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The relationship between magnetic properties of rare-earth metals and the electron structure of
the f shell is considered. Simple concepts are used to show how many-electron quantum numbers
of the spin, orbital and total angular momenta of the f shell are related to the Curie temperature,
magnetic moment, magnetic anisotropy, and other properties of a rare-earth metal and how
modern mathematical apparatus for the addition of angular momenta and specifically the Racah
algebra can be used to calculate these characteristics. The differences in respect of the nature of
magnetism between rare earths and metals in the iron group with partly filled d shells are
discussed. A clear interpretation is given of the periodic dependence (with a period of 1/4) on the
number of the f electrons exhibited by magnetic properties (particularly in the case of the
magnetic anisotropy) within the rare-earth series. A brief discussion is given of magnetic
properties of alloys in relationship to the local anisotropy.
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"We shall leave the one-electron theory of magnetism to but-
terflies and worms." D.C. Mattis, The Theory of Magnetism,
Harper and Row, New York (1965)

1. CLASSIFICATION OF MAGNETIC MATERIALS IN
ACCORDANCE WITH THEIR ELECTRON STRUCTURE

The history of intensive study of the magnetism of rare
earths, which are elements with partly filled 4f shells, begins
from the middle fifties. We now know very well and utilize
extensively in practice such unique properties of rare-earth
magnetics as the high atomic magnetic moments and the
enormous magnetocrystalline anisotropy, which make them
irreplaceable in the fabrication of high-coercivity magnetic
materials.

Much work has been done also on the development of a
theory of magnetic properties of rare earths at microscopic
and phenomenological levels. Nevertheless, there is one sig-
nificant gap in the literature which is the absence of a suffi-
ciently clear physical account of the nature of the special
magnetic properties of rare earths and their relationship to
the electron structure of the 4f shell. The reason for this is the
complexity of the mathematical description of the f elec-
trons, which are the carriers of the magnetism in rare earths,
leading to the absence of clear ideas needed in developing a
physical picture of some specific effect. We shall try to fill at
least partly this gap and demonstrate that a simple qualita-
tive account is possible of the main features of the magnetism
of rare earths, in spite of the difficulties encountered in a
quantitative description. We shall concentrate our attention

on the magnetic anisotropy which is probably the effect that
manifests most strikingly the special properties of the 4f elec-
trons in crystals.

The main purpose of the present review is thus to pres-
ent some of the main topics in the theory of the f-electron
systems in a form accessible to a wide circle of physicists.
The author will regard his task as fulfilled if this account will
make it easier to understand theoretical treatments by exper-
imentalists working on rare-earth materials and will stimu-
late theoreticians dealing with the complex problems in sol-
id-state physics to provide a physical interpretation in
rounding off the mathematical results of their calculations.

In contrast to the d transition periods, in which magne-
tically ordered crystals form only a small fraction of all the
elements in these periods, rare earths represent a whole peri-
od of 12 magnetic metals, so that it is possible to study in
detail the relationship between their magnetic properties
and the number of electrons in the 4f shell as it gradually
fills. In this respect the rare-earth series is a Mendeleev peri-
odic table in miniature and (as we shall show later) inside
this table there are also cycles with a specific periodicity of
the observed properties.

First of all, it is useful to define the very existence of
inner partly filled 4f shells, because there is a contradiction
here when we look upon this topic from a conventional point
of view. The explanation of the effect is not trivial and it
essentially requires going beyond the one-electron theory
framework. According to this theory, the vacant levels be-
low that of the chemical potential should naturally be filled
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by transitions of electrons with higher energies. However,
these levels are vacant only from the point of view of the one-
electron representation according to which the energy of a
given electron is independent of the state of other particles.
This assertion is clearly invalid in the case of atom-like states
with a strong Coulomb interaction between electrons. If, for
example, in some state P (where n < 14) the one-electron
energy is e(D =n~ lE(f"), where E(f) is the total energy
of the f" shell found allowing for the Coulomb interaction
n (n — 1) Q /2 (Q is the Coulomb integral), then further fill-
ing of the f shell changes the one-electron energy consider-
ably:

e (f»+i) _ e (F) = {n + I)"1 E (fn+1) - n~lE (fn) = j Q.

