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The fundamental concepts of the homotopy theory of defects in liquid crystals and the results of
experimental studies in this field are presented. The concepts of degeneracy space, homotopy
groups, and topological charge, which are used for classifying the topologically stable
inhomogeneous distributions in different liquid-crystalline phases are examined (uni and biaxial
nematics, cholesterics, smectics, and columnar phases). Experimental data are given for the
different mesophases on the structure and properties of dislocations, disclinations, point defects
in the volume (hedgehogs) and on the surface of the medium (boojums), monopoles, domain
formations, and solitons. Special attention is paid to the results of studies of defects in closed
volumes (spherical drops, cylindrical capillaries), and to the connection between the topological
charges of these defects and the character of the orientation of the molecules of the liquid crystal
at the surface. A set of fundamentally new effects that can occur in studying the topological

properties of defects in liquid crystals is discussed.
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1. INTRODUCTION

The physics of defects of order is traditionally one of the
most important fields of the physics of condensed media.
This is explained by the importance of the role of defects in
the course of different processes ( phase transitions, plastic
deformations, electronic processes, etc.). Defects in liquid
crystals (LCs) are no exception in this respect, as they affect
the manifestation of a number of optical, field, hydrodynam-
ic, and other effects.

The variety of inhomogeneous distributions in LCs is
extremely large. Here one can observe singular and nonsin-
gular features, linear (dislocations, disclinations) and point
defects (in the bulk: hedgehogs, and at the surface: boo-
jums), monopoles and solitons, and domain walls. Their na-
ture is closely connected with the character of the ordering
of the LC. Hence it is not surprising that historically the
deciphering of the structure of the fundamental types of LCs
was based on the polarizing-microscope study of structural
defects'; in individual cases such an approach is even more
informative than x-ray diffraction.>* Defects in LCs attract-
ed especial attention in the "70s, when sufficient experimen-
tal material had been amassed for generalizations, and it
turned out that the standard theoretical methods (like the
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Volterra process) clearly do not suffice—irresolvable para-
doxes arise.* Also the problem of classification of defects
proved extremely complex for the traditional methods in an-
other class of condensed media, namely, the superfluid an-
isotropic “liquid-crystalline” phases of helium-3 discovered
in 1972.

As was first systematically shown by Volovik and Min-
eev>™’ and by Toulouse, Kléman, and Michel,*'° an ade-
quate description of defects in liquid crystals and in other
condensed media requires introducing a new mathematical
apparatus. The theme here is topology, or more exactly, ho-
motopy theory."

Precisely in the language of topology it became possible
for the first time to associate the character of the ordering of
a medium and the types of defects arising in it, to solve the
problems of the structure of the defects, their stability with
respect to relaxation to a homogeneous state, of the laws of
decay and merger, and of behavior in phase transitions and
under the action of external fields. The key point in this ap-
proach is occupied by the concept of topological charge,
which is inherent in every defect. The stability of the latter is
guaranteed by the conservation of its topological charge.
The laws of conservation of such charges, analogously to the
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laws of conservation of electric and other physical charges,
regulate the decay and merger of defects, their creation,
annihilation, and mutual transformation.

The topological methods are being intensively applied
at present in the most varied fields of the physics of inhomo-
geneous distributions: in field theory, biophysics, astrophys-
ics, in studying superfluid liquids, magnetics, glasses, liquid
crystals, and other media. However, among all the listed
fields, a detailed experimental study of ordering defects is
currently possible mainly only for LCs. On the one hand,
this enables one to test experimentally the key tenets of topo-
logical theory applicable in physics as a whole and to pose
new problems for it, and on the other hand, to use defects in
LCs as models in studying other, less accessible media or
fields. In particular, studying the effect of nonseparation of
disclinations in biaxial nematics'® can facilitate solving the
problem of confinement of quarks in hadrons; monopole
structures in LCs'® make it possible to model the properties
of magnetic monopoles; there is much in common between
the processes of slipping of phase with participation of de-
fects in nematics and the non-steady-state Josephson ef-
fect.'® The importance of the study of defects in LCs also for
understanding processes in biosystems is indubitable.'’

We should consider the theory of defects in LCs based
on the topological approach to be a science already estab-
lished on the whole. A number of review'*® and popu-
lar®**® articles have been devoted to it. Despite the quantita-
tive growth of the experimental studies, the individual
results of which are presented in the well known mono-
graphs of Refs. 31-37, they as yet encompass far from all the
interesting and fundamental questions (the existence and
properties of solitons in LCs, chaining of disclinations, the
defect structure of the blue phase, the transformations of
defects of differing symmetry into one another, etc.).

Major attention is paid in this review to the connection
between the topological transformations and the experimen-
tally observable structural properties of defects in LCs. Sec-
tion 2 describes the general principles of classification of de-
fects as well as the fundamental methods of studying them
experimentally. Further on, defects for different media are
discussed, namely, Section 3 discusses uniaxial nematic LCs
(NLCs), Section 4 discusses biaxial NLCs, Section 5—cho-
lesteric LCs (CLCs), Section 6—smectic LCs of 4- and C-
types (SLC-4, SLC-C), and Sec. 7—columnar (non-
smectic) hexagonal LCs.

2. GENERAL CONCEPTS OF TOPOLOGICAL DEFECTS
2.1. Homotopy classification

The key concepts for classifying ordering defects are the
order parameter, the degeneracy space of the order param-
eter, the homotopy groups of the degeneracy space, and fin-
ally, the topological charge of a defect. The first two actually
describe the structure of the medium itself and the character
of its order. Thus, the order parameter can be defined as a
field (scalar, vector, tensor) fixed at each point of the system
and describing its state at this point. The region of possible
values of the order parameter that do not alter the thermody-
namic potentials of the system is called the degeneracy
space.’

In the general case the order parameter is a function of
the coordinates and maps the points of real space occupied
by the medium into the degeneracy space % . If the value of
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the order parameter is the same at all points of the medium
(corresponds to one point of the space &7 ), then the medium
contains no disturbances of order and is called homoge-
neous. But inhomogeneous distributions of the order param-
eter can be of two types: those containing singularities and
those without them. For a three-dimensional medium the
singular regions are either zero-dimensional (points) or
one-dimensional (lines) or two-dimensional (walls). These
are the defects. Whenever a defect cannot be eliminated by
continuous variations of the order parameter (i.e., one can-
not arrive at the homogeneous state), it is called topological-
ly stable, or simply a topological defect. But if the inhomo-
geneous state does not contain singularities, but nevertheless
is not deformable continuously into a homogeneous state,
one says that the system contains a topological soliton.®**
The topological stability of defects is governed by the
form of the homotopy groups 7; (%) of the degeneracy
space, whose elements serve as the mapping of i-dimensional
spheres enclosing the defect in real space into the degeneracy
space. The defects of dimensionality ¢ in a ¢ ’-dimensional
medium are classified by the group (%) with
I=1t"—1t— 1.0n the one hand, each element of the homo-
topy group corresponds to a class of stable defects equivalent
to one another apart from continuous deformations, and on
the other hand, to a certain topological invariant, which is
the topological charge of the defect. The homogeneous state
corresponds to a unit element and zero topological charge.
We shall illustrate the principles of the homotopy clas-
sification of defects with examples for two-dimensional sys-
tems having orientational (two-dimensional NLCs) and
translational (two-dimensional SLCs) ordering.

2.1.1. Defects in a two-dimensional nematic

As we know, a nematic amounts to a medium having
orientational order: it consists of axially symmetric mole-
cules oriented along some common direction n—the direc-
tor. Owing to the nonpolarity of NLCs we have n= — n.

In our model of a two-dimensional NLC the centers of
gravity of all the molecules lie in one plane, while the direc-
tor n makes the angle O<a<7/2 with the normal v to it. The
order parameter can be chosen either in the form of the unit
vector 7 of the projections of the axes of the molecules on the
plane, or in the form of the wave function ¥ = a exp(ip),
where @ is the azimuthal angle of the tilt of the molecules.
The free energy fof the system depends only on the modulus
a of the wave function and is degenerate in ¢:

f=41¥YP+BIYI[. (2.1)
The region # of all possible values of @ for which the energy
f takes on a minimum value is the degeneracy space of the
two-dimensional NLC. The form of # substantially de-
pends on the value of the modulus .

In fact, if 0 < @ < 77/2, then the phase @ can vary from 0
to 27 and the space £ is the circle S'!, each point of which
corresponds to a certain value of . When a = 7/2, the axes
of all the molecules lie in one plane and any two diametrical-
ly opposite points of S ' become identical owing to the nonpo-
larity of the NLC; such a circle is written in the form S '/ Z,,
where Z, is the group of residues modulo 2, i. e., the group of
the two numbers 0 and 1: 04+0=0,04+1=1,14+0=1,
1 + 1 = 0. Finally, if @ = 0, the space contracts to a single
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point. Inhomogeneities in the orientation of the molecules in
the layer of the two-dimensional NLC having a certain equi-
librium value of the angle of inclination @ = a, give rise to an
additional gradient term in the expression for the free ener-
gy:

f=A|¥|24B|¥|¢+K [VE]. (2.2)
Here K is Frank’s elastic modulus. If the characteristic scale
of inhomogeneity is much greater than the coherence length
&= (K/|4|)"?, then the angle a deviates little from the
equilibrium value ¢, and the inhomogeneity involves only
the variations of the function ¢ (x, y) of the point (x, y) that
maps real space into the degeneracy space #. The study of
the character of such mappings enables one to determine
whether a defect is stable or not. As an example let us eluci-
date the stability of the defect at the point P, marked in
Fig. lafor O <a, <m/2.

Let us surround the point P, with the closed, oriented
contour ¥,; it is mapped by the function @(x, y) into the
space S'' in the form of a contour T, that is also closed and
oriented (Fig. 1b). As we can easily see, the contour I is
homotopic to zero: it can be contracted by continuous defor-
mations into a point on S'' (Fig. 1d). Correspondingly the
inhomogeneous distribution (see Fig. la) is continuously
deformable into a homogeneous distribution (Fig. 1c) hav-
ing a smaller energy of elastic distortions. The defect under
test proved to be removable, or topologically unstable.

The situation differs for the distribution shown in Fig.
le. The contour, I', corresponding to it (Fig. 1f) runs
around the entire circle S ', and it can be contracted to a point
only if we allow either a breakdown of the condensed state
along an entire line starting at the point P, or a separation of
the contour I', from the circle §'! (i.e., allow an appreciable
deviation of a from a,). Of course, both cases require over-
coming a considerable energy barrier that exceeds the ener-
gy of the defect by many times. In other words the defect in
Fig. 1e is topologically stable. The defect in Fig. 1g, whose
contour I, runs twice around S ', is also stable.

On the whole, the set of all point singularities is divided
into classes, each of which corresponds to its own class of
homotopically equivalent contours T',,, that run around S
the same number of times m in a given direction. The set of
classes of contours I',,, forms the so-called fundamental, or
first homotopy group of the space 7, denoted as 7,(Z#).
Each element of the group corresponds to a certain number
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F!GA 1. Point defects in a two-dimensional NLC
with O <a,<7/2 with different topological

d f:harges m.m =0 (a,c), 1(e), 2(g). The arrows
indicate the field r of the projections of the mol-
T ecules on the plane. b, 4, f, h—Contours corre-
2 sponding to the defects in the degeneracy
space S
h

m of traverses of S''. This is the topological charge of the
defect. It cannot be changed by any continuous deforma-
tions, and this determines the stability of the corresponding
defect. Analytically we have

m:%@chdl:O, +1, 2, ... (2.3)
v

We can easily see that the classification of defects in a
two-dimensional NLC is radically altered even with changes
in the space # that are insignificant at first glance. Thus,
when a, = 7/2 the degeneracy space is the circle S'/Z,.
That is, it differs from the “‘usual” S ! only in the identity of
antipodal points. Yet already this alone leads to doubling of
the set of defects, which can now take on not only integral
values of the charge m, but also half-integral.

Butif ¢, = 0, then %7 = 0, and there are no defects at all
(m(0) =0).

The merger of defects is governed by the rules of multi-
plication operation acting in the homotopy group. Merger of
defects in a two-dimensional NLC with 0 <a < /2 corre-
sponds to simple addition of the charges m: the group 7, (S'!)
is isomorphic to the group Z of integers m, and the group
operation is ordinary addition. Thus, for example, two de-
fects havingm = 1 and m = — 1 annihilate to form a homo-
geneous state with m = 0.

The processes of annihilation and decay of point defects
not accompanied by a change in the total value of the topo-
logical charge of the system are generally energetically fa-
vorable.

Actually the minimization of the energy of elastic dis-
tortions in (2.2) yields the equilibrium equations

Vi =0 (2.4)
having the solutions
(p=mtg‘1%—¢}~const. (2.5)

The latter imply the following expressions for the energy of
an isolated defect

F— am?K In % (2.6)

(R is the characteristic dimension of the system, p is the
radius of the core of the defect, i.e., the region in which
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a#a,) and for the energy of a pair of defects lying at a
distance d from one another:

F= —2nmm,K ln%, (2.7)
In line with Eqgs. (2.6) and (2.7), it is favorable for defects
with large charges m to split into several defects with smaller
m, and for defects with opposite signs of m to attract one
another and annihilate.

The result of merger of defects in a two-dimensional
NLC is always unambiguous. However, whenever the medi-
um is characterized by a non-Abelian homotopy group, the
result of merger is ambiguous and depends on the path of
merger. The simplest example of such a medium is a two-
dimensional system of equivalent bands, a two-dimensional
smectic.

