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The present status of theoretical and experimental research on the superfluidity of helium II near
the A point is outlined. Attention is focused on the state of the phenomenological * theory of
superfluidity. Questions concerning the applicability limits of this theory and its underlying
assumptions are discussed. Results found through the solution of several problems are discussed.
Experimental data are also discussed. The need for a further comparison of theory and
experiment and the actual feasibility of such a comparison are emphasized. The relationship with
other approaches is pointed out.
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1. INTRODUCTION

Research on the superfluidity of helium II near the A
point continues to attract much interest for several reasons.
One is that conditions are particularly favorable for studying
critical fluctuation phenomena near the A transition in liquid
4He. In fact, it was this circumstance which has served as the
main driving force for the experimental and theoretical re-
search on the properties of helium II near the A point over
the past two decades (see, for example, Refs. 1-3 and the
bibliography cited in these reviews).

The second reason for the unflagging interest in the A
transition in liquid 4He is that near the A point Landau's
superfluidity theory (including both its component parts:
the concept of a gas of elementary excitations and a phenom-
enological two-fluid hydrodynamics) breaks down; in order
to solve various steady-state and time-dependent problems it
becomes necessary to incorporate the spatial variations and
the relaxation of the order parameter—the macroscopic
wave function * = t}e"f, which describes the superfluid
state4'5—from the very outset.

A final reason is that research on superfluidity of heli-
um II near the A point has just recently acquired further
urgency because of the mechanisms for high-temperature
superconductivity which are being discussed widely today.
In a metal, some strongly coupled two-electron forma-
tions—so-called local pairs, which are different from ordi-
nary Cooper pairs—can exist under certain specific condi-
tions. It may be that, at least in certain high-temperature
superconductors, condensed local pairs of this sort carry the

superconducting current (Refs. 6 and 7, for example). If this
is the case, then the properties of superconductors with a
superconductivity mechanism of this type should be very
similar to the properties of liquid 4He. In particular, to de-
scribe the behavior of superconductors with local pairs at
temperatures near the critical temperature, the ordinary ^
theory of superconductivity8 may be inapplicable, and it
may become necessary to use a generalized version2' of this
theory which is analogous to the generalized * theory of the
superfluidity of liquid 4He (Refs. 9 and 10). Our purpose in
the present paper is to draw a picture of the present state of
the latter theory.

The generalized * theory of superfluidity which we will
be discussing combines the simplicity and graphic value of
Landau's classical (self-consistent) theory of phase transi-
tions with the results of the extremely new fluctuation theo-
ry of phase transitions, which is based on the concept of
gauge invariance of critical phenomena in a field-theory ap-
proach using renormalization groups. While the corre-
sponding field-theory approach1"3 has so far been developed
for problems in which the order parameter is spatially homo-
geneous or only slightly inhomogeneous, the ^ theory of
superfluidity9'10 is intended primarily for solving problems
in which it cannot be assumed that the spatial variations in
the order parameter are slight (the distribution of the order
parameter near a solid wall or a free surface of helium II; the
particular features of the A transition of helium in films, slits,
and capillaries; a vortex filament; the smearing of the A tran-
sition in a gravitational force field; etc.). Consequently—
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and we wish to stress this point from the very beginning—the
fluctuation theory1"3 and the Sf theory of superfluidity9'10 are
by no means contradictory. It is more accurate to say that
they complement and enrich each other.

Admittedly, experimental research on effects in which
irregularities in the spatial distribution of an order param-
eter play an important role is still in its infancy. The reasons
are both the difficulty in fabricating capillaries and slits of
uniform thickness, on the one hand, and the relatively small
magnitude of the effects and the need to work very close to
TA, on the other. However, some important steps have al-
ready been taken in this direction. For example, we might
mention some very accurate measurements of the surface
tension of helium II near the A point,n'12 quantitative studies
of the A transition of helium in films13 and plane-parallel
slits,14'15 measurements of the temperature dependence of
the mutual friction force near the A point,16 and the observa-
tion17 of the theoretically predicted9'10 anomalous contribu-
tion to the Kapitsa boundary thermal resistance.

In §2 below, we outline the foundation of the general-
ized * theory of the superfluidity of helium II near the A

sity of 4He atoms in the multiparticle ground state:

point'.4,9,10,18 for the steady-state case, with vn = 0, and we
discuss its range of applicability. In §3 we then present the
results of the solution of several spatially nonuniform equi-
librium problems (such as the calculation of the dependence
of the temperature TA on the film thickness d), and we com-
pare these results with the experimental data available. In §4
we briefly discuss the foundations of the * theory of
superfluidity for the general case (\n ^ 0 , with a time depen-
dence) and a description of certain nonequilibrium and dis-
sipative effects on the basis of this theory. Finally, in §5 we
summarize the discussion and offer a list of problems for
future research.

Most of the questions touched on in the present paper
are discussed systematically, and considerably more com-
prehensively, in the review in Ref. 19. In addition, some re-
cent results which could not be incorporated in Ref. 19 will
be reflected below.

2. FOUNDATIONS OF THE * THEORY OF SUPERFLUIDITY
(HELIUM AT REST; PURELY SUPERFLUID FLOW)

2.1. Macroscopic wave function

The one-particle macroscopic wave function

Y (r, t) = TI (r, 0 exp [jcp (r, *)] (D

plays a fundamental role in this theory. This function is con-
structed by taking an average of the exact microscopic wave
function of the ground state of the system over all the coordi-
nates of the particles which lie within a physically small vol-
ume with typical dimensions

where £M is the correlation length of*, and Q <; 1 is a univer-
sal numerical factor which serves as a parameter of the theo-
ry (Refs. 10 and 19; see also Subsection 2.3 below).

