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The phase transition from quark-gluon plasma to hadronic matter is extensively examined in
relation to the hadronization problem in the hydrodynamic theory of multiple production.
Existing models of hadrons and thermalization mechanisms in ultrarelativistic collisions are
briefly discussed. When surface interaction effects are taken into account, the phase transition is
nontrivial in the bag model: metastable states of matter are possible. Possible hadronization
scenarios are discussed, and a kinetic analysis is given of cooling and hadronization processes. It is
shown that, when the initial plasma energy density is close to the critical value ( ~4 GeV/fm?),
the more realistic scenarios are those based on the nonequilibrium hadronization of supercooled
plasma, which involves an appreciable increase in the mean transverse momentum of secondary
particles. Traditional (equilibrium) mechanisms should predominate in hotter plasmas.
Theoretical estimates are compared with JACEE cosmic-ray data.
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1. INTRODUCTION

The hydrodynamic theory of multiple production of
particles'™ is different in character from other models of
interaction between hadrons. Its principal feature is that ha-
dronic matter is looked upon as a continuous heated medi-
um, so that classical equations and concepts from contin-
uum mechanics can be employed, including the temperature
T, the energy density ¢, the entropy s, and so on. For a long
time, this was practically the only theory of this kind.

The situation has changed in recent years. The concept
of a continuous medium has become entrenched in quantum
chromodymamics (QCD).* Physical (observable) vacuum
is now interpreted as nontrivial, nonperturbative matter that
ensures confinement, i.e., the absence of colored objects
(solitary quarks and gluons) in the spectrum of physical
excitations. Whatever the specific nature of this vacuum
matter (instanton fluid,>® quasi-Abelian magnetic field,” or
Higgs field;® see Refs. 4, 9, and 10 for the relevant reviews),
this state is found to be energetically more favorable than
vacuum in its previous interpretation (absolute emptiness).
It has negative energy density” ey = — 0.5 — 1 GeV/fm’
(Refs. 11 and 12) and excess pressure p, = — £y >0 (Refs.
10 and 11).

The so-called perturbative vacuum ( ppy = €py = 0) is
found to be unstable and can exist only in the interior of
hadrons, i.e., within regions of ~ 1 fm? from which physical
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vacuum is excluded® (Ref. 13). In applications, it is conven-
ient to assign positive energy density £py = |ey | and nega-
tive pressure ppy = — |€v | to the perturbative vacuum,; the
observable vacuum then corresponds to £y, = py = 0.
Finally, we consider the idea of the quark-gluon plas-
ma, i.e., the state of deconfinement of superdense or super-
hot hadronic matter. We shall restrict our attention to hot
matter with chemical potential x4 = 0. The plasma is then a
hot medium in thermodynamic equilibrium, in which mass-
less free quarks ( ¢) and gluons ( g) move against the back-
ground of the perturbative vacuum. The equation of state of

this matter!*~'¢ as

e=xT*+ |ev],

Po =5 (e—4 lev]), (LD)

2

= g, (Gg+Gqu%) ,

where G, G, are the numbers of degrees of freedom and N,
is the number of quark flavors. For the color group SU(3)
with two light quarks (¢ and d), we have » = 12.2.

From the point of view of vacuum structure, transition
to this state is interpreted as the breaking up of the vacuum
condensates responsible for the quark masses (i.e., the
breaking of chiral symmetry) and confinement.'® Cooling
down to a certain temperature 7 ¢ results in the reconstitu-
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tion of the condensates, the quarks and gluons combine into
colorless formations, i.e., hadrons, and we have a phase tran-
sition to the confinement state.

Hydrodynamic theory is the only theory in which cool-
ing of hot matter is considered. This means that hydrody-
namic theory provides a natural framework for the descrip-
tion of the plasma phase and of the phase transition.

It is useful to note one further circumstance that has
stimulated the development of the hydrodynamic approach
to phase transitions in plasma. It involves the experiments
on collisions between heavy nuclei, planned for the near fu-
ture. These experiments are expected to provide extensive
data on the plasma phase and on transient processes. Al-
though the validity of the hydrodynamic theory in relation
to hadronic collisions is still being discussed® (Ref. 4), the
description of such complicated systems as colliding nuclei
is naturally carried out within the framework of the contin-
uum formalism.'® The hydrodynamic process consists of
three stages.

1. Formation of the initial state, It is assumed '~ that this
is a very hot state in thermodynamic equilibrium. Its lateral
dimensions are of the order of the dimensions of the hadron
(R ~1fm), and it is highly compressed in the longitudinal
direction A €R.

2. Isentropic expansion, described by the equations of an
ideal relativistic fluid. This occurs preferentially in the longi-
tudinal direction? (one-dimensional flow), because the ini-
tial state is compressed. The expansion regime depends on
the equation of state. Hadronic matter is usually described
by the equation of state of the ultrarelativistic hadronic
(pionic) gas

1

1
1)=Te=—xﬂT“,

3 (1.2)

= 1.
A phase transition is introduced into the plasma model when
the equation of state has a discontinuity.

3. Termination of interaction and free motion apart of
hadrons as the system cools to the temperature T=m_ = 140
MeV.

Several questions are being discussed. First, there is the
mechanism responsible for the formation of the initial state
as a result of collisions. It is clear that theoretical informa-
tion on the fraction of energy remaining in the thermalized
blob, the distribution of velocity in it, and its relative com-
pression can be obtained only by considering a specific mod-
el

Second, the mechanism responsible for the thermaliza-
tion of the initial state is still unclear. It was assumed in
setting up the hydrodynamic theory that shock waves ther-
malize the system instantaneously,” but this hypothesis re-
quires confirmation. Since the advent of the theory of dy-
namic chaos'® it has become clear that stochastization is a
consequence of the development of the global instability of
systems. This instability arises under certain conditions and
in a finite time, both of which are also model-dependent.

Finally, it is still not entirely clear what is the effect of a
phase transition during hydrodynamic expansion, although
substantial advances have been made in this direction.?*-*’
This problem has recently attracted considerable attention
among theoretical groups in connection with searches for
plasma signals, including phase-transition signals. Many ex-
perimental characteristics are sensitive to the transition
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stage, but information relating to high-temperature plasma
may be “‘erased” during the phase transition. The distribu-
tion of secondary particles over transverse momenta and
multiplicity”>?” are the most informative in this respect.

The aim of this review is to discuss existing theoretical
data on the nature of the phase transition (Section 3) and to
examine possible scenarios for its realization during hydro-
dynamic expansion (Section 4). We shall confine our atten-
tion to a qualitative description of the hydrodynamic picture
in different scenarios (detailed quantitative descriptions
would be too laborious).

Before we proceed to the phase transition themselves, it
will be useful to examine the most widely used models of the
hadron and of the hydrodynamic state that arises as a result
of collisions. This is done in Section 2.

2. MODELS OF HADRONIC COLLISIONS
2.1 Perturbative QCD model28

A moving hadron constitutes -a current of valence
quarks (most energetic, or hard) and a sea of virtual quarks
and gluons (constituting the so-called soft component).
Hard and soft components exhibit different interactions dur-
ing collisions between hadrons. Hard components pass
through without intensive interaction and form the frag-
mentation region. Soft components (mostly gluons) interact
strongly and multiply; this creates slow (in the center of
mass system) and thermalized particles that form the cen-
tral region. During this process, hard components retain
their connection with the central region by interacting with
their soft “tails”. In the end, the creation of excited and ther-
malized matter extends over the region occupied by gluon
clouds and the trail of the hard component. This picture
corresponds to the so-called scaling of the initial distribution
in which all thermodynamic variables depend on only the
proper (for a given element) time 7 = (¢ — z%)/2, where z
is the position coordinate along the collisions axis and the
velocity of the elements is v = z/t. The scaling regime for
isotropic expansion is then found to have the following very
simple form (independent of the equation of state):

(2.1

where in refers to the initial state and 7;,, is in general an
undetermined parameter that depends on the thermalization
mechanism-and thermalization time. It is assumed in this
model that thermalization occurs as a result of the multiple
interaction of soft gluons (although the quantum-field
mechanism of the process is not entirely clear).” In the lan-
guage of the theory of dynamic chaos, this can be formulated
as follows. Evaluation of Feynman diagrams (including dia-
grams with complex topology) leads to results that are un-
stable under small variations of parameters. The system then
ceases to be pure in the quantum-mechanical sense, and be-
comes stochastic.”® While this is happening, entropy in-
creases to its equilibrium value. The time taken to reach
equilibrium is determined by an increase in instability. This
problem has not been correctly solved, but the scenario
seems realistic. In the absence of data on the relaxation time,
it has usually been assumed?® that 7,, ~ 1 fm. However, it is
more natural to suppose that 7;, is of the order of the mean
free path A, which in turn is of the order of the reciprocal of
temperatue:>> A ~ T ', Finally, it is assumed that the frac-
tion of energy transferred to the thermalized subsystem is

S=S,Tpt
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~1/2. 1t is difficult to provide a more accurate estimate in
this model.*®

2.2, Phenomenological models (bags31-32 and strings33)

In the MIT bag model,?! the hadron is a bag filled with
perturbative vacuum (with quarks moving against this
background) and located in the physical vacuum. The mass
of a bag is given by

m = (ET -+ 5143 4{’ B) v, (22)

where B is the bag constant, v is its volume, and £, £, are
the thermal and potential energy densities. The question of
the medium that carries the positive vacuum energy is usual-
ly not discussed. It is important to note that a satisfactory
description of the spectra of nucleons and resonances is
achieved by assuming that B~0.13 |, |, which is lower by
almost an order of magnitude than the energy density of the
observable (condensed) vacuum. This suggests that the
vacuum inside the bag cannot be regarded as empty: it must
have the properties of a continuous medium.

