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A unit cell of a layer crystal may contain several layers and the atoms in these layers may interact
with one another in different ways. The dependences of the forces of the interaction between the
atoms on the distances separating them are also different. The deformation effects in crystals of
this kind are unusual. This review reports experimental results obtained in studies of vibrational
and electronic spectra of graphite and of layer semiconductors (mainly III-VI compounds)
under conditions of elastic deformation at various temperatures. An analysis is made of the
results of experimental investigations of thermal expansion of layer crystals. In each case a
discussion is given of models which, on the whole, can provide a satisfactory explanation of the
nature of the characteristic features of the observed effects.
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1. INTRODUCTION

Experimental and theoretical investigations of the ener-
gy spectra of deformed crystals carried out in the last few
decades have proved to be extremely fruitful in the establish-
ment of a full picture of these spectra. The behavior of the
electron and phonon states in a crystal in which atoms are
bound by very different forces can be unusual in a deformed
state because the binding forces between the atoms in a unit
cell depend differently on the distances between them.

It has now become clear that the anisotropy of the bind-
ing forces in a crystal is manifested in different ways in the
properties of different phonon and electron states.' For ex-
ample, the phonons corresponding to the displacements of
atoms bound by a strong interaction are characterized by a
low dispersion in the direction of a weak interaction. The
frequencies of such phonons are high. Layer crystals are
characterized also by low-frequency optical phonons corre-
sponding to vibrations of layers relative to one another, as if
they were rigid molecules. The acoustic spectra of layer crys-
tals are also unusual and the law of dispersion of waves trav-
eling along the layer planes and polarized at right-angles to
these planes differs from the usual linear law and includes a
quadratic term. The anisotropy of vibrational spectra of lay-
er crystals is therefore strong. On the other hand, in the case
of semiconductors of the GaSe type the electron states near

the top of the valence band and the bottom of the conduction
band are characterized by a strong dispersion along all the
directions in the Brillouin zone, i.e., these states are "three-
dimensional." Two-dimensional states lie well inside the va-
lence band. They are characterized by a strong anisotropy of
the effective masses and by narrow energy bands along the
relevant directions.

In this review we shall consider a number of deforma-
tion effects characteristic of vibrational and electronic prop-
erties of layer crystals. In the second section we use the ex-
amples of different layer crystals to demonstrate the
characteristics of their structure, elastic properties, and fea-
tures of vibrational spectra. We shall show that a strong an-
isotropy of the binding forces in a crystal makes it necessary
to review the conditions of validity of certain approxima-
tions used in the description of elastic properties and vibra-
tional spectra of crystals. For example, the experimentally
observed quadratic dispersion laws of acoustic waves travel-
ing in the planes of the layers and polarized at right-angles to
the layers can be explained provided we allow not only for
the interaction between the nearest neighbors in the planes
of the layers, but also between the more distant atoms. In the
same section we shall describe the most striking deformation
effects associated with optical vibrations in layer crystals.
The lines in the Raman scattering spectra of layer crystals
shift in different ways on the application of a pressure p and
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the mode parameters

da)

for different frequencies at are very different. An analysis of
the corresponding displacement vectors of normal vibra-
tions makes it possible to understand the reason for this dif-
ference, which is associated with the presence of two types of
binding (strong and weak) in a unit cell of a layer crystal.

In discussing thermal expansion of any crystal we gen-
erally have to consider normal modes of a deformed lattice.
The third section of the present review therefore deals with
the characteristic features of thermal expansion of layer
crystals. The available experimental data on the temperature
dependences of the components of the thermal expansion
tensor make it possible to identify a common feature of a
number of crystals, which is the existence of a range of tem-
peratures in which the linear expansion coefficient along the
layers an can have negative values. We shall consider the
results of a quantitative description of the temperature de-
pendences of the thermal expansion coefficients of layer
crystals of C, BN, and GaS using a model proposed by I. M.
Lifshitz.2 The model allows for the fact that the anisotropy
of the binding forces gives rise to special dispersion laws and
high densities of states of transverse acoustic waves propa-
gating in the planes of the layers and involving transverse
atomic displacements (fiexural waves). These waves exhibit
a characteristic deformation effect: their frequency rises as a
crystal expands in the plane of the layers and this is known as
the membrane effect. A suitable selection of the temperature
interval can ensure predominance of waves of this type and
such an interval exhibits a negative linear expansion of a
crystal.

The last (fourth) section deals with the experimental
pressure dependences of the widths of the band gap of layer
semiconductors recorded at different temperatures, particu-
larly in crystals of the GaSe type. When pressure is varied at
T = const or when temperature is varied when/; = const the
pressure coefficients of the various direct and indirect band
gaps of these crystals not only vary in respect of the magni-
tude, but also in respect of the sign. An analysis of the avail-
able data on the energy band structure of crystals of the
GaSe type makes it possible to consider a model of the shift
of the electron energy bands of layer crystals with pressure,
which allows not for the deformation of a unit cell as a
whole, but for changes in the intralayer and interlayer dis-
tances separately. In this case the deformation potential de-
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FIG. 1. Crystal structures of graphite (C) and boron nitride (BN).

scribing the change in the energy of an electron level with
pressure consists of two terms which have different signs and
which vary with temperature and pressure in accordance
with the temperature and pressure dependences of the com-
ponents of the strain tensor. In a certain range of pressures
and temperatures the conditions may be such that the sign of
the pressure coefficient changes with pressure at a fixed tem-
perature or changes with temperature when the pressure is
fixed.

The pressure dependences of the electron energy bands
of layer crystals can in most cases be explained on the basis of
the published band structure calculations. The characteris-
tics of pressure dependences are influenced in a major way
by the nature of a given state, and by whether this state is
formed as a result of a significant participation of atoms gov-
erning the interlayer interaction or whether an important
role is played by those atoms which are responsible for the
strong binding within the layers.

2. VIBRATIONAL SPECTRA AND ELASTIC PROPERTIES OF
LAYER CRYSTALS. INFLUENCE OF PRESSURE AND
TEMPERATURE

2.1. Crystal structure and elastic properties of layer crystals

It is now known that there are many crystals with a
layer structure of the lattice.1 The simplest structures are
those of graphite4 and boron nitride5 (Fig. 1). The lattices of
these crystals are composed of two-dimensional series of
hexagons with atoms at the vertices. The distances between
the atoms in the planes of the layers are considerably smaller
than the interlayer distances. In graphite the atoms in a layer
are separated by a distance of 1.421 A, whereas the distances
between the layers are 3.3 A; similarly in the case of boron
nitride we have 1.446 and 3.33 A. All layer crystals have
similar structures, but a layer in each of them contains three

FIG. 2. Crystal structures of layer semiconduc-
tors MoS,, GaSe. and GaTe (not to scale).

o-Mo,o-S " "" " c-Ga,O-Se O-GCI ,C-TB
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TABLE I. Lattice parameters and atomic spacings (A) in III—VI layer crystals (the atoms are
labeled as in Fig. 1).

(S,
(In
<s,(S,
a
c

Crystal

Polytype

Se) 2 - ( In , Ga)5,
Ga)6 —(In, Ga)e,

SeJi - fS, Se)s,

inside layers
inside layers
inside lavers

Se)i — (S, Se)3, between layers

GaSe (Ref. 6)

13

2,515
2,391
4,491
4,199
3,755

15,95

•

2,485
2,383
4,766
3,840
3,755

15,996

V

2,467
2,386
2,722
8,847
3,739

23,862

6

2,463
2,457
4,784
3,890
3,755

31,99

GaS
(Ref. 7)

2
2
4
3
3

15

P

,322
,44
,54
,81
,b85
,53

InSe
Ref. 8)

£

2
3
4
4
4

16

53
16
82
19
05
93

or more atomic planes. Figure 2 shows the layer crystal
structures of some binary semi-conductor compounds. The
distances between the layers in all such crystals are almost
the same as in graphite, but the distances between the atoms
in a layer are somewhat greater. Weakly bound layers with
the same structure form a three-dimensional crystal. The
contacts between layers may vary and the layer crystals
usually exhibit polytypism. Since the attention will be con-
centrated mainly on layer III—VI semiconductor com-
pounds, we shall consider their structure in greater detail.
The structure of the layers in GaSe, GaS, and InSe is the
same. Atomic planes in the layers are oriented at right-an-
gles to the layers (along a symmetry axis) in the following
sequence: anion-cation-anion (for example, in the case of
GaSe this sequence is Se-Ga-Ga-Se). The space symmetry
group of a layer in all three crystals is D\h (6w2). Gallium
selenide crystallizes, in four different polytypes. The poly-
type/9 has the space symmetry group D\h (6/mm) and con-
tains two layers in a unit cell, which is also true of the e
polytype with the space symmetry group D \h. The y poly-
type has the rhombohedral structure with C\u (3w) and
three layers in a unit cell, whereas the hexagonal 8 polytype
is characterized by C\v {6mm) and has four layers in a unit
cell.

Gallium sulfide crystallizes only in the /3 structure,
whereas indium selenide can have the e or y structure. Table
I gives the data on the unit cell parameters and interatomic
distances in various III-VI semiconductor compounds.

The experimental data on changes in the structure of
layer crystals under the application of pressure are rather
scarce. The transformation of x-ray diffraction patterns of
polycrystalline samples of gallium sulfide under the action
of hydrostatic pressures is attributed in Ref. 9 to a phase
transition at 18 kbar. It is assumed that this is a first-order
transition /?-•£. The fullest investigation of the influence of
pressure (right up to 65 kbar) on the crystal structure of
gallium sulfide is reported in Ref. 7. Figure 3 shows the crys-
tal structure of GaS at atmospheric pressure and at 30 kbar.
The main difference between these two structures is a change
in the number of sulfur atoms surrounding Ga atoms in the
second configuration sphere. At atmospheric pressure the
number of such atoms is 4, whereas at 30 kbar this number is
6. Before and after the phase transition the space symmetry
group is the same {D*bh) and the distances between gallium
atoms within the layers change only slightly (2.44-2.38 A),
whereas those between the layers decrease significantly from
3.81 to 3.36 A. The difference between the atomic distances
within the layers and between the layers reflect the anisotro-

py of the binding forces in layer crystals. This is manifested
by the magnitudes of the elastic constants representing the
elastic properties of layer crystals.

A weak deformation of a solid considered in the theory
of elasticity is described by the strain tensor

here, «, is a component of the displacement vector. The in-
ternal stresses which arise in the course of deformation are
described by the stress tensor oik. The tensor aik is defined
by

dxh '

where Fi is the component of the force acting per unit vol-
ume. The strain and stress tensors are symmetric and of sec-
ond rank. The diagonal components of the strain tensor de-
scribe the relative changes in distances along relevant
directions, whereas the off-diagonal components describe
shear strains.

