Born approximation. The actual shape of a Landau level
depends on the ratio of the random potential range d (for
correlators similar to (2.4)) to the magnetic length /H, as
well as on the level number N. We now describe the results
pertaining to various limiting cases.

1) In the smooth potential limit d > / H the integrals in
the diagrams occur in the low momentum region and phase
multipliers can be neglected. In this case diagrams can be
trivially summed and the levels are Gaussian:

This result was obtained by Gerhardts14 by the method of
cumulant expansion. Hikami and Brezin15 went further and
obtained the first few terms ofD(E) expanded in powers of
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the inverse correlation length. Their results, however, lie
outside the bounds of applicability of the noninteracting
electron approximation (see Sec. 2.3).

2) In the opposite limit d<^lH that applies to higher
Landau levels N$> 1 another simplification occurs:16 the
phase multipliers begin to oscillate rapidly and diagrams
that contain these multipliers can be neglected. In this limit,
therefore, the self-consistent Born approximation becomes
entirely valid and leads to the result (2.8) with level width

5^ ( r ) (2 n l i r ) - i dV=- s 2 r - , (2.10)

which is the same for all levels and proportional to the white
noise intensity w. Given a short-range random potential, the
shape of a level tends towards the semielliptic form as the
level number increases, as was demonstrated numerically by
Ando.17

3) In the white noise limit d^>lH, Wegner18 and then
Brezin and co-workers19 obtained an exact analytic solution
for the ground level N = 0:

, (2.11)
Ely

.SJUJj

/coincides with the level width (2.10).
4) Exponential (Lifshits) tails of the density of states

D{E) in the fuoc > \E | > TN region have been studied in the
white noise limit only.20"22 They are of paramount impor-
tance in the d4lH, A> 1 case, when the "core" of the level
exhibits square-root edges in the density of states at
\E | = ITN. The optimal fluctuation method yields

• , w (2iV-l) l |
' " 2nl3

H (27V)!! '

The numerical coefficient CN in the preexponential factor
has been obtained for the ground state as Co = ir\f2,21 which
agrees with the exact solution (2.11) (the value cited in Ref.
20 is smaller by a factor of two). Asymptotic values of CN for
high level numbers A*> 1 have also been calculated.21

Summarizing the above results, we note that expression
(2.9) yields the correct value for the mean-square width of
the Landau level both in the d^> lH limit and in the opposite
limit (the shape of the density of states peak strongly de-
pends on the relation between d and /H ). Therefore, expres-
sion (2.9) can at the very least serve as a good interpolation
formula for an arbitrary Gaussian potential.

An interesting property of this expression is that the
width of all Landau levels becomes the same both in the
smooth potential limit and in the opposite, white noise limit
because of the LN (0) = 1 equality. This can be emphasized
by considering the analytic expression for r,y given a Gaus-
sian correlator (2.4):

P I di-l]
N V dl + li.

where PN is the Legendre polynomial. In the case of a

smooth potential d^-lH the equal width of the levels is a
natural consequence of independent local energy shifts of
large regions in the system. The width of the levels FN then
matches the dispersion of the random potential,
r = (<£/2(r)>)'/2. In the white noise limit d4lH the equal
broadening of different levels is nontrivial and no simple
physical interpretation has been offered to date.

In the d4.lH limit (see, for example, Ref. 23) the level
broadening (2.9) is simply related to theH = 0 electron mo-
bility// calculated for the same channel in the Born approxi-
mation:

i - 1 / 2

but this relation is probably due to the formally analogous
integrals that enter in the expressions for T and fi.

2.3. Linear screening

In the linear response approximation the screening
properties of 2D-electron gas are described by its permittivi-
ty x(k). This function describes, as is usual, the factor by
which the polarization of the 2D-system reduces the differ-
ent (two-dimensional) harmonics of the external potential.
Linear screening does not affect the Gaussian nature of the
random potential: the correlator Qk of the self-consistent
potential is obtained when the correlator Qk of the external
potential is divided by the square of the permittivity Qk

= Qk/x
2(k).

In the absence of a magnetic field the dependence x(k)
is well known (see, for example, Ref. 4). When the tempera-
ture is small compared to EF,

(2.12)
where 2gv is the full multiplicity of the spin and valley degen-
eracy, kP = fi"' (2mEf)'

n is the Fermi wavevector.
The effects that appear when a magnetic field is

switched on are evident already in the Thomas-Fermi ap-
proximation, which holds in the long-wavelength limit. The
resulting expression (see Ref. 4),

2jxe2 dnsx (k) = :
Kk (2.13)

indicates that the permittivity oscillates with the filling fac-
tor just like the thermodynamic density of states DT(EF)
= dns/dEF. In the noninteracting electron approximation

the <5-function character of the DS peaks implies that at zero
temperature x(k) goes to infinity for all values of ns, except
for those that correspond to integral filling of Landau levels
(at these ns values screening disappears and x{k) =0) .

A more accurate calculation of k (k) requires the calcu-
lation of electron gas polarization in the random phase ap-
proximation. For a two-dimensional system in a magnetic
field no complete solution exists, but in the case of a noninte-
gral filling factor the more important part of k (k), related to
transitions inside the A t̂h partially filled level, has been de-
rived by Labbe:24

"W-i + T S F ^ ^ *
(2.14)
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1,00 2,00 3,00 4,00 5,00

FIG. I. Permittivity as a function of the wavevector in a two-dimensional
(2D) electron system in the absence of a magnetic field (1 ) ; and with
complete filling of four (2) or one (3) of the lowest Landau levels.

where v' is counted from the nearest integral value, LN is a
Laguerre polynomial. Note that as T->0 £(k) goes to infin-
ity for all k (in (2.13) this was formally true only for k -> 0).
In order for (2.14) to hold the resulting self-consistent po-
tential should be small compared to T; at low temperatures
electron concentration fluctuations due to screening should
be small compared to the mean density of screening carriers
v' (\-v')/2wl2

H.
Now let us consider the particular case of linear screen-

ing at integral filling factors, when the 2D-system acts like
an insulator with respect to the excitation spectrum. The
energy gap in the spectrum leads to the suppression of
screening when k — O, but at finite k screening can be quite
appreciable because the "dielectric" gap is small.

The calculation of the permittivity x(k) of a two-di-
mensional channel in the random phase approximation in-
volves summing the transition matrix elements from every
filled level to every empty one. This sum is quickly cut off by
the rapid decrease of matrix elements with level separation.
In Fig. 1 we show the dimensionless dependence of x(k) for
various numbers of filled levels (up to and including iVF) in
an infinitely narrow two-dimensional channel. For compari-
son we also plot x (k) for the same channel in the absence of a
magnetic field, calculated from (2.12) with kF = [2(NF

+ 1) ] ' ' 2l H ' • Clearly the dielectric nature of the screening
manifests itself only in the long-wavelength region klH

< (AV + \)~'n where, instead of the ~ k ~~' divergence that
holds in the absence of a magnetic field, we have a linear
dependence:

i - ^ - . (2-15)

In the region of wavelengths comparable to the orbit size on
the highest filled Landau level klH4(NF + 1 ) " ' / 2 , the per-
mittivity is maximized and equals

The long-wavelength asymptotic behavior of (2.15)
can be easily derived by considering the shift of Larmor or-
bits caused by the local electric field, as was done in studies
of current distribution in the quantum Hall effect.25

The decrease in the inhomogenous Landau level broad-
ening due to linear screening depends on the characteristic
potential correlation length scale d. Although this decrease
disappears in the smooth potential limit fi?>/H, for realistic
problem parameters it remains significant. In any case, it is
no less important than the other effects obtained in the sin-
gle-level approximation by expanding in terms of magnetic
length. For example, given a Gaussian form of the correlator
(2.4) one can expand the level width in terms of the magnet-
ic length as follows:

3L
da*

For shorter wavelengths x(k) agrees fairly closely with
(2.12) (especially at large NF).

It is evident that the first term in the expansion, which fol-
lows from expression (2.9) for noninteracting electrons, is
of the same power in /H as the second term, which is due to
polarization screening (the third term has the same physical
origin). But the second term is the leading term in the in-
verse correlation length d ~'. Therefore, screening is funda-
mentally important even in calculations of broadening
caused by weak random potentials. Asymptotic expres-
sions15 that ignore this fact have limited validity.

Let us estimate the effective screening in a 2D-system at
integral filling factors. Linear screening alone suffices only
in MIS-structures: because if there is no screening by a con-
ducting electrode even a small concentration of charged im-
purities near the channel would create a long-range potential
with infinite dispersion F (see Sec. 2.1). If the dielectric has
a thickness h = 2.0-10~5 cm and contains a charged impuri-
ty concentration «, ~ 10'5 cm~3, then the potential disper-
sion F=;6 meV, of the order of the level separation fec for
H = 10 T. The dispersion of the screening potential (2.7a)
with x{k) corresponding to the filling of the ground Landau
level only iVF = 0 (see Fig. 1) is smaller by approximately a
factor of two. Thus we can safely rely on the applicability of
linear screening, i.e., on the smallness of dispersion F com-
pared to fuoc, for fields H < 10 T.

2.4. Nonlinear screening

The fundamental importance of nonlinear effects in the
screening of a large-amplitude external potential is due to
the fact that it is precisely the nonlinear effects that deter-
mine the dependence of the energy spectrum on the filling of
Landau levels by carriers. The main nonlinear mechanism is
implicit in the fact that the effective number of screening
carriers, i.e., carriers free to move in the 2D-plane, itself
depends on Landau level broadening. Carriers appear in the
tails of the highest filled or the lowest empty level as these
tails cross the Fermi level E F . As the level broadens the num-
ber of screening carriers increases, which in turn reduces the
level broadening. Consequently the broadening is deter-
mined self-consistently and depends on the position of un-
perturbed levels with respect to the chemical potential.

The most common approach to nonlinear screening
springs from Ref. 26 by Ando. It is based on the self-consis-
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tent Born approximation (see Sec. 2.2) with corrections due
to screening.27~M Various random potential models have
been considered within this framework, but the thermody-
namic density of states has not been studied. When this
method is rigorously applied it yields reasonable values for
level broadening, although the square-root edges in the den-
sity of states may appear as nonanalyticities in calculated
dependences of level broadening on the filling factor (this
apparently happened in the calculations of Ref. 28). Gud-
mundsson and Gerhardts31 developed an interesting, albeit
somewhat artificial, method wherein spatial fluctuations of
the potential and the electron concentration are replaced by
purely statistical ones. This study focused on the thermody-
namic density of states, but it furnished only a qualitative
illustration of "plateau" formation inZ>T (EF) due to broad-
ening oscillations.

The abovementioned methods required numerical cal-
culations26 10 whose results were unhelpful in building up a
clear physical picture and discerning qualitative depen-
dences. A major advance in the study of nonlinear screening
of long-range potentials was accomplished by employing
methods developed in the theory of doped semiconductors.32

These methods were applied to two-dimensional systems by
Gergel' and Suris33 (without a magnetic field), Luryi,34

Shklovskii and Efros." These studies treated a potential
created by Coulomb centers scattered in the plane of the
channel,'314 or throughout the bulk,13'15 both for low elec-
tron concentrations in the channel33 and at near-integral fill-
ing factors.3435 Although the approximations employed in
these studies appear to require very strong magnetic fields in
real systems (see below), the resulting picture undoubtedly
sheds light on the structure of the self-consistent potential
and the density of states in strong magnetic fields. We shall
describe this picture below, omitting for simplicity the spin
and valley degeneracy of the Landau levels.