The hot bag (e > ¢y;) is filled** with almost-free equi-
librium quarks and gluons, i.e., it actually contains the plas-
ma state. The volume of a stable bag and its mass are related
by v = m/4B, which corresponds to zero pressure in the bag
(the negative vacuum pressure is compensated by the ther-
mal pressure) and £, = 3B. Thus, in the approximation that
is sufficient for the hydrodynamic description, hadrons may
be looked upon as hard spheres of diameter R, filled with
matter whose equation of state is ¢ = const = 4B, p = 0.

Central collisions between such objects have been ex-
amined in the Landau model (see Ref. 1). Let us recall it.

When the hadron walls collide in the center of mass
system, two shock waves are produced and propagate in op-
posite directions with velocity 1/3 along the collision axis.
They are accompanied by the formation of thermalized mat-
ter at rest, which is interpreted as the initial state. The longi-
tudinal size of the system is Ay = Ry ™', where y = E\/
2m,, is the Lorentz factor of the colliding hadrons and the
time taken by the processis T, = 3A,”. It is assumed that the
entire energy of the system is released in the form of heat.
The initial temperature is then given by T, ~m, ¥'/?, and
the size of the system turns out to be less than the mean free
path®.

The law of expansion in the central region is close to the
scaling law. The difference between them is that all the ther-

modynamics variables depend on the rapidity y:%

In[ (¢t +2)/(t —z)] (“bell jar”’ rather than a “plateau”).
This picture contains a single hypothetical element, namely,
instantaneous thermalization in the shock wave, and it is
precisely this point that has been criticized. Thus, the width
of the shock wave front (just like the thermalization time
t,. ) is of the order of the reciprocal temperature. For times
t <t, the system evolves dynamically like elastically com-
pressed matter with the equation of state®® £ = p. Thermali-
zation of the compressed state can occur as a result of the
formation and interaction of phonon-type elementary exci-
tations. We are essentially dealing here with thermalization
due to the global Kolmogorov-Sinai instability.!®>* The
time scale for the establishment of the equilibrium state is
to~Ti ooy P fm>1,

In the string model,** which is conceptually not very
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different from the bag model, the hadron is looked upon as a
set of quarks held together by gluon tubes in physical vacu-
um. Collisions between such objects present a somewhat dif-
ferent picture than in the bag model: the strings become tan-
gled up and stretched, and break off. Quarks detached in this
way form the fragmentation region, and the remaining
stretched string can have one of two possible fates:

(a) A single stretched string is likely to be formed in
collisions between hadrons with a large impact parameter. A
few growing inhomogeneities are formed on the string as a
result of its relaxation (in classical physics, an example of
this evolution is provided by the formation of dissipative
structures in nonequilibrium systems®”). They then evolve
and decay independently of one another.

(b) In the case of collisions between nuclei, the
stretched strings merge into a single (thick) stretched rod.
The rod is stable against the formation of small-scale inho-
mogeneities. Its principal mode of relaxation is contraction
as a whole. The process subsequently develops as in the bag
model.

2.3 “Classical models”8-38

By classical models we mean the interpretation of the
hadron as a self-localized stationary solution of the classical
nonlinear field equations. Such models are significantly dif-
ferent from phenomenological models although they lead to
a similar picture, namely, the spherical solution corresponds
to a bag and the cylindrically symmetric solution corre-
sponds to a string. Self-localized solutions have finite energy
that is naturally associated with the mass m,, of the particle.
Physical fields are concentrated in the region of size R, and
fall off exponentially outside this region, i.e., confinement
follows from the very existence of the solution. The param-
eters of this particle-like solution (m,, R, and the diffuse-
ness of the boundary) depend only on the parameters of the
Lagrangian and on the requirement that the solution exists
(there is a discrete set of such parameters).

An example of a spherical solution of this type for the
QCD Lagrangian with the Higgs field is provided by the ’t
Hooft-Polyakov monopole.>® We note that its existence and
stability are due to the existence of topological charge and
the nontrivial structure of vacuum outside the monopole.

The hadron does not have such a (““‘monopole”)
charge, but it can be assigned a topological number that is
associated with the behavior of the homoclinic trajectory
describing the hadron in phase space. When this trajectory
has a node, the corresponding solution is stable and does not
spread out in space. This situation is encountered in the de-
scription of nerve impulses.?” The approach has not as yet
been implemented in QCD gauge theory. However, solu-
tions of this type do exist in chiral models (“‘skyrmions’*®)
and in gauge models operating with effective (model) La-
grangians. An example of a solution of this type is provided
by the “field-theoretic” bag.® We note (and this will be use-
ful below) that the solution then has a relatively sharp
boundary which enables us to introduce a “surface tension”
energy for the bag. The collision between such objects is a
purely dynamic process, and the state that appears as a result
of the collision must also follow from the solution of the
corresponding (nonlinear) equations. However, the sto-
chastization of this state due to its instability under small
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perturbations is possible, and likely. Fractal structures*® can
also be formed. It is important to note that the characteristic
stochastization time is then determined by the parameters of
the equations, and need not be of the order of the mean free
path,”ie., t, > T .

It follows from the foregoing analysis that, for a wide
class of models,® collisions between hadrons lead to the for-
mation of homogeneous compressed thermalized matter
whose lateral dimensions and evolution times are related by

(2.3)

A~tymrtnen KT,

where K is a numerical factor of the order of unity.

The initial distribution of velocity, entropy, and so on,
is model-dependent, so that the experimental consequences
of the two models are in general different.

We note that the phase transition process is not very
sensitive to the initial state. We shall show later that analysis
of transition kinetics in different scenarios requires only in-
formation on the rate of cooling, which is already present in
(2.3). Since (2.3) is approximately valid for all models, the
phase transition picture is model-independent. It follows
that, to obtain a qualitative description of the phase transi-
tion, it is sufficient to approximate the cooling process by the
simplest scaling law (2.1).

3. PHASE TRANSITION IN THE QUARK-GLUON PLASMA

Theoretical analyses of the plasma «» hadrons phase
transition process has evolved mostly along three directions.

First, there is the so-called QCD lattice formulation.*°
This has resulted in substantial advances in the study of
QCD effects at finite (high) temperatures. A data base has
accumulated for pure gauge SU(N) theories (without
quarks). Let us briefly summarize the main results.*’ At the
temperature T = 200 4+ 50 MeV, matter undergoes a
phase transition with respect to confinement, where in
SU(3) this is a first-order phase transition (metastable
states have also been observed*?). When T'> T, the ther-
modynamic plasma parameters assume asymptotic values
(to within perturbative corrections'®) that are also satisfac-
torily reproduced by computer experiments (Fig. 1).

The energy density falls sharply for T < T . Analysis of
vacuum effects shows that the quantity (1/4) (e — 3p)
= |ey | »const (T) is equal to 0.5~1 GeV/fm>, which is in
agreement with theoretical ideas.

Recently, data for SU(N) theories with light (dynam-
ic) quarks have also become available, but they are only pre-

&y
obl__T8% ! 1
55 60 65 /72

7z

FIG. 1. Dependence of the energy density € in SU(3) [in units of the
asymptotic value £s5 (T*)] on B ~' = 6g° < T /A, (taken from Ref.
42). Broken line represents the perturbative evaluation of £( T,g%); solid
line corresponds to the “ideal” ¢/ T*. eqy, and £y are the critical values
of the energy density in plasma and the hadronic phase, respectively.
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liminary and mutually contradictory. The character (type)
of the phase transition remains unclear (a more detailed
analysis of the situation can be found, for example, in Ref.
41). For the moment, the results presented above must serve
as reference data for phase-transition models.