The phase of wave function (1), q>, is related to the
velocity of the superfluid motion by

v s = —- Vq>, (2)

where m = mIie is the mass of the 4He atom. The square of
the amplitude of function (1) characterizes the number den-

(3)

here n is the total number density of the particles of liquid
4He, and nex is the total density of particles in excited states.
The amplitude of the function * can also be related to the
density of the superfluid component:

where the mass m* is generally different from that (mHe) of
the 4He atom and may be a function of the temperature
and/or the pressure. In the self-consistent version of the *
theory,4 i.e., far from the A point, the corresponding tem-
perature dependence is inconsequential, and the mass m*
can be set equal to m. Near Tx, on the other hand, we can
write20'21

where r = (TA — T)/Tx, and a is a critical index which is
related by the relation a = rjv to the critical index v of the
correlation length (£M ex r " v ) and the critical index t) of the
correlation function <*(r)**(0)> ccr" '-*> a t r = 0.

Recent field-theory calculations of the values of the ex-
ponents f) and v show1"3 that for the A transition in 4He the
value of the exponent r) and also the product f/v do not ex-
ceed 2-10~2. Such a weak temperature dependence of the
mass m* is unimportant for all practical purposes. Accord-
ingly, we will usually ignore it below, setting m* s mHe, as in
the self-consistent * theory.

2.2. Partial thermodynamic potential

The most important expression in the * theory of
superfluidity is that for the density of the incomplete ther-
modynamic potential ("incomplete" here means that it has
not been integrated over the fluctuations of * with a scale L
larger than or of the order of |"M /Q):

Q = ; u, T)AV. (6)

This potential depends on VI/, V*, and two ordinary thermo-
dynamic variables (e.g., the chemical potential fi and the
temperature 7"). We write an expression for potential den-
sity (6) in the following simple form:

\ — M | T | 2 / 3 M
T ')+-£-

(7)
where r = (TA ( fi) - T)/TA ( fi), ilt ( n,T) is the density
of the thermodynamic potential of equilibrium helium I (the
regular part and the term proportional to r2 ln|r|, which is
responsible for the logarithmic anomaly in the heat capacity,
are incorporated here), AC^ is the jump in the heat capacity
CM z;Cp at the>i transition (i.e., the difference between the
values of the heat capacity C^ at identical relative distances
from the A point), ^QQ ( fi) is the coefficient in the tempera-
ture dependence of the equilibrium value of *P below the A
point (*Pe = ^ i^ 3 ) , and M is a universal numerical param-
eter ("universal" in the sense that it does not depend on T, fi,
or, say, the 3He density), which characterizes the relative
contribution of the term with |* | in (7).6
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Expression (7) holds at temperatures | r | S 10 2, where
similarity theory can be applied. The critical exponents a
and 77 for the heat capacity CM <x \T\ ~a and the correlation
function of the order parameter, <*(/-)**(0))ocr"1"i ' ,
have been set equal to zero in the case r = 0, since these
exponents are very small for helium (\a\~r)S\0~2).

It is clear from this discussion that expression (7) is not
exact. It does, however, correctly convey the temperature
dependences ( ^ ( r ) and It also satisfies all the re-
quirements of similarity theory at both small and large val-
ues of the ratio * / * e (r) . It furthermore gives a correct de-
scription (within a small critical exponent 77) of the decay
law of the correlation function <*(r)vI'*(0)> at both large
and small values of r. We therefore assume that expression
(7) does not contradict experimental data, and from the
theoretical standpoint it can be thought of as an acceptable
interpolation expression suitable for describing the spatial
variations in * over distances comparable to or even slightly
smaller than the correlation radius £M below the^ point910:

(8)
M — SM — So y g_|_j3ji/ / ' So — soo lT1 >

r.. :— I I
~00 1 OmA/1 y /

1/2
:l,63.10-8cm.

In addition to t, M (T) we can introduce a correlation length
i M ( r ) above the A point; here

2. (8')

The choice of the coefficient of |V¥| in the form H/2m
in (7), and the neglect of the higher-order derivatives and
the powers of the derivatives of* correspond to the normali-
zation of ty which we mentioned earlier:

= ™f = ps(r, 0, (9)

where ps is the density of the superfluid part of the liquid. By
virtue of (1), (2), and (9), the last term in (7) has the form
psv]/2 in the case | ^ | = const. We would like to point out,
however, that in more-general situations [e.g., if the expo-
nent 77 is nonzero or if (7) contains terms of the type j V ^ 4

or IA*!4] normalization (9) will not hold.30

2.3. Basic equation

An equilibrium equation for * is found by varying (6)
with respect to 4**, This equation is

<!<• 2

•M JL
'• (10)

An extremely important question is that of the bound-
ary conditions on Eq. (10). In a general phenomenological
approach to the question of the boundary conditions,2223 we
would add a surface energy

|dS (11)

to functional (6), where dS is an area element of the surface
bounding the given volume, and 1/$ is the value of the order
parameter on this surface. The resultant functional fl + fls

must be minimized with respect to 4*(r) and Ws simulta-
neously. Near the A point, where |4*| and |*PS | are small, the
function fls can be expanded in a power series in l^s |2> and
only the first nonvanishing term need be retained:

2mls
(12)

where the parameter /s, which has the dimensionality of a
length, characterizes the properties of the boundary and is
frequently called an "extrapolation length."23 A variation of
(6) and (11) with respect to ** and *J leads in this case to
the fairly general boundary condition

' = ŝ -j— at the boundary. (13)

where the z axis runs normal to the surface, into the helium
II.

If the helium is bounded by a solid, the length /s is small
(lsSa), where a«3• 10"8 cm is an interatomic distance),
and condition (13) takes the form4

= 0 at the boundary. (13')

(See the discussion at the end of Subsection 3.3 for more
details regarding this condition at the boundary with a
solid.)

For a free boundary of helium (a boundary with the
vapor), however, the length /s is about 20 A, and taking the
difference between / s and zero into account has a significant
effect on the temperature dependence of the surface-tension
coefficient at r Z 10 " 3 (see Ref. 24 and Subsection 3.2 of the
present paper).