Since Q^5-IO eV, clearly, if e(f") <eF> then e(f + ') can
become higher than the Fermi energy eF. Therefore, the
Hartree-Fock one-electron energy of the f electrons depends
strongly on the f-shell configuration and the filling of the
vacant positions in the shell corresponds to a transition to a
different configuration with very different one-electron en-
ergies and functions. In practice, this means that the validity
of one-electron concepts is very limited in the case of the f
shells.

If there is some interaction comparable with the differ-
ence between the energies of two configurations, we cannot
confine our treatment to the Hartree-Fock one-configura-
tion approximation and it is necessary to adopt a many-elec-
tron description of the f shell allowing for several configura-
tions.

Already during the first stages of the development of
studies of the magnetism of rare earths it has been found that
their properties differ considerably from magnetics belong-
ing to the iron group and that the rare earths form a separate
class. It has been found that many rare-earth magnetics ex-
hibit a much stronger spontaneous magnetization (or,
which is equivalent, a larger atomic magnetic moment) than
any of the magnetic materials known before. The observed
atomic magnetic moment agrees well with the theoretical
value for the corresponding P configuration in a free atom
(or, more exactly, in the configuration of its trivalent ion
R3 + , where R both here and later denotes a rare-earth ele-
ment). This simple relationship was the starting point of the
rapid and successful development of a theory of the magne-
tism of rare earths because this relationship means that the
magnetic 4f electrons in crystals retain largely their atomic
properties.'' It is this circumstance that separates the rare-
earth magnetics into a separate class from the point of view
of the electron structure, in contrast to the 3d magnetics for
which a simple atomic description of the d electrons is not
possible because they form a collective state in crystals and
this leads to serious difficulties in the theory of magnetism of
the 3d metals. Therefore, there are two main types of magne-
tics: 3d and 4f (we shall ignore here diamagnetic crystals).
The actinide group (i.e., the 5f magnetics) are currently re-
garded as intermediate between the other two groups.

An even more characteristic property of the rare earths
is their large orbital magnetic moment, whereas the magne-
tism of the d magnetics is almost of pure spin nature. The
quenching of the orbital moments in the latter case is related
to the delocalized nature of the d electrons.

2. DESCRIPTION OF THE f ELECTRONS

The validity of the atomic description of the f electrons
in a crystal removes the main difficulties associated with
delocalization. Nevertheless, the problem is still quite diffi-
cult from the theoretical point of view if we bear in mind that
the f shell is the most complex in the Mendeleev periodic
table. The main difficulty in the description relates to a
strong degeneracy of the f states (2/ + 1 = 7). It is appropri-
ate to recall here that the development of a theory of atomic
spectra of rare earths was completed much later than other
chapters in atomic spectroscopy. For example, the well-
known monograph of Condon and Shortley [The Theory of
Atomic Spectra, Cambridge University Press and the Mac-
Millan Co., New York (1935)], translated into Russian in
1949, deals only with the simplest P configurations (n < 3).
Realistic calculations of the f shells had become possible
only after the remarkable work of Racah carried out in
1942-1949 (an account of this work and bibliography can be
found in Ref. 2). The Racah method soon found wide accep-
tance in the atomic theory and in the theory of nuclei, but in
the early sixties it had not yet penetrated solid-state theory.2)

We can understand and appreciate the importance of
the new methods proposed by Racah simply by examining
the expression for the matrix elements of the electrostatic
interaction of electrons in the f states (/ = 3, — 3<w<3,
o= ± 1 / 2 ) :

/{m^!, m2a2; mft. m'ta't)

it • . (r . , )( lr , dr.,.
' (11302 K - *

(1)

In the calculations it is necessary to deal with all the projec-
tions of the orbital angular momentum m and of the spin a
forming a given many-electron state with the total angular
momenta SL, which makes the calculations extremely time-
consuming.

Nevertheless, some progress has been made even in the
case of this direct method. A very simple formula for the
description of the exchange interaction of the f electrons in
crystals was proposed by de Gennes in 1958 (Ref. 3): it in-
volves the replacement of the spin angular momentum S by
the total angular momentum J in the Heisenberg Hamilto-
nian using the expression

S = te-l)J. (2)

Then, the exchange Hamiltonian <#"„ becomes (here,
/ ^ is the effective exchange integral and g denotes the
Landeg factor)

-!%.'«. ?2 (g-l)*JtJt. (3)

This expression was used directly to describe the depen-
dence of the paramagnetic Curie temperature 0p on the total
angular momentum / , i.e., on the number of the f electrons
or on the atomic number of the rare-earth elements:

8p (4)

In spite of its simplicity, Eq. (4) describes the experi-
mental results surprisingly well.
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The de Gennes expression was proved later by Liu4 us-
ing the method of Young schemes.