The second direction involves studies of nonperturba-
tive QCD effects in vacuum polarization and screening,*>44
We cannot pause to examine these problems in detail here
(see, for example, Ref. 45).

Finally, the third direction involves phenomenological
models of the phase transition. We shall now examine in
detail the bag model because it is closer than other models to
the hydrodynamic treatment of the phase transition.

3.1. Elements of the general theory of phase transitions

The character of any process involving a change of
phase is determined by two factors,*S namely, (a) the equi-
librium parameters of the phases, i.e., the choice of the sta-
tionary state and (b) the way the new equilibrium is ap-
proached.

The first problem is purely thermodynamic and in-
volves a choice of the most probable state (under the given
conditions). The second problem involves more detailed
properties of the system (in general, microscopic proper-
ties) and is treated in kinetics. Despite the different scales of
the two problems, they must be solved (or at least posed)
simultaneously, since otherwise much of the information in-
vested in the formalism of thermodynamics is lost.

Let us examine this in greater detail by considering a
system occupying a given volume V; the temperture T is
controlled from outside (extensive parameters)®. The ther-
modynamic description of the system is then based on the
partition function

Z(T, V)= 5 dre PH® g -1, (3.1)

where 77 (r) is the Hamiltonian and the integral is evaluated
over the entire phase space. We then have

F(T, V)= —TInZ(T, V)— free energy,

e= — lim 1 e In Z (T, V) — energy density,

Voo 4 aB (3.2)

p= lim % In Z(T, V) — pressure.
Vo0

On the other hand, the theory of phase transitions frequently
employs the partition function density Z(7, ¥; y) which
involves the order parameter y such that

2. V)= [ Z (T Vi p= [P aydr r—r ()

= xp (—BFumen (1)) § dxexp [ —P (F () = Frnan (0)].

(3.3)
Since F is additive, the argument of the exponential under
the integral sign is proportional to ¥(y — )%
F(I, Vy=—(lim ) In Z(T, V) =F (x) 1+ 0 (V' In V).

Voo

(3.4)
The equilibrium value of ¥ corresponds to a minimum of free
energy, and is the only one to survive as V'— .

The quantity Z(T, V; y) plays a fundamental part when
F(y) has several extrema of which one corresponds to true
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FIG. 2. a—Dependence of the free energy density F(T,y) on the order
parameter y for different temperatures; 7 |, —thermodynamic limit of
existence of phase II, T —equilibrium transition temperature, 7} —
thermodynamic limit of existence of phase I. b—Singularities of the
partition function Z( T,s) for different temperatures: T, > T, T, = T,
Ty<Tc; B=T"'

equilibrium and the others to local equilibrium or to meta-
stable states. It is precisely this situation that corresponds to
the phase transition. Figure 2a shows F(7, ¥; y) plotted asa
function of y for different temperatures, typical for first-
order transitions. The temperature 7 corresponds to the
phase transition, i.e., to the coexistence of phases. For tem-
peratures T < T< T1..,stateIis stable, but state II may be
metastable. For temperatures 7> T'{}, state IT isabsent. The
condition F; >F, is therefore necessary, but not sufficient,
for the I-II transition, and further factors, sufficient to
overcome the energy barrier are required. On the other
hand, when there is no barrier, or when y; and y;; approach
one another and merge, the sufficient condition for the
change of phase is also a necessary condition. This situation
corresponds to a phase transition of order 2 or higher. Kinet-
ics has no independent significance in this case, in the sense
that it determines only the characteristics of the phase tran-
sition, and not the fact that it actually occurs.

The following remark will be useful at this point. The
quantity y can be taken to be any state variable (or set of
variables ), but it is desirable for relaxation in y to be slower
than in all other (integrated) variables. The choice of y is
thus dictated by kinetic considerations. We are essentially
dealing with the problem of selecting the main variable or,
equivalently, the process responsible for the particular ef-
fect. The correct procedure is known in mathematics as the
Tikhonov theorem.*’

The barrier in F determines the lifetime of the metasta-
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ble state: 70 7 ~ ' exp ( BF*). When y is chosen so that the
spatial homogeneity of the system is unaffected by the transi-
tion, then F * oo V'is very large and a simultaneous first-order
transition throughout the system us unlikely. The physical
picture of the transition involves the evolution of a focus
(bubble) of a new phase inside the old phase. The quantity
F* is then the work done in producing this bubble, and re-
mains finite in the thermodynamic limit as V'— co.

We have examined the question of the order parameter
in some detail because most papers devoted to the plasma
< hadrons phase transitions do not analyze the partition
function density in relation to this parameter.

3.2. Phase transition in a gas of bags

Among semiphenomenological models, the bag gas has
the distinctive feature that the plasma phase (a gas of free
massless quarks and gluons) is introduced into the model a
priori. Because of this, there is no chirality phase transition,
and the transition to the deconfinement phase constitutes a
growth of the individual bags, their coalescence, and the
eventual emergence of a single bag occupying the entire
accessible volume. This is most clearly implemented in Refs.
48-51 (see also Refs. 52 and 53).

The partition function in this case is taken to be

3

N
Ti‘ \ H {(2-[)3 dmy dvyo (my. v))

v j=lI

Z(T. V)=

}TMB

x exp [B(p24- m"")“”'l}

(3.5)

o)o(r-3u).

where N is the number of “objects” in the system, m; are
their masses, v; their volumes, and p; their momenta. The
quantity p represents the spectrum or the partition function
of one ““object”. It is taken in the form

o (m. v):%g—é(m—mﬂ)é(l,’—vn)—i—pg(m, v).  (3.6)

where the first term corresponds to pions; the factor 72/°
represents the pion charge state. At high temperatures, for
which T>m_, wecan putm, =0,v, =0.

Thesecond term, py, represents the bags. The spectrum
of a bag,” modified to represent unstable (inflating) bags, is
given by

T/4

pn(m, v) = An2v=3-= (2 _B) "D (y)

X exp {%[u (m — Bv)3 v]‘“} 3.7)

where 4 is a numerical factor close to unity, m — Bv = gpvis
the internal (thermal) energy of abag [see (2.2)],and aisa
model parameter (@ = 0 in Ref. 34). The factor ®(v) de-
creases with decreasing volume, and can be approximately
represented by @ (v) = @(v — V) where ¥, is the minimum
possible volume of the bag (but still sufficiently large).

The expression given by (3.5) becomes very much
simpler if we neglect the excluded volume (i.e., assume that

z v; € V). The partition function can then be factored and

J
takes the form

0. D. Chernavskaya and D. S. Chernavskil 267



Z (T, V) = exp (Vo (B)), (3.8)
where
5 e dm dvp (m, v)exp [ — B (p* + m?)1/2]
== () +e¢a(p).

(VES —:13— {3~ — the contribution of the 7-gas to pressure,

@ (B) =Sz (3.9
98(B) = | dvv=2-4¢ (B) exp (s (B) v)-
Vo
E)(ﬂ) = [53( f; )73)3/2 ’
and
sy=-g5r — BB~ (g #T*—B) , (3.10)

where the last expression represents the pressure in the bag,
written in terms of temperature,ande = (x 8 ~* + B) is the
energy density in the bag. The functions £(T), p(T) repro-
duce the plasma equation of the state: p = (¢ — 48)/3. At
low temperatures 7 < To=(3B/x)"* (such that s, <0)
@5 ( B,V,) is exponentially small), the equation of state has
a form typical for a pion gas: p = 1/3, £ = (1/3) T*. When
T> T,, the integral in (3.9) is found to diverge, and this is
the basis for Hagedorn’s idea®” of a “limiting” temperature.
However, the divergence is removed when the factor (¥

— 2 v;) is introduced into (3.5).
7

An elegant technique that allows us to take into account
the excluded volume (the so-called isobaric ensemble for-
malism) is developed in Refs. 50 and 51. The function Z(T,
V) is written as an integral over the complex variable s:
s+ico

\ dsesVZ (T, s),

g—1oo

Z(T, V)= - (3.11)
where the contour of i integration lies to the right of the singu-
larities Z (T, s), and
Z(T, s)= 5 dVe-<VZ (T. V)
0

(3.12)

is the Laplace transform of the partition function.