2.1.2. Defects in a two-dimensional smectic

A good experimental model of a two-dimensional SLC
is the lyotropic Pj. phases of phospholipids in the form of
thin films isolated in a large volume of water, resembling
biomembranes. The P;. phase manifests two types of corru-
gated supermolecular structures—the A-phase and the A /2-
phase®**® (Fig. 2). As the electron-microscopic studies of
these phases show, numerous point defects exist in them,
involving inhomogeneous distortions of the system of layers
corresponding to the ridges and troughs of the membranes.
Let us elucidate the features of the topologic behavior of
such systems.*®

To find the degeneracy space we shall employ the gen-
eral rule according to which the degeneracy space of the
medium is the complete symmetry group of the functional of
the energy G factored by its subgroup H, whose transforma-
tions leave the order parameter invariant'®:

J = G/H. (2.8)
As the group G for the A and A /2 phases we can choose the
same complete Euclidean group E of all translations and
rotations in a plane. In the A phase, as we see from Fig. 2a,
continuous translational symmetry exists along the layers,
and discrete symmetry (with the scale 4 ) in the perpendicu-
lar direction, as well as rotational symmetry about the C,
axis perpendicular to the plane of the system. Therefore the
symmetry group A, has the form (R XZ) O C,, or as is the

same,

FIG. 2. Molecular order of the A-phase (a) and the A /2-phase (b).***?
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FIG. 3. Conversion of a dislocation having the charge (1,0) into an anti-
dislocation ( — 1,0) on passing around a disclination (0,1/2) in the A-
phase. The lines denote the ridges of the phase.

H, = (R « Z)0Z,. (2.9)
Here R is the group of real numbers, while the symbols X
and O respectively denote the direct and semidirect products
of the groups. The fundamental group of the space R, = E /
H; is noncommutative and is isomorphic with the semidi-
rect product of two groups of integers*’

T (H) — 20 Z. (2.10)

Consequently every point defect in the A-phase corre-
sponds to a pair of integers (b, m). The elements of the form
(b, 0) describe point dislocations with the Burgers vector
bA, while elements of the form (0, m) describe point disclin-
ations of integral and half-integral strength. However,
owing to the noncommutativity of 7,(#, ), here every de-
fect no longer corresponds to one element of the group, but
to an entire class of coupled elements. Actually, a simple
example (Fig. 3) shows thata (1,0) dislocation after passing
around a (0, 1/2) disclination should now be characterized
by the pair ( — 1, 0); in other words the elements (1, 0) and
( — 1, 0) describe the same defect. Therefore a (1, 0) dislo-
cationand a ( — 1,0) “antidislocation’’ upon merging either
annihilate (Fig. 4b) or form a double dislocation (2,0), if
the point ( — 1, 0) passed around the (0, 1/2) disclination
on the path to the mergersite (Fig. 4c). The ambiguity of the
result of merger involves the fact that it is determined, not by
the result of multiplication of individual elements of the ho-
motopy group, as for **Abelian” media, but by the entire set
of results of multiplication of classes of coupled elements.

The other variety of the P;. phase, the A /2 structure,

=" Cci
— &

c
FIG. 4. Dependence of the result of merger of (1,0) and ( — 1,0) disloca-

tions in the A-phase (a) on the path of merger: above the disclination
(0,1/2) (b) and below the disclination (c).

M. V. Kurik and O. D. Lavrentovich 199



seemingly hardly differs from the A structure (Fig. 2); only
the twofold symmetry axis C, has disappeared, and the sym-
metry group has the form H, ,, = (R X2Z)XZ. However,
now the group of point defects

T (Bre) =Z X Z (2.11)
is commutative, and the result of merger of two defects is
always unambiguous; moreover, in contrast to the A phase,
the A /2 phase lacks isolated disclinations of half-integral
strength, as is confirmed by experiment.?®

Simple examples of A and A /2 phases demonstrate also
some restrictions on the application of homotopy theory for
classifying defects in media having broken translational
symmetry. As we see from Egs. (2.10) and (2.11), in a two-
dimensional system of layers homotopy theory predicts the
existence of disclinations with infinitely large values of m. At
the same time, evidently, the creation of disclinations even
with m = 2 requires introducing a large number of disloca-
tions into the system owing to breakdown of equidistance of
the layers, which is energetically unfavorable. Only the val-
uesm = 1, 1/2, and O do not require varying the thickness of
the layers.

The fundamental principles of the homotopic classifica-
tion of topological defects were briefly examined with the
example of two-dimensional systems. The nonsingular dis-
tributions—topological solitons—are described by an analo-
gous scheme. They are characterized by the so-called rela-
tive homotopy groups.®?*3# The relative homotopy groups
are also used for classifying defects on the surface of ordered
media. Concrete examples will be presented in the following
sections.

Now let us take up briefly the features of the experimen-
tal study of inhomogeneities in liquid crystals.

2.2. Methods of experimental study

As the simplest and most reliable method of experimen-
tal study of defects in liquid crystals, polarizing microscopy
long ago proved advantageous. In studying in the polarizing
microscope a thin layer of a LC placed, e.g., between two
transparent plates, one sees a characteristic multicolored
pattern, or texture. If one does not take special measures
toward homogeneous orientation of the LC, then the speci-
men will contain a large number of varied defects, which

determine the features of the birefringence in the medium,
and hence, the character of the texture.

As arule, the main feature is the presence of broad, dark
bands, or extinction bands, which converge at individual
sites in point centers. The extinction bands cover the regions
in which the local optic axis lies in the plane of polarization
of one of the Nicol prisms, and the light propagates in the
form of a pure ordinary or pure extraordinary wave. Since, in
turn, the distribution of the optic axis is strictly associated
with the distribution of axes of the molecules (and the order-
parameter field), then, by observing the position of the ex-
tinction bands for different positions of the specimen, one
can establish the distribution of the molecules in the texture
(for more details, see, e.g., Refs. 41-43).

In studying defects, in essence, all the methods of mod-
ern light microscopy are applied. Thus, objects are illumi-
nated with linearly and circularly polarized light, and with
white and monochromatic light. Dark-field,'"** phase-con-
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trast,** and also interference*>~” microscopy are used, and
other special methods.*”~*! In particular, the method of dy-
namic light scattering has enabled measuring the mean ve-
locity of disclinations in the convective flow of an NLC in a
region of electrohydrodynamic instability from the magni-
tude of the Doppler shift in the frequency of the reflected
light caused by moving scatterers—disclinations.>> In a
number of cases methods are useful of decorating the surface
of an LC with various additives®*~>° and by adding dyes.>®

In recent years the methods of electron microscopy
have become ever more widespread in studying the textures
of both lyotropic®*’° and thermotropic®®** systems.

Fixing the boundary conditions and the geometry of
experiment are of importance in studying defects in LCs.
Without taking up in detail the specifics of the surface orien-
tation of LCs (see the reviews of Ref. 64 and monographs of
Refs. 31-36, 65), we shall point out that the choice of geome-
try of the experiment, as a rule, is dictated by the features of
the defects being studied. Thus, specimens in the form of a
wedge have been used for a long time in studying linear de-
fects in CLCs and SLCs; the classical experiments were de-
signed for cylindrical capillaries (pores) in studying disclin-
ations in nematics, cholesterics, and smectics.*>%%74

Liquid-crystalline structures of spherical form are of
especial interest. One can produce them by filling spherical
bulbs with a liquid-crystal phase.” In a number of cases a
more elegant solution is found that approaches the experi-
ments of Plato: one can prepare drops of an LC freely sus-
pended in a solution (see the studies on lyotropic
systems’®"®), in a melt (this especially pertains to carbona-
ceous phases®®) or in a specially chosen transparent matrix
that does not dissolve the LC. As the latter one can select
polymeric liquids,***"%? agar,®* Canada balsam, immersion
0il,*® and even water.®® Glycerol, traditionally used as a me-
dium for embedding microobjects, is promising in this re-
gard.®® By using glycerol containing an admixture of le-
cithin, one can not only impose homogeneous boundary
conditions on the surface of the drops (normal, tangential,
conic), but vary them slightly over a broad range from strict-
ly normal to strictly tangential, and vice versa, by varying
the temperature.®

3. UNIAXIAL NEMATICS

Uniaxial nematics consist of molecules (or aggregates
of them—micelles, as in the case of lyotropic phases®”®%)
having the symmetry of ellipsoids of revolution. Depending
on whether the axis of rotation is the long or short axis of the
molecule, one distinguishes cylindrical and discotic NLCs.*
The interaction between the molecules tends to arrange
them parallel to one another, whereby a defined direction of
preferred orientation of the axes of rotation of the molecules
arises in the bulk of the NLC, characterized by the director
n. One can choose the director as the order parameter of the
NLC of either a cylindrical or a discotic phase.

Evidently any rotations of a nematic system as a whole
in real space involving reorientation of n do not alter the
energy of the system. Therefore the degeneracy space #  is
the two-dimensional sphere S ? factored, owing to the condi-
tion n = — n by the group Z, (projective plane)**:

By = SYZ, 3.1
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Now let us elucidate what types of linear defects allow such a
form of the degeneracy space, i.e., what type has the group
T (S*/Z,).

3.1. Disclinations in the bulk

Only two classes of closed contours exist on the sphere
S?/Z,: contours I' , homotopic to zero, and contours T, link-
ing antipodal points of the sphere S >/ Z,, and hence not capa-
ble of contraction to a point. Consequently, 7, (S/Z,) = Z,
and the linear defects, disclinations, in the bulk of the NLC
belong to only two classes: nonremovable, with charge
N =1 (Figs. 5a, b), and removable, with ¥ =0 (Figs. 5c,
d). Transitions between the classes require breakdown of the
structure on the whole half-plane £ and the energy ~ K 3/¢&,
which is considerably greater than the energy ~ KL of a dis-
clination of length L itself.

Of course the existence of only two topological classes
does not imply that the distribution of the field of the direc-
tor around disclinations is manifested only in two variants of
whatever kind. A great variety of disclinations exists within
the bounds of a given class that differ among themselves in
their symmetry or in the symmetry of the core, and hence, in
physical properties (e.g., the magnitude of the charge caused
by the flexoelectric effect on the core of the defect).” Since
generally a given symmetry restricts the region of variation
of the order parameter, we must introduce additional topo-
logical invariants to describe states of disclinations of differ-
ing symmetry. For example, if the disclination has a plane of
symmetry perpendicular to its axis (such disclinations are
called planar owing to the planar distribution of n), then this
additional charge is the well known Frank index®' or the
strength m of the disclination, which is commonly consid-
ered equal to half the Frank index (see, e.g., Ref. 31). Actu-
ally the strength of a planar disclination is the topological
charge of a point defect in a two-dimensional NLC with
a,, = 7/2 discussed in Sec. 2.1. The disclinations shown in
Figs. 5a, b from the class N = 1 have different strengths and
symmetries (respectively m=1/2, D,, and m= — 1/2,
D,,). A remarkable result of the symmetry classification of
disclinations proposed by Balinskii, Volovik, and Kats®’ was
the prediction of phase transitions between states of disclina-
tions of differing symmetry and strength arising upon
change of temperature or pressure, but not involving a
change in the phase state of the NLC itself. For example, a
first-order transition can occur between the states m = 1/2,
D,, and m = — 1/2, D, in Figs. 5a, b. The existence of
such transitions has been proved experimentally for point
defects (see Sec. 3.2).

As we have already pointed out, transitions of disclina-
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FIG. 5. Disclinations in the bulk of a uniaxial NLC
having different topological charges N and
strengths m. a—N=1, m=1/2. b—N=1,
m= —1/2. ¢,d—N =0, m = 1. The lines denote
the distribution of the field of the director n.

tions between different topological classes require overcom-
ing large energy barriers. Yet within a single class disclina-
tions of different configurations can continuously transform
into one another; the energy barrier, even if it exists for such
deformations, is small (of the order of K£).° The question of
locally stable types of disclinations or ensembles of them
within the limits of each class is more complicated when one
takes account of the concrete parameters of the NLC and the
external conditions. Studies along this line—both theoreti-
cal (based on studying the energy of elastic distor-
tions®**7-°1-°%) and experimental'*-*%~7"%¢1%_had been in-
tensively conducted even before the rise of homotopy
classification. The most detailed theoretical solution was
given by Dzyaloshinskii and Anisimov,”* who used the gen-
eral expression for the energy density of elastic distortions of
the orientation of the director:

f:% [K, (divm?* - A,, (nrotn)® - Ky (nrot nj?] (3.2)
(K, K5, and K are respectively the Frank constants for
splay, twist, and bend). They showed that, in addition to
planar disclinations, “bulk™ disclinations can exist (the di-
rector does not lie in a single plane). Planar disclinations are
stable when 2K,, > K, + K35, while bulk disclinations are
so when 2K,, < (K, + K33). Here, for close-lying values of
the constants K, only elementary disclinations withm = 1/2
are stable. Disclinations with larger values of 7 become sta-
ble when K,,> K|, K;; (planar) and when K;;>K,,, K>,
(bulk).

The conclusions of the theory as a whole have been con-
firmed experimentally. A number of authors have been able
to observe instability of a plane disclination having m = ] in
cylindrical capillaries, consisting in the reorientation of the
director along the axis of the cylinder (the so-called effect of
outflow of the disclinations into the third dimen-
sion)'"#3%¢7! (gee Fig. 5S¢, d). The outflow corresponds to
contraction of the contour I', from the equator of the sphere
S?/Z, to a point at the pole and is accompanied by a mono-
tonic decrease in the energy of the disclination. One can
show the latter within the framework of the single-constant
approximation K|, = K,, = K. In this case the energy per
unit length of a plane disclination with 2 = 1 is determined
by Eq. (2.6) andis 7K In (R /p), while for the “outflowing”
configuration of Fig. 5d it amounts to 37K hence, in a speci-
men of real dimensions (R X 20p) such a nonsingular config-
uration is energetically more favorable. We note that often
the experimental situation looks somewhat more complicat-
ed than in Fig. 5d; since outflow “‘up” and ““down’” along the
axis of the capillary are equally probable, the effect leads to
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the appearance of breaks in the texture—point singularities
localized in the bulk of the NLC'"**%7%%-7! and bearing the
name of “hedgehogs” (see Sec. 3.2).%¢

The absence of a singular core in a disclination with
m =1 is confirmed also by the so-called schlieren textures
formed in plane layers of NLCs having tangential or conical
boundary conditions.'"?¢679%1%' The main feature of
schlieren textures is the presence of two types of centers from
which two or four extinction bands emerge. The centers with
two bands have a singular core, insofar as can be seen, of
molecular dimensions and corresponding to stable disclina-
tions with m = + 1/2. The centers with four extinction
bands are diffuse, at least at distances ~ 1 um. If one illumi-
nates the specimen with monochromatic light, interference
rings are distinctly visible near such nuclei, and are caused
by the variation of the birefringence as the director flows out
along the vertical axis.®”% The centers of the type being dis-
cussed do not correspond to linear, but to point singularities
formed by outflow of disclinations with m = 1 in the bulk of
the specimen and localized at the surface. Such defects are
called boojums®®; their properties substantially differ from
those of point defects in the bulk, or hedgehogs (see Sec.
3.3).