When the characteristic length scale of the random po-
tential is large compared to the magnetic length lu, we can
speak of the local positions of Landau levels Es{r) and of
their fluctuations in the channel plane that follow the self-
consistent potential U{r). The long-range potential shifts
the local bottom of the band in the two-dimensional channel
together with all the Landau levels

Landau level is "clamped" in the interval:

EF — h<oc (NF — N + 1)

Let the chemical potential fall between levels NF and
(N,. + 1) in the absence of inhomogeneities, i.e., levels with
iV<7VF are full and levels with N> (NF + 1) are empty. Be-
cause of fluctuations, the empty (iVF + 1) Landau level can
fall below the chemical potential EF in some places and,
conversely, in other places the filled NF level can climb
above EF. Accordingly, in appropriate regions electrons will
appear in the (NF + 1) level and holes will appear in the NF

level. They create an electrostatic potential that compen-
sates external potential fluctuations and shifts the local posi-
tion of the appropriate Landau level towards EF. In the limit
of a strong magnetic field the exchange and correlation ef-
fects of the Coulomb interaction become unimportant and
we have threshold screening. This means that in regions with
holes on the NF level its energy 2sV| (r) becomes precisely
equal to Ev, whereas in regions where electrons appear on
the (Nr + 1) level E(iXi + l ) ( r ) = £ F . Asa result the iVth

EF- (NF - N). (2.16)

The exact form of the density of states D{E) requires nu-
merical computations even in the threshold screening ap-
proximation. Nonetheless, some qualitative features can be
understood on the basis of graphic dimensional arguments.35

Below we shall develop a somewhat more general argument,
similar in content to Ref. 33. Consider the situation when the
concentration «s is fixed and the filling factor is nearly inte-
gral, i.e. the difference <5«s = «s - [(AY + 1)/(2TT/2, )]
4 (2vl „ ) ~'. Let us find the position of Er. First, consider
the case of positive Sns, when the screening carriers are elec-
trons in the (NF + 1) level and their concentration is <5«s.
Take a random potential, described by the correlator Qk,
which we will gradually turn on beginning with its long-
wavelength Fourier harmonics up to some km.l%. At small
km.M there is complete screening. Screening a plane wave
U(r) = exp(/kr) requires a change in carrier concentration
Sns(r) = (xk /2ire})exp(ikr). Thus, if potential harmonics
from k = 0 to k = kmax are totally screened the characteris-
tic concentration fluctuation is:

The screening is ideal if the local electron concentration
«s (r) does not turn to zero anywhere. When &nillx is small
the increase of the concentration 5«s (r) is also small and the
regions which are fully depeleted by the local decrease in
ns (r) are few. However, as shorter wavelength fluctuations
are turned on, the concentrations <5«s(r) increase and, at
some value £m.lx = L ~ ' determined by the equation

(2.17)

they become comparable to the mean concentration <5«s.
This implies that the screening is markedly nonideal and the
distribution ns (r) of electrons in the plane contains charge-
free regions of size L and equally large regions where the
electron concentration has been roughly doubled. Harmon-
ics with k > L ~ ' are screened but weakly and, consequently,
these harmonics are the ones responsible for level broaden-
ing. If we ignore the non-Gaussian nature of the resulting
potential, this broadening can be estimated as

<H

r2 Ak (2.18)

The upper bound of the above integral is taken to be the
magnetic length, since potential fluctuations of shorter
wavelength do not contribute to level broadening (see Sec.
2.2). Expression (2.18) and equation (2.17) determine the
characteristic length scale L and amplitude T of self-consis-
tent potential fluctuations.

The position of the Fermi level EF is established by the
following considerations. In the absence of impurities it co-
incides with the partially filled Landau level NF. Because of
self-consistent potential fluctuations of amplitude F the Fer-
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mi level will move to the fluctuation-induced lower bound of
this level E(.V,. + I) (r)

(2.19a)

since the electrons will occupy most energetically favorable
orbitals. This same argument can be carried out for negative
<5«s, when holes are the screening carriers and their concen-
tration is 8ns 4 (2TT/H ) ~' in an almost filled level NF. In this
case one obtains the same expressions (2.18), (2.19) for L
and F, but the chemical potential is now located at the fluc-
tuation-induced upper bound of the ENi(r) Landau level:

r - (2.19b)

The above approach is strictly valid only when the fill-
ing factor is not too close to an integer, because it is assumed
that Landau level broadening T is small compared to inter-
level spacing fUoc and that the chemical potential is located
near the NF level (for Sns <0) or the (NF + 1) level (for
Sns >0). Generally, screening carriers exist in both levels
and their total concentration 6ns enters into (2.17). Incases
of integral filling factors 8ns = 0 and the screening length is
determined by (2.18) with level broadening set equal to in-
ter-level spacing. Then expression (2.17) yields the total
concentration of screening carriers of both signs.

The expressions listed above illustrate the qualitative
dependence of level broadening F and Fermi level position
Ef on concentration Sns in a random, long-range potential.
Now let us turn to concrete examples of different charged
impurity distributions, which requires the substitution of
appropriate correlators into equations (2.17) and (2.18). If
the potential is produced by charges with a uniform distribu-
tion (2.8), integration in (2.18) can be taken to infinity (as-
suming /H <L) and we find

L ~ (2.20)

(given F4fuoc). As demonstrated in Ref. 35, in the thresh-
old screening limit this case yields a dimensionless universal
relation between the chemical potential and the concentra-
tion

£ F = fccoc(ATF+l+o(^)), (2.21)

where 'P(x) is a dimensionless, odd function that must be
computed numerically. The asymptotic behavior of this
function at large values of the argument follows from (2.20)

When the charges are distributed in a plane the situa-
tion is more complex. When the correlator (2.6) is substitut-
ed into the integral (2.18) for level broadening, the integral
diverges logarithmically at the upper bound and the magnet-
ic length /„ appears explicitly in the result:

The position of the chemical potential is established by
(2.19). Obviously the dependence of EF on «s is no longer
dimensionless. The thermodynamic density of states, which
follows from (2.20) or (2.21), exhibits a power-law diver-
gence near each Landau level

x(AEF)2

where AEF is the separation between EF and the nearest
Landau level. The thermodynamic DS is minimized

when EP falls half-way between two Landau levels, i.e. when
AEF ^fuo^/2. When the impurities are distributed in two
dimensions, Dr(EF) falls off exponentially as Ef moves
further from the Landau level,

Z)T
eHHn\1/2 exp

AEFx2 \

When EF reaches half-way between levels DT (EF) becomes
exponentially small:35

Z)T
(o»)»

75- exp
(a*)8 \
n.li I '

(2.22)

Let us analyze the validity of our estimates in the case of
a bulk impurity distribution. In addition to the usual con-
straint that the electron-electron interaction be weak,
lH/a* 4 1, several other conditions apply.

1. The screening length L must be large compared to:
a) the separation between impurities, n,L3> 1 (so the

potential can be treated as Gaussian),
b) the magnetic length lH (more precisely, the orbit size

on the levels contributing to the screening).
2. The concentration of screening carriers in (2.17)

must be small compared to:
a) total number of orbitals in the level, Sns 4 (2TT/H ) ~'
b) the characteristic concentration at which the corre-

lational energy shifts become comparable to level broaden-
ing, {e2/x)8n\n4T.

The theory is best suited to real systems when the filling
is integral, EP is located precisely half-way between levels,
and the broadening reaches its maximum value r~&u c . In
this case all the constraints reduce to a restriction on the
magnetic field intensity. In principle, the most stringent re-
quirement is 2.a) which can be rewritten using (2.20) as

lkn,<a*. (2.23)

It is more difficult to estimate the constraints in the flat Im-
purity distribution problem, but up to a logarithmic coeffi-
cient it probably suffices that the exponent in (2.22) be large
compared to unity:

^« 2 <(a*) 2 . (2.24)

Since the numerical coefficients in these estimates are
unknown, inequalities (2.23), (2.24) should not be taken as
quantitative criteria, but rather as qualitative lower bounds
on the magnetic field intensity that would render the thresh-
old screening hypothesis valid, at least for integral filling.

The presence of a conducting electrode imposes an ad-
ditional constraint that the screening length be small com-
pared to the distance to the electrode L 4 h, which places an
upper bound on the magnetic field. If this constraint is vio-
lated significant screening of the random potential by the
electrode will follow. In the opposite limit £>/i, the two-
dimensional channel does not participate in the screening at
all.
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To date, the rather interesting question of the shape of
the single-particle DS peaks in the case of nonlinear screen-
ing has not been examined in detail. Self-consisent calcula-
tions26"30 are entirely inapplicable since they ivariably yield a
semielliptical peak shape. Qualitative arguments34 within
the threshold screening model indicate that each Landau
level EN (r) has a greater probability of being located at the
edges of iterval (2.16), rather than in its original position in
the absence of a random potential. A better understanding
will require numerical modelling that approximates the real
situation. Currently, all experimental data fit into the tradi-
tional representation of the single-particle density of states
by a collection of bell-shaped peaks corresponding to broad-
ened Landau levels.

3. EXPERIMENTAL METHODS OF STUDYING THE
THERMODYNAMIC DENSITY OF STATES

Practically all methods that purport to measure the
thermodynamic DS are based on the oscillatory response of
the total energy (£"), chemical potential (EF), or magneti-
zation (M) of a 2D-electron system to variation in the mag-
netic field. Consequently, let us examine the oscillation of
these quantities in the simplest case: an ideal system of non-
interacting 2D-electrons at T= 0 and ns = const.36 As we
have seen already, in this ideal system the energy spectrum
consists of a collection of 5-functions separated by cyclotron
energy gaps (for now we shall neglect spin and the nonequi-
valence of different electron valleys for simplicity). If the
magnetic field intensity is so great that the 2D-electron con-
centration ns is smaller than the Landau level degeneracy
H/eh (i.e. v< 1), all electrons will be found in the ground
state on the lowest level. Then the total energy, chemical
potential, and magnetic moment of the system are 0 < v < 1:

, , d£ 1 eh (3.1)

8 5 3 2

FIG. 2. Schematic picture of the oscillatory behavior of magnetization M
and chemical potential E¥ of an ideal 2D-electron gas at a constant con-
centration «s in a magnetic field, T= 0.