The positions of the singularities of Z (T, s) depend on
temperature (by analogy with moving poles in the Regge
formalism®). As ¥ — o0, only the right hand (leading) singu-
larity contributes to {3.11). Phase transition is interpreted
as the collision of singularities (pinch effect) at the tempera-
ture T = T, which is looked upon as the transition tem-
perature.

The function Z (T, 5) is reduced to the form

Z(T, s)=(s—7f (B, )
where

(3.13)

f(B. 9= 5 @08 dm dvp (m, v) exp [ — B (p* + mH) 12 — sv]
=/ (B, 8)+ 78 9
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fe (B, 8) = Ag 8 S dvv-1-%exp[—v(s—s,)], (3.14)
Vo
f (Br 5) = 5 B § Ww—va) e x+B  (3.15)

[ practically identical with s, ; see (3.9)].

The expression given by (3.13) contains two singulari-
ties, namely, a pole and a singularity of the form fg ( B,
$)oo (s —54)°T (Vy(s — s4), @) ats = 5,. The pole (we shall
denoteit by s,, ) isaroot of theequations,, — f( B,s,,) =0.

When a<0, the pole always lies to the right of the singu-
larity and, strictly speaking, there is no phase transition.
When a > 0, the function f5 ( 5, 5) is finite at s = s,, and
phase transition is possible. Figure 2b shows the graphical
solution of the equation s,, —f ( B, 5., ) = O for the three
temperatures T, > T, T, =T and T3 < T

For T = T, the leading singularity occurs at s = s, and
corresponds to plasma. For T = T , the pole and the branch
point coincide (not shown in the figure). The precise value
of T . is set by the equation

$q(T0) =52 (TQ) = fo (T, $q(T0) = | —re—.

Vo

(3.16)

Forlarge Vyanda > 0, wehavefy (Tc,5, (T'¢))-0,ie, T¢
=[3B/(x —1)]"*is a good approximation to T'c. When
T,=Tg¢, the pole at s = 5, ( ) lies to the right of s, ( B)
and s, ( B). When T, < T, the pole s, approaches s,. ( #),
but always remains greater than the latter.

We can now use (3.5) to analyze the partition function
density for its dependence on the order parameter y, which is
conveniently taken to be the ratio of the bag volume v to the
total volume ¥V (y = v/V). The partition function density
can be written in the form

: ) N oo N
Z(T, V; 9= z 2] Mew) (v=3v)
N=1 h=1 Vo js=h =1
N R N
- 0 (V— 3 uj) dvjo (vy) (V—— 2 vj—vh)
j=1 ik
- 1 il 1 "
B3 5 o i (- 30)
N k=1 P
R N-1
x oy (t—2 %), (3.17)
=1
where
6(v)Es.«é(v—vn)+$(ﬁ)v‘i'“9 (v=Vy e (3.18)

For small y, a large number of the objects contribute
significantly; the density Z(y) decreases with increasing y

(Ref. 51), and 2 x; —0. For large y, the principal contri-
bution to the pajrzl'llon function is due to the ¥ = 1term, and
Nil x ; = 0. Thus, approximate information about the na-
él;rle of the function can be obtained by analyzing the factor

oy (t—)
=[50 (0 + ¢ (B) 11720 (1 — ) €T (=), (3.19)
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which corresponds to the contribution of one bag of arbi-
trary volume. When T2 = T, there are two maxima,
namely, one for y— 1, which corresponds to pure plasma,
and the other for @ ~y,, which corresponds to the pionic
fluid.

The minimum of (3.19) as a function of y occurs at
X = Xmin = (1 + @) (sq V) ~'. At the temperature T, (for
which s, = 0), we have Y, — 1, and the two extrema co-
alesce and vanish. All that remains is the extremum corre-
sponding to the hadronic fluid. The temperature T} is the
analog of T of Fig. 2a. For T=Tc{l + [(1+a)/
(x5 ] }'*=Tlm we have Ypmin = X, i€, the maximum
that corresponds to the hadronic fluid vanishes in the range
X~ <x < 1. This temperature is the analog of T};, of Fig. 2a.
The maxima of the partition function density in v correspond
to minima of free energy, and the barrier between them cor-
responds to the minimum of Z( x). The presence of these
extrema at T~ T - indicates that we are dealing with a first-
order transition. To conclude this Section, we note the fol-
lowing points.

(a) The excluded volume and the unstable bags
(u# m/4B) are fundamental to the model.>! A phase transi-
tion cannot be described in a self-consistent manner without
them.

(b) Fortemperatures TS T, for which the leading sin-
gularity is still the pole s,, ( ), the system is actually in a
mixed phase in which bags and pions exist in dynamic equi-
librium. The bags “breathe” (some contract, others ex-
pand); this ensures that the elasticity and, correspondingly,
the velocity of sound, are small in this state (¢, »0). The
equation of state of matter is

p=F"sm (B) > pc. 5= -0

en <o — 5 om (B) < eq: (3.20)

which is qualitatively different from the case of “pure”
phases.

(¢) The above approach is correct in the thermodynam-
ic limit as ¥— «. Important effects such as, for example, the
existence of metastable and “pure” states are then no longer
relevant. Actually, in an infinitely large system, the proba-
bility that a focus of extraneous phase will not appear any-
where is exceedingly small. Pure states must therefore pro-
vide a small contribution to the total partition function. In
reality, the volume of the system is finite, or even not very
large, during the hydrodynamic expansion stage. The proba-
bility that a pure state will arise in this case is then not small.
Moreover, it depends on the kinetics of the process, and may
be significantly greater than one would expect from the anal-
ysis of the equilibrium partition function. The question
whether these effects are taken into account within the
framework of the above method requires separate examina-
tion. We note, in particular, that the partition function (3.5)
contains only simply connected bags, i.e., it does not contain
bags with cavities filled with hadronic matter. This “mirror
asymmetry”’ affects the description of the transition in su-
percooled plasma whose physics involves precisely such ob-
jects.

The above procedure can be used to describe the kinet-
ics of metastable states by including in the partition func-
tions not only the leading term, but also terms that vanish in
the limit as ¥ — o0
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Z@I V)= (T, V)1 mene’n fcge’a 4 cpe'm?,
J
(3.20")

where ¢; (T, V) are coefficients whose values depend on pre-
history and tend to zero as ¥— .

(d) The MIT bag model does not take into account the
bag surface energy (which is not significant for large bags).
On the other hand, effects due to the nucleation of a bubble
of new phase, which determine the kinetics of metastable
states, are due to surface energy. Surface energy has a clear
physical significance in “field-theoretic” bag models® (inter-
action of internal fields with nontrivial ambient vacuum)
and is given by c=wB>/%, where o is of the order of unity
(see also Ref. 61).

The expression for the bag mass now assumes the form

m == gpv -+ By + o3, (3.21)

Changes in the partition function thus reduce to the replace-
ment of s, v with (s, v — gv*’?), which does not affect the
position of the singularities, but becomes important in two
ways. First, the function f ( 53, 5), remains finite at s = 5,
independently of . The first-order phase transition will
therefore take place for any value of a. Second, surface ten-
sion affects the position and size of the minimum of the den-
sity Z (), and this is accompanied by an appreciable expan-
sion of the temperature range within which metastable states
exist.

3.3. Kinetics of phase transitions

We must now examine the realization of any particular
state. The result will depend on initial conditions and on
kinetics. First, we recall the fundamentals of first-order
phase transitions. The transition rate is related to the proba-
bility that a focus (or bubble) of a new phase will appear.
The free energy, or work for this to happen, is given by

A= (p1—p1n) —g—nRSr; 4dnoR2. (3.22)

where R is the radius of the bubble, p; and py; are the pres-
sures corresponding to phases I and 11, respectively, o is the
surface energy density, given by ¢ = wB?/*, and & will be
looked upon as a phenomenological parameter.

When p; — p;; =Ap >0, both terms in (3.21) are posi-
tive, and 4 — « as R increases. This means that phase II is
thermodynamically unfavorable, and the bubble collapses.

When Ap <0, the quantity 4 has a maximum at R
=R, =20/|Ap|. It is readily verified that the state of a
bubble of size R = R, is unstable: a small increase in the
radius leads to a further expansion, whereas a small reduc-
tion leads to collapse. The quantity F* =4 (R,,) = (167/
3)a’/|A p|? is the energy of a fluctuation that is necessary
and sufficient for a transition from the metastable to the
stable state. The probability (per unit time) that this fluctu-
ation will appear is

W, oo 1pie-FHT,

(3.23)

where 7 ~ T ~!is the thermal fluctuation time. The lifetime
of the metastable state (or, equivalently, the time taken to
form a transition focus) is

7e = W3 en T1eFH/T, (3.24)
In equilibrium, i.e., for 7= T, we have Ap =0, and the
transition continues for an infinite time if ws0. When
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@ = 0, there is no barrier, and the nucleus forms in a time
Tc ~T & ! even near equilibrium. When the barrier in F* is
not zero, butis small, so that F * ~ T, the lifetime of the meta-
stable formation is of the order of the fluctuation time
7; ~ T & '. This means that the question

16m as

3 TART = 1 (3.25)
can be looked upon as the condition for a spontaneous phase
transition from the metastable to the stable state. The transi-
tion itself is explosive in character under these conditions.