The relationship between the stress and strain tensors is
known as Hooke's law:

= C, (2.1)

The fourth-rank tensor C,klm is known as the elasticity ten-
sor and its components are called the elastic moduli or the
elastic constants. The requirement of the symmetry of the
stress and strain tensors leads to equality of many of the
elastic constants. The relationship

\poi\ [001]

t±£ ^ 2
FIG. 3. Structure of GaS at atmospheric pressure (a) and at the pressure
of 30 kbar (b, Ref. 7). View along the [ 110] direction.
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reduces the number of different elastic constants of a crystal
to 21. An allowance for the symmetry of the specific crystal
lattice reduces still further the number of independent elas-
tic constants. A completely isotropic solid has two elastic
constants, cubic crystals have three constants, and crystals
with the hexagonal symmetry typical of many layer crystals
are described by five elastic constants:

r - c c c

The symmetry of the elasticity tensor Ciklm makes it
possible to adopt compact notation. We shall use the follow-
ing compact notation system: xx-> 1, yy->2, zz^3, yz->4,
xz-*5,xy-*6. A hexagonal crystal is characterized by elastic
constants C,,, Cl2, C,,, C,_,, and C44, the values of which
govern its anisotropy. For example, in the case of a layer
crystal with the symmetry axis perpendicular to the layers
the elastic constants Cu and Cn represent the binding in-
side the layers, whereas the constants C,,, C,,, and C44 de-
termine largely the interlayer binding. The elastic properties
of a hexagonal crystal in a symmetry plane are isotropic and
are described by two constants Cn and C,2, which deter-
mine the Young's modulus and the Poisson ratio in the sym-
metry plane. The constant C,3 governs the Young's modulus
in the perpendicular direction, whereas the constants C,,,
C,,, C,,. and C,, determine the corresponding Poisson ra-
tio. The constant C44 represents the stresses which appear in
a hexagonal crystal as a result of shear in the basal plane, and
the value of C44 for a layer crystal describes the stresses
which occur when layers shear relative to one another. The
physical meaning of the other elastic constants can be de-
duced also from the expressions for the diagonal compo-
nents of the strain tensor obtained for different types of de-
formation. We shall give the relevant expressions for the
cases of uniaxial deformation of a symmetry axis and at
right-angles to such an axis, and also in the case of hydrostat-
ic compression:

uniaxial compression parallel to a symmetry axis (z
axis):

u,7 •-- — (Cii-t-C12)-C,3-2C?3 (2.2)

uniaxial compression perpendicular to thez axis:

2) £33 — ' (2.3)

hydrostatic compression:

- 2 £ 1 2 _
-2CJ, P'

£33 — ^13 (2.4)

1 ~i ^12) £33 £ •p;

A strong anisotropy of the elastic properties of a layer crystal
implies the inequalities

£-11' ^ 1 2 S > ^13 ' ^33 ' ^44-

It readily follows from Eqs. (2.2)-(2.4) that in this case
there is a large difference between the Young's moduli and
Poisson ratios for the basal plane and at right-angles to this
plane. Comparison of Eqs. (2.2) and (2.4) also shows that
in the case of a strongly anisotropic crystal the relative elon-
gation along the symmetry axis under hydrostatic pressure is
practically identical with the elongation in the case of a un-
iaxial compression parallel to thez axis. This is important in
the interpretation of the deformation effects in layer crys-
tals.

We shall consider the experimentally determined val-
ues of the elastic constants of a number of layer crystals with
hexagonal symmetry.

Graphite has been investigated more thoroughly than
the other materials. The data on the elastic constants of this
crystal have been obtained by investigations of the com-
pressibility,10 neutron scattering," and velocity of ultra-
sound,12 and by calculations of the specific heat.1114 The
elastic constants of the same samples have been determined
by different methods in (Ref. 15). The experimental data
taken as a whole demonstrate a strong dependence of the
value of C44 for graphite on the conditions of crystal growth.
For example, it is shown in Ref. 16 that a reduction in the
number of basal dislocations increases C44 significantly. The
elastic constants of GaS have been determined by the meth-
ods of neutron scattering,15 light scattering,18^20 and ultra-
sound propagation.21 In the case of GaSe, investigations
have been made of the scattering of light1''"23 and the velocity
of propagation of sound.24'25 In the case of InSe the elastic
properties have been determined by the ultrasonic meth-
od.21'26 Table II gives the elastic constants of graphite, III—
VI crystals, and some other layer semiconductors. We can
see that the strongest anisotropy of the elastic constants is
exhibited by graphite and the anisotropy of the constants of
other crystals is considerably less.

Serious difficulties are encountered in the determina-
tion of the elastic constants of layer crystals. The most popu-
lar method involves determination of the velocities of propa-
gation of ultrasound along various crystallographic

TABLE II. Elastic constants of layer crystals (10" dyn/crrr).

Elastic
constant

d i

c13c33C44

C (Ref.

lofi
18

1,5
3,7

Hexagonal

15)

,"35

Ci:iS (R

15,7
3,3
1,5
3 ,0
11,8

crystals

ci'. GaSe
21 )

111
2
1
3
II

Ref.

,3
,9
,2
,4
,9

IIISL

211

7
2
3

(Ref.

,3
,7
,1)

3 .6
1 .2

TiSc.
27)

12
4

c

Rhombohedral crystals

(kef.

,2

,9
1,4

TaSe,(Ref.
28)

22.9
1H.7
—
5,4
1.9

NbSe,
28)

19
9

4
1

Ref.

4
1

2
8

SnScfRef.
29)

10,3
—
—
2 , 8
1,8
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TABLE III. Pressure dependences of elastic constants of layer crystals.

Crystal

C

GaS

GaSe
JnSe

Pressure, kbar

p\\c, up to 0.42 kbar
hydrostatic, 7 kbar
hydrostatic, 20 kbar
hydrostatic, 20 kbar
hydrostatic, 3 kbar
hydrostatic, 3 kbar
hydrostatic, 3 kbar

_
—
0,4
0,4
0,7
0,8
1,0

1 <lCi

c,,

_
—
0,6
—
1,5
1,5
1,6

* , io-

C , i

9±2
3,9
2,6
2,8
6,0
5,6
5,0

11 dyn/cm2

—
2,1

—
—
—

1,4
0,8
—
—
—
—

Ref.

15

30

31

32

21

21

21

directions. For example, the value of C,, can be determined
when a sample has faces polished at an angle to the planes of
the layers, which is difficult to achieve in practice. For this
reason the values of C, 3 determined by different authors can
be quite different. The quality of a crystal may also have a
very important influence on the elastic constants. For exam-
ple, the value of C44 for graphite can vary within wide limits
(Table II), depending on the number of defects formed as a
result of incorrect sequencing of layers relative to one an-
other.

In later sections of this review we shall show that the
characteristics of the deformation effects in layer crystal are
determined to a great extent by the pressure and temperature
dependences of the elastic constants. Determination of the
values ofCik in the presence of external perturbations meets
with additional experimental difficulties. This is the reason
for the small number of investigations of the influence of
pressure and temperature on the elastic properties of layer
crystals. Table III gives the results of the published studies of
changes in Cik with pressure in the case of graphite and
GaSe, GaS, and InSe crystals. The data on graphite153031

have been obtained from investigations of the velocity of
propagation of ultrasound under conditions of uniaxial com-
pression parallel to the z axis and under hydrostatic pres-
sure. The value of C,, has been determined by measuring the
velocity of propagation of longitudinal waves in the plane of
the layers, whereas C,, has been deduced from the velocity
of longitudinal waves traveling along the symmetry axis.
The values of Cl2 andC44 have been deduced from the veloc-
ities of transverse waves propagating along and across the
layers, respectively. For the reasons given above the value of
C, _, has not been determined directly, but has been estimated
from the results of a number of reported measurements and
on the basis of certain assumptions.

The main result of an analysis of the data in Table III is
that the pressure dependences of the interlayer elastic con-
stants are stronger than the pressure dependences of the in-
tralayer constants.

An analysis of the data on the temperature dependences
of the elastic constants of graphite" also reveals a tendency
for the faster changes in the interlayer elastic constants,
compared with the intralayer constants. For example, cool-
ing from 300 to 4.2 K increases Cu by 6%, whereas C3}

increases by 12%. The faster rise on reduction in tempera-
ture and on increase in pressure exhibited by the interlayer
elastic constants is not surprising. In the case of crystals
formed from rare gases and molecular crystals, where the
binding between atoms is of the van der Waals nature, the
elastic constants vary faster with pressure and temperature

than the majority of ordinary semiconductors.33 The same
result follows from an analysis of the temperature depen-
dences of the frequencies of optical phonons in layer crys-
tals, which is given below (Sec. 2.3).

The elastic constants carry information on the nature of
the forces of interaction between the atoms composing a
crystal. We can establish a relationship between the experi-
mental values of the elastic constants Cik and the microscop-
ic parameters of model calculations which determine the na-
ture of the interaction between atoms. The elastic properties
and the phonon spectra of crystals are frequently calculated
using a model of force constants according to which the rela-
tionships between displacements of a given atom from its
equilibrium position u(n) and the forces exerted on this
atom by all the other atoms in the crystal lattice are written
in the form

mui(n)= —2J a-i,
n'

(n, n')uh(n'); (2.5)

here, u,(n) is a component of the vector describing the dis-
placement of the «th atom from its equilibrium position and
aik represents elements of the force matrix of a crystal.

The interaction forces between atoms decrease quite
rapidly with distance, so that a correct description of lattice
dynamics in a specific crystal structure can frequently be
provided by considering only the nearest neighbors. It is as-
sumed that the interaction between atoms is of central na-
ture, i.e., it acts along the direction of the line joining the
atoms and depends only on the distance between them.
These simple assumptions make it possible to describe the
vibrational spectrum and many elastic properties of a crys-
tal. On the other hand, the simple description of the crystal
structure of a layer material, allowing for the existence of
different binding forces within the layers and between the
layers, cannot be based on the above assumptions as the first
approximation. If the intralayer forces are much stronger
than those between the layers, the interaction between the
more distant neighbors in the basal plane may be of the same
order of magnitude as that between the nearest neighbors
bound by a weak interlayer force. Moreover, because the
interlayer central forces are weak, an allowance for the non-
central forces of interaction between atoms in the plane of
the layers may be important. Allowance for just the central
forces imposes certain (Cauchy) relationships between the
elastic constants33 and in the case of a crystal of hexagonal
symmetry these relationships are

Ct^CK,= C " 7 C l 2 • C13 = C4i. (2.6)

It is clear from Table II that the relationships of Eq. (2.6)
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are satisfied by GaS, GaSe, and InSe. In the case of graphite
the elastic constant C,_, is almost two orders of magnitude
different from the value of C44. The violation of the Cauchy
relationships in the case of graphite demonstates that non-
central forces must be allowed for in the case of this crystal.
As demonstrated below, an analysis of the vibrational spec-
tra of strongly anisotropic crystals on the basis of only the
central interaction cannot account for all the features of the
dispersion laws exhibited experimentally by such crystals.