The qualitative dependences M(H) and Ef (//) that result
from these formulas are illustrated in Fig. 2. Evidently, at
integral values of v both the chemical potential and the mag-
netization jump sharply. The formulas clearly indicate that
the EF jumps correspond to the energy gap fuoc and the mag-
netic moment changes from — (\/2)Snsefi/m to the oppo-
site value (l/2)Snsefi/m. Certainly in a real 2D-system im-
perfections and a finite temperature (T ^ 0) should wash out
these jumps and decrease their amplitude. Moreover, the
spin and intervalley splittings that are present in the energy
spectra of real 2D-electron systems should produce addi-
tional chemical potential jumps. At v values when both Lan-
dau spin sublevels are completely filled the magnetization
jumps by Sns efi/m, while at v values when one spin sublevel

8 H, T
where S is the area of the 2D-system and m is the effective
electron mass.

If the field intensity is reduced with ns held fixed (i.e., v
increases) then, with 1 < v < 2, part of the electrons will fill
the lowest Landau level and the rest will be found in the first
excited level with N — I.

• Y ha>cSns— ho)cS —£- ,

= - > . - £ • 0 > - 4 ) .
(3.2)

In the general case of k<v<(k + 1) (kan integer) it is
easy to show that:

E= (2k+ 1) Sns ^-k(k+ 1) -5|2. S-£- ,

M=- |5«s— [(2*+l)-2fc(*+l)v-']. (3.3)
& Tit

E l

FIG. 3. Oscillations in the normalized magnetization of 2D-electrons in a
GaAs-AlGaAs heterostructure in a magnetic field." a—Heterostructure
with 140 identical quantum wells, 2D-electron concentration in the wells
ns = 5.4x 10" cm~:, electron mobility/; = 8x 104 cm:/V-s; b—Single
heterojunction, ns = 3.7X10" cm~:, // = 2.85x10' c m W ' s ; inset
shows the experimental geometry; dashed and dotted lines are fits calcu-
lated by assuming Gaussian DS peaks on Landau levels with different
broadening estimates.
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is filled and the other empty A/jumps by SnsgceH/m0 where
ge is the 2D-electron g-factor and m0 is the free electron
mass. These oscillations have been observed in magnetiza-
tion M5 and contact potential Vo

 37 measurements. In ex-
periments measuring the heat capacity cT

6 and electronical
capacitance Ce

38 of 2D-electron systems the observed struc-
tures were also due to chemical potential oscillations in a
magnetic field. We shall now consider individually all of
these experimental methods which are used to determine the
thermodynamic DS of 2D-electrons in a magnetic field.

3.1. Magnetization oscillations

Magnetization measurements in a 2D-electron system
were first reported in Ref. 5. In these experiments the sam-
ples were mounted on a thin fiber held perpendicular both to
the magnetic field and to the normal to the 2D-layer plane.
The magnetic field was tilted by a small angle from the nor-
mal to the 2D-layer in which direction the orbital magnetic
moments of 2D-electrons would point. The torque under
such a condition is determined by M x H and therefore de-
pends on the total magnetization of the 2D-electron system.
The oscillating part of this magnetization was measured us-
ing a highly sensitive torque magnetometer. Detailed de-
scriptions of the instruments used in this technique and of
the differential capacitance method of measuring magneti-
zation deflection angles in a slowly swept magnetic field are
available in Refs. 5, 39, 40.

Different 2D-electron systems were studied in these ex-
periments: a GaAs-AlGaAs superlattice containing some
100 quantum wells with 2D-electrons (of fairly low mobility
~ 5 X104 c m W • s), as well as a single GaAs-AlGaAs heter-
ojunction with high mobility. In both cases, instead of
abrupt magnetization jumps at integral filling factors, the
authors measured a fairly smooth variation of magnetization
with H (Fig. 3). The amplitude of M oscillations was signifi-
cantly smaller (by almost a factor of five) than the theoreti-
cal value Mo = nsSfie/m (see (3.3)). These observations
imply that there is great broadening and overlap of the Lan-
dau levels in QHE conditions, inasmuch as even the high
field (/z//> 1) density of states does not become small
between Landau levels but rather makes up a significant
fraction of the zero-field two-dimensional DS: Do = m/irfii1.

In order to calculate the DS the experimental Me(,H)
dependence was compared with the theoretical M,{H)
counterpart obtained by differentiating the expression

E = \zD (e, T) / (e, £ F , T) de, (3.4)

with respect to the magnetic field (where f(e,EF,T) is the
Fermi distribution function).

In this expression each DS peak was described by the
Gaussian

D(e, T) ^*L

(3.5)

(Ej are the energies of unbroadened Landau levels). The
parameter F was taken to depend on the magnetic field. The
best fit to the data was obtained with F = AH'n, where the
constant A depends (rather weakly) on the quality of the

structure and decreases with increasing fj..
In summary, we note that magnetization measurements

in 2D-systems did not succeed in directly measuring the den-
sity of states. The weakest link in this method is the assump-
tion that the fitting parameter F depends monotonically on
Hand is independent of the filling factor. It follows immedi-
ately from experimental and theoretical arguments26'35 that
this assumption is invalid and hence the quantitative DS de-
scriptions presented in Refs. 5,39,40 prove rather crude. We
emphasize, on the other hand, that these experiments fur-
nished some of the first indications that Landau levels over-
lap strongly under QHE conditions and that the DS in the
gaps is significant even in a very strong magnetic field (i.e.,
when /*/f > 1).

3.2. Contact potential and gate current oscillations

The contact potential method, employed in Refs. 37,
41-43 to study the 2D-electron density of states, is essentially
identical to the classic Kelvin method used to measure the
electronic work function of a material. This experimental
technique measures the difference in contact potentials Vc of
the 2D-electron channel (with constant electron concentra-
tion) and the metallic electrode as a function of magnetic
field. If the magnetic field has no effect on the gate, whereas
the chemical potential of 2D-electrons oscillates with mag-
netic field according to (3.3), then the measured difference
in Fc (under conditions of thermodynamic equilibrium nec-
essary to maintain a constant electrochemical potential)
should reflect the Fermi level oscillations of a 2D-electron
system in a magnetic field.

We note that the idea of applying the contact potential
difference method to study the electronic energy spectrum in
a magnetic field was proposed in 1986 in Refs. 44 and 45.
Experimental results on metals (Be), however, proved nega-
tive: no contact potential oscillations due to chemical poten-
tial changes in a magnetic field were observed, even though
the measurement sensitivity far exceeded the expected mag-
nitude of Vc oscillations.46 This negative result was ex-
plained in Ref. 47 by noting that in this case electrons deter-
mine the compressibility of a metal and hence the contact
potential oscillations cannot follow chemical potential oscil-
lations, as they are completely compensated by the magneto-
striction effect. It might have been expected that in semime-
tals, where the bulk electron concentration is lower by 3-4
orders of magnitude compared to ordinary metals, magneto-
striction effects would be weak and Vc oscillations would
appear. Yet Ref. 47 established that even in semimetals con-
tact potential oscillations are fully compensated. Conse-
quently, the potential oscillations between the metallic gate
and the 2D-channel in silicon MIS-structures measured in
Ref. 37 were probably the first experimentally observed con-
tact potential oscillations of a metallic system in a magnetic
field. In addition to silicon MIS-structures, Vc oscillations
have been observed in GaAs-AlGaAs heterojunctions.484"

In experiments on Si MIS-structures374'"43 Vc variation
was measured using an electrometer with a large input im-
pedance ( ~ 1014 fl) to make sure that during the period of a
Vc (H) oscillation the charge on the MIS-structure did not
change by more than 0.1%. The dependence

Vc {H) |ns=const
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exhibited contact potential jumps, which were most pro-
nounced at integral filling factors v = 4, 8, 12 . . . corre-
sponding to complete Landau level occupation. Since in the
ideal case the magnitude of the chemical potential jump at
v = 4, 8, 12 . . . approximately equals ikoc (see Fig. 2) the
oscillation amplitude AFC should reach fuoc/e. Yet the ex-
perimentally measured A Vc were reduced by almost a factor
of five, indicating singificant Landau level broadening com-
pared to the ideal case. The energy spectrum parameters of
2D-electrons were extracted by Pudalov and co-workers41

from the best fit of the measured dependence AVC(H) to the
function EF(H)/e obtained by numerically solving the
equation:

5 = 4 - 2 \D,b,Er) exp- kT
- ) - ' de .

(3.6)

This equation, derived from the condition of constant
2D-electron concentration in a magnetic field, contains the
functions DJ(E) which describe the energy distribution of
the density of states on the Landau levels. In fact, these func-
tions make it possible to study the DS by the contact poten-
tial difference method. It should be noted, however, that
several assumptions and fitting parameters are required if
this method is to yield the density of states. These include:

1. The equality AVC(H)=AEF(H), even though it
may be violated by compensating effects related, for exam-
ple, to magnetostriction.47

2. The energy distribution of the density of states on two
adjacent Landau levels is assumed to follow Gaussians of
width r , which is a fitting parameter assumed constant for
adjacent sublevels.

3. Another fitting parameter is the energy gap Av, cor-
responding to the filling factor v.

4. Since in some ranges of magnetic field the experimen-
tal dependence AFc(i/) is measured under conditions of
changing v, the fitting parameters Av and F are not con-
stants, as follows from Ref. 8 and the conclusions of Ref. 41,
but instead could change sharply according to unknown de-
pendences Av(#) and F(H).

These difficulties make the quantitative results of con-
tact potential measurements less reliable, but it should be
noted that this method succeeded in discoverning the en-
hancement of intervalley and spin splittings.41

Experiments measuring the contact potential difference
are closely related to the gate current oscillation technique of
studying the DS, wherein the current flowing through the
2D-channel-gate raise circuit is measured in a ramped mag-
netic field. This technique was proposed in Ref. 50 to study
the DS in GaAs-AlGaAs heterstructures. The chemical po-
tential of 2D-electrons oscillates in a changing magnetic
field, resulting in contact potential difference oscillations
and charge transfer in the gate-2D-channel circuit. This
charge transfer should follow the contact potential differ-
ence oscillations. The quantity of charge can be determined
by measuring the current through the gate-2D-channel cir-
cuit closed with a load resistance. The current then equals

AH (3.7)

that measurements of the gate current I(H) also contain
information on the density of states.

3.3. Electronic heat capacity oscillations

Another method of obtaining the 2D-electron density
of states in a quantizing transverse magnetic field is based on
measuring the electronic heat capacity, which is defined by

— ^L — J L i' e, EF)de, (3.8)

where S is the area of the 2D-electron channel, AH /dt is the
magnetic field sweep rate. It follows immediately from (3.7)

where E is the internal energy of the electronic system. As
the temperature changes electrons are redistributed in the
vicinity of the Fermi surface. The electronic heat capacity is
therefore proportional to the DS at the Fermi level, which
follows from equation (3.8). It should be emphasized that
both extended and localized electron states contribute to the
heat capacity.

The heat capacity of 2D-electron systems was calculat-
ed in Ref. 51, which implicitly assumed a single-particle DS
on Landau levels and a Gaussian distribution of D{E). That
paper analyzed the intra-level and inter-level contributions
to the heat capacity. If several Landau levels contribute, the
electronic heat capacity oscillates with filling factor, so that
c, (v) is maximized at integral vand minimized at half-inte-
gral v. These peaks appear only when kT~fici>t. (i.e., when
temperature is fairly high compared to the gaps in the energy
spectrum).