This approach is fruitful for the hadrons « plasma
phase transition, despite its schematic nature:** important
qualitative conclusions can be drawn by introducing a single
phenomenological parameter into the theory. The proper-
ties of supercooled metastable plasma must then be analyzed
in terms of the “mirror” picture (singly-connected bubbles
of hadronic phase in plasma), which was discussed above.

Analysis of (3.23)-(3.25) leads to the following pic-
ture of the behavior of the limiting temperatures with the
parameter = ¢/B*'* (Fig. 3b).

(a) For w~10""! (¢<B**-0) the spontaneous ha-
dronization temperature is T3, ~T¢c [1 — (7/30%)'?],
and the spontaneous ionization temperature is 7§,
~T (1 + @?), i.e., the temperature interval within which
supercooled plasma can exist (for a given @) is wider than
the AT for superheated hadronic matter.

(b) Negative plasma pressure for T < 0 does not in itself
ensure spontaneous hadronization when o is not too low
(@22X107").

(¢) The value w =w* ~0.3 is critical: there is no sponta-
neous hadronization temperature w > @*; supercooled plas-
ma can exist up to T, = 0. This is so because W, has a
maximum as a function of temperatureat T=T* =0.57 T ¢
(see Fig. 3a), and the position of this maximum is indepen-
dent of w; the hadronization probability falls for T, < T'*.In
the absence of reliable data on , we can take T*
=T! (w*)=0.57 T as a reasonable estimate for the

lim

wir)

Ll e )

FIG. 3. a—Probability of formation of a nucleus of hadronic phase as a
function of the dimensionless temperature w = T, /T ¢ of supercooled
plasma; curves /-3 correspond to different values of the parameter w:
w,; <w* <w,. b—Dependence of the limiting temperature of plasma and
of the hadronic phase, T, and T}, on the parameter w.
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spontaneous hadronization temperature of supercooled
plasma.

Our discussion thus far leads to the following conclu-
sion: the transition plasma < hadronic phase is a first-order
transition in the bag model.”' This is indicated by the pres-
ence of the different singularities that correspond to differ-
ent phases, and by the presence of extrema on the partition
function as a function of the order parameter. This means
that metastable states and the associated hysteresis phenom-
ena can arise in the course of transitions (both forward and
reverse).

We now turn to the realization of these phenomena dur-
ing the hydrodynamic evolution of plasma.

4. HADRONIZATION IN THE HYDRODYNAMIC INTERACTION
PICTURE

The possibility of incorporation of phase transitions
into the hydrodynamic picture of interactions between ul-
trarelativistic nuclei (hadrons) is inherent in the formalism
of hydrodynamics. Actually, the evolution of hot matter
formed as a result of collisions, must satisfy the following
conditions’:

(1) conservation of the energy-momentum tensor

(w, v==0, 1, 2, 3),
(4.1)

where £ and p are, respectively, the energy density and pres-
sure in the rest frame of the element of matter, and # * is the
hydrodynamic velocity of the element {y; ¥ v};

(2) conservation (or nondecrease) of entropy S

8,Tp=0, Ty=(e+ p)uru’— pgw

O (sut) >0, s=EP (4.2)

where s and T are, respectively, the entropy density and tem-
perature in the rest frame.

To the above set of equations we must add the equation
of state of matter, which, in this context, appears as an addi-
tional condition or a free parameter. Two-phase matter can
be described by introducing a discontinuous equation of
state. We know in advance that this leads to the development
of discontinuous processes against the background of the
state formed during an early stage of hydrodynamic expan-
sion (i.e., well away from the phase transition region). It is
convenient to take for this stage the scaling regime of expan-
sion discussed in Section 2. We recall that

s __( T )3_Tln
sin \Tm T

(4.3)

‘L' P~ _.1—
™ Tin

Before we examine the effect of the two-phase state of
matter on this regime, let us consider steady-state transition
processes.

4.1, Steady-state theory of combustion of a continuous
medium

Steady-state regimes of hydrodynamic evolution of
two-phase matter are well-known in the theory of combus-
tion of continuous media.?>>> Let us illustrate the character
of these regimes by a simple one-dimensional model. Consid-
er an element of volume traversed by a phase-transition front
that takes the medium from the initial phase / to the final
phase f (Fig. 4).

We shall assume that (a) both media are homogeneous,
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FIG. 4. The front of 2 model discontinuous process.

(b) the transition front has an infinitesimal thickness, and
(¢) all processes are steady-state ones.

The hydrodynamic equations for this process yield the
conservation laws for the separation boundary. In the frame
in which the boundary is at rest,

(e -+ p)yyivi = (e + p)r vivrs

, Y , 4.4
(g4 )y vivd =+ pr= (e 4+ P)e VIV 4 10 (44

which is readily solved for the relative velocities of the two
flows:
&1 Py

2 P1— Pt
&1+ pt

Pi—pt
of = Pi—pr
1—E&f

Ej—E¢

&1 pr

2
vr= .
€r—Pi

(4.5)
The formulas given by (4.5) are valid for any discontinuous
process, so long as we have not specified the equation of
state. There are, therefore, two distinct cases, namely, v; < vy
and v; > v;. The physical difference between them is particu-
larly clear in the rest frame of phase /. In the first case, the
final phase flows away from the transition front (it is evapo-
rated from the surface), and the process is referred to as
deflagration. In the second case, the final phase moves in the
same direction as the front, and effectively exerts a pressure
upon it. This is referred to as detonation or explosion.

Turning now to the specific question of hadronization,
we consider the equations of state of the ideal plasma (para-
metrized in accordance with the bag model) and of the ideal
gas of the lower hadronic states (pions; see Fig. 4). For
phase i (i = g) we have

1

gq=¥%ql*+ B, Pg=-73 (eq—4B); g~ 12. (4.6)
For phase & ( f=h),
1
E‘h?T‘lXﬂ;. ph:r—?eh.
g = % — velocity of sound, - 3, = 1.

The curves cross when p,, (T) = p, (T), and the point inter-
section is interpreted as the equilibrium phase transition
temperature

Te = ( x-:i'l B)1M'

Agreement with lattice QCD*' can be achieved by assuming
that T =200 MeV and B~1 GeV/fm®. The expression is
given by (4.5) and the condition for increasing entropy now
take the form

N —en—4B  3ep--eq—4F

Vq =g eq— &n 3eq—ep

i 1 eq—en—48 3eq+¢€n 4
™8 Teg—en 3en —eq—4B (4.7
o1 S (3_“q+ih__)2

1 z o 3en 4-&q — 4B

These conditions determine the range of values of £, &, for
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FIG. 5. Allowed phase-transition states. Arrow shows A-D type transi-
tions.

which the process is allowed both thermodynamically
(AS'>0) and kinematically (0<v2,<1). The allowed re-
gions are shown shaded in Fig. 5. In one of them, v, <v,,,i.e.,
deflagration is possible, whereas in the other, v, > v,,, which
corresponds to the explosive process. The two regions are
separated, i.e., there is a range of £, and, correspondingly, of
T,, in which both processes are forbidden. Let us examine
them in further detail.

Deflagration is a quasiequilibrium isothermal transi-
tion. The range of temperatures T, (and values of £,) in
which it is kinematically allowed is very narrow T,
2T, 2Ty Thax =T, Ty=0.98 T (T, corresponds to the
point £, = 4B, £, =0, and p, = 0). The process proceeds
very slowly: the transition-front velocity lies in the range
0 <vr <0.04c5 [zero velocity corresponds to the dynamic
phase equilibrium p, (T) = p, (T)]. Moreover, deflagra-
tion is accompanied by a change of volume: the volume of the
hadronic phase exceeds the volume of the plasma by an order
of magnitude (by a factor of ~12). This means that the
deflagration process is possible if the initial plasma element
has vacuum adjacent to it (deflagration on the surface of the
system). At any rate, supercooling of the plasma down to
T, < T, prevents deflagration.