These very first investigations made it clear that the
many-electron quantum numbers S, L, and / o f the whole f"
shell are important in the description of the f electrons. Al-
though in the case of such simple quantities as the magnetic
moment or the Lande g factor this is a fairly trivial conclu-
sion, the situation in the case of the other physical properties
is much more complex.

For example, Eqs. (2) and (3) are sufficient to see that
the magnitude of the exchange interaction is proportional
only to the total spin S, in spite of the fact that the total
magnetic moment is

M = gnBJ = guB (L + S), (5)

i.e., that it contains both the spin and orbital components. It
is thus found that the orbital angular momentum does not
affect the Curie temperature. However, we shall later see
that Eq. (4) represents only the first term of the expansion in
terms of the orbital angular momenta of conduction elec-
trons. It is the largest in the model of the indirect exchange of
the f electrons via the conduction electrons on condition that
the latter have basically the s-type symmetry (/ = 0). The
classification of the wave functions of the conduction elec-
trons in accordance with the oribital angular momentum
should be regarded as their representation in the form of an
expansion in terms of spherical or Legendre polynomials.
For example, in the case of a plane wave, we have

(^0 m=-l

In the case of exchange via the conduction electrons
characterized by / / 0 the orbital components of the f shell-
begin to play a role. Therefore, a consistent theory not only
accounts for the meaning of the de Gennes approximation,
but also predicts the existence of the orbital exchange. The
large magnitude of the latter should give rise to a dependence
on the atomic number of the rare-earth element, which
differs considerably from Eq. (4). The good agreement of
Eq. (4) with the experimental results shows that the main
components of the wave functions of the conduction elec-
trons correspond to / = 0. Nevertheless, the orbital contri-
butions characterized by / ^ 0 should play an important role
in various anisotropic effects.

We can now draw the following conclusion: the differ-
ences between the simplest magnetic properties of various
rare-earth metals are governed by the quantum numbers of
the ground terms of these metals. For example, in the case of
Tb (f, 7F term), we have 5 = 3, L = 3, J= 6, g = 3/2,
M = gfiBJ =9fiB, and 6p = (21/2)/*; the corresponding
values for Er (f11, 4 / term), we have S= 3/2, L = 6, and
J= 15/2, and we find that g = 6/5, M = 6.15/5.2 = 9//B,
and 8p = (51/20)/*. This provides a partial answer to the
question asked in a footnote: what is the difference between
Tb and Er? If we now consider other more complex proper-
ties, such as the magnetic anisotropy, quadrupole effects,
etc., we find that the simple representation is no longer ade-
quate. Nevertheless, the problem (including determination
of the relevant dependences on the atomic number of an ele-
ment) is readily soluble if we use more general and more
powerful mathematical apparatus, which is discussed below.
Once again the observable physical quantities can then be
expressed in terms of the quantum numbers S, L, and / .

Kondo published in 1962 a review5 in which he gave the
Hamiltonian of the electrostatic interaction between the
conduction and f electrons and found the coefficients of the
various terms using equations relating the one-electron op-
erators of the angular momenta to the operators S, L, and J
of the f configuration. Some of these coefficients were tabu-
lated in Ref. 5.

In contrast to the outstanding work of Kondo published
in 1964, the 1962 review remained practically ignored and
was not used in the subsequent development of the theory of
rare-earth metals.3'

Another more logical approach is to use the methods of
atomic spectroscopy in dealing with crystals.

A paper of Kaplan and Lyons6 of 1963 and one by the
author of the present review7 of 1966 were based on the same
idea of using the Racah method to calculate the interaction
between the f electrons in rare-earth metals. Kaplan and Ly-
ons used the Racah method in its conventional form to cal-
culate the matrix elements of the electrostatic interaction in
the representation of many-electron wave functions. The
present author7 employed the Racah method in the second
quantization representation by introducing many-electron
operators of groups of electrons corresponding to the f1 con-
figurations. The latter method is particularly convenient in
the derivation of the "spin" Hamiltonians usually employed
in the theory of magnetism.