2.2. Characteristics of the spectra of acoustic vibrations in
layer crystals

In dealing with the spectrum of acoustic phonons in
layer crystals we shall concentrate on the characteristics
typical of acoustic vibrations in the case of extreme anisotro-
py of the binding forces. The dispersion laws for elastic
waves in crystals follow from the equations of motion piij
= da,k /dxk and are found by equating to zero the following

determinant:

fc»&,-p^6lm|-=0; (2.7)

here, kk is a component of the wave vector of elastic waves, a>
is the vibration frequency, and p is the density. Equation
(2.7) has generally three different solutions <w(k). All three
of them describe waves propagating at a velocity which is
independent of the wave vector because Eq. (2.7) defines to
as a linear function with respect to the wave vector compo-
nents.

We shall consider a crystal with hexagonal symmetry
and assume that its elastic properties are described by the
elastic constants C,, , Cu , Cu , C44 , C\, , and Cbh

= (C n — C] 2)/2. In this case the solutions of Eq. (2.7) are
of the form14

w* = — (C66 sin2 9 + C44 cos2 6).

wl,3 = - | - l(Cu + CJ sin2 9 + (C33 + C44) cos2 9

(2.8)J- 4 (C44 + Cl3f sin29-cos2 9}1/2];

here 0 is the angle between the direction of the vector k and
the symmetry axis. If we assume a strong anisotropy of the
elastic properties, i.e., C,,, Cl3, C444:CU, Cl2, we obtain the
following dispersion laws for the three branches of the
acoustic spectrum of a layer crystal2;

i»-(&!+ &•) + -%-*•!,

w; = Cu 7,2
A . , .

(2.9)

In the case of a strongly anisotropic crystal each branch of
these vibrations corresponds to a displacement vector ori-
ented in a specific way: the first and second branches corre-
spond to displacements of atoms in the plane of the layers
and the third branch corresponds to displacement in the per-
pendicular direction. This last branch is called flexural be-
cause the layer becomes bent in its plane in the course of
propagation of such vibrations. A comparison of the disper-
sion relationships of Eq. (2.9) with the dispersion laws of,
for example, graphite found experimentally by neutron scat-

tering spectroscopy methods, shows that the theory and ex-
periment agree on the whole quite well. The exception is the
dispersion relationship <u, (k). It follows from the experi-
mental results that in the case of the flexural branch, because
of the smallness of C44, the dispersion relationship must in-
clude terms quadratic in kx and kv even for relatively small
values of kx and kv:

The unusual behavior of the flexural branch was first
predicted in 1952 by I.M. Lifshitz2 who demonstrated the
need to supplement the dispersion relationship co, (k) with a
quadratic term. Lifshitz pointed out2 that, in addition to
equations of the theory of elasticity, the derivation of the
dispersion relationships for strongly anisotropic crystals
must allow for the restoring forces which arise as a result of
bending of individual layers. The coefficient y represents the
flexural rigidity of the layers. This feature is typical also of
vibrations of a string. The frequencies of short-wavelength
vibrations of a string calculated without allowance for the
flexural forces are considerably lower than those found ex-
perimentally.15

I. M. Lifshitz used the analogy between a layer in a
crystal and a thin elastic plate. The transverse vibrations of
such a plate are known to be described by the following qua-
dratic dispersion law:

Ed2

12p (1 —a2) (2.10)

In Eq. (2.10), E is Young's modulus, a is the Poisson
ratio, d is the thickness of the plate, and k | is the wave vector
lying in the plane of the plate. The coefficient Ed2/\2(\
— a2) represents the rigidity of the plate and its resistance to

bending.
The dispersion laws for acoustic vibrations in a crystal

can be derived also using the framework of a very simple
model of the force constants. Such a model is considered for
a layer crystal in Ref. 36.

The dispersion laws corresponding to Eq. (2.5) can be
found in the model of force constants by equating to zero a
determinant analogous to Eq. (2.7):

| 2 &im(n,n') [cos (kr («—«')) — 1] —mco26im | =0 ;
n~n'

(2.11)

here, k is the wave vector and r (n) is the radius vector of the
nth atom. It follows from Eq. (2.11) that in the long-wave-
length approximation the dispersion laws are generally non-
linear. Linear dispersion laws are obtained only if we retain
only the terms up to ~ k1 in the expansion for the cosine and
allow for the interaction of atoms with the nearest neighbors.

We shall use a simple model of the crystal structure of a
layer crystal and demonstrate under what conditions the dis-
persion laws obtained using the framework of the theory of
elasticity [Eq. (2.9)] agree with the results of microscopic
calculations based on Eq. (2.11). Figure 4 shows a simpli-
fied model of the structure of graphite in which parameters
of a unit cell along the symmetry axis and in the plane of the
layers are equal. We shall consider the interaction of an atom
1 with the neighboring atoms 2-9 and allow only for the
central interaction. We can readily show that under the as-
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FIG. 4. Simplified structure of graphite.

sumptions made and including only the first two terms in the
expansion for the cosine, the dispersion laws obtained from
Eq. (2.11) are identical with the laws deduced using the
theory of elasticity. For example,

xx d. 2) a.r.-v(1.3)

iw^r («* + «!/)-i —

(2.12)

m/a3

The elastic constants C,,, C44, and CH are related to the
force constants as follows:

1. 2)

azz (1. 3) c ( 1 . 3)

The dispersion law for the flexural branch is linear and the
velocity of propagation of a flexural wave in the plane of the
layers is governed by the central interaction of the atom 1
with atoms of the type 3, i.e., with the atoms labeled 5, 7, and
9, as well as with atoms (not shown in Fig. 4) lying in neigh-
boring planes parallel to the (x,z) plane. It therefore follows
that inclusion of just the interaction between the nearest
neighbors bound by the central forces gives dispersion laws
which agree with those deduced from the theory of elasticity.
The shortcoming of this analysis is obvious: only the central
interaction between the weakly bound atoms (1 and 3, . . . )
is allowed for and the noncentral interaction between the
strongly bound atoms (1 and 2,. . . ) is ignored. This neglect
is not justified in the case of strongly anisotropic binding
forces. We shall consider the dispersion relationship for the
flexural branch allowing for the noncentral interaction of
atoms in the plane of the layers. In this case we can no longer
limit our treatment to just the nearest neighbors. This can be
demonstrated conveniently by ignoring the interaction
between the layers and considering an isolated layer or
chain. Then, in the discussion of the flexural vibrations the
need to exclude rotation of the layers or chains as a whole
leads to important relationships between the force constants
describing the interaction between the nearest and the more
distant neighbors. In fact, we shall assume that the chain
shown in Fig. 4 is rotated as a whole in the (x,z) plane. The
forces acting on each atom in the chain vanish. This also
follows from Eq. (2.11): in the limit k -» 0 the force tends to
zero. An important consequence is that rotation of the chain
as a whole makes the total internal energy also zero. There-
fore,

(«, n'){n — re')2 = < (2.13)

Clearly, this condition can be satisfied only if the force
constants azz (n,n') differ in sign and are not very different in

absolute magnitude. The physical meaning of this conclu-
sion is that flexural rigidity of a layer or a chain requires that
a given atom interacts not only with the nearest neighbors,
but also with the more distant neighbors and the binding to
the more distant neighbors may be slightly weaker than that
to the nearest neighbors.

The dispersion law for the flexural branch of vibrations
of an isolated chain can be deduced from Eq. (2.11) allowing
forEq. (2.13):

ma>' = (n, re') [cos (fro (n—re'))—1]. (2.14)

Clearly, because of Eq. (2.13) we cannot limit our treatment
to the first term of the expansion of the cosine as a series. The
dispersion law becomes

: (1. 2) (ak)K (2.15)

In a real crystal when allowance is made for the interaction-
between the layers, the dispersion law for the flexural branch
is of the form36

+ a " ^ v a*k*. (2.16)

The above analysis of the main relationship governing the
dispersion laws of a strongly anisotropic crystal allows us to
draw the conclusion that the deviation of the dispersion law
of the flexural branch from linearity is governed by the rela-
tionship between the strengths of the central interlayer
forces and the noncentral intralayer forces. A quadratic dis-
persion law should be typical of crystals with very different
forces of interaction within and between the layers.

We shall now consider the experimental data on the
scattering of slow neutrons in layer crystals because it is this
scattering method that makes it possible to reconstruct inde-
pendently the dispersion relationships governing acoustic
vibrations. It was found that the quadratic dispersion law for
the flexural branch of vibrations typical of graphite" (Fig.
5) is exhibited also by MoS2 (Ref. 38), TiSe2 (Ref. 39), and
GaS (Ref. 17), as demonstrated in the last case in Fig. 6. On

0,4 0.2 0 0,2_ 0,4-
2v/c0 units 4n7v;3a0 units

Reduced wave vector

FIG. 5. Dispersion of phonons in graphite."
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FIG. 6. Dispersion of low-frequency phonons in GaS (Ref. 40). The
dashed lines correspond to a linear dispersion law.

0,1 0,3 0,5 0,5 0,1 0 0,1 0,3 0,5
Reduced wave vector

FIG. 7. Dispersion of phonons in GaS based on the data of Ref. 40 (com-
plete picture).

the other hand, in the case of GaSe, Pbl2, and Hgl2 the dis-
persion law for the branch <y, is not quadratic. The above
analysis is consistent with the experimental results. It is suf-
ficient to examine Table II and compare the values of the
elastic constants characterizing the interaction between
atoms within the layers and between the layers in all these
crystals.

The dispersion law is known to govern the density of
states and the contribution of the various vibrations to the
total density of phonon states. This circumstance gives rise
to special features in the behavior of the thermal properties
of strongly anisotropic crystals, which will be discussed in
Sec. 3.

*
2.3. Optical phonons in layer crystals. Influence of pressure
and temperature

The difference between the binding forces in layer crys-
tals governs also the characteristics of optical vibrations.
The general features of optical vibrations in layer crystals
will be demonstrated by considering gallium sulfide as an
example. Figure 7 shows the experimental results obtained
by the method of slow neutron scattering in GaS (Ref. 40).
The high-frequency optical vibrations lying in the range
v > 5 THz correspond to displacements of atoms bound by
strong ionic-covalent forces within the layers. Figure 7 dem-
onstrates one other feature of the spectrum of optical phon-
ons in layer crystals, which is the existence of low-frequency
optical modes lying in the range v S 1 THz corresponding to
displacements of layers relative to one another taken as a
whole and regarded as rigid molecules. Low frequencies cor-
responding to interlayer vibrations have been found in the
Raman scattering spectra of many layer crystals such as
As2S3 (Refs. 41 and 42), MoS2 (Ref. 43), GaSe (Ref. 44),
GaS (Ref. 45), and InSe (Ref. 46).

The two-dimensional nature of the phonon spectrum of
layer crystals is manifested by a weak dispersion of the high-
frequency optical branches in the case of propagation of vi-
brations across the layers in crystals (along the F-A-A di-
rection; see Fig. 7).