Explosion is a nonequilibrium process whereby super-
cooled (T, <T§ = 0.53 T'¢. ) metastable plasma undergoes a
transition to the superheated hadronic phase with 7', > T'}
= 1.8 T'. The transition front moves very rapidly: v; ~ 1. In
the system in which the plasma is at rest, the hadronic phase
moves in the same direction as the phase separation bound-
ary. As a result, the hadronic phase presses against the
boundary, and its volume is significantly smaller than the
initial volume:

v 4 (ey—B) 9

v_:: Zend e, —4B S5

The range of values of ¢, £, that are allowed in the case
of explosion is much wider than for deflagration. The point
£, =1.2B, £, ~6.5B is a special one and corresponds to the
Jouguet condition v, = ¢g. When the Jouguet condition is
satisfied, the process is an ‘“‘evolution” according to Lan-
dau.*®

It is clear from the above analysis that both stationary
regimes are possible not only in bounded intervals of €, and
£y, but also under strictly defined kinematic conditions. In
particular, they cannot develop in the longitudinal direction
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of plasma expansion, since the velocity of the cooling front
(T = const surfaces) relative to the incident flow is not
equal to the velocity of the discontinuity under scaling con-
ditions, either in deflagration or in the explosive state. The
cooling front moves faster than light because cooling of the
individual elements is causally independent. In principle,
the evolution of stationary explosive processes in the lateral
direction is allowed, but it must be considered against the
background of longitudinal expansion, i.e., under inhomo-
geneous and nonstationary conditions. It is not clear a priori
whether deflagration, which is essentially a slow surface
phenomenon, can play a part in the hadronization of the
system when

(A) the system is small and volume effects are compar-
able with surface effects or

(B) the cooling process is much slower than the ha-
dronization process, 7, € 7Teyp, i-€., it may be considered that
the phase transition occurs under equilibrium (isothermal)
conditions.

On the other hand, the explosive process is possible if
cooling occurs much more rapidly than the evolution of the
explosive focus. There are also two further possibilities:

(C) the time for the explosive focus to evolve is relative-
ly long for any T, < T (down to T, = 0); the number of
individual foci should then be small and effects associated
with their growth should not overlap, and

(D) the probability that a focus will form depends on
T, in such a way that it has a sharp maximum for a certain
T, = T *; astationary collective process is then unlikely; ha-
dronic flows arising from different foci mix and produce ef-
fective boiling of the entire plasma volume.

Thus, analysis of the above simple model problem en-
ables us to identify four possible phase transition scenarios
based on hypotheses (A )—(D). The realization of these hy-
potheses will be discussed later. For the moment, we note
that the replacement of the above (ideal) equation of state
with more realistic equations, i.e., equations that take into
account interactions in the plasma and the spectrum of high-
er hadronic states, '® will affect the structure of the diagram,
but only qualitatively; the conclusion that there are two dif-
ferent regimes, i.e., “slow” and explosive, is valid for any
matter.

It is also important to note that the abundance of possi-
bilities (A )—(D) is due to the assumed possibility of plasma
supercooling, i.e., the idea of the barrier-type phase transi-
tion.

4.2. Hadronization scenarios

A. Hadronization by deflagration was proposed in Ref.
27 and, later, by van Hove within the framework of the string
model.?? Since this is a surface phenomenon, it can occur
under special initial conditions (when surface effects pre-
dominate). This situation arises if, as a result of collision, the
strings connecting quarks in hadrons become tangled, and a
loose ball of string is produced. In the course of expansion,
the current tubes are compressed and stretch, and the vacu-
um islands between them expand, i.e., the medium takes the
form of a net of strings. In the critical region T~ T ¢, string
tension prevents further expansion and ruptures the individ-
ual strings. These two factors ensure that the plasma splits
into a number of fine (R ~1 — n fm) drops that have differ-
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ent rapidities (8y~1) and cool very slowly. These drops
subsequently evaporate independently of one another, pro-
ducing strong fluctuations in the rapidity distribution of sec-
ondary particles. When a drop supercools downto TS T'¢,
this may result in a state involving two discontinuous pro-
cesses that follow one another on the surface of the drop.?
One of them is a shock wave that heats the supercooled plas-
ma to TS T and the other is the usual deflagration front.
The rate of the process need not be close to zero, but v; is
nevertheless less than ¢g. The principal manifestations, or
“signals”, of this scenario are: (1) fluctuations (peaks) in
the distribution dn/dy and (2) an “effective temperature”
that is responsible for the formation of the mean transverse
momentum of the particles, which is somewhat lower than
T but greater than m_: T.o = T X2~ '/* which corre-
sponds to { p, ) $0.4 GeV/c.

B. The scenario involving passage through a mixed
phase®*2¢is realized for a smoothed phase transition (with-
out an energy barrier) and/or infinitesimally slow cooling.
The hadronic gas and plasma islands (drops) can then coex-
ist in equilibrium. Supercooling does not occur, and the tem-
perature is maintained at a constant value close to T (due
to the release of the latent heat of transition and recombina-
tion). We may consider this to be a realistic regime because
cooling occurs relatively slowly (according to the scaling
law) at temperatures near to T . Thus, the fall in energy
density for &4 to £y at the expense of longitudinal expansion
alone requires a time 7y, that is greater by an order of magni-
tude than that for cooling from £;, t0 £q: 7y /7 =x** = 10.
In other words, if the characteristic time taken to form a
hadron is 7; ~ 1 fm < 74, the system spends much of its time
in a mixed state.'” Moreover, dissipative effects are large in
this region, due to the transient velocity coefficients (in par-
ticular, it is shown in Ref. 56 that volume viscosity is negligi-
ble both in the plasma and in the hadronic gas, but becomes
significant in the mixed phase). Dissipative effects ensure
that the expansion process may be accompanied by an in-
crease in entropy.

This regime is thermodynamically special because c2

= dp/dc —0. The result is an instability to the development

of shock fronts (“‘evolving” front>® when v; > cg >0). The
instability can manifest itself in a discontinuous transition to
a hadronic state of lower pressure (rarefaction shock-
wave)'" accompanied by collective lateral motion. All this
ensures that the mean lateral momentum of the particles
increases slowly as a function of ¢, in the range ¢y,
<€ <Eq, remaining close to ( p, (Tc)) (Ref. 25). This
differs from the behavior of { p, ) for hadronic matter, and is
therefore the phase transition signal.

We note that the concept of the phase transition front
between the mixed phase and the hadronic gas is largely ab-
stract because the mixed phase itself contains a multitude of
phase separation boundaries (fractal structure). It would
seem that the approximation of an infinitesimally thin front
is not valid in this situation.

C. The “explosive bubble” scenario® can be realized
when the energy barrier separating the phases is so high that
the development of a fluctuation that takes the system to the
new (stable) phase has a low probability at all plasma tem-
peratures: T, > T, —0. The dynamic regime corresponding
to a growing bubble of this kind is stable®*-” if the Jouguet
condition is satisfied on the transition front: the hadronic
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flow velocity relative to the phase separation boundary is
equal to the velocity of sound c¢g. Hadronic matter behind
the phase-transition front is then heated to 7'y =~2.5T - and
presses against the front; a rarefaction wave propagates
away from the front and toward the center of the explosive
focus, so that a normal hadronic state at rest (7' ST ) is
established at the center. The boundary between the resting
and excited hadronic gases constitutes a weak discontinuity
that propagates with velocity ¢g behind the explosion
front.'? These processes ensure that almost the entire energy
stored in the deep metastable state is transformed into the
energy of collective transverse motion of the hadronic gas,
which leads to a substantial increase in the mean transverse
momentum of the hadrons (and a certain increase in en-
tropy). The “signal’’ that this scenario has been realized is
therefore anomalously large® { p, ) 2 1 GeV/c and is corre-
lated with strong fluctuations in the rapidity distribution of
secondary particles. The effect should have a threshold, i.e.,
it should appear discontinuously when energy densities suf-
ficient for the plasma formation are reached: £,, >£,.