The effect of outflow into the third dimension can be
manifested not only on macroscopic scales for the entire
structure of the disclination as a whole, as in the case with
disclinations m = 1. As Lyuksyutov'?? first showed, in a
range of distances that does not exceed p, =2 X 10™* m for
classical NLCs, the order parameter is degenerate not on .S %/
Z,, but on a four-dimensional sphere S*, for which
m,(S*) = 0. It seems that on small scales disclinations with
N =1 are also nonsingular. Since different types of “out-
flow”’ can occur, we should expect phase transitions among
them inside the core.”® One can conveniently seek such
transformations near the uniaxial-biaxial NLC transition,
where p diverges.”® However, their manifestation is not
ruled out in light-scattering experiments on liquid crystals in
micropores. '

As we see from the homotopy classification, a law of
conservation of topological charges ¥ should be fulfilled in
merger of disclinations in the form

14+1=0,1+0:=1,

And actually, Nehring and Saupe®® observed merger of two
singular disclinations with N =1 into a nonsingular one
with N = 0. The inverse process of dissociation of a line with
N =0 into two with N = 1 is also known.®® Theoretical cal-
culations of the interaction of disclinations have been pre-
sented in Refs. 69, 96, 104, 105. In particular, they imply
that two identical disclinations can not only repel, but also
attract one another, depending on the values of the Frank
constants and the geometry of the specimen.

The overwhelming majority of experimental studies on
disclinations have been performed on classical thermotropic
NLCs of the type of MBB or PA A having molecules of cylin-
drical form. Naturally, they do not manifest the entire var-
iety of possible properties of defects. In line with the need of
elucidating the details of the relation between the features of
molecular structure of the medium and the character of the
defects, interest has recently risen in new nematic systems:
polymeric NLCs, both thermotropic'?®'?? and lyotropic,'*
thermotropic and lyotropic disconematics,'®®''’ carbona-
ceous phases,®>*? and finally, different mixtures of meso-
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genic and nonmesogenic substances.'®’ Precisely for such
mixtures, composed of classical NLCs (of the type of octyl-
cyanobiphenyl) and a nonmesogenic substance with mole-
cules of platelike shape (1, 4, 9, 10-tetrahydroxyanthra-
cene), Madhusudana and Pratibha'®' first observed
disclinations with m = + 2 and m = + 3/2 in schlieren
textures. They were able to show that defects with
m = + 3/2 are singular and can dissociate into pairs with
m= +1/2 and m= +1 (by the scenario for N:
1—-14 0). Probably the obtained results are explained by
the sharp change in the elastic constants of the NLC upon
introducing the stated additive—e.g., by an increase in the
constants K, or K, which, according to theory,®* should
lead to stability of disclinations with large m.

Unusual results have been obtained also for lyotropic
NLCs in the form of acid solutions of rigid-chain poly-
mers.'” The predominant type of disclinations in these me-
dia proved to be lines of strength m = 1 with a thin singular
core. In all appearance, this involves the fact that the con-
stant K, for bend of the system of rigid polymer chains must
appreciably exceed the constants K|, and K,,. As is implied
by Ref. 94, when K5, > K|, K,,, disclinations with |m|>1
become stable and possess a bulk structure.

The conclusions of Ref. 108 stand in a certain contra-
diction to the observations in thermotropic polymeric
NLCs'?'%7 of lines with m = 1 having a diffuse, nonsingu-
lar core and lines with m = 1/2 having a singular core. Al-
though the textures in these systems externally differ little
from those of classical NLCs, the cores of defects can have
their own features, in particular, in containing many ends of
polymeric macromolecules.'?” '

The elucidation of the influence of the specifics of mo-
lecular structure of NLCs on the features of the disclination
is also shown in the carbonaceous phases. Carbonaceous
NLCs consist of large, platelike multinuclear aromatic mol-
ecules with a molecular weight of 1500-2000 packed parallel
to one another and actually forming plane layers. Therefore
the outflow into the third dimension of disclinations with
m = 1 becomes unfavorable. Electron micrographs of sec-
tions of the solid modifications of carbonaceous phases con-
firm the presence of singular cores of lines, both with m = 1
and with m = 1/2 (see, e.g., the reviews of Ref. 62).

3.2. Point defects—hedgehogs

As was pointed out above, a consequence of the effect of
outflow of disclinations with m = 1 in round capillaries can
be the appearance of point singularities—hedgehogs in the
bulk of the NLC. A somewhat more convenient experimen-
tal geometry for producing hedgehogs in a system is present-
ed by spherical drops of NLCs with normal boundary condi-
tions. There is also a proposal''' that hedgehogs can arise in
the form of polarization deformation coats around ions im-
planted into the NLC.

The topological classification of hedgehogs is based on
examining the mapping of a closed surface o surrounding the
point defect into degeneracy space.® The image of o in degen-
eracy space will be the surface X, which either can be con-
tracted to a point and corresponds to an unstable configura-
tion, oris wrapped N 0 times around the sphere.§?/Z, and
corresponds to a hedgehog having the charge N. The classes
of surfaces £ homotopic to one another form the second
homotopy group m,(S2/Z,), which is isomorphic to the
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group of integers Z. The topological charge of the hedgehog
(the degree of mapping of the sphere o onto the sphere 2/
Z,)is

NS [ s8 22 Jaedg, (3.3)
a

(Here 6 and ¢ are arbitrary coordinates on ¢.) This charge
takes on only integral values. A very simple example of a
point defect having N = 1, actually reminding one of a
hedgehog, is shown in Fig. 6a. This is a singular point from
which field lines of the director n diverge in all directions
along the radii-vectors:

n(z, gy, 2) = (2. y, 2) (@@ g+ )7V (3.4)

Figure 6b shows another hedgehog with N = 1, but now hav-
ing a hyperbolic structure:

nz, y, 2) = (—z, —¥, 2) (z* + ¥t :'2)-1/2' (3.5)

Here, as in the case of disclinations, a situation arises in
which configurations of defects differing in symmetry corre-
sponds to the same homotopic class, and phase transitions
occur among them upon changing external conditions. To
convince ourselves of this, let us substitute Egs. (3.4) and
(3.5) into (3.2) and find the energy of the two types of
hedgehogs (respectively):

Fp-8nK R,

F—8aR fu g Hw )

(R is the characteristic dimension of the system). We can
easily see that either the radial structure (when K, > 6K ;)
or the hyperbolic structure (when K,; <6K,,) can prove
energetically favorable, depending on the relationship be-
tween the bending elastic constants K,, and K;,. Thus the
transformation of the one hedgehog into the other can occur
near the nematic-smectic phase-transition point, where K
shows a critical increase, whereas K, hardly varies.

Experimentally a phase transition with changing sym-
metry of hedgehogs has been discovered in spherical drops,
at the surface of which a normal orientation of the molecules
was imposed.''? These boundary conditions unavoidably
lead to the appearance in the bulk of the drop of a hedgehog
with ¥ = 1. Near the transition point the hedgehog has a
radial structure, but on temperature increase it transforms
into a combination of a hyperbolic hedgehog and a ring non-
singular disclination surrounding it. The disclination en-
ables a smooth coupling of the distribution of the director at
the center and the periphery of the drop (Fig. 7). The phase
transition is accompanied by a change of symmetry
K, - C_, and is a second-order transition.'"?

The overwhelming majority of experimental studies of
point features in the bulk of NLCs have been performed with
capillaries with normal boundary conditions.'"***"**"' Ra-
dial and hyperbolic hedgehogs arise in this geometry, just as
in spherical drops. For capillaries with a tangential orienta-
tion of n, Melzer and Nabarro’® showed the existence of an-
other type of hedgehog—with a spiral distribution of the
field n. This type of singularity corresponds to a ‘‘saddle-
focus” singular point in the terminology of Poincaré,''?
whereas the radial hedgehog corresponds to a nodal singular
point, and the hyperbolic to a saddle singular point. Na-
barro''® has analyzed in detail the relation between the dif-
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FIG. 6. Point defects—hedgehogs of various structures in the bulk of an
NLC.'

ferent configurations of hedgehogs and Poincaré singular
points.

Let us return to the general homotopy classification of
hedgehogs. Within this framework Volovik and Mineev®
have predicted the existence of a remarkable property of
merger of hedgehogs, specifically the dependence of the re-
sult of merger on the path of merger. To explain the essence
of this effect, we must first turn our attention to the fact that,
in an NLC, the charge N of a hedgehog in (3.3) was defined
only up to its sign. Therefore it is not clear a priori to what

e
FIG. 7. Transformation of a radial (left) into a hyperbolic (right) hedge-
hog near the NLC-SLC transition in a spherical drop of an NLC. a,b—

Textures of the drop. ¢c,d—Cross section of the drop in the equatorial
plane. e,f—Volume images of the hedgehogs.
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. 40 um

FIG. 8. Texture of spherical drops of a uniaxial NLC with strands linking
a hedgehog inside each drop with a pair of boojums, or poles at its surface.

result the merger of two hedgehogs having the same N will
lead: to annihilation or to forming a hedgehog with doubled
N. It would seem that the paradox is simple to eliminate: One
must for acertain time replace the field of the director n with
the vector field n’ for which both the charges N and the re-
sults of merger are defined unambiguously. This procedure
solves the problem, but only if topologically stable disclina-
tions are absent in the medium. Passage of a hedgehog
around a disclination along a closed contour changes the
direction of n’, and hence the sign of the charge ¥, to their
opposites. Now two hedgehogs having the same N in the
presence of a disclination can either annihilate or give rise to
a hedgehog with a doubled charge—depending on the path
of merger with respect to the disclination. Owing to this fea-
ture, all hedgehogs in a system can be annihilated (or at least
all but one with ¥ = 1).

The effect being discussed is called the influence of the
group m, (%) on the group 7, (%) and arises from the non-
triviality of 7,(#). Unfortunately there are no experimen-
tal observations of merger of hedgehogs in the presence of
disclinations in an NLC.
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The problem of the interaction of hedgehogs in an NLC
is of interest. Let us study an isolated hedgehog. Its elastic
energy is proportional to the radius R of the volume under
study (e.g., for a radial hedgehog we have F = 87K | R). It
would seem that the energy of interaction of two hedgehogs
is proportional to the distance between them, which recalls
the interaction of quarks. Moreover, as Ostlund''> showed,
the field lines of n in the region between the hedgehogs col-
lapse into a string. Strings can also link a hedgehog with
boojums—surface defects (Fig. 8).

Disclination rings are defects close to hedgehogs in
their topological nature. In the general case the annular sin-
gular lines are combinations of disclinations and hedgehogs
and are characterized by two charges: ¥, , an element of the
group 7,(S */Z,), and Np, an element of the group 7,(S>/
Z,).'"** To classify annular singularities one can use the so-
called toroidal homotopy groups: an annular defect is not
enclosed in a sphere, but in a torus, whereupon one studies
the homotopy classes of the mapping of a torus into degener-
acy space.”®''® The dual character of these defects has the
result that disclinations can emit (and absorb) hedgehogs in
unbounded number (Fig. 9). The topological equivalence of
a hedgehog with N=1 and an annular disclination
(a hedgehog ‘‘stretched” into a ring) has been demonstrat-
ed®® with the example of defect structures in drops of NLCs.

3.3. Defects at the surface
3.3.1. Boojums

A three-dimensional NLC can contain defects not only
in the bulk but also at the surface. Thus, the outflow of a
vertical disclination with m = 1 in a plane capillary having a
schlieren texture gives rise to point defects—boojums—Io-
calized at the surface and not coupled to any singularities in
the bulk. This was first established by R. B. Meyer.*” Boo-
jums constitute a broad class of defects in various media
(they were first identified in superfluid *He-A'"”''®), Their
chief distinguishing feature is the impossibility of exit from
the surface of the medium into the bulk: in such an operation
the boojum proves to be linked to the surface by a linear

FIG. 9. Diagram of the emission of hedgehogs by a
disclination line in a uniaxial NLC.*
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defect, which is energetically unfavorable.

Boojums in NLCs have been observed also under other
conditions®>°>!'%; the appearance was demonstrated'*’ of
an entire system of translationally ordered boojums at the
phase boundary of an NLC with an isotropic melt; an analo-
gous system is also established in the convective instability in
a homeotropic layer of an NLC heated from above.'”' In
Refs. 11 and 122, which described the merger of defects of
strength m = 1, to all appearances, the merger specifically of
boojums was observed.

The first attempt to give a homotopy classification of
surface defects was undertaken in Ref. 123. However, the
theory proved incomplete, since actually defects in two-di-
mensional NLCs were described (see Sec. 2.1 and Refs. 27
and 124), rather than at the boundary of a three-dimension-
al NLC. The flaw in this approach lies in the impossibility of
distinguishing isolated point singularities and defects that
are the ends of linear singularities localized in the bulk.

A systematic classification of defects at the boundary of
ordered media has been proposed by Volovik.'?* According
to Ref. 125, to elucidate the topological stability of a point
defect at the surface, one should surround it not only with a
contour on the surface, but also with a hemisphere & fitted
onto this contour from the bulk side. The field n maps the
hemisphere & itself into the space S 2/Z, of degenerate states
of the system in the bulk and its edge (contour) into the
space of states %7y that the system can adopt at the surface.
As a result the relative homotopic group 7,(% y,# n) is
formed. Usually (as happens in NLCs) one can represent
this group in the form of the product of two groups:

o (i e .‘J/N/VN) =P x Q.

The elements of group P describe the point defects that exist
only at the surface and cannot escape into the bulk owing to
topological restrictions, i.e., boojums. The group P is the
kernel of the homomorphism 7,(# y ) — m,(# ). This s, it
consists of the elements of 77,(@ ~ ) that transform into a
single element of 7, () under the homomorphism (this
implies that boojums are not exit points at the surface of
linear singularities). Let us take account of the fact that
Ry =8%/Z,, while Z,, hasthe following forms, depending
on the value of the angle a, between the director at the sur-
face and the normal v to it (see Ref. 86 and Sec. 2,(a):

Fy—=0, if =0,
= S§1, if 0<a“<%,
A T

Then we find that the group P consists of the integers m
when a, > 0 and is trivial when @, = Q. In other words, boo-
jums exist under any conical boundary conditions with
a,7#0 and are described by the integral charges N of (2.3).