The existence of two types of binding in layer crystals is

illustrated excellently in the experiments on the influence of
hydrostatic pressures on the Raman spectra of layer crystals.
Such experiments were carried out for GaS (Ref. 47), GaSe
(Refs. 47 and48), As2S3 (Ref. 49), InS (Ref. 50), and Pbl2

(Ref. 51). Figure 8 gives the results of an experimental study
of the influence of hydrostatic pressures on the energy posi-
tions of the Raman scattering lines of GaS. A common fea-
ture of experiments of this kind, carried out at room tem-
perature and pressures below 50 kbar, is that the
low-frequency interlayer optical modes shift with pressure
much faster than the high-frequency intralayer modes. The
coefficient

r = — tltJ
w ~~ a dp '

which represents shear, is an order of magnitude greater for
the interlayer modes than for the intralayer modes. We note

GQS

400-

10 3D ^0 p, kbar

FIG. 8. Pressure dependences of the frequencies of Raman-active modes
in GaS (Ref. 47). The displacement vectors are shown on the right.
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that in comparing the values of the coefficient Fa for mono-
typic modes in different layer crystals we have to allow for
the different compressibilities of the crystals and in compar-
ing the values of the same coefficient for different modes in
the same crystal we have to allow for the difference between
the compressibility of the crystal as a whole and that of a
single layer.

The behavior of the compressibility of layer crystals,
governed by changes in the elastic constants, determines the
nonlinear pressure dependence of the parameter Fw in the
case of an interlayer low-frequency mode a> zs 23 cm ~' of
GaS (see Fig. 8). An even more important factor is an
allowance for the reduction in the compressibility on in-
crease in the pressure when considering the results of the
experiments carried out at high pressures in the range/? S 50
kbar. The behavior of the spectrum of optical phonons in
GaS under pressures up to 200 kbar at room temperature is
described in Ref. 52. It is found that at pressures of ~ 150
kbar the co~23 cm" ' low-frequency mode of GaS shifts to
76 cm " ' . It then follows from the model of the force con-
stants that the values of these constants become equal for the
interactions between the layers and within the layers. At 150
kbar the compound GaS exhibits three-dimensional proper-
ties in the sense considered here. The interlayer and intra-
layer optical vibrations in layer crystals also vary differently
with temperature. Figure 9 shows the temperature depen-
dences of the frequencies of two Raman-active modes in
GaS. The mode &>, corresponds to an interlayer vibration
(Fig. 8) and the mode o)2 to an intralayer vibration. We can
see that the relative changes in the frequency of the inter-
layer mode with temperature is faster than the change in the
frequency of the intralayer mode. The fraction rj of the total
changes in the frequencies cox and co2 due to the thermal
expansion of a crystal, i.e., the fraction directly due to
changes in the distances between the atoms, is estimated in
Ref. 53. An analysis of the available data on the temperature
dependences of the frequencies of optical phonons in other
layer crystals, and also in molecular crystals,54 allows us to
draw the conclusion of the common nature of the tempera-
ture dependences of low-frequency interlayer or intermole-
cular vibrations and high-frequency intralayer or internal
molecular vibrations: the contribution of the thermal expan-
sion to the total change in the frequency of an interlayer or
an intermolecular vibration is 70-80%, whereas in the case
of intralayer or internal molecular vibrations the change in

TABLE IV. Contribution of thermal expansion to the temperature de-
pendences of the frequencies of optical phonons in layer and molecular
crystals.

ZOO T,K

FIG. 9. Temperature dependences of the frequencies of Raman-active
modes in GaS (Ref. 53): 1) ft) = 23.2 cm '; 2) a = 190.1 cm '.

Crystal

GaSe, GaS6 3

As4S4 "

C10H8»<

a), cm '

20; 22, interlayer
134; 188 intralayer
39 — 65, intermolecular
350, intramolecular
46—125, intermolecular

1

0,75
0,4
0,78
0,27
1,5

the frequency due to the thermal expansion is only 30-40%.
Table IV gives the results of investigations of the tempera-
ture dependences of the frequencies of Raman-active vibra-
tions in layer and molecular crystals. The contribution of the
thermal expansion to the total temperature dependences of
the frequencies can be found from the experimental results
on the influence of hydrostatic pressures on the Raman scat-
tering spectra of layer crystals. In estimating the thermal
expansion contribution to the changes in the vibration fre-
quencies with temperature we must use the results of mea-
surements carried out on the same samples, as demonstrated
by an analysis reported in Ref. 53. We can draw the conclu-
sion that the temperature dependences of the frequencies of
vibrations in layer and molecular crystals are monotypic,
indicating a complex nature of the binding forces in layer
and molecular crystals.

We shall end this discussion of the characteristics of
vibrational and elastic properties of layer crystals by noting
that these features determine the unusual behavior of the
physical phenomena observed in these crystals. One of these
phenomena (thermal expansion) will be considered in the
next section.

3. CHARACTERISTICS OF THERMAL EXPANSION OF LAYER
CRYSTALS
3.1. Anisotropy of thermal expansion of graphite and boron
nitride

We shall consider the changes which occur in the
phonon spectra and elastic properties of layer crystals under
pressure. In this section we shall use these results to describe
the thermal expansion of anisotropic bodies.

The tensor of the linear thermal expansion of a crystal is
described by55

We shall use the second law of thermodynamics in the
form

dF = - s&T - uihdaih; (3.2)

here, Fis the thermodynamic potential and s is the entropy,
both per unit volume. The thermal expansion tensor is then

daih dT •
(3.3)

The thermodynamic potential Fcan be written down by
considering a solid as a set of noninteracting harmonic oscil-
lators with frequencies <z>,.

Without allowance for the energy of the zero-point vi-
brations, we have
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F =
kT (3.4)

The principal values of the tensor aik for a crystal with
axial symmetry become

a ° T 1
zz dT I V

hd(i>i/dp "I _ (3 5)

here, a=azz and/? is the stress created by hydrostatic pres-
sure in a plane perpendicular to the symmetry axis.

The expressions in the system (3.5) are written down in
what is known as the quasiharmonic approximation. In this
approximation it is assumed that the frequencies of indepen-
dent oscillators can vary with pressure.

In the case of a uniaxial crystal with the unit cell param-
eters a and c the derivatives of the frequencies with respect to
the stress are

(3.6)

We shall substitute Eq. (3.6) into Eq. (3.5) and intro-
duce Griineisen parameters yzz and yxx. In contrast to T M

(see Sec. 2.3), these parameters represent the relative
changes in the frequencies in the case of elongations of a
crystal along the symmetry (c) axis and at right-angles to
this axis:

da

da i
dp

90);
dc

da>i
dc

dc
da

dc
dp 1

Mi
1 da

du>i
da

da
da

da
dp

Vzz = V r. dT
a i m

exp (ha>i/kT)~ 1 d In c

2. yxX. >Ci

Yxx = Vyy — 9 V r

i

l a

(3.7)

dT
tii$i a In co; "1,

e\p(h<i>i/kT) — 1 a In a J '

here, C = Y C, and C, is the contribution of the zth mode to

the specific heat.
The changes in the cell parameters with pressure de-

scribed by dc/da, da/da, dc/dp, and da/dp can be expressed
in terms of the elastic constants if we use the theory of elasti-
city. The formulas for a,k in a form convenient for analysis
become:

" " " F L (CU + C1 2)C, , -2C?3

2C13

i ~r C12) C33 - t —̂ 7J •]•
c r

(3.8)

( C U T C12) C33 —2Cf3

In the case of a uniaxial layer crystal, we shall assume
axx —ayy=an (parallel to a layer in a crystal) and azz =aL

(perpendicular to a layer).
Studies of the thermal expansion are made by dilatome-

20

v = 0,35)

T K
150 ' ZOO

FIG. 10. Linear expansion coefficients of graphite" and boron nitride.*
The continuous curves are calculated.6"™

trie methods. Changes in length are determined with the aid
of a quartz dilatometer or x-ray diffraction methods, and
also by laser interference dilatometry, capacitance methods,
and some other techniques.5657

The first detailed investigation of the temperature de-
pendence of the thermal expansion coefficients of pyrolythic
graphite was reported in Ref. 58. The x-ray diffraction meth-
od was used to determine the lattice parameters in a wide
range of temperatures where ay was negative and a strong
anisotropy of the linear expansion was observed. Subsequent
experiments carried out by x-ray diffraction59"61 and inter-
ferometric62 methods confirmed that a^ was negative in the
temperature range 20-650 K. It was also found that in the
case of boron nitride63 the corresponding range of tempera-
tures was even wider extending up to 850 K.

The negative linear expansion of layers in graphite is
typical of materials prepared by different methods64 and also
of its intercalated compounds.65 Figure 10 gives the tem-
perature dependences of the linear expansion coefficients of
graphite and boron nitride. The temperature dependences of
these coefficients can be analyzed quantitatively on the basis
of the expressions in Eq. (3.8) provided we know the disper-
sion laws of the branches and the behavior of the relevant
frequencies under pressure; we also need the specific heat
data. We shall now consider the possible origin of the nega-
tive thermal expansion of anisotropic crystals using the ex-
pressions in Eq. (3.8) and following the treatments in Refs.
66 and 67. The negative value of ay for graphite is related to
the dominant role of the second term in the expressions in
Eq. (3.8). It is in fact assumed that the lateral compression
due to strong expansion at right-angles to the layers is much
greater than the expansion of the layers due to increase in
temperature. In view of the strong anisotropy such that C33,
(C,, + C,2) > 2C2,, it follows from the last conclusion that
the system (3.8) can be represented in the form

C

C
(3.9)

Hence we find that
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C l 3 (3.10)

The ratio on the right-hand side of Eq. (3.10) is the
Poisson ratio for a crystal of hexagonal synmetry which rep-
resents the change in the dimensions of this crystal in the
plane of its layers on application of a pressure along the sym-
metry axis. At room temperature, graphite is characterized
by \aL]\ \/aL = 0.04 and C13 / (C , , + Cl2) = 0.01. The lat-
eral compression due to expansion of the crystal along the c
axis plays a very small role.

It therefore follows that the existence of a wide range of
temperatures in which a graphite crystal is compressed as a
result of heating cannot be explained by the Poisson com-
pression. It is necessary to assume that yxx is negative. This
means that heating tends to minimize the total energy of a
crystal by reducing the frequencies of the vibrations and this
reduction is not due to an increase in the dimensions of a
crystal, as is true in most cases, but due to a reduction in
these dimensions. Before considering this case in greater de-
tail, we shall first discuss the published data on the thermal
expansion of layer semiconductors.