Electronic contribution to the heat capacity is much
weaker than the phonon term. This posed the main problem
in experiments devoted to measuring 2D-electron heat ca-
pacity oscillations produced by varying the quantizing
transverse magnetic field. The difficulty was overcome,
however, by studying multilayer heterostructures consisting
of large numbers of identical quantum wells containing
the 2D-electron gas. Thus Refs. 5, 50 employed a
GaAs-AlGaAs heterostructure consisting of about 100
quantum wells (the total number of 2D-electrons was of the
order of 1013). Electronic heat capacity measurements were
carried out by the standard heat pulse technique, wherein
the system is heated adiabatically. The experimental details
are described in Refs. 6, 52.

Figure 4 illustrates the temperature oscillations pro-
duced by changes in the magnetic field. Measurements were
carried out on a multiquantum well heterostructure at 1.5
K.52 Temperature changes were obtained from the resis-
tance of a Au-Ge temperature detector (_v-axis in Fig. 4)
with the resistance variation AR proportional to tempera-
ture variation A T of the sample.

Temperature oscillation peaks produced by a ramped
magnetic field correlate precisely with minima of Shubni-
kov-de Haas oscillations in magnetoconductance av v(H)
and the plateaus in the Hall resistance pxv (H) in the same
structure. Such a strong correlation in the oscillatory behav-
ior of temperature and magnetotransport coefficients fur-
nishes convincing evidence that the experimentally observed
temperature oscillations are due to the electronic heat capac-
ity.

The next step is to extract the density of states from the
measured oscillatory behavior of temperature field depen-
dence AT(H) caused by oscillations in the electronic heat
capacity. To this end one computes the oscillating behavior
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FIG. 4. Electronic temperature oscillations of a 2D-electron gas in
a 94 layer GaAsAlGaAs heterostructure as a function of magnetic
field." A heat pulse increases the sample temperature by A7". The
dashed line indicates the increase in lattice temperature.

of electronic heat capacity c%{H) (Fig. 5). The computa-
tion proceeds from some assumptions on the DS shape at the
Landau levels, DS peak width F, and the constant DS back-
ground D under the peaks (F and D are fitting parameters).
If an adiabatic heat pulse transfers an amount of heat AQ to
the sample, then the electronic heat capacity is related to the
resulting temperature change A Taccording to following for-
mula:

(3.9)

where the lattice heat capacity cxf = aTi and it is assumed
that tf (T + A T) ~ c, (T). The best fit of experimental data
to calculated oscillations is obtained when the DS peaks at
the Landau levels have width Y ~H 1/2 and there is a finite
background DS in the spectrum gaps (see Fig. 5). Conse-
quently this method does not directly measure the DS, but
rather employs several fitting parameters and apriori as-
sumptions on the shape of DS peaks at Landau levels, as well

as assuming a constant DS background of unexplained ori-
gin.

3.4. Magnetocapacitance oscillations

The capacitance of a metal-insulator-semiconductor
(MIS) system does not depend solely on the insulator thick-
ness (h) and the 2D-channel thickness, but also on the elec-
tronic density of states.53 Indeed, if a gate potential variation
8Vg induces a Sns variation in the 2D-electron concentra-
tion, then it follows from the constancy of the electrochemi-
cal potential in thermodynamic equilibrium that eSVg

= SEF, where 8Ef is the variation of the 2D-electron chem-
ical potential that corresponds to Sns. We thus obtain the
following expression for the magnetocapacitance:

Consequently the full inverse capacitance contains
three terms:

+ (Se2DT(EF))-\ (3.10)

FIG. 5. Electronic heat capacity oscillations calculated from the oscillat-
ing electronic temperature dependence shown in Fig. 4. "Curve 1—experi-
ment; 2-4—calculations with P = 0.6 meV-/ / " : , P = 0.75 meV, and
P = 1.5 meV respectively.

where xH, xd,xs, are the vacuum, dielectric (insulator), and
semiconductor permittivities respectively; S is the area of the
system, DT is the thermodynamic 2D-electron density of
states; and y is a numerical coefficient in the range of 0.5-
0.7." Significantly, the first two terms remain constant in a
changing magnetic field and, consequently, capacitance
variation with magnetic field is directly related to changes
with H in the density of states at the Fermi level. It should be
noted that the typical value of the third term in (3.10) at
H = 0 comprises only ~ 10"3 of the first term and hence
measurements require great precision in a bridge capaci-
tance scheme,3854 wherein one accounts for the phase shifts
and frequency dependence of potential variation that ac-
company changes in the capacitance. The magnetocapaci-
tance method fails at integral Landau level filling at low tem-
peratures and high magnetic fields (i.e., under QHE
conditions). The point is that in the quantum Hall effect
regime the diagonal conductivity axx of a 2D-electron sys-
tem becomes exponentially small and the voltage signal mea-
sured in the bridge scheme ceases to follow capacitance vari-
ation and reflects axx instead. If the magnetocapacitance
method is to measure the pure capacitance signal the follow-
ing condition must hold
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FIG. 6. Density of states as a function of energy obtained from
measurements of thermally activated conductance.7 Measurements
done on a GaAs-AlGaAs heterostructure, 2D-electron mobility in
the channel /i = 1.9X 10*cmVVs. Schematic energy distribution
of the single-particle DS corresponding to nearly integral filling
factors is shown in the inset. Regions of localized states are shaded.

2 E, meV

ACe
(3.11)

where C" is the field-independent capacitance determined
by the first two terms in (3.10), ACe is the capacitance vari-
ation due to changes in Dr (third term in (3.10)). The con-
straint (3.11) turns out to be quite rigorous and makes it
practically impossible to determine DT in the QHE regime.
Indeed, if the experimental parameters are C°~10~ 9 F;
A C e ~ 1 0 ~ ' 2 F ; « ~ 1 0 2 H z , then (3.11) requires axx'4102

H, whereas in the QHE regime at T= 2 K, H = 8 T, axx
]

> 109— 10'3fi. This estimate clearly indicates that inequality
(3.11) may only be satisfied far from the QHE regime. The
difficulty with measuring the absolute value of the capaci-
tance in the QHE regime also results from the very small
"flow-over" length" Lf = (axxS/coCe)

U2, which implies
that only a fraction of the area of the 2D-electron system
(near the source and sink contacts) is probed. Hence a
smaller effective areaS1* <S should enter into (3.10) and a
strong reduction in the measured capacitance in the QHE
regime may reflect a smaller S *, rather than a smaller DT.
There should also be no phase shift in ACe measurements,
since conductance through the effective area S * will be mar-
kedly larger than cPxx (where cPxx is the conductance of the
2D-electron system per unit area).

The first magnetocapacitance measurements, reported
in Ref. 38, attempted to determine DT between Landau lev-
els at integral v in a GaAs-AlGaAs heterostructure. At
T~ 1.3 K, however, a purely capacitive signal could only be
measured with H < 1.6 T. In Ref. 54 the authors applied the
magnetocapacitance method at half-integral v, where axx

l

~h/e2~\02 il and found that the Landau level width F,
determined from the magnetocapacitance values at half-in-
tegral v, varied as H l /2, in agreement with the short-range
scatterer theory,21 and depended on the 2D-electron mobil-
ity, also in agreement with this theory.

In all, the magnetocapacitance method proved very ef-
fective in measuring the 2D-electron density of states pre-
cisely on the Landau levels (half-integral v). In the more
interesting quantum Hall effect regime (integral v) this
method appears to encounter insurmountable difficulties.

3.5. Thermally activated magnetoconductance

The notion of determining the 2D-electron density of
states from thermally activated magnetoconductance data7

springs from the assumption that the electronic states in the

gaps between Landau levels are localized, while extended
states are concentrated in narrow regions near the Landau
levels. Taking this assumption as valid, whenever each Lan-
dau sublevel becomes fully occupied (i.e., when «s = n%
= veH/H, van integer), the Fermi level falls into an energy

gap (half-way between Landau levels; see Fig. 6, inset). The
magnetoconductance axx then falls to its minimum axx min
and differs from zero (if the temperature is not too low)
because of thermal activation of electrons and holes from the
Fermi level into the extended states:

Omm ~ exp
W

(3.12).

where W is the activation energy equal to half the energy
gap. If the concentration «s changes from n% by a quantity
Ans, the Fermi level shifts by A.EF from the midpoint of the
energy gap towards one of the Landau levels, which reduces
the activation energy by AEF. In this manner, by following
the changes in activation energy induced by variation of ns

about «g one can establish the dependence of AEP on A«s

and by differentiating obtain the 2D-electron density of
states in the energy gaps of the spectrum (see Fig. 6).

Significantly, the thermally activated magnetoconduc-
tance method can only hope to determine correctly the quan-
tity DT (EF ) = dns/dEF in the narrow range near integral
filling factors (i.e., in the QHE regime; the thermally acti-
vated conductance and magnetocapacitance methods are
thus complementary). Precisely in this region, as was shown
in Ref. 58, both the electron axx ~ exp [ - (W- &EF)/kT)
and hole axx ~exp[ — ( W + AEF )/kT) contributions to
the magnetoconductance should be considered. Conse-
quently the temperature dependence of magnetoconduc-
tance is described by the equation58

J ' ^ y 1 - (3.13)

Only then does the differentiation of AEF (Ans ), obtained
from (3.13), yield the correct density of states DT exactly at
the midpoint of the energy gap.

An analysis of thermally activated magnetoconduc-
tance led to the following conclusions:758-v)

1) the density of states at the midpoint of the energy gap
depends weakly on energy;

2) the quantity DT is not exponentially small in the
energy gaps, but rather makes up an appreciable fraction of
Do (see Fig. 6) and decreases slowly with increasing^ and
H.
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The major weaknesses of the thermally activated mag-
netoconductance method are:

1) the assumption that the density of states D(E) does
not depend on A«5 and T;

2) the assumption that the mobility threshold that sepa-
rates localized states from extended ones does not change
with A«s;

3) the method is only valid in a fairly narrow tempera-
ture range;

4) in the QHE regime the measured current is strongly
inhomogenous (filament formations) and hence the mea-
sured density of states may characterize only that part of the
2D-electron system that carries the current.

Nonetheless, it should be noted that the thermally acti-
vated magnetoconductance method was the first one used to
establish that the 2D-electron density of states in a strong
magnetic field is non-exponentially small between Landau
levels.60

3.6. Other methods

In addition to the discussed methods of experimentally
investigating the 2D-electron density of states in a transverse
magnetic field, several other techniques addressing the same
problem should be mentioned. Shashkin and co-workers61

employed a method based on the nonlinear characteristics of
silicon MIS-structures. Although physically equivalent to
the thermally activated magnetoconductance method, this
experiment had the advantage of recording the current dis-
tribution in the MIS-structure in addition to probing the
density of states. Another promising method is the study of
resonant tunneling of charge carriers through a thin insulat-
ing layer in silicon MIS-structures.62 Also, cyclotron reso-
nance experiments are of considerable interest.63'64 A recent
advance in that area consisted of observing oscillations in the
broadening of cyclotron resonance lines that varied with the
filling factor, recorded in an experiment with a fixed filling
factor and a swept far-infrared radiation frequency.