The group Q in an NLC coincides with the group
7, (% » ) and describes hedgehogs that have arrived from the
bulk and did not disappear at the surface owing to the topo-
logical conditions at the boundary'?*; they are characterized
by the integral charges N of (3.3).

In the general case a defect at the surface amounts to a
combination of a hedgehog and a boojum, and hence is char-
acterized by two charges—N and m. To determine the
charge N of a defect at the surface, one must calculate the
integral of (3.3) over the hemisphere &. The quantity 4 ob-
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tained here is related to N, m, and the projection of n on the

normal v by the following relationship®®:
!
1 { rom o )
A= o[ G Ja0de=Fov—n 4w

.

Qa?

(3.6)

Here n is treated as a vector, rather than as the director, as
occurs in the absence of disclinations in the bulk of the NLC.
By using (3.6) one finds N from A, since the charge m is
determined independently by Eq. (2.3).

The continuous topological charges A4 introduced in
Ref. 86 are important characteristics of boojums. They en-
able describing the processes of topological evolution of de-
fects, consisting in their creation, annihilation, and intercon-
version. Figure 10 shows the processes of smooth
disappearance of a boojum having 4 = sin’(a,/2) upon
changing the boundary conditions from tangential to nor-
mal (4 —0) and conversion of a boojum with 4 = cos?(a,/
2) into a hedgehog (4 — 1) under the same conditions. Now
we shall examine the more complex and interesting problem
of the evolution of defects in a closed system in which the
total topological charge must remain invariant under any
transformations of the defects.

3.3.2. Topological evolution of boojums and hedgehogs

The most perspicuous and convenient objects from the
experimental standpoints are spherical drops of NLCs with
regulatable boundary conditions. Under normal boundary
conditions a drop of an NLC in equilibrium necessarily con-
tains an elementary hedgehog with & = 1,8%%¢1!2 and with
tangential conditions, two boojums m, = m, at the poles
(Fig. 11a,e).**#¢128 Under a smooth change in the boundary
conditions, the equilibrium state in the drop must vary in
such a way that the hedgehog vanishes, and boojums appear
in its place. To describe the process, in addition to the rela-
tionships of (3.6), we must introduce restrictions on the
charges N and m under the inclined conical conditions at the
boundary. These restrictions are the Poincaré theorem (for
a, #f()):

< e 9

= M= (3.7)
(the sum of indices m; of the vector field fixed on the closed
surface equals the Euler characteristic of this surface, i.e.,
two in the case of a sphere; see also Ref. 117), and the result
of the Gauss theorem in the form®®'?’

ay=11/4

&p=17/2 =0

FIG. 10. Evolution of the structure of a boojum at the surface of a uniaxial
NLC upon changing boundary conditions from tangential to normal. a—

Disappearance of the boojum. b—Conversion of the boojum into a hedge-
hog.
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FIG. 11. Topological evolution of defects in a spherical drop of a uniaxial
NLC upon changing boundary conditions, according to the experimental
data of Ref. 86.

=1 o (3.8)

(Here b is the number of boojums in the system, and / the
number of hedgehogs.)

The relationships (3.6)—(3.8) enable one to describe
the evolution of defects in a drop of an NLC under changing
boundary conditions as a continuous redistribution of the
charges 4 among the defects with overall conservation of the
total charge. The theory predicts several most likely scenar-
ios for rearrangement of the structure whose realization de-
pends on the interplay of the energy parameters of the sys-
tem. One can answer the question of the concrete pathway of
evolution by experiment. Such an experiment has been per-
formed for fine drops of NLCs freely suspended in an iso-
tropic matrix whose composition varying the boundary con-
ditions as a function of the temperature.®® The dynamics of
defects in a drop upon changing the conditions from normal
to tangential is shown in Fig. 11. The essence of the process
consists in the following.

As the vector n deviates from the direction of the nor-
mal in the drop, besides the hedgehog two boojums are creat-
ed “from nothing” at the poles (Fig. 11b) with
m=my,=1, A, =A,= —sin*(ay/2) and, as (3.6) im-
plies, ¥, = N, = 0. Both boojums play the role of sinks for
the field of n. The source is the hedgehog, which moves to-
ward one of the boojums and merges with it to form a new
boojum source with 4 = cos®(a,/2) and N, = 1 (Fig. 11c).
However, the latter proves unstable and decomposes into a
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boojum with 4, =sin’(a,/2), N, =1 and a disclination
ring, which also has a continuously defined topological
charge, 4, = sin B cos a, ( Bis the width of the distribution
of the disclination on the sphere) (Fig. 11d). On being re-
pelled by the boojum, the disclination moves toward the
equator dissipating gradually. Simultaneously with this, the
boojums become strengthened according to the law
+ sin?(a,/2) (Fig. 11e). Ultimately the disclination disap-
pears smoothly and two boojums remain in the drop having
the charges 4, = —A4,=1/2, N, =1, N, =0 (Fig. 11f).

Thus in the described process defects of differing topo-
logical types (hedgehogs, boojums, disclinations) and dif-
ferent homotopy classes smoothly tranform into one an-
other, accompanied by a smooth redistribution of the
charges 4 with invariant total charge, as the theory predicts.

In closing this subsection we shall take up the treatment
of another example of a phase transition in the structure of
defects, this time involving boojums. In Fig. 11f the distribu-
tion of the director in a drop having a bipolar texture is
shown in simplified fashion without taking into account pos-
sible twisting deformations. The structure in Fig. 11fis ener-
getically favorable if K, € K,,,K;;, i.e., near the NLC-SLC-
A transition. However, as we go away from the transition
point with decreasing values of K, and K, a second-order
phase transition occurs to a twisted structure, in which the
director at the surface of the drop does not lie along the
meridians, but along loxodromes—lines intersecting the me-
ridians at a constant nonzero angle; upon approaching the
axis of the drop this angle decreases to zero.'**® The mirror
symmetry of the boojums disappears in the transition. The
described structure with twisting has been observed experi-
mentally (Fig. 12) and amounts to a simple example of ap-
pearance of twist of a uniaxial NLC in the equilibrium state
not involving the presence of chiral additives. Here the twist
is not propagated in one direction, as in ordinary CLCs, but
in two, as in the blue phases (see Sec. ).

3.3.3. Disclinations at the surface

According to Ref. 125 surface disclinations, as ob-
served, e.g., at the boundary of NLC drops, are described by
the elements of the relative homotopy group 7, (% 5, %y ).
For NLCs with continuously degenerate boundary condi-
tions®® we have

T (A ~;)N)::nl('ﬁ1\')7221 if ao#g—.

s

2 (3.9)
That is, disclinations at the surface are topologically stable
under any boundary conditions but tangential, and are de-
scribed by the elements of the same group 7,(#Z ) = Z, as
disclinations in the bulk. Consequently, these are the lines
that have arrived from the bulk and have not vanished owing
to the boundary conditions. There are no linear disclina-
tions-boojums at the surface of NLCs.

Most of the experimental studies and calculations of the
energy parameters of surface disclinations in ordi-
nary®!:83:86.129-136 3 nd polymeric’®” NLCs have been devoted
to studying the lines under tangential boundary conditions
in plane cuvettes.®"?%!29-132.135 Their stability in this case is
made possible by rubbing the substrates in one direction,
which narrows the degeneracy space %, at the surface to a
single point. A common feature of surface disclinations is

=), if o=
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FIG. 12. Twisted bipolar structure of a uniaxial NLC in a spherical drop.
a,b—Micrographs of drops with crossed and skew Nicols. c—Distribu-
tion of the field of the director at the surface of the drop. d—Distribution
of the molecules in the meridional cross section.

the presence of a broad nonsingular core whose dimension p
is related to the value of the cohesion energy W '3%'*%;

O~

w (3.10)

This enables one to estimate the value of W experimental-
ly.'*"'* The existence of a nonsingular core is understand-
able already from the fact that any disclination at the surface
can be supplemented by a virtual disclination, apart from a
line with m = 1."*? These conclusions continue to hold for
surface disclinations also in the case of inclined conditions at
the boundary of the NLC with a solid substrate,'** an iso-
tropic matrix,**#*!2¢ and air.>

3.4. Solitons
3.4.1. Planar solitons

Let us study an NLC placed in a plane capillary, both
surfaces of which have been rubbed by the method of Chate-
laine in one direction h. If the capillary is thin enough, the
molecules throughout the bulk will be oriented along the
direction of h:h = + h. In other words, the interaction of the
molecules with the walls of the capillary contracts the degen-
eracy space of the NLC to a single point. Let a vertical dis-
clination of strength m = + 1/2 exist in the specimen. In its
presence it is impossible to conserve a homogeneous distri-
bution of the director n = + h: at a certain surface support-
ed by the disclination the director will rotate 180° (Fig. 13).
The thickness of the wall is fixed and is determined by the
balance of energy of elastic distortions and the energy of
interaction of the molecules with the surface of the capillary.
If we write the energy of the wall in the form
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il

Kd
F=—+We (3.11)
then its equilibrium thickness is
_ [ Kd 12
Po= (—W_) : (3.12)

Here d is the thickness of the capillary. Such walls with an
inhomogeneous, nonsingular distribution of the director are
commonly called planar solitons**-** of topological type. In
addition to stability and conservation of the characteristic
dimension, topological solitons possess nontrivial values of
the topological charges. Indeed, let us study the mapping of
the line y threaded through the wall into the degeneracy
space of the NLC (see Fig. 13). The ends of the line are
mapped into antipodal identical pointsn = + hon S*/Z,,
while the line y itself is mapped onto the closed contour I,
linking these points. This contour cannot be contracted to a
point by any continuous transformations, and this deter-
mines the topological stability of a planar soliton.

In the general case the classes of homotopic mappings
of the line y threaded through the soliton form the relative
homotopy group 7, (#,% ), where Z is the region of possi-
ble values of the order parameter far from the core of the
soliton, narrowed in comparison to &% owing to the extra
interaction (external field, boundary conditions, etc.).?%**
If Z# consists of a single point, as in the case being studied,
the group 7,(#,%) coincides with the absolute group
7, (). Therefore, soliton walls in NLCs exist in a mutually
single-valued correspondence with the disclinations that
have produced them and are described by the same group
7,(S*/Z,) = Z,; we can attribute to the planar soliton the
charge of the disclination from which it breaks off.

In condensed media planar walls of another nature can
exist, arising from the incoherence of the space . With an
incoherent Z:7,(#,% ) is no longer a group, and the transi-
tion layers between the regions characterized by different
incoherent components of % are domain walls of the type of
the Bloch and Néel walls, which Mineev has proposed to call
*“*classical domain walls” to distinguish them from soliton
walls ending at linear defects.”® This terminological distinc-
tion has a physical basis: to remove walls associated with a
linear singularity, it suffices to create a ring of disclinations
in the plane of the wall. The latter, in expanding, ‘‘eats up”
the wall; at the same time, to remove a classical wall requires
overcoming a considerably larger energy barrier and per-
form a transformation of the order parameter over the entire
half-space on one side of the wall.*

Solitons described by the group 7,(S%/Z,) = Z, were
known in NLCs long before the development of the homo-
topy classification. Thus, the configuration shown in Fig. 13
amount to nothing other than inverse walls of the first type,

>SPOOOD
I
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l

FIG. 13. Planar soliton in a uniaxial NLC.
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which were studied in detail by Nehring and Saupe®® and by
others.’® They contain not only disclinations with
m = + 1/2, but also centers withm = + 1. Planar solitons
also arise in specimens placed in a magnetic'*’~'*? or elec-
tric'*>!44 field, and amount to transition layers between two
differently oriented regions (parallel and antiparallel to the
field) in the Freedericks effect. If the wall forms a closed
loop, then according to the theory of Brochard'*® its form
must be elliptical. Here one can determine the ratio ofthe
elastic constants from that of the axes, as has been done for a
thermotropic NLC by Léger.'*®

Brochard’s theory dealt with walls with bending defor-
mation. However, as recent studies have shown, in the gen-
eral case one must also take into account twisting deforma-
tions, "*! which lead to experimentally observable features of
the walls in lyotropic NLCs.'*?

3.4.2. Linear solitons

Just as a disclination in an external field can give rise to
a planar soliton, a point defect can give rise to a linear soliton
(Fig. 14). Linear solitons are described by the relative group
7,(R,#); in the case of an NLC placed in an external mag-
netic field that orients the director along the field, we have
TPy, By ) =To(Ry) = 7,(S*/Z,) = Z, and their clas-
sification coincides with that of hedgehogs.®*® We note that
the nucleus of a linear soliton can contain point singularities
differing from the singularity from which the soliton breaks
off.'"*> One might detect linear solitons experimentally by
placing a drop of NLC containing a hedgehog at its center in
an external magnetic field. We know of only one such design
of an experiment.®* However, the result was the formation of
a ring disclination, rather than a soliton.

3.4.3. Particle-iike solitons

The distribution of the order parameter in particle-like
solitons depends on all three coordinates. They are described
by the group (2,7 ) of homotopy classes of the mappings
of the three-dimensional spherical volume D * containing the
soliton into the space Z. Here the boundary of the spherical
volume, the sphere o, is mapped into the narrowed space
R .5 If R consists of one point, then the particle-like soli-
ton is described by the group 7,(#). For an NLC we have
73(S?/Z,) = Z, and the particle-like soliton amounts to an
inhomogeneous distribution of the field of the director local-
ized in a region of finite dimensions, outside of which the
distribution is uniform.** As a rule, such solitons are unsta-
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FIG. 14. a—Linear soliton in a uniaxial NLC arising at a hedgehog with
N =1 in the presence of a magnetic field.?* b—Annihilation of a soliton
owing to creation and separation of a pair of hedgehogs with N =1 and
N= -1
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ble with respect to decrease in dimensions and subsequent
disappearance on scales smaller than the coherence length £.
Actually the decrease in dimension of the soliton
L Lu(u < 1) entails an increase in the elastic-energy den-
sity of the soliton by a factor of 1/u? and a decrease in its
volume by a factor of u°, so that the total elastic energy
decreases®**%'*5: F_, Fy. Stabilizations of particle-like soli-
tons can be facilitated by any additional interaction, in par-
ticular, helical twisting of the structure'*® (in this regard see
Ref. 147 on the role of solitons in an NLC-SLC transition).