3.2. Thermal expansion of layer semiconductors

In spite of the fact that many layer semiconductors are
known at present, the thermal expansion coefficients have
been determined in a wide range of temperatures only for a
few crystals. The fullest investigations of the dependences
a.\\ (T) and aL (T) have been made for III-VI semiconductor
compounds. A quartz dilatometer was first used in Ref. 68 to
study the thermal expansion of large samples of GaSe, GaS,
and InSe with dimensions up to 30 mm. Similar investiga-
tions of samples with dimensions up to 5 mm were carried
out by interferometric methods.69'70 Figure 11 shows the
temperature dependences ofay and aL plotted for gallium
sulfide on the basis of the data reported in Refs. 68 and 69.
The curves obtained in Refs. 69 and 70 demonstrate a strong
anisotropy of the thermal expansion and negative values of
a || in the temperature range 30-50 K, whereas the results
reported in Ref. 68 suggest a weak anisotropy; the coefficient
«|| is positive. A weak anisotropy of the linear expansion
suggests that the large samples used in Ref. 68 are character-
ized by misorientation of the layers and by stacking defects.
Figure 12 gives the results obtained for gallium and indium
selenides, which are again characterized by an anisotropy of
a and negative values of a^ in the range 30-50 K.

10

8

GctS

• 1 . - , I

'50 100 iso

FIG 11. Linear expansion coefficients of GaS (Ref. 69). The dashed and
chain curves are taken from Ref. 68.
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The published data on the thermal expansion of cad-
mium iodide71 (Fig. 13) are characterized by a monotonic
temperature dependence and positive values of ay and « i .

The temperature dependences of the thermal expansion
coefficients of ternary crystals TlInS2 and TlGaS2 are plot-
ted in Fig. 14 (on the basis of the data taken from Refs. 69
and 72). In the case of these crystals we find that a^ > 0 and
the anomaly of a^ observed for TlInS2 at 200 K is attributed
to structural phase transitions.

The phase transitions associated with a charge-density
wave affect the temperature dependences of the thermal ex-
pansion coefficients of TaSe2-type semiconductors.7374 We
shall not discuss the nature of the thermal expansion of these
crystals. As far as the other experiments are concerned it is
worth noting the following. The thermal expansion anisotro-
py is typical of crystals which have a strong anisotropy of the
elastic constants. The region of negative thermal expansion
is typical of crystals whose elastic properties are strongly
anisotropic.

In the next subsection we shall discuss the nature of the
temperature dependences of the linear expansion coeffi-
cients of graphite and III-VI layer semiconductor com-
pounds using a theory of thermal properties of strongly an-
isotropic crystals.

3.3. Nature of negative thermal expansion of layer crystals.
Lifshitz membrane effect

We shall calculate the linear expansion coefficients of a
strongly anisotropic crystal starting with the dispersion laws
for acoustic waves of Eq. (2.9) in the form suggested by I. M.

4-0

V 30

100 ZOO T,K

FIG. 13. Thermal expansion coefficients of C d l , (Ref. 71) .
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FIG. 14. Thermal expansion coefficients of TlInS2 (a, Ref. 69) and
TlGaS2 (b, Ref. 62).

Lifshitz:

(3.11)

in Eq. (3.11), we have

! + Y2(^ + '

2p

1 pc2 '

3__2£|£

pc2

where £ and rj are small parameters in view of the strong
anisotropy of the elastic properties. The value of/represent-
ing the flexural rigidity is estimated in Ref. 2 on the assump-
tion that the limiting frequencies of flexural vibrations can-

not exceed the highest frequencies in the acoustic spectrum:

(3.12)( n \2 n cav

here, -rr/a is the maximum value of the wave vector and v is a
fitting parameter smaller than unity. Using the elastic con-
stants of graphite (Table II) we can describe the experimen-
tal results plotted in Fig. 5 by selecting v = 0.47.

It follows from the dispersion laws of Eq. (3.11) that
flexural vibrations correspond to the maximum density of
states and that they make the dominant contribution to the
thermal properties at sufficiently low temperatures. For ex-
ample, when the values of kx and ky are low, so that the term
~ ( k I + ky)2 can be ignored, the function describing the
density of states is

i J A \

(3.13)

In view of the smallness of rj and g, the highest density of
states corresponds to the flexural branch. This is an impor-
tant point in the discussion of the thermal properties of
strongly anisotropic crystals.

We shall now calculate the thermal expansion coeffi-
cients. The expression (3.5) for the components of the ther-
mal expansion tensor will be rewritten integrating with re-
spect to the wave vector inside the Brillouin zone and
including only the contribution of the flexural branch:

(2n)3 dT - 1 ]
d3k,

(3.14)
1 1

an = — -=-
hda>l/dp

2 (2n)» dT J J J 2u,3[exp(f,(t>3/kT)-i
m

•d3k.

Using the dispersion law of Eq. (3.11), we find that the
expression for av can be reduced to

d
dT

• "m

in
9C,

da

2pco3(k)[exp(Sa>3(k)/fer)-lJ -d3k. (3.15)

In the calculations we need to know not only the elastic
constants, but also their pressure derivatives. We need to
know the influence of uniaxial pressure on the elastic con-
stants C^, C33, C n , and C12. The values of the constants
C,,, C12, C13, and C^ for graphite are given in Table II, but
there are practically no data on the influence of uniaxial
pressures on the values of the components of the elasticity
tensor. We shall use Table HI which is a collection of the
results of experimental studies of the influence of hydrostat-
ic pressures on the elastic constants of layer crystals. We are
justified in using the data on hydrostatic compression be-
cause in the crystals with a weak binding between the layers
a reduction in the interatomic distance as a result of com-
pression along the c axis is the same as under hydrostatic
pressure. It follows from Tables II and III that dC44/
do4,dCJ3/da. Moreover, in view of the weak binding be-
tween the layers, the reduction in the interlayer distances

under pressures p\\c has little influence on the "interlayer"
elastic constants. The inequalities dCu/da, dCl2/da
4:dC33/da can be assumed to be satisfied. Using these in-
equalities in the calculation of aL, we need retain only the
second term in the numerator of Eq. (3.15) and thus reduce
the nunber of fitting parameters to two: (?C33 /da and v. Se-
lecting v = 0.47 and dC3i /da= — 16.5, we can describe
satisfactorily the experimental data for graphite reported in
Refs. 70and 75 (Fig. 10). As pointed out already, v = 0.47 is
in agreement with the dispersion laws of acoustic waves in
graphite and <9C33 /da = —16.5 agrees well with the experi-
mental data given in Tables II and III (the minus sign corre-
sponds to an increase in C33 under pressure).

It is appropriate to mention that calculations indicate
that in the temperature range up to 200 K a change in the
elastic constant C^ within the range 0.04 X 10" dyn/cm2

<CM <0.2x 10" dyn/cm2 has little effect on a^. this quanti-
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ty changes by just a few percent. This is because in the inves-
tigated temperature range we can ignore the term

[ —^) (A:2 + kI) in the dispersion law for flexural waves.
V p 1

The temperature dependence aL (T) for boron nitride
can also be described satisfactorily using the elastic param-
eters of graphite and assuming that v = 0.35, in accordance
with Refs. 70, 75, and 76 (Fig. 10).

The situation is somewhat different in the case of calcu-
lations ofay for graphite and boron nitride. It is reported in
Refs. 70 and 75 that the concept of the "membrane effect"
has to be used in the calculation ofay (7") for graphite and
boron nitride. This concept was first put forward by I. M.
Lifshitz2 in 1952. This effect is manifested in the thermal
expansion as follows: flexural acoustic waves, excited in a
layer crystal at temperatures such that these waves dominate
the thermal properties, reduce the dimensions of the crystal
along the layers but do not affect the distances between the
neighboring atoms in a layer, so that ay = 0.

It follows from Eq. (3.14) that the sign ofay is gov-
erned by the sign of the derivative dcOi/dp. As pointed out
already, the contribution of flexural waves dominates the
thermal properties at low temperatures and the sign of the
derivative determines dco^/dp.

When a pressure stretching the layers is applied to a
crystal, the layers resemble membranes, i.e., thin stretched
plates. In a membrane (or in a stretched string) the forces
due to the displacements of atoms at right-angles to the
membrane are governed primarily by the longitudinal elon-
gation.34'35 The frequencies of transverse vibrations in a
membrane (string) are proportional to the square root of the
restoring force.

In the case of a membrane the dispersion law for flex-
ural vibrations is of the form

here, p = F/l, Fis an omnidirectional stretching force, / is
the perimeter of a membrane, and x2 = k \ + k2

y. This
makes it possible to write down the dispersion law for the
flexural branch in the form2

f* (3.16)

We shall now calculate the derivative do)3/dp for a
stretched layer:

da,
dp - • = • [ • '

d(c
dp

d(c

(3.17)
The first two terms in Eq. (3.17) can be ignored because

the change in the interlayer constants is small when a layer is
extended. Then, if y1 = cVvVir2, the derivative dco3/dp be-
comes

(3.18)

The value ofd(pc2)/dp is governed by the pressure de-
pendences of the interlayer constants and is of the order of
10. Bearing in mind that in the long-wavelength appoxima-
tion we have ax 4,1 and v< 1, we can write down

The increase in the frequencies of "flexural" vibrations
due to elongation was called by I. M. Lifshitz the membrane
effect.

Since <?w3 /dp is positive, the coefficient a^ will have the
negative sign. Using the expression in Eq. (3.19) to calculate
an (T) and assuming the values of v = 0.47 for graphite and
v = 0.35 for boron nitride, we can describe satisfactorily the
available experimental data (Fig. 10). Therefore, the char-
acteristic features of the thermal expansion of graphite and
boron nitride are due to the existence of "flexural" waves
typical of the acoustic spectrum of a strongly anisotropic
crystal. These flexural waves give rise to a negative linear
expansion in the plane of the layers because of the membrane
effect.

We shall consider now the role of the membrane effect
in the thermal expansion of other layer crystals. We shall
discuss particularly the most thoroughly investigated group
of semiconductors with the gallium selenide structure. The
dependences a^ (T) and ax (7") are plotted in Figs. 11 and
12. The temperature dependences of aL and «y obtained for
GaSe, GaS, and InSe have the following common features:
the dependence a,| ( D passes through a range of negative
values ofay at temperatures 30-50 K; above 50 K the values
of an become positive for all the crystals and they cease to
depend on temperature in the range 7> 150 K.

