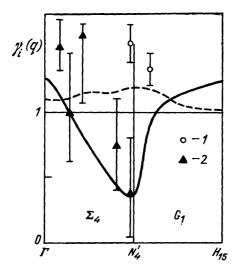
538.93(048)

В. Г. Вакс, С. П. Кравчук. А. В. Трефилов. Микроскопическая теория ангармонических эффектов в ще-

лочных и ОЦК шелочноземельных металлах. Ангар-

монические эффекты (АЭ) в динамике и термодинамике металлов важны для


их высокотемпературных свойств, в физике мягких мод и в других явлениях. Количественных данных об АЭ пока немного, а теоретические оценки часто

неопределенны и противоречивы ^{1, 2}. Щелочные металлы являются одними из наиболее удобных объектов для изучения АЭ, и есть ряд указаний на то, что характер и относительный масштаб АЭ (например, вблизи точки плавления T_m) в них и в других металлах одинаков. Это подтверждается, в частности, нашими расчетами для щелочно-земельных металлов. Поэтому расчеты $^{1-5}$ и эксперименты $^{6-9}$ для щелочных металлов можно рассматривать и как источник информации об общих особенностях АЭ а металлах.

В работах 1-5 на основе развитой ранее псевдопотенциальной модели, дающей весьма точное описание свойств щелочных металлов (см., напри-

- мер, ¹⁰ и литературу там), детально исследовались следующие АЭ: 1. Ангармонические сдвиги частот $\Delta\omega_i(T) = \omega_i(T) \omega_i(0)$ и затухание Γ_i (*T*) фононов^x.
- 2. Влияние давления на АЭ и температурная зависимость параметров Грюнайзена $\gamma_i(T) = -\partial \ln \omega_i(T)/\partial \ln V$.
- 3. Модули упругости третьего порядка 4 $c_{\underline{i}\underline{j}\underline{k}}$ и температурная зависи-
- мость упругих модулей второго порядка 5 c_{ij} (T). 4. АЭ в термодинамике 2 в свободной энергии, теплоемкости, тепловом расширении и т. д.
- 5. Аномалии АЭ для «мягких» фононов, связанных с мартенситными фазовыми переходами (ФП)

Расчеты 1-5 показали, что основной вклад в АЭ вносят мягкие фононы (в рассматриваемых ОЦК металлах — в окрестности поперечной ветви $\Sigma_{\star\star}$

Параметры Грюнайзена γ_i для фононов ветвей Σ_4 и G_1 в ОЦК щелочных металлах.

Теоретические кривые 3 : штриховая — калий, T=0; сплошная — калий, T=299 К. Эксперимент: I — калий 9 , T=4,2 К; 2 — натрий 6 , T=295 К.

г. е. ТА₁ [110]), что является, видимо, общим свойством АЭ в кристаллах т. е. $1A_1$ (1101), что является, видимо, оощим своиством АЭ в кристаллах с мягкими модами ¹¹. При этом вид и масштаб АЭ для мягких и для остальных, «нормальных», фононов различны. Частоты ω_i нормальных фононов с ростом T падают, а величины $\delta_i = \Delta \omega_i (T)/\omega_i (0)$, $\eta_i = \Gamma_i (T)/\omega_i (0)$ и $\Delta \gamma_i (T) = \gamma_i (T) - \gamma_i (0)$ невелики. Так, при $T = T_m$ $\delta_i = -(0.1 - 0.15)$, $\eta_i = 0.05 - 0.1$, $\Delta \gamma_i = 0.1 - 0.2$. В то же время для мягких TA_1 (ξ , ξ , 0)-фононов с $\xi = qa/2\pi \ge 0.2$ (где a — постоянная ОЦК решетки): а) частоты $\omega_i (0, T)$ с ростом. T на начают в раступ (ито усраждение для мягких мон ω (0, T) с ростом T не падают, а растут (что характерно для мягких мод, связанных с $\Phi\Pi^{11}$, здесь — из ОЦК в плотноупакованные фазы, $\Gamma\Pi Y$, $\Gamma \coprod K$, R9); б) параметры Грюнайзена γ_i резко падают с ростом T (см. рисунок); в) относительное затухание η_i при немалых T значительно; так, η_i ($T_{\rm m}$) $\sim 0.3-0.4$.