Bouligand'**'*° obtained a very interesting experimen-
tal result that confirms the presence in LCs of topologically
stable structures described by the group 7,(S*/Z,) = Z. In
a weakly twisted nematic-cholesteric mixture Bouligand ob-
served two singly linked annular nonsingular disclinations
of strength m, = m, = 1, each of which by itself is topologi-
cally unstable, whereby all points of the nucleus of the dis-
clination are mapped into a single point of the degeneracy
space S2/Z,. As he was able to show, in going from one ring
to the other, the director undergoes a 180° rotation and one
can represent the rings as inverse images of two diametrical-
ly opposite points on the sphere S? (in the absence of singu-
larities in the configuration, one can replace the director n
with the vector n'). Evidently one cannot convert the config-
uration into a homogeneous state because the rings are
linked: upon trying to unlink the rings, they must intersect
one another and singularities arise in the configuration. The
degree of linking of the rings, equal in this case to unity,
coincides with the Hopf invariant, which is an element of the
group 7,(S*/Z,) = Z. Thus the stability of the configura-
tion as a whole is guaranteed by the conservation of the Hopf
invariant.

4. BIAXIAL NEMATICS

A biaxial nematic phase was found experimentally
quite recently—in lyotropic systems, as an intermediate be-
tween uniaxial cylindrical and discotic phases.''®'%%'*' Ap-
parently the structural units of such media—micelles—have
the symmetry of a parallelepiped, or in other words, the sym-
metry of point group D,. The order parameter is the triad of
directors 1= — 1, n= —n, [nl]l= — [In], which corre-
sponds to the orientational order of both the long and short
axes of the micelles. Consequently the degeneracy space of a
biaxial NLC is the space SO(3) of rotations of the triad I, n,
[In], factored by the point group D, of 180° rotations about
the directions 1, n, and {nl]'*:

be = 30 (3)/D27 (41)
or, as is the same, since SO(3) = S3/Z,, we have
Ry, = 8%/Q, 4.2)

Here S* is a three-dimensional sphere in four-dimensional
space, Qis the quaternion group {1, — 1,i, — Jr— ik, — k}
with the following multiplication rules:

jj=—ji="Fk jk=—kji=1i ki=—ik=]j,

i =jj=kk=—1. (4.3)

Thus the degeneracy space of the biaxial NLC is the sphere
S3, each point of which has seven equivalent points obtained
by inversion and 180° rotations of the triad 1, n, and [nl].
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FIG. 15. Distribution of the fields of the directors | (long segments) and n
(short) for disclinations of different types in a biaxial NLC. Cross sec-
tions in a plane perpendicular to the axis of the disclinations are shown.
a—Disclination of strength m = 1/2, singular both in the field | and the
field n (class C, ). b—Disclination with m = 1/2 singular only in the field
I (class C,).

4.1. Disclinations
4.1.1. Processes of merger-decay and linking

The fundamental group describing the disclinationsin a
biaxial NLC, "

T, (8%Q) = 0, (4.4)
is noncommutative and consists of five classes of coupled
elements. Because of this, the properties of disclinations in a
biaxial NLC differ sharply from those of disclinations in a
uniaxial NLC. Among them we should distinguish five,
rather than one, classes of topologically stable lines, which
correlate with the five classes of coupled elements of the

group Q '

C0={1}, Eo:—{1}v C,;:{i.——i},

Cy={i. =7} Co={k, —&}. (4.5)
Correspondingly, the topological charge can acquire the val-
ues 1; — 1; (i, — i); (j, —j); (k, — k), with the multiplica-
tion rules of (4.3). The structure of the different disclina-
tions is shown in Fig. 15. Analogously to the situation for the
disclinations in a uniaxial NLC, the classification of the de-
fect lines in a biaxial NLC is given not only by the element of
the quaternion group @, but also by the strength m, which
can be integral or half-integral. In the sole experiment on
defects in a biaxial NLC, precisely disclinations withm = 1/
2 were observed.'??

We should especially emphasize that the five classes of
disclinations correspond specifically to the classes of ele-
ments of the group Q, rather than to the elements them-
selves. Actually disclinations corresponding to different ele-
ments, e.g., k and — k of the same class C;, can be converted
into one another by continuous transformations, which im-
plies their topological equivalence. A natural consequence of

o

‘\
R

FIG. 16. Linkage of disclinations in a biaxial NLC (see the text).

this is that the merger and decay of disclinations in a biaxial
NLC obeys the multiplication rules specifically of the classes
of elements, rather than the elements themselves.'**? The
results of this multiplication®” are given by the table. If two
disclinations belonging to two different classes of the group
Q merge, then a disclination is formed that belongs to the
class of the product of the first two. The result of merger of
disclinations of the same class from the set C,, C,, C, is
ambiguous: either a homogeneous distribution (class C,) or
a disclination from class C, can be formed, depending on the
path of merger with respect to other defect lines in the sys-
tem.

The ambiguity of the results of multiplication of the
classes of the group Q is also manifested in the decay of de-
fects. Thus, any disclination from the classes C,, C,, of C,
can catalyze the disappearance of any disclination of the
class C,. To do this, it suffices to unlink the latter into two
that do not belong to the class of the catalyst line, and then
bring them together again along paths that pass on opposite
sides of the catalyst.

The cited features of the merger and decay of disclina-
tions are a consequence of the noncommutativity of the
group Q. Another consequence of this is the features of the
processes of linking of disclinations in biaxial nema-
tics, '%1422133-135 which we shall now proceed to discuss.

Figure 16a shows two mutually linked disclinations.
The question is whether they can be transformed by contin-
uous variations of the field of the order parameter into an
unlinked configuration (Fig. 16b), if we require that the

TABLEL
Cl' C(] CI\' Cy cz
) C, C, Cx Cy c,
Cy Co Cy Cv Cy C.
Cyx Cy Cy ¢, nmt C, C, Cy
Cy Cy c, c, C, nan C, Cx
C- c, C. C;/ Cx Cy U Cy
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ends of the disclinations remain fixed.

To find the answer let us draw three contours y,, ¥,, and
¥5 from the point P of real space (see Fig. 16) whose images

in degeneracy space will be the contours '), T,, and T,.
Evidently the defects can be unlinked only when the contour
I, is homotopic to zero. If this is not so, then separation of
the disclinations will lead to appearance in the medium of a
distinctive trace in the form of a third disclination (Fig.
16¢). The result depends on the nature of the linked disclina-
tions. Actually one can show'®?? that the contour I'; is ho-
motopic to the product T', I, 'T'; '; an element of this
form is called a commutator in the fundamental homotopy
group. For Abelian groups the commutator always coin-
cides with the identity element, since I',T", = I',T",. This is
not true for non-Abelian groups; in particular, for the group
¢ the contour TI'; can belong either to the
class Co(I'T,I'7'T;'=1) or to the class C,
(') T,I'7'T; ' = —1). The latter situation correponds to
linking of two disclinations belonging to different classes of
the set C,, C,, C,. Therefore, after drawing the lines
through one another, they prove to be connected by a dis-
clination belonging to C,. Since increasing the length of the
bridge disclination requires an increase in elastic energy, as
Toulouse noted,'* a biaxial NLC must manifest a distinctive
“topological stiffness”’ under mechanical deformations.

The single linkage that we have discussed has been gen-
eralized to p-fold linkage.'>* It turns out that all 2p-fold link-
ages in a biaxial NLC reduce to the configuration shown in
Fig. 16b, and all (2p + 1)-fold to the configuration shown in
Fig. 16¢c. Poenaru and Toulouse'** and also Monastyrsky
and Retakh'*® have conducted a generalized study of link-
ages of defects of different dimensionality.

4.1.2. Disciinations in phase transitions

As s
datal 10,150-152

known from the existing experimental
a biaxial nematic phase arises in lyotropic sys-
tems as an intermediate between two uniaxial phases. The
transitions occur under varying concentration and/or tem-
perature. The question arises of how the set of topological
defects changes hereby. Trebin®® has studied this problem
with the example of a biaxial-uniaxial NLC transition with
cylindrical structural elements (the degeneracy space S°/Q
is transformed into S 2/Z,). Let a disclination exist in a biax-
ial NLC. We shall assume that the order parameter is trans-
formed in the phase transition in the same way at every point
of this inhomogeneous system (apart from the core of the
defect) as in a homogeneous medium. Let us surround the
disclination with the contour ¥, whose image in the space .S */
Q@ we shall denote as I'. In the phase transition the contour I'
is transformed into the contour I'; from the space S2/Z,.
Evidently, if the contour I'; is homotopic to zero, then the
test disclination after the phase transition will become topo-
logically unstable. On the whole, all the disclinations will
become unstable that correspond to elements of the group
m,(S8%/Z,), i.e., those belonging to the kernel of the homo-
morphism

7y (S%/Q) — 7y (SP/Zy). (4.6)
The kernel of the homomorphism of (4.6) in the transition
being studied corresponds to disclinations of the classes C,
and C,. Consequently they lose topological stability in the
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process of transition to a calamitic and can continuously
disappear. As regards disclinations of the classes C, and C,,
they are transformed into topologically stable disclinations
withm = + 1/2.

In the second biaxial-uniaxial discotic NLC transition,
disclinations of the class C, are now conserved, but disclina-
tions of C, disappear. It is useful to remember this property
in the experimental identification of disclinations as belong-
ing to the classes of the quaternion group Q.

The rules of transformations of disclinations in the re-
verse direction of transition, from a uniaxial to a biaxial
phase, can be easily derived from what we have discussed
above. The problem of transformation of point defects looks
less trivial. Actually, hedgehogs can exist in the bulk of a
uniaxial NLC. In a biaxial NLC, since 7,(S*/Q) = 0, such
defects do not exist. Then what are hedgehogs transformed
into? It turns out that they cease to be isolated and are con-
verted into monopoles—point centers from which defects of
higher dimensionality—disclinations—emerge.’® Such an
effect was first predicted for superfluid *He-A'"" and for
SLCs.'*® Experimental confirmation exists for the SLC-A—
SLC-C transition in a spherical drop, where a point hedge-
hog is replaced by a monopole with one or two disclina-
tions'>’ (see also Sec. 6.3). However, in biaxial NLCs, mon-
opoles must be unstable, since their stability in condensed
media arises from one-dimensional translational order,
which biaxial NLCs do not have. Therefore we must expect
that the monopoles formed from hedgehogs in a biaxial NLC
will move to the surface of the system (owing to contraction
of the defect lines associated with them) and be converted
into boojums—point surface singularities.

4.2. Boojums

The existence of boojums in a biaxial NLC arises from
the nontriviality of the relative homotopy group 7,(S?*/
Q.%.,). As is implied by Ref. 125, the latter is isomorphic
with the nucleus of the homomorphism
Ty (Hnx) = 7y (53/Q) 4.7
(A,, is the degeneracy space of a biaxial NLC at the sur-
face). It would seem that the problem of topological classifi-
cation of boojums is reduced to finding the space #,, , whose
form depends on the boundary conditions, and in calculating
the kernel of the homomorphism (4.7).
For example, let the director 1 be oriented perpendicu-

lar to the surface, and t~he director n lie in the plane of the
surface. Then we have #,, =S '/Z, and

kern (n, (SYZ,) - n, (§%Q)) = 2Z = {0, &2, +4, ...}

(4.8)

This implies the existence of topologically stable boojums
with a charge m, equal to multiples of two (Fig. 17). The
charge m,, is the number of turns of the director n in passing
around the defect along a closed contour lying at the bound-
ary.

We must also fix the topological charge ¥, that charac-
terizes the distribution of the field 1 and is defined as the
degree of mapping of a hemisphere & surrounding the boo-
jum on the sphere S * of possible orientations of 1 in the bulk:
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FIG. 17. Boojums in a biaxial NLC. Above—distribution of the fieldlina
cross section by a vertical plane along the symmetry axis; below—distri-
bution of the field n at the surface of the NLC. a—Boojum with m, = 2.
b—Boojum with m, = 4.

A~ L ol ol o )
N [W mr]dt)dq 0. 41, *£2. ...,

© (4.9)

The classification of boojums in a biaxial NLC looks
somew hat more complicated under inclined conic boundary
conditions. In addition to integral charges, we must assign
also continuous charges, depending on the boundary condi-
tions, analogously to the situation in a uniaxial NLC (see
Sec. 3.3).

There are as yet no experimental confirmations of the
existence of boojums in biaxial NLCs. In view of the Poin-
caré and Gauss theorems, an isolated boojum with m =2
and N = 1 ought to be observed in spherical drops of a biax-
ial nematic. Interestingly, on changing the boundary condi-
tions the dynamics of the defects in such a drop is restricted
to the very same boojum.?’

5. CHOLESTERICS

A cholesteric in equilibrium possesses a structure in
which the director n describing the orientation of the long
axes of the molecules is twisted into a helix:

nir) - n(ny) cos [ 2 1(ry) (=) ]

+ () m () sin [ S50 (rg) (=) ]

(lis the unit director of the axis of the helix, and Pis the pitch
of the helix). Just as in a biaxial NLC, the order parameter
has the form of the triad 1, n, [nl], while the degeneracy
space®is Z, = S3/Q.

This conclusion is valid only for scales much greater
than the pitch of the helix of the CLC; for scales comparable
with the pitch of the helix or smaller we have

'j/',h = 7 N = S2/Zz.

The classification of defects in CLCs in the large-scale
approximation coincides with that of defects in biaxial
NLCs owing to the coincidence of their degeneracy spaces®:
there are no point singularities—hedgehogs, while the dis-
clinations are described by the five classes C,, C,, C,, C,,
and C, of the quaternion group Q. The first three classes
describe linear defects lacking singularities in the distribu-
tion of the field n, since they belong to the kernel of the

homomorphism'*® 7, (§°*/Q) —7,(S*/Z,). The dimension
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of the core of such defects is comparable with the magnitude
of the pitch of the helix of the CLC. The two other classes, C,
and C,, describe disclinations with a singular core whose
dimensions are of the order of molecular dimensions (or, as
in the case of disclinations with a singular core in a uniaxial
NLC, somewhat larger).