The nature of the negative thermal expansion of III-VI
binary layer semiconductors will be discussed following Ref.
75 and considering gallium sulfide as an example because of
the strongest anisotropy of its elastic constants compared
with the series of its structural analogs (Table II). The
acoustic spectrum of gallium sulfide exhibits the same fea-
tures as the spectrum of graphite (see Figs. 5 and 6 ) . n The
anisotropy of the elastic constants of GaS, GaSe, and InSe is
not demonstrated as strikingly as that of graphite (Table
II). The interaction between layers in graphite is much
stronger. In the calculations of the thermal expansion we can
no longer ignore the contribution of the branches &>1 and co2.
This can be easily demonstrated using the expression for the
density of states given by Eq. (3.13). An analysis of the na-
ture of the thermal expansion of gallium sulfide and its ana-
logs requires an allowance for the branches &>, and co2. The
necessary calculations were carried out in Ref. 75 using the
data of Table II and assuming the values v = 0.6 and <?C,,/
dp = — 16. Figure 15 demonstrates satisfactory agreement
between these numerical calculations and experiments.
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dp •>0. (3.19) FIG. 15. Temperature dependence of afi for GaS (Ref. 69). The contin-
uous curve is calculated.
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Clearly, the existence in a narrow temperature range of neg-
ative values of the linear thermal expansion coefficients a! of
gallium sulfide and its analogs can be attributed to the mem-
brane effect. On further increase in temperature the contri-
bution of the modes « , and a2 associated with the intralayer
vibrations of atoms increases and the values of a y become
positive. The positive contribution of the branches co, and a>2

is due to the sign of the derivative dcoH2) /dp and the elastic
intralayer constants decrease on elongation of a crystal. It is
clear from this discussion that in the case of layer crystals
exhibiting an anisotropy even weaker than that of gallium
sulfide the range of negative values of a y may not be ob-
served (this is true, for example, of Pbl2 and its analogs).
The negative linear expansion due to the membrane effect
may not be observed either in strongly anisotropic crystals if
for some reason the flexural rigidity of the layers is high. In
this case the flexural waves are excited at fairly high tem-
peratures when the role of optical vibrations is important.
Such a situation may occur in ternary semiconductors of the
TlGaS2 type. Finally, we note that the membrane effect can
occur in any strongly anisotropic crystal and it can either
give rise to negative values of a|| or it can reduce the values of
the relevant tensor components. From this point of view we
have to analyze the experimental data on the thermal expan-
sion of tellurium, zinc,77'78 etc.

4. INFLUENCE OF PRESSURE ON THE BAND STRUCTURE OF
LAYER SEMICONDUCTORS

4.1. Band structure of layer semiconductors

The band structure has been calculated so far for a lim-
ited number of layer semiconductors. The most detailed cal-
culations have been carried out by the empirical pseudopo-
tential method for III-VI semiconductor crystals.79"81

Recently new data have been reported on the band structure
of IV-VI layer crystals.82 The first calculations of the band
structure of GaSe carried out in the two-dimensional ap-
proximation about 20 years ago8389 describe correctly the
order of states in the valence band and the energy gaps
between the band extrema. However, a complete picture of
the optical transitions and their polarization features, as well
as the distribution of the electron density in layer crystals
were obtained by considering the real three-dimensional
crystal structure of gallium selenide.79 This analysis was ap-

plied to/7-GaSe with the space symmetry group D\h (Fig.
16). According to this scheme,the top of the valence band at
K = 0 is the state F4~. The conduction band has two minima:
at the center of the Brillouin zone F3

+ and at the edge of the
zone M 3

+ . Further experiments85 demonstrated that the en-
ergies of these minima differ only very slightly. Direct and
indirect transitions are allowed when the electric vector has
the E||c orientation. The E||c transitions are allowed as a
result of interband mixing of the F4" and F5+6 states due to
the spin-orbit interaction.

An important feature is the three-dimensional nature of
direct excitons in gallium selenide. Experimental investiga-
tions85"87 demonstrated that the exciton series of GaSe is de-
scribed well by the three-dimensional dependence

and not by the two-dimensional dependence

2 (B = 0 ,1 ,2 ,3) .

The anisotropy of the effective masses of electrons and holes
in gallium selenide m^ /ml (the symbol || denotes the orien-
tation along the layers and 1 is the orientation across the
layers) is weak.1 The energy band structure of indium selen-
ide is the same as the band structure of GaSe described
above, except for the difference between the band gaps: in the
case of gallium selenide at 4.2 K we have the direct band gap
E g =2.132 eV, whereas the corresponding value for InSe is
E\ = 1.36 eV(Refs. 88-90).

Gallium sulfide has a wider band gap: the indirect gap is
E'\ = 2.36 eV and the direct one is E\ = 3.08 eV (Ref. 91).
Nevertheless, the general pattern of the optical transitions in
all crystals is very similar. A distinguishing feature of the
energy band scheme for all three crystals is the presence of
bands of two types for which the wave functions: 1) are con-
centrated mainly around and between the atoms of a metal
within a single layer; 2) include/^ orbitals located at the
boundaries of the neighboring layers of Se atoms, so that
they are concentrated in the space between layers.

States of the first type are of small "width" in the direc-
tion along kz of the hexagonal Brillouin zone; such states
form two-dimensional bands which, according to theoretical
calculations, are the valence bands (F5+6 ~ ). However, the

4-
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highest valence band and the lowest conduction band at
K = 0 for GaS, GaSe, and InSe are three-dimensional be-
cause their formation includes a significant participation of
the p2 orbitals of selenium or sulfur. The existence of two-
and three-dimensional bands of layer crystals, like the valid-
ity of the calculations of Ref. 79, has been demonstrated
employing the highly popular method of photoemission with
angular resolution.92"95

The highest group of the valence bands F4~ F,+ , the op-
tical transitions to which form the absorption edge of GaSe
and InSe, exhibit a strong ( ~ 1 eV) dispersion along the
direction perpendicular to the layers in a crystal. These
three-dimensional states are characterized79 by a consider-
able contribution of thepz orbitals of selenium to the corre-
sponding electron density. The group of two-dimensional
bands r 5

+ , F5 , F6
+, and F6~ is characterized by a weak

dispersion along kz (~0.3 eV). These states manifest main-
ly t he /^ , nature (Fig. 16). The degree of mixing of pz -like
charges localized near Se atoms determines the different de-
grees of dispersion of the deeper states F2", F3

+ and Ff1", F4~.

We shall use the example of gallium selenide and its
analogs to demonstrate that the electron states in layer crys-
tals can be two- or three-dimensional. The existence of iso-
tropic electron states is due to an overlap between the indi-
vidual layers of the/>z orbitals of the anions, which make the
main contribution to the corresponding electron density.
The degree of such overlap determines the values of the elas-
tic constants characterizing interlayer vibrations (see Ref.
1). On the other hand, the orbitals of the metal and thtpxy

orbitals of the chalcogens, which show little overlap between
the individual layers, form an electron density correspond-
ing to strongly anisotropic and two-dimensional states; the
magnitude and distribution of the electron charge density,
concentrated between the individual atoms in a layer charac-
terize the higher frequencies of intralayer phonon modes.

Another important feature of the electron spectra of
layer crystals is the circumstance that in a crystal with a unit
cell consisting of two layers the states are linked in pairs and
the interlayer interaction results in the splitting of the bands
into pairs. In the scheme shown in Fig. 16 the bands have
different parities relative to the inversion operation (for ex-
ample, F4~ and F,+; F3

+ and F2~, etc.). The pair nature of
the states is characteristic of the electronic spectra and also
of other layer semiconductors such as GeSe and its ana-
logs.82

The existence of two types of states and the splitting of
the bands by the interlayer interaction in the electron struc-
ture is attracting interest to the influence of pressure (both
hydrostatic and uniaxial) on various properties of layer
crystals. The application of a pressure alters the distances
between the layers and thus modifies the interlayer interac-
tion and makes it possible to find to what extent this interac-
tion determines the nature of the electron spectrum of any
particular layer semiconductor. In the next subsections we
shall consider the influence of pressure on optical properties
of some layer semiconductors.

4.2. Influence of hydrostatic pressure on optical spectra of
layer semiconductors

We shall consider the results of experimental investiga-
tions of hydrostatic pressure on the exciton spectra of GaSe-
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FIG. 17. a) Exciton absorption spectra of GaSe recorded at different
hydrostatic pressures.98 b) Pressure dependence of the exciton energy E
(Ref. 98).

type semiconductors, the band structure of which we dis-
cussed in considerable detail in the preceding subsection.
These experiments were carried out mainly by two teams of
physicists96"103 using similar experimental methods. Thin
( ~ 10-16 ^m) crystals of gallium selenide and sulfide split
off from massive blocks were placed in a high-pressure
chamber which had sapphire windows; a methanol-ethanol
mixture or a polysiloxane liquid was used as the pressure-
transmitting medium (helium was employed at low tem-
peratures of the order of 77 K). Pressures were measured
using pressure sensors or the shift of the emission line of a
standard subjected to laser excitation.

Figure 17a shows the absorption spectra of GaSe re-
corded in the range of energies of direct exciton transitions
under various pressures applied at room temperature. Fig-
ure 18a gives the corresponding dependences for GaS and in
this case the experiments were carried out at 77 K.

Figures 17a and 18a demonstrate clearly the change in
the absorption coefficient at the maximum of an exciton
peak of GaSe and GaS.

The reason for this behavior is clearly associated with a
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FIG. 18. a) Exciton absorption spectra of GaS recorded at different hy-
drostatic pressures.102 b) Pressure dependence of the exciton state ener-
gy.102
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change (under the applied pressure) in the interband mixing
of the F4 band (ofpz nature) with a group of two dimen-
sional bands Fjf ' (ofpxy nature). The different anisotro-
pies of these bands and the different symmetries are respon-
sible for the difference between the corresponding
deformation potentials.

We observe clearly a shift of the energy position of the
maximum of the exciton peak toward longer wavelengths
(Figs 17b and 18b). The energy shift recorded in experi-
ments of this kind was due to a pressure-induced change in
the band gap and not due to a change in the exciton binding
energy. In fact, since the binding energy was determined pri-
marily by the permittivity and the effective mass, a small
change in these parameters had practically no effect on the
exciton binding energy.

A reduction in the band gap under pressure can be ex-
plained using the energy band structure shown in Fig. 16. As
pointed out already, one of the characteristics of the energy
band structure of GaSe-type layer crystals is the pair nature
of the bands due to the interlayer interaction. In the case of
/S-GaSe and GaS a unit cell is formed from two layers in such
a way that the layers can be made to coincide by applying the
inversion operation. This means that each energy state in an
isolated layer splits into two in a crystal (in the case of mo-
lecular crystals this is known as the Davydov splitting or the
factor group splitting104). Enhancement of the interaction
between layers, such as that due to the application of pres-
sure, can increase the splitting. The conduction bands of
GaSe and GaS (F point) represent the lower component of
the doublet F3

+ and F2~, whereas the valence band repre-
sents the upper component of the doublet F4~ and F,+. Fig-
ure 19 shows the origin of the long -wavelength shift of the
exciton transitions characterized by K = 0 and occurring in
GaSe and GaS under pressure.