В экспериментах 6-8 предсказание а) для Na и Li было подтверждено. Наблюдались также весьма малые значения γ_i для коротковолновых TA_i -фононов при комнатных T в Na в 2—3 раза меньшие, чем при низких T в K (см. рисунок). Поскольку все фононные свойства Na и K подобны K под то эти данные, по-видимому, подтверждают также и предсказание б), хотя желательны, конечно, прямые измерения зависимостей γ_i (T). Отметим еще, что найденная в резкая зависимость величин δ_i , η_i мягких мод от объема V (проявляющаяся и в больших значениях $d\gamma_i/dT$) указывает на важность электрон-ионных взаимодействий, вкладов энергии зонной структуры в свойства мягких мод: в чисто ионной решетке δ_i , $\eta_i \sim V^{-1/3}$, т. е. меняются с V очень медленно.

Расчеты ⁴ модулей c_{ijk} (коэффициентов при $u_iu_ju_k$ в разложении свободной энергии по деформациям u_i) дают для их отношений к обычным модулям c_{ij} значения $c_{ijk}^*/c_{ij}=2-4$. Но для сдвиговой деформации и, соответствующей длинноволновым TA_1 -фононам, оказывается, $c_{uuu}/c_{uu}=-(20-30)$, что отражает малость энергетического барьера по u, тенденцию кристалла к соответствующему $\Phi\Pi$. Высокотемпературная асимптотика для модулей сдвига, c_{ij} (T) $\approx c_1-Tc_2$, начинается уже при очень низких $T\leqslant 0.1T_D$, где T_D — температура Дебая ⁵. Это связано с определяющим вкладом мягких фононов в данные АЭ и показывает, что наличие подобных зависимостей c_{ij} (T), характерное для многих металлов и сплавов, может указывать на присутствие в них мягких мод.

Расчеты ² вкладов АЭ в теплоемкость C_p позволили, в частности, выделить из наблюдаемых c_p^{exp} вклады равновесных дефектов решетки и оценить из них энергии E_{IV} и энтропии S_{IV} рождения вакансий. Оценки ², выполненные в предположении малых $S_{\text{IV}} \leqslant 1$, дали небольшие значения $E_{\text{IV}} = 0.15 - 0.2$ эВ. Однако в микроскопических расчетах ¹², выполненных в той же модели, было найдено $E_{\text{IV}} = 0.25 - 0.35$ эВ, и S_{IV} , по оценкам авторов ¹², также не мало: $S_{\text{IV}} = 3$ —4. Эти немалые E_{IV} и S_{IV} согласуются как с оценками из C_p^{exp} , так и с другими экспериментами ². Недавние измерения указали на сходство фононных спектров ОЦК пелочно-земельных и пелочных металлов. В связи с этим модель и метолы

Недавние измерения ^{13–16} указали на сходство фононных спектров ОЦК щелочно-земельных и щелочных металлов. В связи с этим модель и методы работ ^{1, 3} были применены к расчетам $\Delta\omega_i$, Γ_i и γ_i в ОЦК Са, Sr и Ва. Результаты иллюстрируются таблицей, где $\delta_i^{an} = (\Delta_i^a (T) + \Delta_i^a (T))/\omega_i$ (0), Δ_i^a

Относительные сдвиги частот $\pmb{\delta_i}$, затухание $\pmb{\eta_i}$ и параметры Грюнайзена $\pmb{\gamma_i}$ фононов при $T = T_m$

Фонон	$i0^2 \delta_i^{an}(T_m)$				102 η _i (T _m)		$\gamma_i(T_{\mathbf{m}})$			
	ĸ	Ва	Ca	Sr	K	Ca	K	Ва	Ca	Sr
H ₁₅ P ₄ N' ₁ N' ₃ N' ₄	-10 -2,2 -1,8 -8,4 21	$ \begin{array}{r} -7 \\ -0.8 \\ -1.7 \\ -6.2 \\ 24 \end{array} $	$ \begin{array}{c c} -9 \\ 0,3 \\ -1,8 \\ -7,3 \\ 41 \end{array} $	-11 1,7 -2,3 -9,7 98	6,2 5,8 4,8 7,7 36	5,1 5,7 6,8 5,5 45	1,3 1,3 1,5 0,9 0,3	1,5 1,5 1,6 1,1 0,5	1,6 1,5 1,7 1,4 -0,6	1,7 1,4 1,8 1,8 -14