It was found possible to relate the second quantization
operators of groups of electrons A JMj the angular momenta J
(or S and L) by expressions of the type4>

J= 2

which represent generalization of the familiar one-electron
expressions for s = 1/2:

sz = — (a+a —a+a) s±-~a+a (7)

It is very important to note that the matrix elements of
the operators of the momenta can be expressed in terms of
the Wigner 3/ symbols

(8)

which are precisely the main elements of the Racah algebra
and obey convenient summation rules. For example,

2 (-•

i\
3

2

(9)

\ Mi H2 — H3' \ — Hi Mi Sl3'

(10)

The quantity
(a b cl
U e fi

is called the Racah 6/ symbol and it represents the Racah
method in a nutshell: the time-consuming summation over
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the numerous projections of the momenta is performed in
this way. Both analytic expressions and tabulated values are
available for the coefficients.

The application of this method to our task of calculat-
ing the spin Hamiltonian is very instructive. For example, in
the lowest order [involving expansion of exp(ik»r) in terms
of spherical harmonics] the exchange Hamiltonian is found
to be ([7] =2Y + 1)

(vkk'off')

L S J
v) ^ka^k'o- MM
' v * A /

Equation (11) appears more cumbersome than the ex-
pressions proposed by de Gennes, Liu, or Kondo:

= 2 /v(kk')(g-l)(sJ¥)a£oflk.o.
(vkk'ao')

(12)

However, since

(13)

we find—as expected—that Eqs. (11) and (12) are identical
and Eq. (11) does not provide any new result. Nevertheless,
Eq. (11) is very important from the methodological point of
view. The method behind it is readily extended to more com-
plicated cases, whereas without Eq. (11) generalization of
Eq. (12) meets with considerable difficulties.

The Hamiltonian of the sf interaction (up to the second
order / = 2 in the case of conduction electrons) was obtained
in Refs. 7, 10, and 11 on the basis of this method and its
exchange part is as follows:

mil (f[SLj].

= 2
vkk'ao'

+ B (kJv) (k'Jv) + iC (2 - g) ([kk'J Jv)

+ . . . (total of 9 invariants). (14)

All the coefficients A, B, C, etc. were calculated as a
function of the numbers S, L, and J for all the f" configura-
tions. The first term in Eq. (14) represents the isotropic part
of the exchange interaction and the third corresponds to the
orbital exchange of the type

(2 - g) (U) = (1L), (15)

which may become anisotropic in a crystal field. The major-
ity of the other terms (for example, the second term) can
also make anisotropic contributions to the various physical
properties (magnetic anisotropy, electrical resistivity, etc.).

3. MAGNETIC ANISOTROPY OF RARE EARTHS

We shall now use the method described above to tackle
the problem of the magnetic anisotropy of rare earths. The
following principal characteristics of the anisotropy have
been established experimentally:

1) the magnetic anisotropy has the giant value K, ~ 108

erg/cm3 (in the case of the most strongly anisotropic d met-
al, which is Co, the anisotropy is an order of magnitude less);

2) there are two types of anisotropy: easy axis and easy
plane. Reversal of the sign of the anisotropy occurs5* on
transition from Nd(f3) to Sm(f5) and in the second half of
the rare-earth series on transition from Ho(f10) to Er(fu).

As pointed out already, the main distinctive features of
the rare-earth magnetism are associated with the major con-
tribution of the orbital components. These are the compo-
nents which are responsible for the strong magnetic anisot-
ropy. We shall illustrate this conclusion by comparing the
mechanisms of the appearance of the magnetic anisotropy of
the 3d and 4f magnetics.