4. THE SPECTROSCOPIC METHOD OF STUDYING THE
SINGLE-PARTICLE DENSITY OF STATES

Now let us turn to the spectroscopic method of deter-
mining the DS of 2D-electrons in a transverse magnetic
field. This method is based on recording the luminescence
spectra of radiative recombination of two-dimensional elec-
trons with nonequilibrium photoexcited holes. We shall take
the Si (001) MIS-structure as an example.8'6667 Important-
ly, this method measures the energy distribution D(E) of a
single-particle DS at fixed Landau level filling, whereas the
methods described in the preceeding section (see Sec. 3)
probed the thermodynamic density of states DT (EF)
= dns /dEF. If electron-electron interaction and random po-
tential screening are taken into account D(EF) ^=dns/dEF.
The spectroscopic method makes it possible to followthe re-
distribution of single-particle DS as the filling of quantum
states changes due to screening of the long-range random
potential components. Not only does the spectroscopic
method furnish an effective tool of studying the fine struc-
ture of the Landau levels—spin and valley-orbital splitting,
but it provides a means of studying the random potential
directly and evaluating its amplitude and range.

4.1. Radiative recombination of 2D-electrons in silicon MIS-
structures

The inversion space-charge layer in silicon MIS-struc-
tures is the traditional quasi-two-dimensional electron gas
system whose properties have been studied most thoroughly.
In such structures the Si crystal is covered with a planar, thin
(10~5 cm) SiO2 dielectric film. A metallic electrode (gate)
is then deposited on top of the dielectric (Fig. 7). The bias
Fg applied between the gate and the Si-SiO, interface creates
a uniform electric field in the dielectric and a potential well
in the Si at the interface. The potential well, which contains
space-charge, is bounded on the dielecric side by a high po-
tential barrier (~ 2 eV) and has a nearly triangular shape. In
equilibirium at sufficiently large Kg the bottom of the well
falls below the chemical potential in the bulk of the crystal.
Then a thin near-surface layer (~30-50 A) is filled with
electrons, that is carriers of the opposite sign with respect to
the majority carriers in the bulk (holes). Consequently, an
inversion space-charge layer forms at the p-Si surface at Fg

> 0. The channel is filled with carriers either via the source
and sink electrodes or by illumination. A depletion layer

?M ////////A

FIG. 7. MIS-structure: schematic cross-section and band-bending dia-
grams near the oxide-semiconductor interface, a—Schematic crosssec-
tion: 1—p-type semiconductor; 2—oxide (dielectric); 3—metallic elec-
trode (gate); 4—low-resistance electrodes (source-sink); 5—inversion
layer, b—Energy band diagram in the absence of photoexcitation: Ec and
Ev—bottom of the conduction band and top of the valence band in the
semiconductor, bottom of the conduction band in the oxide is shown to
the left of the cnannel; f—-Fermi level in the semiconductor; £„,—Fermi
level in the metal; Ve— gate potential; L,,—depletion layer width;
points—ionized acceptors; crosses—holes on acceptors; shaded region
denotes degenerate electron gas. c—Energy band diagram with photoex-
citation: £,—quasi-Fermi level of the electrons; hv—recombination pho-
ton energy.
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separates the inversion layer from the bulk; since no carriers
are present in this layer it acts like an insulator. The deple-
tion layer contains small ionized impurities of the same sign
as the carriers in the channel. At low Vg the external electric
field is screened only by the depletion layer of thickness Lo

= nd/NA ~ 1 //m («d is the surface charge density in the
depletion region, yVA is the bulk acceptor concentration).
When the band bending (see Fig. 7) becomes comparable to
the bandgap Eg, creating the 2D-channel, increasing Fg

further does not alter the charge distribution in the depletion
region. The resulting charge and field distribution near the
Si-SiO2 interface can be reconstructed from an analysis of
Shubnikov-de Haas magnetoconductance oscillations.67

If a steady state photoexcitation generates nonequilibri-
um electron-hole pairs near the Si-SiO2 interface, the charge
and field distribution changes dramatically (see Fig. 7,c).
First, in the case of photoexcitation the system is basically
nonequilibrium. Instead, a quasi-equilibrium 2D-electron
accumulation layer is created, screening the semiconductor
bulk from practically the entire electric field of the gate. The
depletion layer accordingly disappears and neutral, hole-
containing acceptors are found immediately beyond the ac-
cumulation layer. Since the wavefunction of 2D-electrons
has a finite extent in the normal direction z\\ [001] to the
interface (*(z) ~zexp( - bz/2), where A ~ ' ~ 10 A), there
is a finite probability of these electrons recombining radia-
tively with injected holes. But this recombination is indirect
both in £-space and in real space. Hence its intensity should
be extremely weak compared to the other radiative channels
in the bulk. Experiments measure precisely this low intensity
luminscence line, 2DC, which is 2-3 orders of magnitude
weaker than corresponding lines from the bulk. In Fig. 8 we
show luminescence spectra obtained in conditions of con-
stant Ar laser illumination at Wn s; lO"3 W/cm2 power and
varying gate voltages which change the 2D-electron concen-
tration «s. The concentration was simultaneously and inde-
pendently measured by Shubnikov-de Haas oscillations.
Omitting the details of the recombination mechanism, de-
scribed in Ref. 67, we turn to the main properties of the 2Di.
line without a magnetic field (see Fig. 8). First, this line
appears in the spectrum only under laser illumination and
gate voltages Vg > VT ( VT is the threshold voltage for the
creation of a 2D-channel). The shape of the 2Z>C line consists
of an energy step function, reflecting the fact that the 2D-
electron DS does not depend on is in the absence of a magnet-
ic field. The width of the 2DC line increases linearly with
electron concentration ns, while its ultraviolet cutoffis prac-
tically independent of the gate voltage. When 2D-electrons
recombine with photoexcited holes assisted by TO- and TA-
phonons the recombination probability does not depend on
the energy of the recombining particles (matrix elements
J/T o , TVA ~ const). Phonon replicas of the 2Z>,. line appear
in the appropriate spectral regions. TO- and TA-phonon
components of the 2Z>C line are polarized in the 2D-plane,
since only two of the six (001) electron valleys are populated
with 2D-electrons. A very weak 2DC line can also be ob-
served in the phonon-free region of the spectrum because of
recombination involving a transfer of momentum close to
the Brillouin value, to an impurity center or the surface.

In the case of strong localization of 2D-electrons on
random potential fluctuations (low concentration region)

1,09 7,08 1.07 fuo, eV

FIG. 8. TO-phonon components of the radiative spectrum measured in a
Si( 100)-MIS-structure at T= 1.6 K, W =-- 10 ' W/crrr power density,
and different positive bias potentials sufficient to form a 2D-electron
channel."7 2D-electron concentration is measured simultaneously by
magnetoconductance oscillations and is shown for each spectrum in units
of 10" cm 2. The BE line is radiation from boron-bound excitons, the
2Dt line refers to radiative recombination involving 2D-electrons. The
inset contains a schematic band diagram under photoexcitation (no de-
pletion region) and shows a 2D-electron recombining with a hole on a
neutral acceptor.

the 2DC line becomes strongly broadened and unpolarized.
Its width then reflects the amplitude of random potential
fluctuations. Recombination rate of 2D-electrons with pho-
toexcited holes is very low ( ~ 10' s~ ' ) . On this time scale
the 2D-electron and hole subsystems are in thermal equilib-
rium with the lattice. The 2DL. line radiation spectrum con-
sists of a convolution of 2D-electron and photoexcited hole
distribution functions:

\ Fc(E)Fh(hco-E)dE,
n (4.1)

where/.,h), />c(h) are the electron (hole) distribution func-
tion and density of states. Since the width of the experimen-
tally measured68 hole distribution function turns out to be
small, not exceeding 0.8 meV, the 2DC line spectrum accu-
rately reflects the energy distribution of the single-particle
2D-electron density of states.

Now consider the main properties of the 2D,. line in a
transverse magnetic field. In this case the 2Z\. line is split
according to the number of occupied Landau levels (Fig. 9).
For example, spectrum 3 in Fig. 9 corresponds to the com-
plete filling of four Landau levels at the given value of the
magnetic field. Accordingly, the 2Dt line is split into four
equidistant lines separated by the cyclotron energy fiio^. — 4
meV. The two-dimensionality of the electron system is veri-
fied by the standard procedure of tilting the magnetic field
from the normal to the 2D-layer. Given constant «s and / / a
tilt angle cp = 60° exactly doubles the filling factor and the
number of Landau levels under the Fermi surface doubles
accordingly (see lower part of Fig. 9). By fitting the familiar
Landau level fan diagram construction to the radiation spec-
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FIG. 9. Radiative recombination spectra of 2D-electrons with photoexcit-
ed holes (2D, lines)."7 Obtained from sample No. 1 at W = 1 0 ' W / c n r ,
T= 1.6K,«S = 2.7-10'-cm : and / f = 0 (spectrum 2 ) ; / / = 7Tperpen-
dicular to the 2D-layer (spectrum 3); H = 7 T tilted from the normal by
60° (spectrum 4). Spectrum 1 was recorded with ns = 0 ( Vf < Vv). The
BE line is radiation from boron-bound excitons; fer is the cyclotron split-
ting. The upper inset shows the Landau fan diagram (positions of spectral
lines) constructed for ns = 2.1O'7 cm" ' with four, five and seven com-
pletely filled levels. Extrapolations H —O determine the bottom of the
size-quantized band EH and the Fermi energy E,..

trum recorded at different magnetic fields with ns = const
and an integral filling factor, it is a simple matter to deter-
mine the positions of the bottom of the size-quantized band
Et) and the Fermi energy £ F . One such fan diagram is shown
in the upper part of Fig. 9. The TO-phonon component of the
2DC line in a transverse magnetic field is almost entirely po-
larized in the direction of H. Finally, at temperatures such
that the paramagnetic hole splitting ghfiKH4,kT only the
lowest state with angular momentum projection Jz = — 3/2
is populated. Then only 2D-electrons with spin projection Sz

= + 1/2 contribute to the recombination spectrum, be-
cause optical transitions involving Sz = — 1/2 electrons are
forbidden. This means that radiation spectra contain radi-
ation corresponding to filling factors v that satisfy

The shifts of spectral recombination line positions when
concentration «s (or filling factor v) is varied at fixed H are
shown in Fig. 10. Also shown are the measured dependence
(dark squares) of the band bottom Eu and Fermi energy Eh

as a function of ns. First, it is clear that at transverse// =1 T
we observe a series of Landau levels separated by fici)s. The
spectral position of the lines corresponding to Landau levels
deep under the Fermi surface depends linearly on ns and
reflects the shift in the bottom of the band E()(ns). Near the
Fermi surface the odd integral v give rise to two radiation
lines, corresponding to 2D-electron recombination from dif-
ferent valleys (shown in detail in the inset to Fig. 10, see also
Sec. 4.2). It is interesting to consider how the spectral posi-
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FIG. 10. Spectral position of the 2D-electron radiation lines as a function
of concentration «s. Measurements done on sample No. 3 at W = 10"-'
W/cm\ T= 1.6 K, H = 7 T. Dark squares mark the positions of the
Fermi energy £, and the bottom of the band En for different n s , evaluated
by the fan diagram technique at integral filling. The 2 < v < 4 region is
expanded in the inset. The observed line splitting is due to the nonequiva-
lence of electron valleys.

tion of the recombination lines is influenced by the quantiza-
tion of Hall resistance,2 arising from the pinning of the Fer-
mi level at integral v in a region of localized states in the gap
between Landau levels. Figure 10 shows that the pinning of
the spectral positions of the 2De lines is experimentally ob-
served at half-integral v. Yet no such effect is seen at integral
filling. This behavior is easily explained by noting that at
integral v the DS at the Fermi level is small and EF changes
strongly with ns, whereas at half-integral v the quantity
D(EF) is large and Ev does not change much.