2.4. Accuracy of the * theory and its relationship with
renormalization-group theory

The accuracy of the conclusions reached on the basis of
expression (7) for the density of the incomplete thermody-
namic potential is determined, on the one hand, by the small
values of the critical exponents a and 77 (we have already
mentioned that these exponents are small) and, on the other,
by the small value of the contribution [ignored in (7)] of the
long-wavelength Fourier components *,< of the fluctuations

«5* = £ ¥ k e / k r with wave vectors |k|<A:m = Q/gM. As a£
criterion for judging the contribution of the long-wavelength
fluctuations to be small at T< TA we could use the condi-
tion*

l ie

kv.Tr.mt
( T )

(<?-arctg (14)

It is easy to see that, by virtue of the equality of the critical
exponents of the density of the superfluid part and the corre-
lation length, the left side of inequality (14) does not depend
on r, and its numerical value at the saturation vapor pressure
is

0.15 (<?-arctg<?) =3-10-2

with Q — 1 and M = 0. Since the exponents a and 77 differ
from zero by no more than 3 • 10~2, we can expect that the *
theory of superfluidity will be successful in describing the
experimental data within an error of no worse than a few
percent.

In renormalization-group theory, the equilibrium static
and dynamic properties of helium near the A point are
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found1 3 by calculating the contribution of, again, only the
most important part of the fluctuations in *, with scales
ranging from a microscopic scale |"0 (0) (of the order of in-
teratomic distances) all the way to scales of the order of the
correlation radius £0(T). The accuracy of these calculations
is determined by the extent to which the so-called dimen-

sionless renormalized coupling constant «~-^ \^- is

small. The analytic expression for this constant is essentially
the same as the left side of inequality (14) (according to
Dohm,3 we have u-*u* = 0.0362 in the limit r—0).

Consequently, as we stressed back in the Introduction,
calculations based on the * theory of superfluidity and on
the basis r' the renormalization-group theory are by no
means in contradiction of each other. The results derived in
the renormalization-group theory1"3 could in fact have been
used to find the temperature dependence of the coefficients
in the density of the incomplete thermodynamic potential,
(6), not only in the region close to the k point but also at
some distance from this point, where these coefficients tend
toward their original (unrenormalized) values, which cor-
respond to Landau's theory of phase transitions. As a result,
the range of applicability of that theory could have been ex-
tended considerably, especially at elevated pressures, where,
according to Refs. 3 and 26, the temperature width of the
range of applicability of the similarity theory on which
expression (7) is based contracts significantly, amounting to
only ~ lO""4^ (instead of 10~2rA at the saturation vapor
pressure).

We restrict the discussion below to an analysis of all the
effects which occur in the similarity region, i.e., on the basis
of specific expression (7) and on the basis of Eq. (10), which
follows from it.

3. EQUILIBRIUM PROBLEMS (INCLUDING PURELY
SUPERFLUID FLOW)

Armed with an equation for * and corresponding
boundary conditions, we can solve a variety of problems.
Among them are size-effect problems: the shift of the k
point, ATA(d) = Tx-TA(d) as a function of the film thick-
ness rf(we are speaking in terms of a film only for definite-
ness; we could also speak in terms of a slit, a capillary, a
droplet, and so forth) and the changes in the density ps and
other thermodynamic properties as functions of the dimen-
sions, i.e., as functions of a? in the case of films. In the group
of size-effect problems we might also include a calculation of
the temperature dependence of the surface-tension coeffi-
cient at an interface between Hell and the vapor and
between Hell and solid helium.24'27

A second category of equilibrium nonuniform problems
is made up of problems in which the density ps and other
quantities are varied by external fields (gravitational, elec-
tric, and magnetic fields and the fields of van der Waals
forces).9'28'29 We could also include here the question of the
nature of the change in the density ps near the nuclei of
positive and negative ions.1019

A third and final category of problems which can be
dealt with on the basis of expressions (7) and (10) concerns
the dependence of ps on the velocity of a purely superfluid
flow, vs, and calculations of the maximum (critical) veloc-
ity of the superfluid motion of helium II in films and slits,30

the distribution of the density ^?s near the axis of a vortex
filament,1'31 the relationship between the X transition of heli-
um in a film or slit and the Berezinskii-Kosterlitz-Thouless
transition,19 etc.

We will briefly discuss some of these effects below, re-
ferring the reader interested in the details and a correspond-
ing bibliography to Refs. 9, 10, and 19.

3.1. Size effects

The nonuniformity of the distribution of the order pa-
rameter near boundaries [conditions (13), (13')] leads to a
shift ATA (d) = TX-TX (d) of the temperature of the A
transition of helium in films, slits, and capillaries. This effect
was recognized experimentally a very long time ago (Ref.
32, for example), but a quantitative study of it has been com-
plicated by the circumstance that for helium in films or slits
there are generally two, closely spaced phase transitions,
rather than a single phase transition. The first (thermody-
namic) transition, which is the transition in which we are
actually interested here, involves the appearance of a non-
zero equilibrium value of*, i.e., the appearance of a macro-
scopic number of particles in the energy ground level.3) If the
parameter M which figures in (7) satisfies19 M<MC~2,
however, this thermodynamic A transition does not yet lead
to superfluidity, because of the spontaneous appearance of
vortices in the film, which lead to a dissipation of the super-
fluid flow.33"35 The corresponding vortices connect in pairs,
and the dissipation disappears only as a result of the second
("topological") phase transition [the Berezinskii-Koster-
litz-Thouless transition], which occurs at a lower tempera-
ture TBKT(d) < Tx (cO, which is found from the condi-

tion34,35

(15)

where ps = d ~' \ps (z)dz is the mean density of the super-

fluid part over the cross section of the film.
In the case of sufficiently thick films (with d ^ |" M ), we

can write

M = Psb (T) d - A = ps0 dx3/2 _ A, (16)

where A is a r-independent quantity which characterizes the
surface deficiency of superfluid mass. From these two equa-
tions we find

(17)

Using homogeneous boundary condition (13') on *I/, we find
that the numerical value of the coefficient &, in (17)
is A:, = 3.82-1O-11 K-cm3/2 in the case Af=0 or
&, = 3.57-10-nK-cm3 / 2atA/= 1.