In describing defects in CLCs, it is accepted to use the
long-established terminology of Kléman and Friedel,'*® ac-
cording to which three types of disclinations are distin-
guished: A (m), 7(m), and y(m). Their distribution among
the classes of the quaternion group Q looks as follows®:

Cai 2 (2p), = (2p), % (2p),
Cot C2p+1). T@p+1), % (C2p+1),

er o D) e elne ) e nre ),
p—integer,

(the strength of the disclination is noted in parentheses).
Here, in the A-lines, the long axes of the molecules are paral-
lel to the axis of the disclination, perpendicular in 7 (respec-
tively nonsingular and singular cores) (Fig. 18). In both
cases the axis of the helix lis always perpendicular to the axis
of the defect. In contrast to A- and r-lines, y-lines can be
oriented at different angles to L.

Anextensive literature' ' 44337281106, 148,159-171 hag heen
devoted to experimental studies of disclinations in CLCs and
their behavior in external fields. Most of these studies treat-
ed y-lines (singular—of strength + 1/2 and nonsingular—
of strength + 1) in plane textures of a Kano wedge that were
oriented perpendicular to the helical axis 1. Calculations of
the energy of such disclinations are given in Ref. 172. As a
rule, y-lines in a Kano wedge dissociate into disclination
pairs A4, A7, and 7.

Unpaired A- and 7-disclinations of strength + 1/2 are
observed in another geometry of experiment—in ‘‘finger-
print” textures. An unusual result here was obtained recent-
ly by Livolant,'”® who studied cholesteric structures of
DNA in chromosomes of algae of the group of dinoflagel-
lates obtained in vitro and in vivo.” Just as in fingerprint
textures, A- and 7-lines were observed. Amazingly, “live”
chromosomes contained only 7-disclinations, and ‘“‘nonliv-
ing” only A. Apparently this distinction is based on energy
factors. We note also that A-lines of strength m = 1 can be
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FIG. 18. 4 and + disclinations in a CLC."**
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FIG. 19. Models of bubble domains in CLCs.

contained in bubble domains that arise in CLCs under the
action of various external fields (temperature, ultrasound,
electric'”"'"). A simple model of such a domain with a
A( + 1)-disclination proposed by Akahane and Tako'*' is
shown in Fig. 19a. In essence it is a transfer of the model of
Cladis and Kléman'*? of the structure of band domains to
the structure of bubble domains. However, as these same
authors have recently shown on the basis of data of not only
polarization but also holographic and interference micros-
copy, the model shown in Fig. 19b is more adequate to the
experimental data.'®? '

Now let us study disclinations whose axis coincides
with the axis of the helix—vertical y-lines. The properties of
y(+ 1)-lines with m =1 have been most fully stud-
ied'lI-SJ,H|.16l.163.I65—167,|7()—I7| As iS 1mplled by polarizing-
microscope observations, a model of the core of such a dis-
clination has the following features (Fig. 20):

a) molecules in the core are oriented along the axis of
the defect;

b) the dimensions of the core are comparable with the
pitch of the CLC helix;

¢) point and linear singularities can arise in the core.

As a rule, an isolated y( + 1)-disclination has a
straight shape. However, two paired y( + 1)-disclinations
always exist in a twisted state owing to the helical twist of the
medium itself. Here the mutual repulsion tends to increase
the distance between them. However, owing to the nonzero
linear tension of the disclinations, the helicoidal configura-
tion remains stable.”® Yet if the disclinations are of unequal
strengths, and hence, unequal values of the linear tension,
then one of them (having the greater tension) remains
straight, while the other wraps around the former. This has
been actually observed experimentally for different situa-
tions: for a pair y( + 1), y( — 1)'%*'** and for a system of
one y( + 2) and two y( — 1/2) disclinations.”
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FIG. 20. A vertical y( + 1) disclination in a CLC containing point (a)
and linear ring (b) defects in the core.'®’
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In many substances in a narrow temperature range
(~1°C) one or several intermediate phases exist between
the isotropic and cholesteric phases that are called blue
phases (see the review of Ref. 184). It has been established
experimentally that the so-called I and II blue phases have a
periodic cubic structure. In particular, this is indicated by
micrographs'®® of monocrystals of a blue phase I in which
screw dislocations are distinctly visible that arose in the pro-
cess of growth of the single crystal from the melt. However,
more interestingly, the lattice itself of these phases is appar-
ently nothing other than a periodic network of disclinations.
The point is that, in the general case, chiral molecules are not
constrained to form a structure twisted in only one direction,
asinanordinary CLC: twist in two directions is locally more
favorable (see Fig. 12). However, double twist cannot prop-
agate continuously to large volumes. Therefore a lattice of
singularities arises in the system in the form of disclinations
of strength m = — 1/2 that is stable for a certain relation-
ship of the parameters of the system (for more details see the
review of Ref. 184).

6. A AND C SMECTIC PHASES

The main distinctive feature of smectic liquid crystals
consisting of rod-shaped molecules is their layered order.
The density function of SLCs of types A and C, in contrast to
NLCs and CLCs, is modulated along the normal to the lay-
ers with a period of the order of the length of a molecule
u~107% m. Within each layer the density is constant, and
the molecules are oriented either normal to the layer (SLC-
A) or are inclined (SLC-C). Such types of order are wide-
spread, not only in thermotropic, but also in lyotropic and
biological systems (lamellar structures, membranes,
etc.).'"®

The orientational order of an SLC-A, just like an NLC,
is described by the director n. Moreover, one must also take
account of the translational order along the normal to the
layers. To find the degeneracy space of an SLC-A, we can use
the general formula (2.4); as Kléman and Michel'*®
showed, we have

Jia = R3 . SO 3Y(R?* ¥ Z) O Duep. (6.1)
Analogously, for an SLC-C we have
e = R® > SO (3)/(R* X Z) O Cy. (6.2)

We must choose the orientational part of the order param-
eter of an SLC-Cin the form of the triad n, T, [*n], where 7 is
the unit vector fixing the orientation of the projections of the
molecules in the plane of the layer, and n is the normal to the
layer.'®¢

Also chiral SLC-C*’s are known, in which the direction
of the long axes of the molecules precesses about the normal
to the layers. The symmetry of the phase is reduced here to
the group C,, and we have Z.. =R>XSO(3)/
(R*x2Z)OC,.

6.1. Dislocations and disclinations

To establish the types of topologically stable singular
lines in SLC-A’s and SLC-C’s, we must calculate the groups
m(R,) and 7,(H# ¢ ). In view of the complexity of the de-
generacy spaces of %7 , and % (see (6.1) and (6.2)), the
direct algebraic approach to the calculations is difficult.
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Therefore we shall use a more graphic geometric scheme for
calculation with the example of SLC-A.

We can represent the degeneracy space of an SLC-A in
the form of a continuous torus (S2/Z,) XS ! The vertical
cross sections of the torus in the form of two circles amount
to hemispheres of S*/Z, stretched into disks whose points
characterize the orientation of the director n. The points
lying along the large circles of the torus correspond to points
along the segment [0,u] closed into the circle S ', Two types
of elementary contours not homotopic to zero exist in the
degeneracy space (S°/Z,) XS ":T"|, which joins diametrical-
ly opposite points of the disks S */Z, and which describes the
disclinations, and I',, which runs through the hole of the
torus and describes the dislocations. The fundamental group
of the degeneracy space of an SLC-A, 7,(S'/Z,) XS"),
therefore has the form

My (Fa) = 7, (SY) X 7y (S¥Zy) = Z X Z, - (6.3)

It has the elements (b,p), where b is an integer, and p takes
on the values 0 and 1. This presupposes the existence in the
SLC-A of a single class of stable disclinations (elements
(0,1)), an infinite number of classes of dislocations with
different values of the Burgers vector that are multiples of »
(elements (5,0)), and also combinations of them, or disgyr-
ations.

For an SLC-C we can easily calculate the group
(R ) by using the relationship % , = % /S ', whichim-
plies that each point of %7, corresponds in % ¢ to an entire
family S ' of points fixing the orientation of the vector in the
plane of the layer, owing to the inclination of the molecules
in the layers of the SLC-C. Direct calculation shows that

7 () =203 Z,. (6.4)

Here Z, = (I,a,a%,a”) is the group of subtractions modulo 4
with the unit element /.

6.1.1. Dislocations in smectics-A

Just as in ordinary crystals, edge and screw dislocations
are singled out in SLC-A’s (Fig. 21a,b). We see from Fig. 21
that dislocations in SLC-A’s are not associated with singu-
larities of the field of the director, and thus are very simple
examples of semidefects. The term “semidefect” was intro-
duced recently'®” to denote disturbances of order that in-
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FIG. 22. SLC-A-SLC-C phase transition involving an edge dislocation in
a wedge.

volve a singular distribution of not the entire order param-
eter, but only a part of it. Since the distribution of the
director involves the distribution of the optic axis, the stated
feature makes the direct observation of elementary disloca-
tions in SLC-A’s using the light microscope extremely diffi-
cult. It is relatively simple to observe dislocations or groups
of them having large Burgers vectors'®®'®°; here there are
grounds for assuming that groups of dislocations enter into
the composition of the so-called oily streaks.****%!*° How-
ever, despite the fact that oily streaks are very often found in
the most varied layered media, the question of their detailed
structure remains under discussion.**%!°!"1°2 To all appear-
ance, the wealth of models involves the very nature of oily
streaks and the dependence of their structure on the concrete
values of the parameters of the medium.

In recent years special experimental methods have been
developed to detect isolated elementary edge disloca-
tions.>®>*19%194 In thermotropic smectics Meyer, Lager-
wall, and Stebler have used the features of a second-order
SLC-A-SLC-C phase transition in wedge-shaped cells with
an angle w~ 10~ * radian and a normal orientation of the
molecules at the surface (Fig. 22).'%* The geometry of the
cell necessarily led to the formation of a system of edge dislo-
cations separated from one another by the distance w/u ~ 10
um. The idea of the experiment to visualize the dislocations
was based on the fact that local stresses near defects in the
region of a phase transition (s = + u/d, where d is the
thickness of the specimen) either initiate the formation of an
SLC-C (s> 0), or hinder it (5 <0). Actually, according to
the theory of Landau, the free-energy density of the system

FIG. 21. Dislocations (a,b) and disclinations (c-f) in A-
type SLCs.
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has the following form near the transition point T, with the
imposed stress s:

f=fo+ A(T—T)a?+Bas+C (s+yaz)’.

(6.5)
Here o is the inclination angle of the molecules to the normal
in the SLC-C. As the temperature is lowered to 7, in the
geometry of Fig. 22, the A-phase is preserved to the left of
the dislocation with s <0, and the C-phase arises to the right
with s > 0. One can easily observe the elementary edge dislo-
cation separating the regions of the A- and C-phases in the
microscope: optical contrast is made possible by the sharp
change in the slope of the molecules (Fig. 22).

Chan and Webb'** have used a similar geometry in
studying a lyotropic lamellar phase L, (lecithin in aqueous
solution), a structural analog of an SLC-A. The elementary
edge dislocations were detected by introducing fluorescent
additives into the system. Measurement of the mobility of
the dislocations (¢ = 10~ '* cm?s/g) enabled determination
of the permeation coefficient for the L, -phase: n = 1073°
cm?/poise. Both quantities proved to be many orders of
magnitude smaller than the analogous values for thermotro-
pic SLC-A’s'®®* and lyotropic nonionic systems!®
(g =10"5-10""cm?s/gand » = 10~ '* cm?/poise). Appar-
ently the differences involve the presence in the two latter
systems of a large number of screw dislocations and pores,
which facilitate permeation of the molecules across the lay-
ers and slip of the edge dislocations.

Dislocations in lyotropic L, -phases have also been ob-
served by the method of electron microscopy.38:3%:196-197 It
turned out that edge dislocations are found much more rare-
ly than screw dislocations unless special geometric condi-
tions are fulfilled. Analogous data have also been obtained in
studying thermotropic systems.'®3-2®° One can interpret the
effect as a manifestation of the condition of equidistance of
the smectic layers: in contrast to edge dislocations, screw
dislocations do not alter the thickness of the layers in the
first approximation, and have relatively low energies of for-
mation.?®'~2%% It was shown in the theory of Loginov and
Terent’ev??? of dislocations of general form that the energy
of a screw line in an SLC-A consists only of the energy of the
core, while the energy of the elastic distortions outside the
core vanishes. An interesting result of the theory was the
prediction of an effect of combination of dislocations having
a unit and doubled Burgers vector (one and two interlayer
spacings) into one having a larger Burgers vector as the
point of the SLC-A-NLC transition is approached.

We should mention another interesting question in-
volving dislocations in SLC-A’s. We are referring to the
model of de Gennes of the SLC-A-NLC *** (or CLC 2*)
transition, based on the analogy with the superconductor-
normal metal transition. Just like superconductors, SLC-A’s
are classified, depending on the magnitude of the ratio A /¢ of
the depth A of penetration of deformations into the bulk and
the distance £ at which layered order breaks down, into twa
types—I (4 /€ < 1/v2),and 11 (4 /€ > 1/v2). Uponapplying
twist or bend deformations to a type II SLC-A, one should
expect onset in the system of a system of dislocations that
straighten the stresses in the medium (an analog of the Shub-
nikov phase). The known SLC-A’s belong to type I (see,
e.g., Ref. 205). However, it is not ruled out that cholesteryl
pelargonate?®® and mixtures of it'”® form type-1I SLC-A’s.
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6.1.2. Disclinations in a smectic-A

Asarule, disclinations in an SLC-A arise in the form of
pairs of lines withm = 1/2and m = — 1/2, e.g., as a result
of splitting of edge dislocations'8*-191:58:59207 (Rjg 7 ]e). In
round capillaries with a normal orientation of the molecules
at the inner surface, disclinations of strength m = 1 were
observed (Fig. 21f).43697273208 In contrast to the corre-
sponding situation in NLCs, these disclinations are energeti-
cally stable; outflow into the third dimension is hindered by
the condition of equidistance of the layers. In addition, an-
other type of instability of disclinations having m =1 in
SLC-A’sis known, namely, the appearance of a specific peri-
odic structure near the core,**°® probably caused by com-
pression of the smectic layers in the process of preparing the
specimen or upon changing its temperature.%®

6.1.3. Dislocations in a smectic-C

Asa number of studies'®%?1%2!! have indicated, disloca-
tions in SLC-C’s are anaiogous in many ways in their struc-
ture to dislocations in SLC-A’s. Therefore we shall not take
up a detailed description of them.