This approach is clearly valid in a study of the pressure
dependences of the properties of a series of layer semicon-
ductors with the band gaps which decrease under pressure:
HfS2, HfSe2, SnS2, and SnSe2 (Refs. 105-108). A character-
istic feature is that for the majority of these crystals the re-
sults of calculations of the energy band structure demon-
strate, as in the case of GaSe, that at least one of the states at
the absorption edge has an electron density formed with the
participation of the pz orbitals of the atoms located at the
boundaries of the layers. In the case of HfS2 the top of the

Unit cell
of GaSe

Isolated GaSe P=°>

GaSe,

"eh
layer ut

* / '

£g(p=0)

/ '
\

'h

Interlayer splitting

\ \
\Ea(P*0)

Interlayer splitting

FIG. 19. Band shifts in a layer crystal under pressure: 1) p = 0; 2) p\\c; 3)
pic.

valence band is formed in the presence of a considerable ad-
mixture of the pz orbitals of sulfur, whereas in the case of
SnS2 and SnSe2 both the conduction and the valence bands
include the/>2 orbitals of S and Se (Refs. 109 and 110). In
this case the change in the interlayer distance shifts consider-
ably (along the energy scale) the bands the electron densi-
ties of which are located between the layers.

This general approach to the pressure coefficients of a
number of layer crystals is naturally not universal. In the
case of semiconductors with the absorption edge character-
ized by electron states of different origin than in the case of
GaSe the magnitudes and signs of the pressure coefficients
3Eg/dp can vary greatly. Typical examples are crystals of
Pbl2, Cdl2, and MoS3 and several others. In the case of these
crystals the main contribution to the states at the absorption
edge is made by metal atoms located within the lay-
ers.1091"112 The pressure coefficients of the direct energy
gaps dE g /dp of crystals subjected to hydrostatic pressures
at 300 K are positive for Cdl2 and MoS2 and negative for
Pbl2 (Refs. 105 and 113-115).

It follows from the data in Table V that in the case of
GaSe (GaS) and SnSe2 (SnS2) the negative pressure coeffi-
cients are typical of indirect transitions. The sign of dE g /dp
is not surprising, but the values of dE\/dp larger than
dE g /dp are difficult to explain on the basis of the band struc-
ture of these semiconductors.

Some difficulties are also encountered in the explana-
tion of the special nature of the influence of the pressure
coefficients of the band gaps of GaSe and GaS. Figures 17b

TABLE V. Pressure coefficients of the band gaps of layer crystals (10 6eV/bar).

Crystal

HfS2

HfSe2
SnS2
SnSe2
GaS

GaSe

InSe
GeS
SnSe
MoS2
Pbl2
Cdl2

T, K

300
ditto

» »
77
5
5

300
5

5,300
300

ditto
»> »
» »
» »
» »

P

hydrostatic
»

»
>>

p i | c
P±c

hydrostatic
p (I c
p± c

hydrostatic
»
»

»

c g

7

-9 ,6
__2
-4 ,5
— 2
+4
- 4

+2
- 1 0
-3 ,5
- 5
-6,5
+ 1,4

-17 ,5
+2

_
—

- 1 1 , 5
-10 ,5
- 1 2
- 2
- 5

- 1 1 , 5

—
—
—

—

Ref.

105

105
106
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102

117, 118, 120
118

98, 100, 103
117
l id , 118

51

108
107
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113

114
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and 18b show the pressure dependences of the shift of the
energy of the exciton absorption maximum (at K = 0) ob-
tained for GaSe and GaS in Refs. 98 and 102, respectively.
We can easily see the effect of a change in the sign of the
pressure coefficient dE ^ /dp in the case of GaSe and a strong
dependence of dE d

g /dp on the pressure applied to GaS.
In discussing the results of these experimental investi-

gations carried out under hydrostatic pressure it is difficult
to identify the reason for the dependence of dE * /dp on the
pressure applied to layer crystals. We shall return to this
topic after reporting the experimental results of a study of
uniaxial deformation of GaSe and GaS. We shall conclude
this subsection by noting that little work has been done on
the problem of structure phase transitions which can occur
in weakly bound crystals under pressure. Apparently, there
can be two transitions of this type: transitions from one poly-
type to another and structural transitions within one poly-
type.89 Since the energies corresponding to the band widths
differ by several tens of meV for different polytypes, phase
transitions can be used to explain various anomalies of the
pressure dependences of the energy positions of the absorp-
tion peaks, interference maxima in the transparency band,
and temperature coefficients of the band shifts.

4.3. Influence of uniaxial deformation on optical properties of
layer semiconductors

The special nature of the crystal structure of layer mate-
rials makes it difficult to carry out investigations of their
properties under uniaxial deformation conditions. First of
all, it is difficult to ensure the reversible nature of the applied
perturbation. In the case of optical experiments the working
face of a crystal is frequently a cleavage plane perpendicular
to the c axis. Therefore, in the case of deformation along the c
axis it is desirable to direct a light flux and the stress along
the same direction. In an investigation of the influence of
elongation of thin plates ( < 100 fim) on their optical prop-
erties there is a danger that the layers may be ruptured and
exhibit plastic flow. This is the reason for the few experimen-
tal results on the influence of directional deformation on the
energy spectra of layer crystals. The published experimental
data on III-VI layer semiconductors will be discussed in the
next subsection.

The absorption and luminescence spectra of GaSe,
GaS, and InSe crystals were investigated117 "'' under uniax-
ial compression along the c axis (p\\c) and elongation along
the layers (pic) at temperatures in the range 5-150 K. The
pressure did not exceed 2 kbar. The elasticity of the stresses
was checked as follows: the absorption luminescence spec-
trum was recorded for an undeformed crystal and then it was
recorded after deformation, and finally the spectrum of a
free crystal was determined. The agreement between the first
and third spectra was the criterion of the elastic nature of
deformation.

Figure 20 shows the exciton absorption spectrum of
GaSe at 5 K. The applied pressurep||c was up to 2 kbar. The
absorption spectrum shown in Fig. 20 is characterized by
exciton absorption lines corresponding to the n = 1 and
n = 2 states. Compression clearly shifts the exciton absorp-
tion peaks toward higher energies and the shift is by the same
amount of 4 meV. We can therefore say that the shifts of the
exciton absorption bands are due to the changes in the direct
band gaps. Figure 20 includes also the transmission spec-
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FIG. 20. Influence of uni-axial pressure on the spectrum of the direct
exciton absorption in GaSe at low temperatures"7 1) p = 0; 2) p||c; 3)
pic.

trum of the same gallium selenide sample subjected to uniax-
ial stretching {pic); clearly, elongation of a sample along the
plane of the layers shifts the exciton absorption bands char-
acterized by different values of n toward higher energies and
the shift is of the same magnitude. Therefore, elongation of a
sample in the direction of the layers reduces the direct band
gap of GaSe.

The same conclusion can be reached from an analysis of
the influence of pressure on the photoluminescence spectra
of GaSe. Figure 21 shows the absorption spectrum of uniax-
ially (p\\c) deformed GaS. As in the case of GaSe, compres-
sion of a crystal by a pressure p\\c shifts the exciton peak
toward higher energies and at/? = 1 kbar produces a shift of
5 meV. Elongation of GaS in the plane of the layers shifts the
exciton absorption peak toward lower energies, exactly as in
the case of GaSe. Similar results have been obtained in stud-
ies of the exciton absorption spectra of uniaxially deformed
InSe; compression characterized by p\\c increases Ed

t,
whereas elongation reduces this value.

Information on the pressure dependences of the widths
of the indirect band gaps of III-VI crystals is best obtained
by investigating gallium sulfide. Since the experiments re-
ported in Ref. 118 were carried out on thin gallium sulfide
crystals, determination of the energy of the band gap E j, was

ZfiZ 7,Off 3,70 E, eV

CaS,
/ 5K

4100 4000 X..A

FIG. 21. Influence of uniaxial pressure on the spectrum of direct exciton
absorption in GaS at low temperatures."7
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FIG. 23. a) Temperature dependence of the quantity A£^ = En (p\\c)
- E^ (p = 0) for GaSe (Ref. 119). b) Temperature dependence of £ „
for GaSe under pressurep\\c (curve 1) and atp = 0 (curve 2), taken from
Ref. 119.

carried out using an analysis of the luminescence spectra of
eastically deformed and undeformed samples.

The radiation excited with light from a cw laser (/!vexc

= 2.80 eV) was recorded from the surface of a layer of a
single-crystal sample of gallium arsenide at 5 K (Fig. 22).
The nature of the emission spectra of GaS has been estab-
lished reliably.l21122 The short-wavelength bands A2, A4, and
As are due to radiative decay of indirect free and bound exci-
tons accompanied by phonon emission. The line A2 is the
result of decay of a free exciton accompanied by the emission
of a. fko = 10 meV phonon. The lines AA and/t5 are due to the
decay of a bound exciton accompanied by the emission of 10
and 30 meV phonons, respectively. We can clearly see the
long-wavelength shift of the luminescence line as a result of
uniaxial compression (p\\c) and elongation (pic) of crys-
tals. The band gap of gallium sulfide crystals in the case of
indirect transitions (F4~ -M,+ ) decreases in both cases (see
the band structure in Fig. 16). When a sample is compressed
along the c axis, the energy gap between the two conduction
band minima of GaSe, GaS, and InSe crystals increases (Fig.
22b). This conclusion was confirmed by investigations of
indium selenide."8 The energy scheme in Fig. 22b demon-
strates another important circumstance: the pressure coeffi-
cients dE |, /dp are positive at 5 K under uniaxial deforma-
tion (p\\c) conditions, which is exactly opposite to the result
observed under hydrostatic pressures at 300 K (Refs. 98 and
103). We recall that in the case of layer crystals the applica-
tion of a uniaxial pressure p\\c is practically equivalent to
hydrostatic compression.

A full discussion of the experimental results should in-
clude the temperature dependences of the pressure coeffi-
cients of gallium selenide and its analogs. The relevant ex-
perimental data are plotted for GaSe in Figs. 23 and 24 (Ref.
119). Two types of experiments were carried out: in the for-
mer the absorption (luminescence) spectrum was recorded
at a given temperature for an undeformed sample and then
the pressure was applied and the value of AE
= is g (p¥"0) — E^ (p = 0) was determined; thesample was
unloaded and the same procedure was repeated at a different
temperature (Fig. 23a). The second experiment involved a
study of the temperature dependences of the energy posi-
tions of the exciton absorption peaks in a free crystal and the

same crystal compressed along the c axis. Figure 23b shows
the corresponding En (T) curves. The dependences /fex ( T)
intersected at T~ 80 K. The results plotted in Fig. 23 dem-
onstrate that at temperatures below 80 K the compression
applied so that/?||c increases E^, whereas at temperatures 80
K it reduces E ^. Figure 24 shows the £ex (T) curves ob-
tained for uniaxial elongation (pic). We can clearly see that
at this pressure the value of EA

% decreases at all the investi-
gated temperatures. In the case of gallium sulfide and indi-
um selenide there is also an inversion of the sign of the pres-
sure coefficient with temperature for the direct band gap
when the pressure is applied so that/>||c at temperatures in
the region of ~ 80 K (Ref. 117).