At small values M < 1, the shift of the point of the "ther-
modynamic" k transition, in which we are interested, de-
pends on the film thickness d in precisely the same way (this
"thermodynamic" transition corresponds to the appearance
of a spontaneous nonzero value of * in the film):

(18)

where the constant k2 is of course different, given by

= 2.53.10-" 1. (19)

292 Sov. Phys. Usp. 31 (4), April 1988 V. L. Ginzburg and A. A. Sobyanin 292



4.0

• 3,0

?n

Superfluid liquid./

•-•.Vortex
\\-phase :<

'•J^T>,{d.)

•

d) / J^-

-Tricritical point

Normal liquid

7.8
10

0 0.5 1,0 1/'

FIG. 1. Temperatures of phase transitions in helium films as functions of
the parameter M. Solid line—Line of equilibrium phase transitions from
helium II to helium I; dashed line—line of Berezinskii-Kosterlitz-Thou-
less transitions; dot-dashed lines—lines of absolute superheating and su-
percooling, respectively, of the helium I phase and the helium II phase at
M> 1. The value M= 1 on the line of equilibrium phase transitions corre-
sponds to the tricritical point.

At M> 1, the A transition of helium turns out to be a first-
order phase transition in films.910 Along with temperature
(18), which now determines the point of absolute supercool-
ing of the normal phase, we are interested in two other char-
acteristic temperatures: the temperature Tu (d), of the equi-
librium A transition (the point at which the thermodynamic
potentials of the normal and superfluid phases are equal),
and the temperature Ts (d), which is the temperature of the
absolute superheating of the superfluid phase (Fig. 1). Be-
low, however, we will not discuss certain curious effects
which might occur in the case M > 1, since the overwhelming
majority of the experimental results available indicate that
the A transition in films remains a second-order transition,
so we have M< 1 (this comment does not apply to 3He-4He
solutions, in which, at sufficiently high 3He concentrations,
we have a parameter value M> 1; Ref. 44).

Experimentally, the temperature TBKT(d) is found
from the beginning of a dissipationless superfluid flow, while
the thermodynamic A transition of a film (from the helium I
phase to the helium II phase) has its most obvious effect on
the behavior of the difference AC,, = C/ld (T) — C^b (T)
between the heat capacities of a helium film of thickness d
and a bulk sample and on the behavior of the corresponding
difference in the equilibrium vapor pressures Ap
= Pd(T) — ph(T) and the difference between the mean

equilibrium values of the total density, Ap = pd (T)
— pb(T) [in contrast, at the point TBKT (d) the thermody-

namic properties of helium films exhibit essentially no
anomalies35 ].

Figure 2 shows examples of the temperature depen-
dence of the difference between the vapor pressure above a
film and above bulk helium, according to the measurements
of Ref. 13. The dependences are seen to have a sharp maxi-
mum at T = TA(d). This maximum can be explained easily,
since it is at T = TA (d) that the difference between the prop-
erties of helium in a film and the properties of bulk helium
should be at a maximum.4' The solid lines in Fig. 2 corre-
spond to the results of theoretical calculations'3 based on Eq.
(10) with M = 0, and also with van der Waals forces (see
also Refs. 28 and 36 and Subsection 3.3 below regarding the
incorporation of these forces). Unfortunately, and despite

1.3 2,0 . 2,1 T,K

0

FIG. 2. Temperature dependence of the difference between the vapor
pressures above a helium film with a fixed thickness d and above bulk
helium. Circles and plus signs—Experimental data"; solid and dashed
lines—results of theoretical calculations carried out in Ref. 13 on the basis
of the ff theory of superfluidity.

the good agreement between the experimental and calculat-
ed curves, the experimental data of Ref. 13 cannot be used
for a detailed quantitative test of the theory since they refer
primarily to temperatures TA — T> 10~2 K, where the as-
sumption of a simple power-law temperature dependence for
the coefficients in expression (7) for the thermodynamic po-
tential density is no longer valid.

A detailed quantitative test of the predictions of the A
theory of superfluidity was recently undertaken in Ref. 14,
where the difference Apd between the mean values of the
total helium density in a narrow slit (with a thickness
d = 0.28-0.54 jttm) and in a wide slit, with a well-controlled
geometry, was measured. We are reproducing two figures
from Ref. 14 here (Figs. 3 and 4). It can be seen from these
figures that calculations based on Eq. (10) reproduce all the
features of the experimental curve, including the presence of
a poorly defined maximum on the A/?d (7") dependence at
T = TA{d) and an increase in A/jd in the superfluid phase.
The set of experimental data of Ref. 14 yields the following
value for the parameter M:

M = 0.6 ± 0.3, (20)

According to the second paper in Ref. 14, the most probable
value of Mis close to 0.5.

Ap, 1CT7 g/cm

o'=3.3-10-5cm,

.M = o,5, a "2/3

T'TX, W4K

FIG. 3. Temperature dependence of the difference between the density of
helium in a narrow slit (d = 3.3-10 5 cm) and in a wide slit (d0

= 5.2-10 'cm) near the/I point.141—One recording of an experimental
signal; 2—results of theoretical calculations based on the * theory of
superfluidity, carried out under the assumption that for helium in a slit the
logarithmically diverging part of the thermal expansion coefficient is
cut off in the temperature interval between TA-aATA(d) and
T^ + ahTA (d), where a = 2/3. The dots show the typical error band,
within which 80% of the experimental curves fall.
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FIG. 5. Temperature dependence of the surface tension of liquid 4He near
the X point, minus the regular (quadratic) function, as a function of
T—(TA—T)/TA. Solid lines—theoretical24; plus signs—experimental
data.12

FIG. 4. The parameter M (a) and the shift of the A point (b), A TA (d) as
functions of the slit width d according to the data of Ref. 14.