D. The ““boiling” scenario is conceptually close to the
explosive scenario, but exhibits a number of substantial dif-
ferences: the process is not a steady state nor a collective one;
the concept of a macroscopic front cannot be introduced;
and the closest picture that we can imagine is the instanta-
neous boiling-up of the plasma volume.***°

This scenario is based on the assumption that the segre-
gation of the hadronic phase is energetically forbidden up to
a certain temperature 7 ¥ at which the barrier separating the
phases can be overcome by energy fluctuations in the system
(E;~T). When this happens, a large number N of foci of
hadronic phase is likely to form and grow rapidly in a non-
stationary manner. Kinematic constraints do not apply to
them. A single collective motion cannot then be established:
the independently expanding hadronic bubbles produce a
cellular structure in the hadronic phase, which is then de-
stroyed by collisions between individual microfronts (bub-
ble walls) and by mixing of hadronic flows. All the processes
become turbulent at this stage, which is typical for the end of
a metastable state in any physical process. The result is an
averaging of €, over the volume of the element, and an in-
stantaneous (7, ~/N ~') transition toanew (hadronic) state
of equilibrium. The energy density in the given volume is
conserved, and the temperature of hadronic matter substan-
tially exceeds T'. The entire process is accompanied by an
increase in entropy: when T*=0.6 T (see Section 3), we
have

Ty=T% x4+ B(T* )i 1.57, (4.8)
gh . T}’] _ 1 1 TC 31 ~ =
gq—W*W[H?(T*) s 49

It follows from (4.9) that this process requires a partic-
ular degree of supercooling, i.e., T, < T=0.75 T ¢ (£, =2B)
(see Fig. 5). The physics of the initial boiling-up stage is
related to the striction of the volume ( V', V), which ii pos-
sible only for £, <ey; the process is forbidden T, > T for
(AS(T) =0).

We note that, in this scenario, the phase transition pro-
cess does not affect the “external” parameters of the hydro-
dynamic fluid element (volume F or velocity « # ), but sim-
ply increases the temperature and entropy in the element. In
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other words, the evolution of hadronic matter after the phase
transition simulates the absence of plasma in the initial state
and the evolution of pure hadronic matter. The important
point is that the initial temperature of this ‘‘simulated mat-
ter”, T,,, is greater than both 7% (7,, ~2.5 T3 ) and the
initial temperature 7", of the actual hadronic phase corre-
sponding to the given £,,: T, =~1.33 Th .

Thus, in thisA scenario, the phase transition “‘signal” is
the rapid rise in § (and, hence, in multiplicity) and in the
mean transverse momentum { p, ) as compared with the
analogous characteristics for the expansion of pure hadronic
(initially) matter. Moreover, the turbulent stage of the
phase transition process should be accompanied by strong
fluctuations, both in the distributions of secondary particles
over p, and in the dependence of { p, ) or g, .

However, it is possible that the reverse phase transition
will begin in the heated hadronic gas, i.e., fine drops of hot
plasma (T, = 1.5T ) will appear once again. This process
is again accompanied by volume striction. If the system were
to exist for an infinite period of time, an equilibrium (for
given £) would be established in the form of a mixed phase.
In the present case, this state is reached as a result of damped
periodic oscillations. The formation of a hot hadronic phase
from highly supercooled plasma is the first stage of this peri-
odic process. Detailed examination of this interesting and
separate problem is outside the scope of the present review.

In practice, the more probable scenario seems to be
that, as a result of intensive lateral motion, the system splits
at the turbulization stage into noninteracting objects (had-
rons and fine plasma drops) . In other words, matter “har-
dens™* at the temperature of 1.5T -, which corresponds to
(p,)=~0.75 GeV/fm* (whatever the dependence on ¢, ),
i.e., this boiling evolution results in a plateau of { p, ) after
£, =£&o. Wenote that the relationship between ¢;,, and dV /
dy|,is disturbed in this situation because the entire process is
accompanied by a substantial increase in entropy.

To conclude our review of possible forms of phase tran-
sition, we note that the real hadronization process may pro-
ceed in the hydrodynamic system in a much more complicat-
ed manner than indicated by scenarios A-D: different
hadronization mechanisms may -uperimpose. For example,
the following situation is quite realistic. The central region
( y =0) cools rapidly and explodes. Some of the explosion
byproducts (hot hadrons) penetrate lateral regions, heat
them, and slow down the cooling process. The result is that
their hadronization is due to the soft mechanism (C + A,B).
Or: the boiling process results in three-dimensional expan-
sion and the “hardening” of hadronic matter on the periph-
ery of the system. The mixed phase appears at the center,
expands, and transforms into cold hadrons (D -+ B).

In either case it is very difficult to predict the observable
characteristics of secondary particles. All that can be done is
to suggest that they (and in particular {p,)) must lie
between values typical for the pure scenarios A-D, but closer
to the most probable (competing) scenario under these con-
ditions.

The questions as to which of the scenarios A-D is the
most probable can only be determined on the basis of a kinet-
ic analysis. Before turning to this question, we note that sce-
nario B, i.e., equilibrium transition with the formation of the
mixed phase, is the most popular among theoreticians.24-2¢
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FIG. 6. Mean transverse momentum { p, ) as a function of the energy
density £, in the initial state. Points represent the JACEE experimental
data.>® Curve 7 refers to purely hadronic matter, 2—mixed state of plas-
ma (theoretical calculations®). Broken curve—probable character of
the function { p, ) ~ £, with allowance for nonequilibrium phase transi-
tions™ (see text).

There are several reasons for this. First, the deflagration
mechanism comes into play much earlier (7~ 7 ¢ ) than the
explosive mechanism (75 0.5 T ). Inother words, Cand D
are possible only when B has already occurred. Second, the
size of the phase barrier was estimated on the basis of general
considerations and was regarded as “not too high”,?* which
meant that the turning on of B could be considered as not too
slow. In the bag model with surface tension, however, the
size of the barrier depends on the phenomenological param-
eter o (see Section 3). We note that indirect estimates®’
show that this parameter can be quite high (v ~0.5 — 1),
which corresponds to a very large barrier. Finally, the ener-
gy density ¢;,, attained experimentally (so far) is often esti-
mated as &,, ~2—4 GeV/fm>. This may not be sufficient for
the complete ionization of matter, but covers the mixed-state
range £ <&, <£q, 50 that the “signals” indicating the for-
mation of the mixed state should be perceptible.

A detailed analysis (based on a computer calculation)
of hydrodynamic processes in the mixed phase was reported
in Ref. 25. Maximum attention was given to the relation
(2.) 0dN /dy €, and to the distribution of different parti-
cles over the transverse momentum because the characteris-
tic behavior of ( p,) (slow increase in the range ¢y <&;,
< &g ) isthe principal “signal” indicating the presence of the
mixed state. Comparison of the results reported in Ref. 25
with experimental data®® (Fig. 6) showed, however, that
there was a large discrepancy between the proposed regime
and the actual values. This discrepancy can be ascribed to
the inadequacy of the expression

3 N

d
—_ v 2 _Lomat/2
in — 4nTln (pJ. T m) d

A7,
y :

¢ (4.10)
which is valid only on the assumption of constant entropy at
all stages of expansion and certain other effects.’” We note,
however, that the experimental points are in better agree-
ment with the qualitative effects of boiling or explosive

growth of the hadronic bubble.

4.3. Kinetic analysis of phase transition scenarios'¥

As already noted, the conclusion that a particular sce-
nario is realistic must be based on kinetic analysis, i.e., on the
comparison of the characteristic times for cooling, the
“turning on” of the hadronization process, and collective
hadronization. By the “turning-on” time of the transition
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process we mean the characteristic time 7; necessary for the
formation of the focus of the () phase. This is usually as-
sumed to be 1 fm. However, the kinetic analysis given in
Section 3 shows that 7; depends significantly on the size of
the barrier between the phases (~w) and on the tempera-
ture 7. In particular,

.

Tr~VVZl(Tq)~T(_:'—i—9Xp[ 1%’1 (7‘;1 )l/!‘ 1(1_(1:!;4)2 _l ,

(4.11)

where x = T, /T . is the degree of supercooling of the plas-
ma. The time 7; has a minimum as a function of the tempera-
ture (x), which corresponds to the maximum of W, (see
Fig. 3a) at x = 0.57 = x*. When 0 < 107!, the minimum is
broad (half-width A~ (30 @) ~*/2~1), i.e., the turning on
of the phase transition is equally probable for all tempera-
tures below T'. Under these conditions, 7; S 1 fm, which
agrees with the generally adopted estimate. We note that the
temperature 7'}l | for which the barrier in F * is comparable
with the energy fluctuation ( ~ T') is then close to T (see
Fig. 3b). However, this does not mean that hadronization is
an avalanche process (“boiling”) because this is forbidden
in the region T, > T=0.75 T by thermodynamic consider-
ations (AS <0). Only the equilibrium coexistence of phases
is possible in this range of .

For larger o, the probability distribution contracts rap-
idly (~w~%'%), and W, itself falls off as e = ', i.e., the nu-
cleation of the hadronic phase becomes probable only for
T, =T*. The limiting temperature is also reduced: T§
= T*atw = w*~0.3, where 7, = 1 fm, as before, but out-
side the region T~ T * we have
(z-—a*)*

Te(x) =TPeXP

(4.11%)

so that 7; exceeds | fm by orders of magnitude.