The aforesaid properties of radiation recombination of
2D-electrons with photoexcited holes indicate that the opti-
cal spectroscopic method opens up new possibilities in the
study of the 2D-electron energy spectrum and its variation
with magnetic field, filling factor v, temperature, and quality
of structure. In the next section we will discuss how this
method is employed to determine the magnitude of spin and
intervalley splitting and to study the oscillatory behavior of
these quantities as a function of the filling factor.

4.2. Oscillations of spin and intervalley splittings in the 2D-
electron energy spectrum

The (2D-) electron system on the (100) surface of sili-
con is four-fold degenerate because of spin and the existence
of two equivalent energy valleys.' However, the earliest ex-
periments proved that this degeneracy is lifted by a trans-
verse magnetic field and that the 2D-electron energy spec-
trum becomes completely discrete. This is manifested, for
example, in the Shubnikov-de Haas oscillations wherein
each of the four Landau sublevels (i.e., v = 1, 2, 3, 4 filling
factors) gives rise to a minimum in magnetoconductance
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because the Fermi level falls in the region of localized states
between quantum sublevels. Different experimental meth-
ods were employed to determine the magnitude of spin and
intervalley splittings. Some of these methods focused on the
behavior of magnetoconductance in tilted H fields, thermal-
ly activated magnetoconductance (see Ref. 1), and contact
potential difference.41 Still, all these methods evaluated the
splitting magnitude indirectly, making use of fitting param-
eters and assumptions requiring separate justification.

The optical spectroscopy method permits us to measure
directly the magnitude of spin and intervalley splitting as the
energy separation of the appropriate lines in the radiative
recombination spectrum.

4.2.1. Intervalley splitting AEV

A number of authors70"72 calculated the intervalley
splitting by ignoring electron-electron (e-e) interaction ef-
fects: the resulting quantity A/s % was determined by the gate
field. In these theories the intervalley splitting was a purely
electrostatic phenomenon, arising from the nonequivalence
of the two electron valleys with respect to the electric field
vector. On the other hand, other studies73"74 noted that the
intervalley splitting should increase markedly in a trans-
verse field H because of a term AE * arising from ID-elec-
tron interaction. Consequently, the full intervalley splitting
AEV contains two terms—A0 and AE%—and the contribu-
tions of AE v and AE $ depend differently on //, v, and N.'

In the recombination spectrum of 2D-electrons at
v = 3.0 and T= 1.5 K (H = 7 T) there exists a single line
produced by the recombination of Sz = + l/2 2D-electrons
from the lower electron valley of the lowest Landau level
(N = 0) (we have already seen that only ground state holes
with Sz = — 3/2 participate in recombination at low tem-
peratures and that optical transitions involving Sz = — 1/2
electrons are forbidden). If v> 3 electrons begin to occupy
the next valley and a new line appears in the recombination
spectrum (see Fig. 11). The intensity of this new line is pro-
portional to the excess of v over 3. The energy separation
between the lines corresponds to the intervalley splitting
AEV. Thus the spectroscopic method not only makes it pos-
sible to measure AEV directly, but also to measure the de-
pendence A/sv (v).75

The dependence AEv(v) measured at H=l T and
T= 1.6 K is shown in Fig. 12. Clearly the quantity AEv(v)
oscillates strongly, peaking at odd integral v = v* = 3,
5, . . . . The absolute magnitude of A/sv (

v) measured by op-
tical spectroscopy markedly exceeds the values obtained by
other methods (see Refs. 1, 41). Moreover, AEV decreases
as v shifts from v*, indicating the filling of a new valley. This
behavior argues for an intervalley splitting mechanism based
on e-e interaction and contradicts the notion of nonrenorma-
lized AEV. Indeed, according to Ref. 73, AEV is enhanced
because 2D-electrons from different valleys have different
quantum numbers and are not forbidden by the Pauli exclu-
sion principle from sharing the same spatial region. This
leads to additional Coulomb repulsion and enhances AEV by
AE%. If the valley Landau sublevels are equally filled (i.e. at
even integral v = v° = 2, 4, 6 . . .) AE $ turns to zero73 and
AEV is minimized. Consequently the dashed line in Fig. 12
corresponds to the dependence of nonrenormalized AE^ on
«s. The experimentally measured function AE % (ns) turned

1087 r,o&6 7,085 fun, eV

FIG. 11. Radiative recombination spectra of 2D-electrons, obtained from
sample No. 2 at H= 7 T, T= 1.6 K, W = 10"3 W/cm2, and different
v = 3.1, 3.25, and 3.5. AEV indicates the magnitude of intervalley split-
ting. The inset shows the o\ ( (v) dependence measured simultaneously at
the same H, T, and W parameters.

out to be universal and independent of H. The AE J term, on
the other hand, depends strongly on //and quantum level N,
as is evident in Fig. 12.

4.2.2. Spin splitting AES

As we have seen, at low temperatures in strong magnet-
ic fields the recombination spectrum of 2D-electrons con-
tains only a single spin component with the Sz = + 1/2 spin
projection, while electrons with Sz = — 1/2 do not radiate.
This happens because the Zeeman effect splits the hole level
into a quartet and at low temperatures all nonequilibrium
holes have time to collect in the ground state with Jz

= — 3/2. Optical transitions involving Sz — + 1 / 2 elec-
trons and Jz — 3/2 holes are forbidden by the selection rules
and the corresponding radiation line is not observed. In or-
der to observe the recombination of Sz = + 1/2 2D-elec-
trons (and consequently determine the spin splitting AES

=£e/*B-^) t n e temperature must be raised, leading to an
appreciable population of Jz = — 1/2 holes.

1,0
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FIG. 12. Intervalley splitting A£v as a function of filling factor v, mea-
sured at H= 1 T, r = 1.6 K.
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FIG. 13. Radiative recombination spectra of 2D-electrons, obtained from
sample No. 2 at H=6 T, v = 2.5, W= 1CT1 W/cm2 and r = 1.6 K
(spectrum l )o r T= 3.3 K (spectrum 2). The value kfuo is determined by
the spin splitting A£s . The level diagram shows electron and hole split-
tings in the magnetic field and the allowed optical transitions. The inset
shows the temperature dependence of the / 1 / / I intensity ratio.

A t / / = 6 T, v = 2.5, and T = 1.6 K the radiation spec-
trum contains but a single line produced when 2D-electrons
from the lower valley with Sz = + 1 / 2 recombine with Jz

= — 3/2 holes. When the temperature is raised to 3.3 K a
second radiation line appears in the low-energy section of the
spectrum (see Fig. 13). This line is produced by Sz = — 1/2
electrons recombining with J2 = — 1/2 holes.68 The intensi-
ty of this line falls exponentially with temperature (see inset
of Fig. 13), which makes it possible to evaluate the g-factor
of the recombining holes. The energy separation between the
lines in Fig. 13 (spectrum 2) reflects the 2D-electron spin
splitting. At H = 6 T, v = 2.8, and T = 3.3 K, the 2D-
electron g-factor evaluated by this method turned out to be
ge =8.6, significantly larger than the bulk value g° = 2. Just
as in the case of intervalley splitting, this enhancement of ge

for 2D-electrons is undoubtedly due to e-e interaction ef-
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FIG. 14. 2D-electron g-factor as a function of filling factor v and concen-
tration ns, measured at .ff = 6 T and T= 1.6-3. 3 K.

fects.29 This conclusion is supported by the ge(v) depen-
dence, plotted in Fig. 14 for H = 7 T. Clearly the ID-elec-
tron g-factor oscillates strongly with v, reaching maximum
values at v = 2, 6, 10 . . . and minimum (g° = 2) values at
equal filling of spin component states (i.e. at v = 4, 8,
1 2 . . . ) .

In this manner, the optical spectroscopy method pro-
vides a means of directly measuring the magnitude of spin
and intervalley splittings, which were found to oscillate
strongly as a function of filling factor v.

4.3. Oscillations in the 2D-electron density of states in a
transverse magnetic field

The screening of the random potential produced by de-
fects is most clearly manifested in the oscillations of the ra-
diative recombination line broadening on Landau levels as a
function of the filling factor, as well as in the temperature
behavior of the recombination spectra. These effects merit
separate discussions.

4.3.1. Oscillations of Landau level broadening as a function of
filling factor

The spectra corresponding to the filling factors v = 2.5,
3.5, and 4.0 in the lowest Landau level are shown in Fig. 15.
The doublet nature of the v = 2.8 spectrum is due to the
valley-orbit splitting AEV. At v = 2.8 the lower energy state,
corresponding to Sz = + 1/2, is entirely filled, whereas the
higher energy state with the same spin projection is higher in
energy by AEV and is only half-filled. Consequently the in-
tensity of the shorter wavelength doublet component, corre-
sponding to the higher energy-split state, is twice as weak as
its long-wavelength counterpart (in Fig. 15 the contours of
these doublet components are separated by dashed lines).

By comparing the recombination spectra of Fig. 15 it is
easy to see that the linewidth does not depend monotonically
on the filling of Fig. 15 it is easy to see that the linewidth does
not depend monotonically on the filling of the electron

H=ll, T'lfiK

f,08S

7,087 1,085 1,083 1,081

FIG. 15. Radiative recombination spectra of 2D-electrons, recorded on
sample No. 1 a t / / = 7T, T= 1.6 K, and W= 1(TJ W/cm2 for various
filling factors of the lowest Landau level (TV = 0).
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/ - /= 7 T, T=%6K

1,08 fuo, eV

FIG. 16. Radiative recombination spectra of 2D-electrons, obtained from
sample No. 1 at H= 7 T, T= 1.6 K, and W= 10" ' W/cm2 for different
fillings of the N = 2 Landau level.

states: at full occupation (integral v) the lines are much
broader than at half occupation. A qualitatively analogous
dependence on v is exhibited by recombination spectra of
systems in which several Landau levels are completely full
and the population of the most energetic level is varied. In
Fig. 16 we show recorded spectra with the lowest two Lan-
dau levels (N = 0, 1) completely filled and the occupation of
the upper N = 3 level varies. Once again, the linewidth of all
spectral lines does not depend monotonically on v—at inte-
gral v the lines are much broader than at half-integral v.
Also, it is evident that when several Landau levels are com-

r, meV

UU

N=Z

10 12

FIG. 17. Landau level broadening T vs filling factor v, measured on sam-
ple No. l a t / f = 7 T , T= 1.6 K for the ^ = 0 (a) and TV = 2 (b) Landau
levels.

pletely filled the linewidth increases monotonically as the
quantum number N decreases.