6.1.4. Disclinations in a smectic-C

Disclinations in SLC-C’s are classified into two types:
m-lines in the distribution of the vector field = of the projec-
tions of molecules not involving distortions of the smectic
layers, and /-lines in the distribution of the field n of normals
to the layers.'® Vertical m-lines are often found in schlieren
textures of SLC-C’s with horizontally arranged lay-
ers.' 19636211212 Tn contrast to nematic schlieren textures,
only m-disclinations of integral strength exist, while lines of
half-integral strength are not formed, which is explained by
the vector and two-dimensional character of the field . A
more convenient object for studying the features of m-lines is
monopoles (see Sec. 6.3), which contain (0,1) and (0,a°)
disclinations of strength m = 2 and m = 1, respectively. As
polarizing-microscope studies indicate, the cores of m-lines
in monopoles are nonsingular and have a dimension of the
order of 1 um. Here, with change in the angle of inclination
of the molecules to the layers, the thickness of the core
changes correspondingly. The most favored model of the
cores of m-disclinations is the model of a nematic core, in
which the molecules are oriented along the axis of the defect
(Fig. 23).

In contrast to m-lines , /-type disclinations can also have
a half-integral strength. If such a disclination is not perpen-
dicular to the plane of symmetry of the SLC-C, the distribu-
tion of the field v along each layer is inhomogeneous and
reminds one of the distribution of spins in a Néel wall or
contains a series of alternating point defects with m = 1 and
m = — 1,'86213 By studying the behavior of such lines in a
magnetic field, one can determine certain combinations of
elastic constants of the SLC-C.?"

6.1.5. Linear defects in chiral smectics-C

Owing to the presence of two translationally ordered
one-dimensional sublattices in SLC-C*’s having a chiral
twist, linear defects arise both in the distribution of the smec-
tic layers proper and in the distribution of the “layers” of the
chiral structure.?'® The different types of such defects have
been studied experimentally in Refs. 200, 216.
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FIG. 23. Structure of disclinations in an SLC-C of strengths m = 1 (a,c)
and m = — 1 (b,d). Above—the field of the projections of T of the mole-
cules on the surface of the smectic layer (a,b); below—distribution of the
molecules in a cross section by a vertical plane (c,d).

Usually the ptich of the SLC-C* helix is incommensura-
ble with the thickness of the smectic layer; suchan SLC-C* is
a simple example cf an incommensurable structure. If the
incommensurable phase (SLC-C*) coexists with acommen-
surable one (SLC-C), a series of disclinations, or dechirali-
zation lines, must arise at the phase boundary, and they sepa-
rate the regions of the twisted and untwisted phases.”!” A
similar situation arises in a plane cell with an SLC-C* whose
helical axis is oriented along the cell under the condition that
a planar orientation of the molecules has been fixed at the
upper and lower surfaces of this cell—then the disclination
separate the region of the SLC-C* in the bulk from an SLC-C
region near the surfaces.?'*-*?* Movement and annihilation
of dechiralization lines is one of the fundamental mecha-
nisms of the SLC-C*-SLC-C transition in a planar specimen
under the influence of an electric field.”'*

6.2. Hedgehogs and confocal domains in smectics-A

The homotopy classification of point hedgehogs in
SLC-A’s coincides with the classification of hedgehogs in
uniaxial NLCs and predicts the existence of an infinite set of
types of point singularities in the field of the director
n:m, (% ,) = Z. However, application of the method of ho-
motopic groups to describing defects in smectics is restricted
owing to the broken translational symmetry of these me-
dia®*?**' (in addition, see Ref. 222). Besides, this property
facilitates the solution of problems of inhomogeneities of ge-
ometric constructions."*?"?%* Since energy is required to
change the thickness of a smectic layer considerably exceed-
ing the bending energy of the layers, an SLC-A can be repre-
sented as a simple geometric image: a family of flexible, but
everywhere equidistant surfaces. In particular, the geomet-
ric methods enable one to solve the rather difficult problem
of filling space with a smectic. The problem is reduced to
finding close packings of layers in a volume for which, first,
the thickness of the layers remains invariant, second, the
conditions of orientation of the molecules at the boundary
are satisfied, and third, the total energy of distortions is close
to minimal. Before we proceed to it, let us discuss what types
of distortions are possible in principle in a system of layers.
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Let us study the field of the normals to parallel smectic
layers, which coincides with the field of the director in the
case of an SLC-A. For a layered equidistant structure we
have n curl n =0 and nXcurl n = 0, which entails the re-
quirement that the field lines of n should be straight: if a line
N is perpendicular to any layer I, then it remains perpen-
dicular to any other layer that intersects it. The point of
intersection of ¢ and IN is characterized by definite values of
the two principal radii of curvature. The corresponding
centers of curvature belong to i and are also the centers of
curvature for other points of intersection of # with layers
parallel to IR.%*' Moreover, these centers are defects, since
the radii of curvature approach zero in their vicinity.

When the normal R passes through all points of the
surface I, both centers of curvature describe a two-sheet

surface €, which is called the focal surface or evolute of the
surface IM.?*' We can logically expect that situations are en-
ergetically favorable in which the two-dimensional defect €
degenerates into a zero-dimensional (point) or one-dimen-
sional (line, pair of lines) defect.

The only surfaces with zero-dimensional evolutes are
spheres. Correspondingly the only point singularities that do
not alter the thickness of smectic layers will be radial hedge-
hogs (Fig. 24a). Their existence in SLC-A’s has been shown
unequivocally only recently in experiments with spherical
drops, at the surface of which a normal orientation of the
molecules was fixed.*’ However, in numerous experimental
studies of smectic textures in plane specimens, such point
defects have not been revealed in isolated form. The most
characteristic structural defects of ““planar” textures are lin-
ear singularities in the form of an ellipse or a hyperbola that
are regular in shape and form the distinctive frames of confo-
cal domains. One can represent an individual domain in the
form of a cone of rotation whose base is an ellipse, while the
vertex lies on a hyperbola (Fig. 24b). The ellipse and hyper-
bola are linear evolutes, to which, as is known from geome-
try, corresponds a single class of surfaces, namely the so-
called Dupin cyclides.?** Surfaces in the form of Dupin
cyclides constitute the structure of the confocal domains. In
particular, the Dupin cyclides are the cylinder, the torus,
and the cone of rotation.?** On the whole one distinguishes
three types of Dupin cyclides with evolutes in the form of:
(1) pairs of an ellipse and a hyperbola lying in mutually
perpendicular planes so that each curve passes through the
focus of the other (i.e., confocal); (2) pairs of confocal pa-
rabolas; (3) pairs of a circle and a line passing through the
center of the circle.

FIG. 24. Family of equidistant smectic surfaces having a zero-dimension-
al evolute point {radial hedgehog in the field of the normal to the layers)
(a) and with a linear evolute in the form of confocal lines of an ellipse and
a hyperbola (confocal domains) (b).
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All three types of evolutes-linear defects have been ob-
served experimentally (see respectively: (1) Refs. 1, 189,
225, 225 in SLC-A’s, Refs. 227, 228 in SLC-C’s and SLC-
C*’s, Refs. 197 and 198 in lyotropic lamellar phases; (2)
Refs. 229, 46 in SLC-A’s, Refs. 48, 192, 230 in lyotropic
phases; (3) Ref. 231 in SLC-A’s, Ref. 232 in SLC-C*’s, and
Refs. 58, 59, 199 in lyotropic phases).

The predominance of confocal domains over spherical
and smectic textures arises from several causes: the effect of
the boundary conditions, the conditions of growth and re-
laxation of SLCs, and finally, the balance of energy of local
distortions.?*****!*8 which involve the values of the princi-
pal radii of curvature R, and R,. In the general case the
energy of the distortions of the system of layers of an SLC of
invariant thickness is calculated by the formula

2
F=v Ky (@ivapdV =4 Ky, | (5+5) a7
(6.6)

(¥ is the volume of the domain.) For each point 8 on the
surface M, we must take the quantities R, and R, with a
definite sign that depends on whether the point § is a point of
elliptic (R,R, >0) or hyperbolic (R,R, <0) curvature. For
a spherical system of layers we have R, = R, = R >0, and
F,,, = 87K, R. However, when R R, <0, which is realized
in part of the volume of the confocal domain, the energy can
be even smaller. In particular, as Kléman?** has shown, the
energy of a toroidal domain with Dupin cyclides of type (3)
amounts to
2R

Fy=2n2K R (ln—p~—2) . 6.7)
Here R is the radius of the circle. An “ordinary” confocal
domain with Dupin cyclides of type (1) can have an even
smaller energy:

F<1)=ﬂKu(1—ez)pln%. (6.8)

Heree, p, and a are the parameters of the ellipse: respectively
the eccentricity, the perimeter, and the semimajor axis.

Usually in textures one observes not isolated domains,
but entire groups of confocal domains in contact. Here no
two-dimensional defects, or walls, are formed. The question
arises: how do the layers fill space without creating defects of
a dimensionality higher than unity? For a long time the only
model was that of iterational filling,”** in which the inter-
stices between large domains are occupied by smaller do-
mains, etc., down to molecular scales. Such iterations are
actually manifested in many textures. However, as a rule, the
process is interrupted at scales much larger than molecular.
As we see from Fig. 25, regions exist between the large do-
mains that are free from smaller domains, and hence are
filled with layers of a special form.

The second model, which was studied by Sethna and
Kléman,?*! explains the filling of the intermediate regions
between the confocal domains by the appearance of systems
of concentric spherical layers. The model is rather simple.

Let us study a sphere witha spherical concentric system
of layers (Fig. 26a) and dissect from it several spherical sec-
tors along the surfaces of circular cones of normals 3 with
vertices at the center of the sphere. We shall fill the inner
regions of the cones with layers with a configuration of Du-
pin cyclides, i.e., individual confocal domains. Since at the
surface of “joining”’ the lines i are common normals for the
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FIG. 25. Texture with confocal domains in an SLC-A.

layers of both domains—both the spherical and the confo-
cal—we can easily see that such a construction is what en-
ables a smooth transition of the layers between the confocal
domains owing to the regions of the spherical domain filling
the interstitial regions. One can see the possibility of such a
filling with the example of spherical drops of an SLC-A (Fig.
26b ) .27,236

It was shown recently?®® that in other experimental geo-
metries the filling of space with smectic layers of invariant
thickness can be attained exclusively by combination of
spherical and focal domains. The overall scheme of the fill-
ing proposed in Ref. 236 consists in the following (Fig. 27).

On large scales comparable with the charactertistic di-
mension L of the system, the filling is carried out with confo-

FIG. 26. Filling of the interstices between confocal domains with layers of
spherical form. a—Model of Sethna and Kléman.**' b—Micrograph of a
spherical drop of an SLC-A having a structure analogous to that shown in
Fig. a.
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FIG. 27. Overall diagram of the filling of space by smectic layers. a—
Subdivision of a parallelepiped with which space can be filled by parallel
transport into a pair of pyramids H (4BCD) and A (EFGH) and a pair of
tetrahedra 4BGH and ADEH. b—Filling of the tetrahedron ABGH with a
unitary family of cyclides of Dupin intersecting its faces at a right angle.
c—Filling of a pyramid with a unitary family of spherical layers into
which confocal domains have been smoothly incorporated. d—Diagram
of the smooth transition of layers from a pyramid to a tetrahedron within
the limits of a single parallelepiped.

cal domains of dimension ~ L. The interstices between them
are occupied by smaller confocal domains, etc., until the di-
mensions of the bases (ellipses) of the smallest domains
reach some critical scale p* determined by the balance of
bulk and surface energy. In the general case we have
bLAG | -1
p*::L(a~,L o ) .

Here a and b are numerical constants that depend on the
geometry of the system, Ao = 0, — 0|, and o, and o are
the values of the surface tension for orientations of the mole-
cules normal and tangential to the boundary, respectively.

On scales smaller than p*, the hierarchy of confocal
domains is replaced by a packing of layers of spherical form
that enable a smooth transition between the confocal do-
mains and completely fill all the free interstices.

Generally speaking, the described hierarchy of struc-
tures is realized in a limited part of the space in the form of
pyramids; each pyramid is associated with one family of con-
tiguous confocal domains with a common vertex and one
family of spherical concentric layers (the center is at the
vertex of the pyramid) (see Fig. 27¢). The lateral faces of
each pyramid, whose base can be any polygon, are adjoined
by tetrahedra completely filled with layers of one single con-

217 Sov. Phys. Usp. 31 (3), March 1988

o "

focal domain (see Fig. 27b). In turn the tetrahedra are ad-
joined by pyramids rotated by 180° with respect to the initial
one, etc. One can trace how the linkage of the layers among
all the stated polyhedra is brought about smoothly, without
creating walls (for more details see Ref. 236). Thus the only
defects in the system are point hedgehogs and linear defects.
In real experiments the structure of the spherical and
confocal domains can be distorted, first, by the breakdown
of the conditions of equidistance of layers necurln = 0 and
n X curln = 0, which implies the appearance, respectively of
edge and screw dislocations,”**'®* and second, by tendency
of the Dupin cyclides to adopt the form of minimal surfaces
(R, = — R,), which perhaps has been observed in certain
cases for lyotropic®® and cholesteric thermotropic'®? phases.
However, on the whole these distortions do not introduce
substantial changes into the large-scale pattern of filling.

6.3. Monopoles and confocal domains in smectics-C

Isolated point singularities are absent in SLC-C’s:
m,(# ) = 0. The question arises of how the structure of a
radial hedgehog is transformed in a system of spherical con-
centric layers in an SLC-A-SLC-C transition.