To the best of our knowledge, the experiments of Refs.
13 and 14 have been the only experiments in which only a
single slit or a film with a well-known, given thickness was
used. In all other cases, the experiments have been carried
out in systems containing a very large number of films, chan-
nels, or pores with unknown size distributions. The corre-
sponding experimental results can therefore be of only ex-
tremely limited value. The recent experiments in Ref. 15 are
apparently also not an exception to this rule. Those experi-
ments dealt with the dynamic properties of liquid 4He in
gaps between the turns of a roll of a long Mylar tape. The
distance between the turns of tape was controlled only on the
average in those experiments, and it was apparently not uni-
form, as is implied by the presence of a tail on the tempera-
ture dependence of the density of the superfluid part (the
intrinsic oscillation period of the system) at T> TBKT(d)
(see Fig. 1 in Ref. 15). This circumstance, combined with
the use of a method for normalizing the/5s (d,T) dependence
which we regard as improper (involving a matching with the
psb (T) dependence in a large volume), would make it pre-
mature to draw any conclusions about the violations suppo-
sedly discovered in Ref. 15 of the predictions of the 4* theory
and the theory of gauge in variance (see also the comments in
Refs. 3 and 36 in this connection).

3.2. Surface tension

In good agreement with the conclusions of the 'V theory
of superfluidity24'28 and the data from earlier experiments''
are the results of some very accurate recent studies12 of the
temperature dependence of the surface tension of liquid 4He
below and near the X point. Just how good this agreement is
can be seen in Fig. 5, which is taken from Ref. 24. The curves
in Fig. 5 show the results of a solution of Eq. (10) for a half-
space with M = 1/2 and boundary condition (13), in which
the extrapolation length /s was taken to be

ls = 22±2k. (21)

This value of/s, which was found in Ref. 24 from the experi-
mental data of Refs. 11 and 12, seems completely reasonable,
since it is approximately equal to the mean value of the dis-
tance between 4He atoms in the saturated vapor and larger
by a factor of only three than the value of the thermal de
Broglie wavelength lT — (2irH2/mkBT)~6 A at T= TA.

3.3. Effect of external fields

The following class of problems, which can be solved on
the basis of the * theory of superfluidity, consists of prob-
lems involving studies of the effect of various external fields
on the X transition in helium: gravitational, electric, and
magnetic fields and the fields of van der Waals forces.

In expression (7) and Eq. (10), the presence of an ex-
ternal field with a potential V(T), acting on a unit mass of
helium, can be allowed for by taking account of the depen-
dence of the field F(r) on the temperature of the X transi-
tion:

where/x0 is the chemical potential of helium in the absence of
a field, and dTA /d^ iz,pZ xdTA /dp is the slope of the X curve.

Because of correlation effects, which are frequently
called "proximity effects" [the terms with spatial deriva-
tives in (7) and (10) ], the interface between Hel and Hell
in a field is diffuse. In the case of a gravitational field
( V = — gz), for example, the scale width of this diffuse in-
terface is28

and the shape of the distribution of the function *(z) in the
transition layer (more precisely, its second derivative
d2*/dz2) is determined directly by the right side of Eq. (10)
(Fig. 6). In other words, by varying the shape of the distri-
bution *P(z) in a gravitational field, we can find direct infor-
mation on the form of the thermodynamic potential density
Hd^ l 2 ) [see (7)]. So far, there have been no successful
attempts to measure the width of the interface between Hel
and Hell in a gravitational force field, not to mention at-
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FIG. 6. Distribution of the order parameter i/' = * / * g , where
vi/g = * 0 0 (s '« , / / g )" 2 , in a gravitational force field.28 Solid lines—found
through a numerical solution of Eq. (10) with M = 0 (line 1) and M = 1
(line 2); dashed line—distribution ip( y) = j>'/3, which would prevail in
the absence of correlation effects [terms with spatial derivatives in Eq.
(10) ]; circle—the region in which the term with 14"!6 plays an important
role in Eq. (10).

tempts to find the function ^ (z ) . Studies of this sort are in
principle completely feasible, by the method of the refrac-
tion of second-sound waves, for example.29'37

The effect of electric and magnetic fields on the A transi-
tion in helium is studied in a corresponding way. For this
purpose, it is sufficient to substitute the corresponding elec-
tric or magnetic striction potential into Eq. (22) as F(r):

VE(r)= - ±a VH(r) = -± (23')

where aE = 3.1 • 10~2 cmVg is the polarizability per 1 g of
helium, and aH = 0.47-10~6 cmVg is the diamagnetic sus-
ceptibility.

The use of electric and magnetic fields expands the ex-
perimental capabilities, since the width of the transition re-
gion between helium I and helium II can be varied (reduced
or increased), and one can create local regions with a re-
duced or elevated density of the superfiuid part, which
would serve as converging or diverging lenses for second
sound (there are also other possibilities).28'29 We would also
like to point out that the gradient of an electric field or, espe-
cially, a magnetic field could be used to compensate for the
nonuniformity of a column of a liquid in a gravitational field
and thereby to avoid the use of satellites for such experi-
ments. At the same time, we know quite well that here on the
earth it is the presence of gravitational forces which is block-
ing research on critical phenomena near the A point at
| r |S10~ 7 .

Van der Waals forces with a potential

Fv.d_w= — 6/z3, 6 = 10-13 — 10"14 erg-cmVg (24)

distort the function * near a boundary between Hell and a
solid. The effective manifestation of the distortion is that the
surface on which 4* vanishes is displaced a certain distance b
from the surface of the solid, into helium.28'36 The magnitude
of the displacement b is essentially independent of r, as was
shown in Refs. 28 and 36, and ranges from 2 to 10 A, depend-
ing on the value of the parameter 6. Nevertheless, as we
move away from Tx (and as £M therefore decreases) the
effects which stem from van der Waals forces generally be-
come important.13'28'36

3.4. Contribution of ions and impurities to the thermodynamic
functions of helium II

Electrostrictive potential (33) and boundary condition
(13) lead to a decrease in the order parameter near the
boundary of the nucleus of a positive ion and at the boundary

of a bubble in the case of a negative ion or electron. Associat-
ed with this decrease are the contribution of the ion to the
mass of the normal component,281019

r OCT.-2/3 (25)

and the additional energy

• OC T 2 / 3 , (26)

where R is the radius of the nucleus or bubble, £M is the
correlation length given by (8), and /s is the extrapolation
length which figures in boundary condition (13). In this
case there is also an additional contribution to the entropy
and heat capacity of helium II. Furthermore, the existence of
energy (26) causes a slight change in the equilibrium radius
of the nucleus of the ion or bubble, and it increases their
effective mass:

4n ATt.