The oscillating behavior of the recombination linewidth
as a function of v when one or several Landau levels are
involved is illustrated in Fig. 17, a,b. These oscillations have
the greatest amplitude when only one (the lowest) Landau
level is involved. When several Landau levels are filled simi-
lar oscillations are observed, but the lower the level under
the Fermi surface (lower N), the smaller their magnitude.
The observed recombination linewidth oscillations are a di-
rect consequence of oscillating broadening of the peaks in
the density of states on Landau levels as a function of elec-
tron concentration. The mechanism behind this phenome-
non undoubtedly involves random potential screening.

Let us discuss this question in more detail. At integral v
the Fermi level falls precisely at the midpoint of a gap in the
energy spectrum. Then electrons fill the Landau levels com-
pletely and the screening is diminished. In the absence of
screening the Landau levels "trace" the potential profile de-
termined by long-period fluctuations. If we assume that
these fluctuations are caused by charged defects in the SiO2

dielectric layer, then nonequilibrium holes that recombine
with 2D-electrons are less affected by these fluctations be-
cause they are quite distant from the Si-SiO2 interface (> 102

A). The logical conclusion is that at integral filling the radia-
tive linewidth is determined by the charge fluctuations in the
dielectric, since the electrons that participate in recombina-
tion are distributed in energy within the given Landau level
according to the potential profile.68 Significantly, the mea-
sured linewidths in the case of full occupation of the lowest
Landau level in several MIS-structures are practically iden-
tical to the linewidths AE measured in the strong localiza-
tion regime at H = 0. These latter linewidths also probe the
amplitude of large-scale fluctuations.67

It is useful to note that in cyclotron resonance (CR)
measurements, unlike the luminescence technique discussed
here, large-scale fluctuations of the random potential with
d> lH do not contribute to the CR linewidth.

At half-integral filling the Fermi level coincides with a
peak in the density of states (the maximum of the radiative
spectral line). In this area of the energy spectrum the states
are extended. Now electrons screen large-scale random po-
tential fluctuations most effectively and consequently the
potential profile produced by these fluctuations is smoothed
out. The linewidth of the luminescence peak should shrink
accordingly, in full agreement with experiment (see Fig.
15). The finite width of the DS peak in these circumstances
is determined by the small-scale random scatterers which
remain unscreened. The experimentally recorded lumines-
cence peak linewidths F=;0.8 meV at half-integral v (see
Fig. 17) were much larger than could be expected from the
small-scale scatterers at the given H and /x. '•" In fact, the
minimum linewidth F measured in these experiments is de-
termined by the energy distribution of nonequilibrium holes
which recombine with electrons. Once the hole-induced
broadening is taken into account,68 it turns out that the true
width of the luminescence peaks, which reflect the width of
DS peaks at Landau levels, should be much narrower at half-
integral v. This indicates that the actual magnitude of oscil-
lations in the DS peak width as v is varied should be approxi-
mately three times larger than experimentally observed (see
Fig. 17).
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Oscillations in F with filling factor were predicted in
Refs. 26, 27, 34. The nature of these oscillations was asso-
ciated with the periodically varying screening radius. No
analytic expressions for F were derived in these papers.

Recently Shklovskii and Efros developed a theory of
nonlinear screening of charged center potentials by elec-
trons, with the charged centers randomly distributed in the
bulk with concentration «,.38 The centers are taken to pro-
duce Coulomb potentials and screening is described by
charge fluctuations on the scale L. At integral Landau level
filling there is no screening. Screening appears when the 2D-
electron concentration «s deviates from the concentration
n% which corresponds to integral filling Sns = ns — n%).lf
the number of excess electrons in the plane SnsL

2 for a given
scale L equals the fluctuation in the number of the charged
centers in the bulk (n,Z,3)'/2, then on all scales larger than L
the random potential is completely screened by electrons.
The screening length changes with the number of electrons
Sns, so in a sense the scale L represents the nonlinear screen-
ing radius. The dependence of the Fermi level and the width
of the DS peak at the Landau level on the electron concentra-
tion in a magnetic field is derived in Ref. 35. An important
result of this nonlinear screening theory is that the density of
states in the gaps between Landau level is not exponentially
small, as it should be in the case of a short-range random
potential1'23 or in the case when the charged centers are lo-
cated in a 2D-plane.33 This happens because the charged
centers in the bulk are more important than surface centers:
as Sns decreases the random potential comes to involve oth-
er bulk centers in a layer of thickness L, which grows rapid-
ly-

The theory of Ref. 35 qualitatively explains the main
experimental results related to the oscillations in the density
of states as a function of electron concentration, which were
discovered from the luminescence spectra. In particular, it
follows35 that when the amplitude of the large-scale fluctu-
ations reaches the magnitude of the appropriate gap in the
energy spectrum (fuac, A£s or A£\,) the two adjacent Lan-
dau sublevels begin to participate in the screening and the
width of the DS peak ceases to grow, since it is limited by the
magnitude of the energy gap. It has been observed experi-
mentally (see Fig. 17) that the luminescence linewidth at
integral filling (v = 4) is much larger than in the case of
v = 3, because the energy gap at v = 4 (fuoc s 4 meV) is
markedly larger than at v = 3 (A£v — 1.5 meV)75. The for-
mulae of Ref. 35 can be combined with the parameters of the
studied MIS-structures to estimate the amplitude and range
of the random potential fluctuations (see Sec. 4.4).

4.3.2. Temperature dependence of Landau level broadening

As we have noted earlier, if N Landau levels of a 2D-
electron system in a transverse magnetic field are completely
filled then the electrons are uniformly distributed over the
area of the system and no screening occurs. Screening ap-
pears if some number of excess electrons (or holes) is intro-
duced into the system. The creation of these electrons and
holes need not involve changes in ns or H, for raising the
temperature at constant ns and H has the same effect. There-
fore, the experimentally observed radiative linewidths corre-
sponding to integral Landau level filling (i.e., when ns

= veH /h, v an integer) should become narrower as the tem-

perature is raised. Since the concentrations of thermally acti-
vated electrons and holes are equal

(4.2)bne = bnb ~ exp ^ — ^

this effect can only be observed if hcoc and kTare compara-
ble.

The radiative spectra recorded at «s = 4-10" cm"2,
^ = 2.6104 cmW-s , in fields H=0 (spectrum 1) and
H =2 .5T (spectrum 2) at T= 1.5 K are shown in Fig. 18.
First of all, it is immediately apparent that even though the
parameter /uH is much larger than 1 (in this experiment
tiH =6.5) the Landau level structure does not apear in the
spectrum. This is so because the level broadening (which can
be obtained from the high-energy tail of the 2De line) practi-
cally equals the cyclotron splitting. This property is com-
mon to all studied structures: at low magnetic fields the lu-
minescence linewidth is close to ficoc, then as H increases ficoc

approaches the amplitude Q of random potential fluctu-
ations and the linewidth F saturates, leading to well-re-
solved Landau levels. This dependence T(H) agrees with
the theory of nonlinear screening of long-range random po-
tential fluctuations.38

Spectrum 3 of Fig. 18 was taken at a higher temperature
T= 3.8 K. The high-temperature narrowing of Landau lev-
els as electrons and holes appear in the sublevels is evident in
this spectrum. The temperature-induced filling of the upper-
most level is accompanied by the appearance of an addi-
tional radiative line shifted towards higher energies by fiac

(see Fig. 18, spectrum 3).
Thus we find that the variation of Landau level broad-

ening with temperature and filling factor is explained by the
screening of defect-induced long-range random potential
fluctuations, in qualitative agreement with the theory of Ref.
35.

4.3.3. Width of the luminescence peak at half-integral Landau
level filling

At half-integral filling of quantum states the long-range
potential fluctuations are screened and the width of the DS

= 4.9-1011 cm"2

= 2.6-104cm2/V-s
') H=0, T=1,5K

2)H=2.b~\v=8,0,T't,5K
3)11=2.51 »=8,0,T~3,5K

1,088 1,086 1,084

FIG. 18. Radiative recombination spectra of 2D-electrons, obtained from
sample No. 1 at ns = 4.9'10" cm~ :, fi = 2.6-10" cmVV-s, ^ = 1 0 " '
W/cnr and various values of Hand T: H = 0, 7"= 1.5 K (spectrum 1);
# = 2 . 5 T ( v = 8), T = 1.5 K (spectrum 2); and H = 2.5 T, r = 3 . 3 K
(spectrum 3).
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FIG. 19. a—Width r™* of the TVth Landau level at integral filling
of TV levels in different magnetic fields for two samples (light and
darksymbols) as a function of the parameter (2N + 1)// ~ '.Differ-
ent symbols label different quantum numbers N: N = 0 (circles),
N= 1 (squares), N= 2 (triangles), N = 3 (diamonds), b—T™'x

(circles) and F™" (squares) as functions of the Landau level num-
ber A', measured at H = 7 T and T = 1.6 K on the same structures;
the inset shows r^,in as a function of the parameter H /fi for four
different structures (different symbols) and different quantum
numbers A' (light and dark symbols).

10 N

peaks are narrowed towards their minimum value rm i n . If
interaction with short-range scatterers becomes dominant
then, according to the theory,123 the quantity Fmin should
depend on the single parameter H/fi. Consequently it is of
interest to follow the variation in the broadening of the DS
peak, which can be obtained from an analysis of the lumines-
cence line, with variation in the parameter H/fi.

The dependence of the DS peak width on H//i at half-
integral filling is shown in the inset of Fig. 19 depicting rj , j n

as a function of (H/ju). The experimental points plotted in
that graph were obtained from measurements on different
structures with different quantum numbers N (hence the
different symbols). Nonetheless they are all well described
by a universal dependence that can be approximated by a
straight line. This behavior indicates that at half-integral v
the width of the DS peak is related to scattering from small-
scale fluctuations. Moreover, it follows from the data that
the peak width is independent of the quantum state number.
Absolute values of rmin measured experimentally at given H
and fi approach the theoretical values calculated in
Refs. 1, 23.