If we now consider all the experimental data about the
influence of pressure (hydrostatic or uniaxial) on the energy
structure of the semiconductors GaS, GaSe, and InSe near
the absorption edge, we find that some of the results cannot
be understood on the basis of the simple band structure of
GaSe (Ref. 79). This applies particularly to two effects ex-
hibited by GaSe but unusual for semiconductors. These ef-
fects are the reversal of the sign of the pressure coefficients of
dEA /dp with pressure (hydrostatic conditions, T= 300 K)
or with temperature (uniaxial pressurep\\c, p~ 1 kbar).

TOO Tyso

FIG. 24. Temperature dependence of the energy position of the exciton
absorption peak of GaSe in the case when pic (curve 1) and p = 0 (curve
2).
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We must discuss separately the dependence E\ (/>) ob-
tained under hydrostatic pressures for gallium sulflde. We
can understand qualitatively these effects if we bear in mind
that gallium selenide and its analogs have a unit cell with
atoms from two layers. The distances between the atoms
within a layer (strong binding) and between the layers
(weak binding) can vary in different ways with temperature
and pressure. The contributions of the relevant strains (if
they are considered separately) to the modification of the
energy spectrum of a crystal under pressure can vary with
temperature and pressure. This conclusion is well-ground-
ed. We have mentioned earlier that in the case of graphite the
elastic constants describing the interaction between the lay-
ers increase as a result of cooling faster than the intralayer
elastic constants. On the other hand, when the pressure ap-
plied to a layer crystal is increased, the values of the elastic
constants representing the interaction between atoms within
the layers rise slowly, which corresponds to the interlayer
constants (see Sec. 2.2).

In the next subsection we shall try to describe the defor-
mation effects in layer crystals using the deformation poten-
tial model and allowing for the pressure and temperature
dependences of the elastic constants.

4.4. Model of the deformation potential of layer
semiconductors

Weak inhomogeneous deformation of a crystal can be
described by the deformation tensor. The energy shift of a
particular electron state in a crystal is generally governed by
the deformation potential tensor. In the case of degenerate
bands such deformation not only shifts the band as a whole,
but may cause splitting of the bands as a result of partial or
complete lifting of the degeneracy because of reduction in
the symmetry. Consequently, changes in the spectrum as a
result of deformation may be quite complex, as is true for
example of the valence bands of germanium and silicon.124

In the case of layer III-VI semiconductor crystals the
bands at the absorption edge are not degenerate because low-
ering of the symmetry does not play a decisive role in the
course of deformation and in this sense the situation is sim-
ple. On the other hand, a classical analysis in which the
strain tensor describes the change in a unit cell as a whole
(relative displacements of the atoms within a cell are pro-
portional to the load and are different for different atoms)
does not always allow us to understand the nature of the
deformation effects in layer semiconductors.

We shall consider the experimental results reported
above using the deformation potential model. A simple ener-
gy band structure of GaSe and its analogs makes it possible
to derive the following expression for the change in the band
gap as a result of deformation:

A£ = O , DL(ux uvv)- (4.1)

The deformation potentials D^ and Di can be found if
the experimental results are used to find AZT knowing the
applied pressure/? and if calculations are made of the values
of the components of the strain tensors uzz, uxx, and uyy at a
given pressure using the relationships of the theory of elasti-
city. It is necessary to have data of two deformation experi-
ments of different types.

We shall consider uniaxial elongation experiments
when pic and those under hydrostatic compression carried

out at room temperature and limited to pressures/? < 5 kbar.
In such cases the pressure coefficients dE \/dp are 10 X 10 ~ 6

eV/bar (Refs. 116 and 118) and - 4 x 10-6eV/bar (Refs.
98 and 101) in the case of gallium selenide. The negative sign
of the pressure coefficient corresponds to a reduction in the
band gap. Calculations of uzz, uxx, and uyy with the aid of
Table III and formulas (2.1) and (2.2) makes it possible to
rewrite Eq. (4.1) in the form:

hydrostatic compression corresponds to

_ 4- lO-6 = — 0.244- lO-'Dfi - 0.106- 10-5/)f,

whereas elongation corresponds to

_ 10.10"6= — 0.028-lO-'Dfi +0.080- 10-'Z)f.

The calculated values of D* and D\ are
D\= + ( 6~ ± 1 ) eVandZ)? = - ( 1 0 + 2) eV. The er-
ror in the deformation potentials governed by the error in the
determination of the pressure coefficients and the compo-
nents of the elasticity tensor. The values of D Jf and D ? have
opposite signs: reduction in the dimensions of a crystal along
the c axis reduces the width of the direct band gap Ed

g,
whereas reduction in the dimensions in the plane of the layer
increases E\. For any other type of deformation the change
in the band gap EI will be governed by both effects. We can
estimate the contribution of each of them under hydrostatic
compression. It is found that A2T £ is then governed by two
quantities of similar magnitude but of opposite size, which is
the reason for the relatively small values of the pressure coef-
ficients dE g /dp in the case of crystalline analogs of gallium
selenide (Table V). We can now understand the nature of
inversion of these pressure coefficients as pressure is varied.
In fact, at room temperature an increase in pressure in-
creases the elastic constants of crystals and, consequently,
alters the strains uzz, uxx, and uyy. It is clear from the data in
Sec. 2.2 that the elastic constant C33 representing the inter-
action between the layers rises more rapidly than Cl, repre-
senting the interaction between atoms in a layer. Simple esti-
mates obtained on the basis of Eq. (4.1) show that at
pressures of ~ 5 kbar the positive term becomes larger than
the negative term. The pressure coefficient then changes its
sign.

We shall now find the deformation potentials using the
experimental data on the influence of uniaxial deformations,
such that/?||cand/?lc, on the value of Eg ofGaSeat5 K. The
pressure coefficients are then + 2xlO"~6 eV/bar and
— 10 ~5 eV/bar, respectively. We obtain

for p | |c : 2.10-«=-0.299-10-5

forP-Lc: -10-10- 8 =-0.028-10" 5

+ 0.056- io-5z»;,

+ 0.080-10-5Z)f.

The value Df = — (13 + 2) eV is almost the same as at
room temperature, but D jf changes and becomes — (3 + 1)
eV. The deformation potential D jf shows a reversal of its
sign with temperature. It should be pointed out that we al-
ways used the elastic constants listed in Table II and deter-
mined at room temperature. Therefore, there may have been
errors in the calculations of these potentials. However, the
components of the strain tensor may differ only in respect of
the absolute value, whereas the signs of the deformation po-
tentials governed by the signs of the corresponding pressure
coefficients are definitely correct.
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TABLE VI. Deformation potentials of GaSe-type layer crystals (eV).

Low T

nd

Di\

-3±1

D<

-13±2

D\

0

D\

-5±1

Highr

+6±1

of

-10±2

J>il

+6±1

D\

-5±1

We shall now consider the possible nature of the inver-
sion of the sign of the deformation potential D jf of layer
crystals with temperature. The results of theoretical calcula-
tions79125 demonstrate that the width of the band gap E*
increases on reduction in the thickness of a film of gallium
selenide. On the other hand, cooling of layer crystals causes a
more rapid rise of the elastic constants describing the inter-
layer coupling than of the intralayer constants [see Eq.
(2.2) ]. As pointed out already, the strain and deformation
potentials apply usually to a unit cell as a whole. If we bear in
mind that a unit cell of gallium selenide includes two layers,
we can introduce phenomenologically two components of
the strain tensor: uzz (layer, denoted by lr) and uzz (inter-
layer, denote by il). Introducing the notation u\\, u%, D'f,
and D ]f, we can rewrite Eq. (4.1) in the form

the pressure coefficients of GaSe crystals of different polyty-
pic compositions 102

= (Z>\ai + Dlaz) uzz + D± (uxx + uyy); (4.2)

here,

Cooling at a given pressure increases a ! and reduces a2 •
Bearing in mind that D jf < 0 and D jf > 0, we can understand
the inversion of the sign of Z)J[ with temperature.

When a layer crystal of gallium selenide is deformed, at
low temperatures the main contribution to E £ comes from
the change in the distances between the atoms within a layer.
At high temperatures T> 80 K the main role is played by the
interlayer distances.

We have discussed so far the deformation potentials de-
scribing the change in the direct band gap with pressure.
Similar considerations apply also to the case of indirect tran-
sitions. Table VI gives the deformation potentials calculated
from the experimental results. A comparison with theoreti-
cal calculations125 shows that the agreement is satisfactory.
An analysis of the data in Table VI demonstrates that the
relatively high values of | dE 'g /dp | are due to the smallness of
D\. In view of this, the second term of Eq. (4.2), which
makes a positive contribution to AE, is small. For this reason
the reduction in uzz on increase in pressure does not result in
inversion of the sign of the pressure coefficients.

All these discussions and the numerical data given
above on direct transitions apply to gallium selenide, where-
as those on indirect transitions apply to gallium sulfide.
However, it is stressed in Ref. 118 that the general picture of
the deformation effects does not vary along the series of crys-
tals GaSe, GaS, and InSe. Since the polytypic composition of
the investigated crystals is clearly different [see Eq. (2.1) ],
this observation shows that the differences between the de-
formation potentials of crystals of different polytypes are
small. Experimental evidence is available on the equality of

5. CONCLUSIONS

It was not the purpose of the present review to provide
an exhaustive account of all the experimental results ob-
tained in studies of the influence of pressure on the proper-
ties of numerous layer crystals. The review has been con-
cerned mainly with the effects which are characteristic of the
crystal structure of layer materials with a weak interlayer
interaction. The topics considered in this review do not rep-
resent a special chapter of the physics of crystals with a weak
coupling, but are related in our opinion, to some of the new
effects discovered recently. We have in mind here structural
phase transitions which appear in layer crystals under pres-
sure,7'999 ferroelectric phase transitions as a result of a
change in temperature 126 low-temperature (4.2 K) plastic
flow of gallium selenide not in the basal plane (parallel to the
layers) but in a pyramidal plane oriented at an angle to the
plane of the layers.127

Information on the temperature-dependence of the
components of the strain tensor and on the magnitudes of the
deformation potentials makes it possible to separate the con-
tributions which are made to the experimentally established
temperature dependences by the energies of electron and
phonon states due to thermal expansion, on the one hand,
and to the intrinsic part of the electron-phonon and phonon-
phonon interactions, on the other. Such an analysis has
made it possible, for example, to reveal the low-temperature
features of the electron-phonon interaction in gallium sul-
fide.'28 Knowing the deformation potentials, it became pos-
sible to demonstrate the applicability of the model of a vir-
tual crystal129 to the case of solid solutions of layer
semiconductors; this information will be useful in studies of
the energy structure of heterojunctions formed from layer
crystals.130131

Finally, the question of the nature of changes in the
energy spectrum of a crystal due to changes in the distances
between the layers is undoubtedly relevant to the branch of
the physics of layer crystals which continues to develop and
which is concerned with intercalated compounds (see, for
example, Ref. 132).
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