If the smectic layers keep their spherical packing in the
process of the phase transition, a point hedgehog with N = 1
exists in the field of the normal n in the C-phase, just as in the
A-phase. However, in the SLC-C this defect is no longer
isolated. Actually, owing to the inclination of the molecules
at the surface of each layer of the SLC-C, a tangential field T
of the projections of the molecules arises, and in view of the
Poincaré theorem, the radial hedgehog proves to be associat-
ed with disclinations in the field 7. This can be a single line of
strength m = 2 or two with strength m, = m, = 1 (respec-
tively (0,1) and (0,a”) disclinations).'*® The structure that
is produced in the form of a hedgehog, from whose center
one or two disclinations emerge, is a monopole in the SLC-C.
Topologically the formation of a monopole in the SLC-A-
SLC-C transition is analogous to the formation of a boojum
from a hedgehog in the uniaxial-biaxial NLC transition. Ac-
tually a monopole is a boojum drawn from the surface into
the bulk and linked to this surface by a disclination. The
stability of such a structure is enabi~d by the conservation of
the distance between the smectic layers.

A representation of monopole structures first arose in
1931, when Dirac predicted the existence of isolated magnet-
ic charges in the form of a hedgehog in a magnetic field with
a linked linear singularity in the field of the vector poten-
tial.>*” Despite a set of weighty arguments favoring the real
existence of monopoles, experimental searches for these ob-
jects (see, e.g., Ref. 238) have yielded no unambiguous posi-
tive results. In this regard, especial interest is aroused by the
study of structural analogs of monopoles in various con-
densed media, including liquid-crystalline-cholester-
iCS,239'15'81'170'l7l’240 al’ld SmCCtiCS-C. 156,157,241 AS Volovik239
first showed, one can introduce variables for them that di-
rectly describe the distribution of the molecules, and which
coincide in their analytic expression with the form of the
vector potential of a monopole of Dirac. Let us show this
with the example of a monopole in an SLC-C."*’

The order parameter of an SLC-C can be assigned not
only in the form of the triad n, 7, [tn], but also by using the
wave function ¥ = a exp(i@). A change in the phase of the
wavefunctiongp — @ + B hasthemeaningofarotation of the
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vectors 7 and [n] with respect to n. The following spatial
derivatives are defined for the quantity 3 at each point of the
system:

B

- ~ B
=5

op
Ky =5 - 2= 57 ¢

=% M

(6.9)
Since the quantity S is not a complete differential of any
function (the rotations of the triad n, 7, TXn are noncom-
mutative, B /dxdy#3 B /dydx, etc.), in the general case
we have curl x#0. For an SLC-C the quantity % is the field
of distortions of the orientation of the projections of the mol-
ecules on the surface of the layers. If the layers form a spheri-
cal concentric system, then in spherical coordinates we have

r

rotx::*w. (6.10)
The solution of Eq. (6.10) will be, e.g.,
0
Ho=mo 0wy tg g (6.11)

Equation (6.11), which contains a linear singularity ly-
ing along the negative part of the OZ axis, coincides with the
solution for the vector potential of the Dirac monopole,?*’
and also with the expression for the field of distortions of the
Volovik monopole in a CLC.?**

Experimental studies of freely suspended drops of SLC-
C’s confirm the possible existence of monopole structures.'®’
They actually have the form of concentric spherical systems
of smectic layers from whose center emerge one, as in the
solution (6.11), or two m-type disclinations (Fig. 28).

The described radial monopoles can transform into hy-
perbolic ones upon changing temperature. The structure of
the latter recalls toroidal confocal domains (see Sec. 6.2). In
such a monopole a point defect of the field n has the form of a
hyperbolic hedgehog (Fig. 7d,f), while the disclinations as-
sociated with it are characterized by the strength
m=m,= — 1.2%

Monopoles have also been found in cholesteric
drops!®81:170.171.240, they are stable if the pitch of the CLC
helix is much smaller than the dimensions of the drop. In
contrast to SLC-C’s, in CLCs, depending on the type of heli-
cal twist (right- or left-handed), one can distinguish mono-
poles with N = 1 and antimonopoles with N = — 1. By us-
ing compensated binary mixtures of cholesteric materials
that change the direction of twist upon changing tempera-
ture, it has been possible experimentally to conduct a contin-
uous monopole-antimonopole transition.?*° In the inversion

. { UL |

PS0OS
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FIG. 29. Appearance in a SCL-A (a) to SLC-C (b) phase transition of a
pair of m-disclinations of strength m = — 1, each in a confocal domain.

region the untwisting of the cholesteric helix gives rise in the
drop to the defects inherent in the nematic phase~hedge-
hogs, boojums, and surface disclinations. In other words,
here again a topological dynamics of defects prevails that is
caused by a change in the degeneracy space.

Monopoles can be formed also in other condensed me-
dia if these media fulfill the following two requirements: the
existence of an order parameter in the form of an orthonor-
malized triad of vectors (directors) and the existence of a
one-dimensional periodic structure with equidistant layers
along one (and only one) of these vectors. In such media as
superfluid *He-A or a biaxial NLC, monopoles are unstable
and relax into boojums, since they do not fulfill the second of
these conditions. In an ordinary solid crystal monopoles also
are not formed owing to the large energy of the deformations
involving breakdowns of the three-dimensional periodic lat-
tice. The listed requirements are fulfilled, in particular, by
chiral smectics-C.

As was shown above, an isolated radial hegehog is con-
verted in the SLC-A-SLC-C transition into a monopole with
disclination lines. Confocal domains also undergo similar
changes: in the SLC-C the ellipse and hyperbola prove to be
bound together by two disclinations of strength m = — 1
(Fig. 29). In its topological nature, this effect, which was
discovered by Perez et al.>*” and studied in detail in Refs. 232
and 228, is analogous to the effect of transformation of a
hedgehog into a monopole, and involves the appearance of
the field 7 in the SLC-A-SLC-C transition.

FIG. 28. Monopoles in SLC-C’s. a,b—Micrographs of
spherical drops of SLC-C’s containing monopoles with
one and two disclinations. c,e—The corresponding
distributions of the field 7 on spherical surfaces of the
smectic layers. d,f—Distribution of layers of an SLC
and disclinations inside the drop.
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FIG. 30. Hexagonal lattice of liquid columns whose orientation is given by
the director n.” a—Translation vectors a, a’, and a” perpendicular to n.
Symmetry axes of the structure: C,, 8,, T,—twofold; C;—threefold; C,—
sixfold. b—Example of a hexagonal structure not possessing Ce, C,, and 8,
axes.
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7. COLUMNAR SYSTEMS WITH HEXAGONAL ORDERING

Up to now hexagonal ordering has been found in nu-
merous liquid-crystalline media. They are, e.g., the thermo-
tropic smectics-B with translational hexagonal ordering of
the molecules within the limits of each layer®*? and their
lyotropic analogs.® In essence, the defects in such media are
classified in the same way as the defects in ordinary solid
crystalline three-dimensional lattices® (see Ref. 243 in this
regard ), and they have similar physical properties.?** There-
fore we shall not treat them.

The nonsmectic columnar phases are more interesting
from the standpoint of topological properties. They are
formed either by long cylindrical micelles,*® or by liquid col-
umns of disklike molecules®® and have two-dimensional
translational order—hexagonal (Fig. 30) or rectangular.

To find the degeneracy space of the medium depicted in
Fig. 30, Bouligand**® proposed the following pictorial
scheme. Let us donote by n the unit director that fixes the
orientation of the axes of the liquid columns. The region of
variation of n is the sphere S */Z,, which can be represented
in the form of a hemisphere or disk. Diametrically opposite
points on the boundary of the disk are mutually equivalent.
We must also fix the orientation of the vector a (see Fig. 30),
e.g., by using a continuous parameter that varies on the lin-
ear segment from O to 7/3 (or to 27/3, if C, symmetry axes
are absent in the structure). Then the orientational part
of the degeneracy space amounts to the solid torus
(S?X Z,) XS "' Wemustsupplement it with the translational
part, which has the form of the hollow torus S' xS ' for a

FIG. 31. Disclinations in a hexagonal structure.”’
a,b—Longitudinal disclinations #/3 and — 7/3 ori-
ented along the C, axis. d—Transverse disclinations
oriented along the axes T, and 8,, respectively. e—
Two transverse, mutually perpendicular disclinations
lying along the T, and 8, axes.
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two-dimensional lattice. Consequently the complete degen-
eracy space of the hexagonal liquid is a complex five-dimen-
sional manifold and allows the existence of dislocations®
having the Burgers vector b =Ja + ma’ and disclinations
(Fig. 31) whose axis can be oriented either along the col-
umns or perpendicular to them. Transverse disclinations are
energetically more favorable, since they do not require a
change in the distances between the columns.

If the medium has a C,; symmetry axis, then transverse
disclinations are formed both along the 7, axis and along the
8, axis (Fig. 31c,d). In the absence of a C, axis the 6, axis is
also absent (an example is shown in Fig. 30b), and this
means that disclinations along 8, are also absent. This fea-
ture permitted an unambiguous proof of the existence of a C¢
axis in the hexagonal phase of hexapentoxytriphenylene. Os-
wald? was able to observe specific defect formations in the
form of two mutually perpendicular disclinations, which is
possible only when one of them is formed by rotations of the
columns about the T, axis, and the other about the 8, axis.
The existence of the latter implies the existence of a C, axis.
Interestingly, x-ray structure analysis does not allow one to
make such an identification.

The structure of hexagonal phases also allows forma-
tion of singular domains, which, like the confocal domains in
smectics, do not fit in an obvious manner into a homotopy
classification, but are described by geometric constructions.
We have in mind the so-called developable domains first
studied by Bouligand*** and by K1éman.?*’ Similarly to the
situation with confocal domains in layered media, in devel-
opable domains in the presence of longitudinal bending de-
formations of the field n (and only of them), the columns
keep both their thickness and their hexagonal (or rectangu-
lar) packing. The construction of such domains involves the
concept of developable surfaces”* and reduces to the
following.

Let us distinguish the axis of a bent column—the space
curve 9. We shall set each point 8 on I in correspondence
with the plane I perpendicular to R at the point . In the
absence of twist and splay deformations (n-curl n = 0, div
n = 0), the axes of adjacent columns of the hexagonal lattice
parallel to I also intersect the plane M at a right angle. Shift-
ing the point B along the line X generates a single-parameter
family of planes {9} whose common envelope is a certain
surface D (Fig. 32). The surface D consists of straight lines
{g} that are the limiting lines of intersection of two adjacent
planes of the family {2¢}. Thus the surface D has everywhere
zero Gaussian curvature and by bending it one can develop it
into a plane (““developable” surface). The columns intersect
the developable surface D at a right angle and actually can
exist only on one side of it (where one can arrange at least
one tangent to the plane of the family {2t}). The family of
straight lines {g} has a common envelope—the curve E in
the form of the cuspidal edge of the surface ©.7%* The curve E
and the developable surface D itself are singular regions in
the distribution of n. Moreover, one can show that the fam-
ilies of columns themselves that form one row of the lattice
(e.g., along the vector a; see Fig. 30a) also have the form of
developable surfaces.

Depending on the concrete form of the developable sur-
face D, one can distinguish developable domains of different
types. The surface  can be a Riemann surface if £ is a screw
line; a conical surface if E is a point; a cylinder if £ is a point
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FIG. 32. Construction of the developable surface & and the cuspidal edge
E corresponding to the space curve 3 (arrow )—axes of the column (nota-
tion: r, is ARy, 1y 5 i8 R\ 5, Ty i8 Fy).°

removed to infinity. The distribution of the columns in the
latter case is shown in Fig. 33. Each column describes a plane
spiral, all turns of which intersect at a right angle one of the
two tangents to the circle—the cross section of the cylinder
D. Here the segment of the tangent between the two last
turns has a constant length equal to the length of this circle.
The domain that we are studying has the form of a disclina-
tion of strength m = 1. Similar structures have been ob-
served in Ref. 248, and here it turned out that disclinations of
strength m = 1/2 most often arise, and amount to half of the
developable domain. We mention here also Ref. 249 on the
study of the flexoelectric properties of developable domains.

8. CONCLUSION

As we see from the content of the preceding sections,
the set of defects in liquid crystals is very numerous and
varied—from ‘“‘ordinary” dislocations and disclinations to
boojums, monopoles, and solitons. Therefore it is not sur-
prising that a unitary approach to describing and classifying
all these objects was only recently developed via application

m,
M,
=

FIG. 33. Cylindrical developable domain in a hexagonal phase with a
developable surface in the form of the cylinder ©.%**
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of methods of homotopic topology. The very fact alone that
this language of description is necessary also in solving a
number of problems in other fields of physics indicates the
general physical importance of studies of defects in liquid
crystals.

Despite the evident progress in recent years, studies of
defects in liquid crystals are far from completion. Above we

tried to examine only a limited set of problems involving
classification of the macrostructures of isolated defects.

However, even on this level both the theory (primarily
owing to applying homology theory together with homo-
topy) and experiment are being developed. This has arisen
from the discovery of ever newer types of liquid-crystalline
phases. Even more problems awaiting solution are con-
cerned with elucidating the influence of defects on such
physical properties of liquid crystals as viscosity and elasti-
city, on processes of phase transitions and “self-organiza-
tion” in restricted volumes. It is also evident that the physics
of topological defects is closely associated with the processes
of formation of different modulated structures in dissipative
and nondissipative instabilities, which apparently are the
most popular objects of the science of liquid crystals of the
past decade.™

Thus we should expect that defects in liquid-crystalline
media even in the future will attract the attention of investi-
gators to discover new, interesting properties, and will serve
as a convenient model for solving general physical problems.

"For some earlier applications of the topological approach for classify-
ing defects in condensed media, see Refs. 11 and 12. The formalism of
homotopy groups in physics was first employed in field theory.'?

?In their structure these chromosomes remind one of drops of ordinary
CLCs,'”* " and perhaps the division effect known for the latter'’® can
serve as a starting point for studying the mechanism of division of chro-
mosomes. It is interesting to note that a disclination model of this divi-
sion exists.'’®

Y'An exception is the hexatic smectics-B,**? in the layers of which transla-
tional order is absent, but order exists in the orientation of bonds be-
tween molecules.

“For a calculation of the energies of different types of such dislocations,
see Ref. 246.
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