(27)

The latter effect could apparently be seen most easily, since
at r = 10~6 the increase in the effective mass of a negative
ion would be about 60wHe.

If we set R =ra, where a is the interatomic distance, we
can use expressions (25)-(27) to estimate the contribution
of microscopic impurity particles such as 4He atoms to the
thermodynamic functions of helium. The density of these
atoms, «3, however, must satisfy the condition

3n, f l^ys '< l - (28)

In other words, expressions (25)-(27) can be used only for
very dilute solutions. At high impurity concentrations
(these impurities may be ions), it becomes necessary to use
the results of Ref. 54.

3.5. Superfiuid flows (vn = 0 )

A third category of problems to which the W theory can
be applied effectively involves analysis of the flow and rota-
tion of helium. The corresponding list of questions is very
long (see Refs. 9, 19, and 38, for example). Here we can only
touch on some of them.

The appearance of a flow (as in the presence of boun-
daries) alters the equilibrium values ofps and of other ther-
modynamic quantities. For a purely superfiuid flow, which
is constant over time (a steady-state flow), the relative mag-
nitude of these changes is proportional to the square of the
ratio vs /v0 (T), where

VnW = " • = 9.74.103x2''3crn/s. (29)

In particular, with DS > uSiC2 ~ y,,( 7") ^T a laminar superfiuid
state becomes unstable in general.c>1019 More-accurate ex-
pressions for the maximum possible (critical) velocities of a
laminar superfiuid flow in films and massive helium, which
depend on d and M, are given in Refs. 9, 19, and 30. The
behavior of ps as a function of u2 and d was also studied in
Ref. 30.

For rotating helium II, an isolated vortex filament is the
simplest and at the same time the most important entity. The
problem of the structure of a vortex filament in helium II
near the A point was in fact studied a fairly long time ago on
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FIG. 7. a—The dimensionless energy of a vortex ring,
>f — ^ / ( n , — ft,,), as a function of its dimensionless
momentum/) =£/mvo(T) and the velocity of the transla-
tional motion, U= U/vtl(T) (according to the data of
Ref. 39b) at the point ( pv, ?>\ ), where {7=0.62, the ring
loses its circulation and converts into a vortex-free excita-
tion with I*|2 = 0 at no spatial point; vortex-free excita-
tions correspond to a part of the lower branch {to the left
of the point (/>v, %\.)} and the entire upper branch {to the
left of the point ( pv, Ws,) and the entire upper branch of
the spectrum}; b—the same for a vortex pair the part of
the curve from the origin to the point (p v , f/y) with
U = 0.43 corresponds to vortex-free excitations.

the basis of the * theory of superfluidity by Ginzburg and
Pitaevskii.4 This problem was solved in Ref. 31 with the sub-
sequent modification of that theory. In addition, the contri-
bution of a unit length of a filament to the entropy, the heat
capacity, the density of helium, and the mass deficit of the
superfluid component was calculated in Ref. 31; the cross
sections for the scattering of light and second sound by indi-
vidual vortex filaments were also estimated. All this work is
interesting from the standpoint of possible experiments.

Yet another important problem, which was mentioned
in Ref. 9 and which is of fundamental importance to an un-
derstanding of the nature of the critical rates of vortex for-
mation, is the problem of the motion in helium II of a quan-
tized vortex ring with a radius R comparable to £M (T).

An important step was recently taken in Refs. 39 and 40
(see also Ref. 41) toward the solution of this problem. That
step was the derivation of an exact localized (soliton-like)
solution of the equation of motion for * in the absence of
dissipation [see Eq. (30) below with A = 0]. This forward
step generated some interesting and rather unexpected re-
sults. It turned out that at low velocities f/of a correspond-
ing axisymmetric soliton the energy "&, the radius R, and the
momentum p of the soliton decrease with increasing U, as
they should in the case of a vortex ring. When the velocity U
reaches a certain critical value Uc = 0.62 vo(T), however,
where v0 (T) is given by (29), the energy and momentum of
the soliton begin to increase again (Fig. 7a). The reason, as
was shown in Ref. 40, is that in the limit U-> Uc a vortex ring
(i.e.,acircle on which theequation |4*| = Oholds) contracts
to a point, while at U> Uc it "jettisons" circulation and con-
verts into a vortex-free excitation, for which the amplitude of
the function *P no longer vanishes, at any point in space.

Iordanskii and Smirnov40 showed that a pair of parallel
quantized vortex filaments with opposite circulation signs
(a "vortex pair") in translational motion exhibits a similar
behavior. In that case, however, in contrast with a vortex
ring, the energy and momentum of the vortex pair continue
to decrease below the point U = C/c 2;0.43 vQ(T), at which
the pair jettisons its circulation (Fig. 7b).

That picture is extremely instructive, but we would like
to emphasize that incorporating dissipation and the relaxa-
tion of *P may cause some fundamental changes in this pic-
ture.5'

Unfortunately, there have been almost no experimental
studies of the thermodynamic properties of moving helium
II near the A point, not to mention studies of the structure

and properties of individual vortex filaments and vortex
rings in this region. We are thus not able to illustrate with
experimental data the results discussed above.