In the region of small H //z values (inset of Fig. 19) the
experimental dependence r^in (H/fi) deviates appreciably
from the straight line and the symmetric lumiscence line
tends towards a finite linewidth as (H//u)->0. This finite
quantity is directly related tothe energy width of the non-
equilibrium hole distribution ( s0 .8 meV).68

4.4. Determination of the amplitude and spatial extent of the
random defect potential

As we have noted in Sec. 4.3, if the level broadening is
much smaller than the energy gap (T 4,fi(oc) at integral fill-
ing then the density of states on a single level reflects the
energy distribution of long-range random potential fluctu-
ations. Consequently, the fluctuation amplitude Q can be
extracted from the recombination linewidths in the lumines-
cence spectrum. It should be noted, however, that electrons
will localize on random potential fluctuations if the fluctu-
ation scale d exceeds the electron cyclotron radius
lH(2N + I)"2, where lH is the mangetic length.' Therefore
the Landau level broadening should reflect the fluctuation
amplitude only if the d^>lH (2N + 1) l / 2 and ftoic ^q condi-
tions are satisfied. In the more general case, when

d>lH(2N + \)U1, the broadening F is smaller than Q and
depends on the d2/l2

H(2N + 1) ratio according to the
expression

Ym. (4.3)

Expression (4.3) was derived for the ground state Landau
level in Ref. 15 and for the higher lying levels N in Ref. 17.
This formula can be applied to determine the parameters d
and Q for the luminescence spectra of various structures. It
should be recalled, however, that formula (4.3) ignores
screening effects and consequently is only valid given the
following: first, integral filling and, second, fuoc > Q, i.e.,
when the Landau level structure is well-resolved in the lumi-
nescence spectrum. In Fig. 19a we illustrate the dependence
r ~2 (H, N) for two structures plotted as F ~2 as a function of
(2JV + \)H~K In these curves the points obtained for differ-
ent values of A''are well described by a straight line. The slope
in these coordinates determines d and the ̂ -intercept deter-
mines Q. Characteristically, two structures of different qual-
ity are characterized by different parameters d and Q: the
lower quality structure (judging by the maximum mobility)
exhibits higher fluctuation amplitude Q and smaller spatial
scale d. The scale of long period fluctuations of the random
defect potential can be evaluated independently of other
measurements. If the field H is held constant and the ratio of
Landau level broadening at integral filling ( r m a x ) and half-
integral filling (Fmax) is measured with increasing N, then
the quantities Fmax and rmin can be expected to approach
one another. Indeed, the cyclotron radius increases with N
and for cyclotron orbits with l,,(2N + \)U2>d potential
fluctuations of linear extent d will become small-scale. As a
result the difference between Fmax and Fmln should disap-
pear.

The changes in rmax and Fmin with N (for the same two
structures as in Fig. 19a) in a field H = 7 T is shown in Fig.
19b. The increasing tendency in Fmin (JV) is due to a decrease
in 2D-electron mobility at larger «s. Clearly, as N increases
the values of rmax and Fmin approach one another and be-
come equal at some N = Ncr. A likely interpretation is that
at this quantum number the fluctuation scale d becomes
comparable to the electron cyclotron radius
lH(2Ncr + l ) l / 2 , which yields a quick estimate of d. If the
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various estimates of d are compared we find that different
methods of evaluating the scale of long-range potential fluc-
tuations yield consistent results for all studied structures.68

Moreover, the fluctuation amplitudes of LE measured at
H = 0 and the values of Q extracted from the T(H) depen-
dence are in good agreement.68

One of the most important questions that enter into
evaluating the parameters d and Q arises from the fact that
the long-period part of the conduction band profile near the
interface could be partially repeated in the bulk, i.e. in the
region containing nonequilibrium holes. In fact, the ID-
electron system effectively screens the external electric field
produced by the full charge of the system, but not the sign-
varying part of the long-period charge fluctuations. It was
shown in Ref. 68 that hole level broadening due to potential
fluctuationms on the d < 500 A scale is insignificant and can-
not alter the interpretation or significantly shift the param-
eters of the spectroscopic method. The same conclusion is
reached by the following qualitative argument. Suppose po-
tential fluctuations are significant in the valence band con-
taining nonequilibrium holes. This implies that the optically
measured luminescence linewidth should be markedly nar-
rower than the actual Landau level broadening F. At the
same time, our understanding of nonlinear screening re-
quires that F not exceed fuoc and therefore all optically mea-
sured linewidths at integral filling are always much smaller
than &ac. But this contradicts experimental results (see Fig.
18). We conclude, therefore, that the real values of d in stud-
ied structures are not too large, so that random potential
fluctuations do not have a great effect on the valence band
where the holes are located. On the other hand, it is equally
clear that potential fluctuations on the > 103 A scale are
almost entirely reproduced by the valence band profile at a
distance z = 100 A from the interface. These fluctuation
scales are therefore not probed by the discussed lumines-
cence method.

Thus we have seen that the optical spectroscopic meth-
od not only distinguishes the effect of long-period random
defect potential fluctuations on the Landau level broadening
oscillations, but also permitted the first evalution of the am-
plitude and range of these fluctuations from the dependence
of Landau DS peak broadening on the magnetic field and
quantum number.

4.5. Evaluating the overall density of states

As we have noted earlier (Sec. 3), at integral Landau
level filling (in the quantum Hall effect regime)2 different
methods can be used to determine the thermodynamic DS.
All these methods lead to the same conclusion: the density of
states in the energy gaps is not exponentially small, but rath-
er makes up a significant part of the H = 0 density of states.
This has been explained in the following manner:652 the 2D-
electron density of states consists of a superposition of nar-
row Gaussian peaks centered at the Landau levels on an
energy-independent DS background. This formal explanan-
tion appears unconvincing and essentially harks back to the
"reservoir model"76 originally proposed to explain the Hall
effect and then rejected as inadequate for describing the
QHE. We prefer the more natural explanation based on the
oscillation of Landau level broadening as a function of v. In
this model the Landau levels are strongly broadened at inte-
gral filling by the long-range random potential fluctuations

and consequently the DS remains large between the Landau
levels. At half-integral filling, when the Fermi level falls in
the region of extended states and long-range fluctuations are
screened, the Landau levels are narrower and the DS be-
comes very large at the Fermi level and exponentially small
between the Landau levels.

It is interesting to compare quantitatively the overall
2D-electron DS measured by completely different means,
for example by mangetooptics and by the thermally activat-
ed magnetoconductance. It should be realized immediately
that these methods measure different quantities. While the
optical spectroscopy of 2D-electrons probes the entire D(E)
dependence and can be used to evaluate the quantity D(EF),
the rest of the methods focus on the thermodynamic DS—
i.e., on the quantity d«s /dEF, which is generally not equiva-
lent to D(EF). Still, when EFis located at a D{E) minimum
the quantities DEF and dns/dEF should be close," so the
two quantities can be compared at integral v.

Now let us turn to the problem of quantitatively deter-
mining the DS using radiative recombination spectra.67'68

The procedure is based on comparing the spectrum mea-
sured at integral filling of N Landau levels with the H = 0
spectrum recorded at the same concentration ns. In order to
evaluate the constant relating intensity and DS recall that at
H = 0 the 2De line shape is a step-function in energy,
reflecting the constant zero-field 2D-electron DS:
D = m/irftL = DQ. Hence the intensity scale can be calibra-
ted in terms of DS values. The quantitative evaluation of
D(E) and D(EF) can subsequently be accomplished by
comparing the radiative spectrum in a magnetic field with
the zero-field spectrum at the same 2D-electron concentra-
tion ns. As ns is held constant, the integrated intensity of
both spectra should be the same.

As an example of this method, in Fig. 20 we show how
the density of states, its energy distribution and the value of
D(BEF) (see Fig. 20,b) can be quantitatively established by
comparing radiation spectra for ns = 1.36-1012 cm"2,
T= 1.6 K at H = 0 (spectrum linFig. 20,a) and at H=1T
(spectrum 2, v = 6). We note that in this example there are
no additional difficulties arising from intervalley and spin
splitting, since at low temperatures only one spin component
of the electron distribution participates in recombination
and the intervalley splitting is practically nonexistent: A£v

= 0.3 meV.75 The dashed lines in Fig. 20,b show the Landau
level contours. A convolution of these with the/h {E) func-
tion (measured independently at/j.H = 50, when rmjn ->0)
exactly matches spectrum 2 of Fig. 20,a. The dash-dotted
line in Fig. 20,b shows the next, unfilled Landau level,
whereas the solid line marks the overall density of states in
the gaps between levels. We see that in these conditions
(H=17, v= %,^H= 11) the quantity D(EF) =0,32D0.

We also measured the thermodynamic DS of these
structures by the activated magnetoconductance method
(see Sec. 3.5). Since we wanted the value of thermodynamic
DS precisely half-way between Landau levels (only near a
minimum in D{E) are the quantities D{EF) and dns/dEF

close), we had to consider both electronic and hole contribu-
tions to magnetoconductance (see Ref. 58). The tempera-
ture dependence of the magnetoconductance measured near
the DS minimum is described byexpression(3.13). Whereas
the magnetooptical measurements described in Fig. 20 yield-
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FIG. 20. a—Recombination spectra of 2D-electrons obtained from sam-
ple No. 2 at H = 0 (spectrum 1) and H=l T (spectrum 2), with «s

= 1.36-10l2cm-2,,u= 1.6-104cm7V-s, W' = lO- 'W/cm2, r = 1.6 K.
b—energy distribution of the density of states on the Landau levels
(dashed lines) and total D(E) (solid lines) extracted from the spectral
lineshapes. The points indicate the values of d«s/d£Y measured simulta-
neously by the thermally activated magnetoconductance technique at the
same parameters.

ed a value D(EF) = 0.32D,,, the DS obtained by the ther-
mally activated magnetoconductance turned out to be some-
what smaller: dns/dEF = 0.28Z>0 (changes in d«s/dEF
with EF are also shown in Fig. 20,b).

Thus we find that at integral Landau level filling the
quantities D(EF) and d n s / d £ F measured by completely
different experimental techniques are in adequate agree-
ment. The small discrepancy in the two values can be ex-
plained in several ways. More importantly, at integral v the
quantities D(EF) and d« s /d£ F are analogously affected by
changes in JU, H or structural parameters.68

The behavior of the density of states between the Lan-
dau levels as a function of magnetic field can be described as
follows: in strong magnetic fields, when (iH> 1 but the cy-
clotron splitting is smaller than the amplitude of long-range
random potential fluctuations fuo^ < Q>tne broadening T is
of the order of &yc and the DS in the gaps makes up a signifi-
cant fraction of Do. If these conditions are fulfilled the den-
sity of states in the gaps does not drop exponentially as mag-
netic field is increased, but falls ofFmore slowly, perhaps by a
power law." When the magnetic field reaches such values
that fuoc >Q, the broadening F saturates and tends towards
Q, while the DS in the gaps begins to fall exponentially with
increasing magnetic field. As a consequence, optical meth-
ods are not the only means of measuring the amplitude of the
random potential fluctuations—thermally activated magne-
toconductance, for example, can also be employed in this
regard.

5. CONCLUSION

In this review we have discussed the main theoretical
concepts used to describe the density of states of a 2D-system
in a magnetic field, as well as the experimental methods of
measuring this density of states. This field of research, as
well as the entire range of questions associated with the
quantum Hall effect, is far from exhaustively studied and is
constantly evolving. At the same time, the structure of the
energy spectrum of real 2D-systems and the mechanisms
responsible for this structure are to some extent understood.
In conclusion it is proper to delineate the problems that ap-
pear most promising and fundamental for future study. In
our opinion, these problems include: the behavior of the den-
sity of states in the regions of fractional filling and its con-
nection with the fractional QHE; development of stronger
magnetic field sources for more detailed studies of the ran-
dom potential; a rigorous calculation of the linear screening
coefficient; calculation and experimental verification of the
Fermi-liquid effects; and a detailed study of the shape of the
peaks in the single-particle density of states.
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