As o increases further, T} vanishes (the end of the
plasma phase does not occur until 7, = 0), i.e., the barrier
exceeds the energy noise level, and the probability that the
barrier will be overcome is always low.

Analysis of the function 7, (@, x) is thus seen to enable
us to assign an approximate range of values of  to each of
the scenarios A-D:

0 < <0.2—mixed phase.

o = 0.3—boiling at T=~T*.

o> 0.5—growth of single explosive bubbles [7;(x*)
»10fm].

More specific choice between the scenarios must be
based on a comparison between the rate of cooling and the
rate of hadronization of the system as a whole in each of the
four scenarios.

The rate of cooling can be obtained from (4.3):

Ax ~% T (%)q ~1 dm-% (—TT'CA)z 3, (4.12)
where Ar is the time spent by the system in the temperature
interval AT. It follows from (4.12) that the cooling of
(T, R T ) systems which are initially not hot occurs rela-
tively rapidly. Thus, the cooling from T¢ to T* occupies
A¥ ~5 fm, which is less than 7 (T ) when @ 2 0.25. In this
case, the working transition mechanisms are those associat-
ed with supercooling turbulent “boiling” or the dynamic
growth of combined bubbles. The choice between them is
dictated by the value of @. At this point, we may encounter a
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paradoxical effect. If, initially, ¢, ~¢£, (plasma close to the
mixed state), its hadronization under supercooling condi-
tions will occur rapidly and in a nonequilibrium manner.
The phase transition process “‘erases’ all the information on
the initial “soft” state ( p;, €¢;,),”’ the quantity { p )
evolves during the explosive transition stage and turns out to
be greater than the corresponding values for hadronic mat-
ter. In other words, the graph of { p, ) ~¢,, that is typical for
nonequilibrium phase-transition mechanisms (broken
curve in Fig. 6) shows a sharp (threshold type) increase at
energy densities &;, sufficient for the formation of the plasma
(£in =Eq ~4 GeV/fm?), instead of the “soft” behavior typi-
cal of the mixed phase (curve 2 in Fig. 6).

We note that this is valid for @ < 10~ !, i.e., when barrier
effects are negligible. We then have 7, (T ) =1 fm € A*; the
transition is necessarily of the equilibrium type and the rela-
tion { p, ) odN /dy €;, should reproduce curve 2 of Fig. 6.

“Soft” phase transition mechanisms may come into
play during the cooling of hotter plasma, including the coex-
istence of phases and deflagration. Predictions are difficult
to make because of the competition and superposition of dif-
ferent phase-transition mechanisms that “mix”” effects typi-
cal of each of them.

Moreover, even within the framework of the nonequi-
librium scenario alone, the number of nucleating bubbles is
relatively small and is subject to considerable fluctuation.
Consequently, in the region above the threshold (g, R £q
~4 GeV/fm?), there are unavoidable strong fluctuations in
the observable quantities (dN /dy, dN /dy dp,, { p, ), both
in individual events and in the ensemble of events. In other
words, the “signal” from the plasma above the threshold is
the chaotic behavior of observable quantities or intermit-
tance.*” We note in this connection that there is considerable
interest in detailed information on individual events, includ-
ing in particular the data reported by JACEE group™
(where, because of relatively poor statistics, the values of
{ p, ) were analyzed without averaging over the ensemble of
events).

As g, increases further, the soft mechanism is more
likely to come into play, i.e., scenario B becomes more likely.
One then expects a reduction in ( p, ) and an asymptotic
approach to the equilibrium dependence on ¢&;, (broken
curve in Fig. 6).

Finally, the hadronization of very hot systems is domi-
nated by deflagration. The range in which this is significant
is limited by two factors, namely, (A7)4, is small, i.e.,
~5%107% (T, /T¢) fm, and the collective hadronization
time is large: (v $0.04 ¢ = 7, R 40) fm.

Comparison of (A7) 4.¢ with 7, shows that the deflagra-
tion scenario is realistic at ultrahigh energies (7, 230 T¢)
or for very specific (and rare) initial conditions.2°

Analysis of the dependence of the character of hadroni-
zation on the size of the barrier ( within the phenomenologi-
cal model involving the single parameter ) and on the ini-
tial conditions is thus seen to yield interesting information
on the behavior of the system.

5. CONCLUSION

The presence of plasma in the initial state does not have
an unambiguous effect on the hydrodynamic process: qual-
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itatively different scenarios of the phase transition to ha-
dronic matter are possible.

We emphasize that this ambiguity arises if the phase
transition is hard (first order), i.e., it involves the overcom-
ing of an energy barrier between the phases. It is only in this
case that hysteresis phenomena (metastable states of the sys-
tem) are possible and generate nonequilibrium (explosive)
transitions to hadronic matter.

A phase transition is of the barrier type in the bag model
when bag instability’’ and surface effects,>* are taken into
account.

The surface tension parameter w = o/B */* is currently
regarded as phenomenological. A more accurate theoretical
estimate is possible in the field-theoretic bag model,® i.e., in
the self-localized solution of the nonlinear field equations.
Further studies along this direction would seem to be very
desirable because the reality of any particular scenario de-
pends significantly on the value of w.

Scenarios based on the explosive mechanism of *‘boil-
ing” and explosive bubble growth, have common features:
the transition is accompanied by an increase in entropy
(and, consequently, in the secondary-particle multiplicity ),
and generates a surplus of secondary hadrons with high
transverse momenta. Experimental predictions for scenarios
based on the equilibrium transition (deflagration, transition
through a mixed phase) are qualitatively different: here
“softness” of the plasma state near the transition point®
manifests itself in a reduction in { p, ) as compared with the
hydrodynamic expansion of pure hadronic matter.

Which particular scenario is actually realized will de-
pend (for reasonable % 0.25) on the initial state of the sys-
tem (T,,, 7;,, and degree of homogeneity and ideality). We
emphasize that, for plasmas above the threshold (7, * T,
€in R €g ~4 GeV/fm?), the soft and hard phase-transition
mechanisms are found to compete. The onset of a particular
scenario is a probabilistic process, which leads to strong fluc-
tuations in observable quantities (d¥ /dy, { p, )). Phenome-
nasuch as intermittance®® may serve as a “signal” from plas-
ma above threshold. Equilibrium behavior (Fig. 6, curve 2)
may be expected for initially hot plasmas (&, > &, ). How-
ever, detailed predictions require more precise specification
of initial conditions, and these depend on the particular
model of colliding hadrons (nuclei) that is employed.

Detailed information on the evolution of plasma and its
experimental manifestations is thus seen to involve a wide
range of factors, including the model of the hadron, the theo-
retical analysis of the nature of the phase transition, and the
hydrodynamic evolution scenario. Hydrodynamic theory
may be regarded as the link between hadron models that are
close to it in spirit, and experiment.

The authors are greatly indebted to E. L. Feinberg for
fruitful discussions and for encouraging this research. They
are also indebted to I. V. Andreev, I. M. Gorenshtein, G. M.
Zinov’'ev, Q. V. Mogilevskii, and E. V. Shuryak for fruitful
discussions and interesting suggestions.

""Here and henceforth we assume that h = c = k = 1.

?We note, however, that there is evidence'"'>'” that nonperturbative
vacuum fluctuations are not completely suppressed inside the hadron,
i.e., “point” valence quarks are dissolved in the continuum. This will be
discussed in greater detail below.
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YHowever, we shall apply the ensuing analysis of the hydrodynamic pro-
cess to hadron collisions as well (see Refs. 18 and 35).

“See, however, Ref. 35.

*Note that 7, = (12 — A2)V2 = J2 Aj~Ry~ L

®It is precisely this point, that the time, gave rise to criticism of the Lan-
dau model.

"The very concept is no longer valid.

®The only exception is the string ( peripheral) model.

9'The conditions are chosen so that it is precisely this problem that is
considered in lattice calculations.

'%We note, however, that 7; is a nontrivial function of the temperature T’
and may exceed 1 fm by orders of magnitude in theregion of T~ 7' (see
Sec. 3).

"“The stability of rarefaction waves and the corresponding plasma ha-
dronization mechanism are examined in greater detail in Ref. 57.

2The above picture reproduces the solution of the classical problem of
gas combustion (detonation) in a tube closed at one end.>*

3t is usually assumed in applications that 7;, ~ 1 fm, which can also lead
to an incorrect estimate of ¢;,,.
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