4. GENERAL * THEORY OF SUPERFLUIDITY (WITH NORMAL
FLOW, DISSIPATION, AND A TIME VARIATION)

4.1. Equation of motion for a macroscopic wave function

In the steady state, with a given nonzero velocity of the
normal flow, vn, and with a constant total density (Vp = 0),
it is a straightforward matter to generalize expression (7)
and equilibrium equation (10) (Ref. 9). This generalization
is achieved through the substitution

In the general time-dependent case, the following equation
has been proposed5 (see also Refs. 9, 10, and 19) for *:

(30)

This equation was mentioned back in Subsection 3.5. Here
JUS = m~'(d£l/d I*!2) is the chemical potential of the su-
perfluid component, and the dimensionless kinetic coeffi-
cient A determines the relaxation time of VI/, i.e., the density
Ps-

r2Am
- 1

HA
(31)

A complete system of hydrodynamic equations for helium II
near the A point was derived in Ref. 5 and can also be found
in Refs. 9, 10, and 19. The system includes, along with Eq.
(30), conservation equations for the mass and the momen-
tum and a heat balance equation. Furthermore, some similar
but slightly different systems of equations were derived in
Refs. 42 and 43. The corresponding equations are quite
lengthy, and we will not reproduce them here. We would
simply like to note that they contain, in addition to A, several
other kinetic coefficients, among which those which play the
most important role near the A point are the thermal conduc-
tivity K and the viscosity of the normal component, ?/n.

The temperature dependence of the coefficients A, x,
and 7]n must be determined, as in the static case (§2), from
experimental data, or it must be found from calculations by
the renormalization-group theory. '"5 Such calculations can
be carried out for the most part by using the * theory to
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analyze the propagation of various types of sound in Hell
near the A point. Unfortunately, this analysis has not yet
been completed. From a comparison910 with experimental
data on the absorption of first and second sound, we can only
conclude that in a certain narrow interval (10~ 5 Sr510~ 3 )
the temperature dependence of A at the saturation vapor
pressure can be described approximately by

= AOT-»/3 with A0 = 0 .3±0 .1 . (32)

The experimental value of the viscosity coefficient rjn at
the A point at the saturation vapor pressure is44

= (27.4 ± 1.4). 10-6P, (33)

but the temperature dependence of 7jn near TA has not been
measured accurately.

With regard to the thermal conductivity x, we note that
below TA we can cite only an extremely crude order-of-mag-
nitude estimate, based on the theory of dynamical gauge in-

variance
erg/(cm-g-K).

We turn now to the results of a solution based on the
complete system of hydrodynamic equations for helium II
near the A point5'91019 for certain specific problems.

4.2. Mutual friction force

The force of mutual friction between the superfluid and
normal components in rotating helium II, caused by the
presence of quantized vortex filaments in it, was calculated
on the basis of the ^ theory of superfluidity in Refs. 46-48.
The most comprehensive quantitative analysis was carried
out by Sonin,47 who found the following results:

g = goTv» = 1,0T'/3, g' = got"3 = 1.48T1/3. (35)

Here the coefficients g and g' are related to the mutual fric-
tion coefficients B and B', which are ordinarily used, by

B—iB'-. (36)

Relations (35) correctly convey the observed temperature
dependence of the longitudinal and transverse components
of the mutual friction force," but the numerical values of the
coefficients (the "amplitudes") in these relations are slight-
ly different from the experimental values (experimentally,16

these amplitudes are found to be g0 =2.8 and g'o = 2.02).
These discrepancies are not surprising in view of the crude-
ness of the numerical estimates of the coefficients in Ref. 47,
which were furthermore carried out for a version of the theo-
ry with M = 0. Furthermore, the viscosity and the thermal
conductivity of the normal component were ignored in Ref.
47, but these effects may turn out to be extremely important
at temperatures at which the measurements were carried out
in Ref. 16.

4.3. Boundary thermal resistance

As heat propagates across an interface between two me-
dia, a temperature drop forms at the interface. The magni-
tude of this drop is proportional to the heat flux density

= RKq), and the corresponding proportionality coeffi-
cient RK is called the "boundary thermal resistance" or
"Kapitsa resistance": In a superfluid liquid the ordinary sur-

face temperature drop is accompanied by an additional tem-
perature drop which results from the conversion of the diffu-
sion heat flux into a countercurrent of the normal and
superfluid components. This conversion is localized in a lay-
er near the boundary of liquid helium II with a typical thick-

0
ness

where

l / 2

is

(37)

the entropy density, and

+ p2g3 is a combination of the coef-V = — rjn + g2 —

ficients of the first and second viscosities which appears in
the expression for the attenuation coefficient for second
sound.

Near the A point the anomalous part of the combination
of second-viscosity coefficients can be expressed9 in terms of
the same kinetic coefficient A:

(38)

ocrIn the limit J— TA it increases in accordance with

Correspondingly, in the limit T->TA the length
lT(lT ~2/3 ) increases without bound, and the addi-
tional component of the resistance, RK, which is related to
this length also increases9'10:

for
for

(39)

An experimental detection of the component SR K might be
of assistance both in testing the predictions of the ̂  theory of
superfluidity and in determining the temperature depen-
dence of x, which is not known at T< TK, as we have already
mentioned. The presence of a singular component of the re-
sistance RK was recently found experimentally.17 However,
a detailed comparison of the data of Ref. 17 has not yet been
made with expressions (37)-(39), in particular, because the
coefficient x (T) is not known, as we have just mentioned.

4.4. Mobility of ions In helium II near the \ point

Incorporating the diffusion heat flux, which exists over
length scales of the order of lT, and the nonuniformity of the
distribution of the order parameter near the core of an ion
(Subsection 3.5) causes the expression for the friction force
F± which acts on the positive ( + ) and negative ( — ) ions
in helium II to be different from the hydrodynamic Stokes
formula.49'50 Near the A point, within terms of the order of
ps/p, we find4910

where u is the velocity, R is the radius of the nucleus of the
ions,«0 = fipA/nnin = 0.846, c = R/(R + / s ) , and/s is the
extrapolation length which figures in boundary condition
(13).
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Expressions (4) with A = 0.3 r~ 1/3 and c = 1 and 0.5,
for positive and negative ions, respectively, agree with ex-
perimental data.51" For a more reliable test, however, the
corresponding measurements should have been pursued into
a temperature interval closer to the A point. Furthermore,
account should have been taken of the nonuniformity of the
total-density distribution near the ions and of the slight sin-
gular dependence of the radii of the ion cores near TA.