м $\Delta_{\bf i}^{\bf t}$ — вклады в сдвиг частоты от трех- и четырехфононных процессов, определенные в $\bf l$, а значения $T_{\rm m}$ для K, Ba, Ca и Sr равны 337, 998, 1112 и 1045 K. Видно, что относительный масштаб АЭ в K и Ba сходен, а в ряду Ba — Ca — Sr он растет, отражая уменьшение в этом ряду стабильности ОЦК фазы. Видно также, что обсуждавшиеся мягкомодовые аномалии АЭ а — в) здесь выражены еще более ярко, и параметры Грюнайзена $\bf \gamma$ ($\bf N_4'$) в Ca и Sr при $T=T_{\rm m}$ отрицательны. В связи с этим отметим, что большие отрицательные $\bf \gamma_i=-(30-40)$ наблюдались для мягких акустических фононов, связанных с мартенситными $\bf \Phi\Pi^{17,18}$ в Nb₃Sn и сплавах In — T1, так что резкое ангармоническое уменьшение $\bf \gamma_i$ может быть характерным для широкого класса мягких мод, связанных с $\bf \Phi\Pi$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Vaks V. G., Kravchuk S. P., Trefilov A. V.//J. Phys. Ser. F. 1980.
- V. 10. P. 2105.

 2. Vaks V. G., Kravchuk S. P., Trefilov A. V.//Ibidem. P. 2325.

 3. Вакс В. Г., Кравчук С. П., Трефилов А. В.//ФТТ. 1979. Т. 21. С. 3370.

 4. Зарочевцев Е. В., Сафронов В. П., Трефилов А. В.//ФНТ. 1977.
- T. 3. C. 209.

 5. Vaks V. G., Zarochentsev E. V., Kravchuk S. P., Safronov V. P.//
 J. Phys. Ser. F. 1978. V. 8. P. 725.

 6. Blaschko O., Krexner G.//Phys. Rev. Ser. B. 1984. V. 30. P. 1667.
- 7. Ernst G., Artner C., Blaschko O., Krexner G.//Ibidem. 1986. V. 33.
- 8. Smith H. G.//Phys. Rev. Lett. 1987. V. 58. P. 1228.
 9. Meyer J., Dolling G., Kalus J., Vettier C., Paureau J.//J. Phys. Ser. F. 1976. V. 6. P. 1899.
- 10. Братковский А. М., Вакс В. Г., Трефилов А. В.//ЖЭТФ. 1984. T. 88. C. 2141.
- 11. Вакс В. Г. Введение в микроскопическую теорию сегнетоэлектриков. М.: Наука, 1973.
- 12. Братковский А. М., Зейн Н. Е.//ФТТ. 1984. Т. 26. С. 2561.
- Buchenau U., Heiroth M., Shober H. R., Evers J., Oehlinger G.//Phys. Rev. Ser. B. 1984. V. 30. P. 3502.
 Mizuki J., Chen Y., Ho K. M., Stassis C.//Ibidem. 1985. V. 32. P. 666.
 Heiroth M., Buchenau U., Shober H. R., Evers J.//Ibidem. 1986.
- V. 34. P. 6681.

- Mizuki J., Stassis C.//Ibidem. 1985. V. 32. P. 8372.
 Chang Z. P., Barsch G. R.//Ibidem. 1980. V. 22. P. 3342.
 Brassington M. P., Saunders G. A.//Proc. Roy. Soc. Ser. A. 1983. V. 387.

53(048)

научная сессия отделения общей физики и астрономии И ОТДЕЛЕНИЯ ЯДЕРНОЙ ФИЗИКИ АКАДЕМИИ НАУК СССР (25-26 ноября 1987 г.)

25 и 26 ноября 1987 г. в Институте физических проблем им. С. И. Вавилова АН СССР состоялась научная сессия Отделения общей физики и астрономии АН СССР. На сессии были заслушаны доклады:

25 ноября

- 1. А. А. Чернов. Поверхностное плавление и смачивание.
- 2. А. П. Леванюк. Несоразмерные фазы в реальном кристалле.

26 ноября

- 3. Р. А. С ю н я е в. Сверхновая в Большом Магеллановом Облаке и ее
- рентгеновское излучение (теория и первые результаты наблюдений). 4. Г. С. И в а н о в X о л о д н ы й . Проблемы солнечно-земной физики и исследования ионосферы.

Ниже приводится краткое содержание одного доклада.

523.9-7(048)

Г. С. Иванов-Холодный. Проблемы солнечно-земной физики и исследования ионосферы. Задача исследования и использования космоса активно решается с применением как автоматически работающих спутников, так и обитаемых космических станций (ОКС). Необходимость хорошего знания состояния ближнего космоса, в котором летают спутники и где осуществляется большинство космических экспериментов и проектов, очевидна. Памятно событие преждевременного схода