4.5. Transverse acoustic Impedance*1

Yet another interesting method for testing the * theory
would be to study the spatial distribution of the order param-
eter (the density of the superfluid component) near a solid
wall by probing this distribution with an aperiodic viscous
wave excited by transverse (shear) oscillations of the wall
material.55'58

We know that the depth to which an aperiodic viscous
wave penetrates into a normal liquid depends on the frequen-
cy; if the liquid is homogeneous, this depth is S = (2rj(o/
p)'n. For homogeneous helium II, we should setp=pn and
r] = r]n in this formula. If, however, the density pn and the
viscosity coefficient r/n vary significantly over length scales
less than or comparable to S, the contribution of the helium
to the real and imaginary parts of the transverse acoustic
impedance of an oscillating object differs from that calculat-
ed from the standard hydrodynamic formula (Ref. 55, for
example):

The corresponding corrections, which contain information
on the dependence pn (z) = p — ps (z) and rjn (z) near the
wall, were calculated and measured in Refs. 55-58. Those
investigators reached the conclusion that the temperature
dependence of the correlation lengths g^ ( r ) a n d £M M
can be described well by Eqs. (8) and (8a), but the coeffi-
cients in these dependences are only about 0.5 A, i.e., only
half the values which have been estimated from other experi-
ments (and, above TA, only a third of these other values).

We believe that the reason for this discrepancy might be
the use of the greatly simplified approach of Ref. 57 in the
interpretation of the experimental data in Refs. 55-58. The
influence of van der Waals forces on the distribution pn(z)
and, especially, rjn (z) was ignored in Ref. 57. Near the A
point, the viscosity of helium is a very strong function of the
total density of the liquid, p (Ref. 44), which increases near
a wall. Furthermore, at the frequencies ©^ 107 Hz which
were used in Refs. 55-58 the frequency dispersion of the
shear viscosity coefficient t]n might also play a certain role.

These examples illustrate only some of the possible ap-
plications of the general * theory of superfluidity. On the
whole, we can say that with regard to time-dependent and
dissipative problems we are merely at the beginning of a long
road.

5. CONCLUDING REMARKS

We listed several problems above which have been stud-
ied theoretically or could be analyzed on the basis of the *
theory of superfluidity. Progress toward a comparison of
this theory with experimental data must nevertheless be re-
garded as slow. Considerably less is being done in this field
than one might wish and than appears possible in view of the

experimental facilities available at present. There is the pos-
sibility that part of the difficulty is that experimentalists are
being overloaded with a stream of new and trendy questions
(the properties of 3He, etc.). However, it appears to us that a
more important factor is a distrust of the * theory of
superfluidity, which has been the subject of this review. Such
a distrust would have been justified if we had been talking
about the original self-consistent version of the theory,4'5but
in its present form19 the theory is—as we have repeatedly
stressed above—free of the shortcomings of the mean-field
approximation, and it organically incorporates the results of
the fluctuation theory of phase transition which have been
derived for a homogeneous substance.

The use of the * theory of superfluidity near the A point
thus appears to us to be completely natural and legitimate.
In this regard, this theory is analogous to the * theory of
superconductivity.8 Several convincing experimental confir-
mations of the predictions of the * theory of superfluidity
have already been obtained. It would, on the other hand, be
premature to say that a specific * theory of superfluidity
(with the set of values of critical indices and coefficients
used above) is completely successful. Everything depends
on how well it corresponds to experiment. Further effort in
this direction is extremely desirable and might be helpful
both in determining the place of the 4* theory of superfluidity
and in clarifying the situation with regard to the behavior of
helium near the A point in general.

"Invited paper presented at the Eighteenth International Conference on
Low-Temperature Physics (LT-18), Kyoto, Japan, August 1987, Pro-
ceedings, pp. 1785-1797.

2lThis comment had already been made by one of us (V.L.G.) in a discus-
sion (on 8 July 1987) at a conference on high-temperature superconduc-
tivity in Trieste, Italy (see also Ref. 6).

3)We wish to emphasize that we are talking here about a condensate of
particles specifically in the ground level, not in a state with a momentum
p = 0 [this statement means that the Fourier expansion of the micro-
scopic * function of the ground state contains a term no5(p) ]. As we
know quite well, however, there is no term no5(p) in the case of quasi-
two-dimensional (and, especially, quasi-one-dimensional) systems. In
other words, a state (Fourier component) with p = 0 for quasi-two-
dimensional systems is not macroscopically filled anywhere down to
T= 0. With regard to the ground level, we note that even in the strictly
two-dimensional case in an interacting system of Bose particles a macro-
scopic number of particles will necessarily appear in this level even if the
temperature TK (0) deviates only slightly from zero. The reason is that in
an interacting system of Bose particles (in contrast with a noninteracting
system) the initial part of the spectrum of excited states is linear ( E = up,
where u is the sound velocity), and here the integral

v _ V. _ f dp
(2JI»)» exp — 1 '

which determines the total number of particles in excited states, does not
diverge in the long-wavelength limit. Furthermore, it vanishes as T—0.
Consequently, in a two-dimensional Bose gas at low temperatures, only a
relatively small fraction of the total number of particles can be in excited
states. This statement also means that in it there is a condensate of parti-
cles in the ground level.

4lIn the interval TA >T>TA(d), the difference pd (T) —pb(T) increases
in proportion to the difference between the thermodynamic potentials of
the normal and superfluid phases: A/?d = fl, — fl,, = TA AC^ r2. At
T< Tx (d), on the other hand, it again begins to decrease because of the
decrease in the ratio 2£M (r)/d, which characterizes the effective frac-
tion of the volume of helium near the boundaries which remains in the
normal phase.
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5lThe * theory of a nonideal Bose gas,41 which is widely used in the litera-
ture, in particular, in Refs. 39 and 40, is actually a particular case of the *
theory of the superfluidity of helium II which we have developed. Spe-
cifically, in the theory of Ref. 41, which pertains to T= 0, the tempera-
ture dependence of the coefficients in expressions of the type (7) and
(10) is ignored, and the relaxation and dissipation of* are also ignored.

6lThis subsection (4.5) of the paper is not included in the English text of
this report, since we learned about Refs. 55-58 only at the LT-18 confer-
ence itself.
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