In the case of the 3d magnetics we find that, in contrast
to rare earths, a very strong crystal field destroys the atomic
structure of the SL terms of the d" configuration and particu-
larly the multiplet structure of the total angular momentum
J. We therefore have to consider the orbital angular momen-
tum 1 of single electrons. The experimental results demon-
strate that these angular momenta are also almost complete-
ly quenched. By quenching of 1 we usually understand that
the average valueTvanishes in the ground state. In the case of
the atomic levels this occurs when the ground state is a sing-
let (i.e., when it is spherically symmetric). In the case of the
d electrons in a crystal the ground state can be a singlet in the
presence of a crystal field of sufficiently low point symmetry
which splits off, for example, a sublevel m = 0 from the oth-
er states. However, real ferromagnetic metals are character-
ized by a high symmetry and the quenching of 1 is clearly due
to a different mechanism associated with the periodic part of
the crystal potential F(r). A very important feature of this
mechanism is that the orbital angular momentum operator
1 = ^[r-k] is diagonal in respect of the electron quasimo-
mentum k. Then, all the diagonal matrix elements 1,, ex-
pressed in terms of the crystal functions of the degenerate
subbands vanish because of the symmetry (or antisym-
metry ) of the wave functions t/>'k relative to reversal of the
sign of the projection of m, whereas the off-diagonal matrix
elements \y, although not equal to zero, are associated with
different energies £,(k) for a fixed value of k. This means
that the contribution of these off-diagonal matrix elements
\jj to T, in the presence of some perturbation mixing of the
states i//k and if/k is given by =; A,y/,-,-/Ay (k), where htj is the
off-diagonal matrix element of the perturbation and
A,y (k) = s,(k) — £j (k) is a large quantity of the order of
the band width A [with the exception of some special points
k at which degeneracy sets in and we have A,-, (k) = 0 ] .

A good example is provided by the triple representation
t2g of cubic crystals. It contains three functions ip' which are
combinations of functions <pm with specific values of m:

when (as is clear from the structure in respect of m) we
have 1,, = 0 for all cases and we find that, for example,

If ft had corresponded to a degenerate local level, the
existence of lu^0 would have meant that in fact the orbital
angular momenta are not quenched since in a magnetic field
Hz a regrouping of the functions would have taken place and
the degeneracy would have been lifted in accordance with
the values of the electron energy g/x umB'z .This in turn
would have given rise to a large orbital angular momentum
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In the case of crystal functions of the band type the
degeneracy of the functions rfa is lifted for almost all values
of k. This means that as long as g/xB mHz 4, A (k), regrouping
of the functions in a field Hz is not favored by the energy
considerations and the value of the angular momentum un-
quenched by the field is proportional to a small quantity

If we now consider some internal interaction dependent
on the vector 1, we find that it can also mix the states i[>'k and
thus unquench 1. This function can be performed by the spin-
orbit interaction

This interaction is important in discussing the magnetic an-
isotropy because it relates the vectors s and 1. Here, SV^
unquenches 1 and gives rise to a small orbital angular mo-
mentun 1~A/A which becomes oriented in a crystal and
again because of <^so it orients the spin s.

If <^so is small [ JFfo (fc)< A (k) ], the anisotropy ener-
gy Ea can be calculated from perturbation theory. In the
case of uniaxial crystals this result appears in the second
order (and for cubic crystals it appears in the fourth order)
and its magnitude is governed by a simple combination of the
parameters of the theory A and A: Ea~A 2/A (A~£ F ) In
fact, Ea corresponds to the spin-orbit interaction energy
with an unquenched orbital momentum 1:

En» E%o -X(Ts)» -^-. (18)

We can readily estimate the order of magnitude of the
various quantities. For example, if A ~ 1 0 ~ u erg and
A s £ F s 1 0 - ' ' erg, it follows that Ea ~ 10 ~17 erg ~ 10 ~ ' K.

The magnetization process is then as follows (Fig. 1).
In H = 0 the vectors 1 and s are oriented along the easy axis z.
The application of a field Hx along the difficult axis tilts s
from the z axis as the ratio fx B H /Eso is increased (the vector 1
hardly tilts away from the z axis, because its direction is set
by the electrostatic forces of the crystal field Ecr, which is
much stronger than Eso in the case of the d metals). If
H~Ha = Eio //iB, the coupling between 1 and s is broken by
the field and the magnetization reaches saturation along the
difficult direction. The quantity Ha is called the anisotropy
field and it is an important characteristic of the magnetic
hardness of a material.

The actual calculations of the magnetic anisotropy
based on the band structure were made for Ni. In one of the
latest papers of Kondorski! and Straube12 it was found that

the main contribution to the magnetic anisotropy of Ni
comes from those states in a crystal which lie near the points
of degeneracy where A(k) = 0 . Quantitative results depend
strongly on details of the energy band structure. There may
also be qualitative deviations from the results given above,
which are valid in the nondegenerate parts of the k space.

We shall now consider the situation in rare earths. In
the case of the 4f electrons the energy of the crystal field Ecr

is low compared with the electrostatic interaction and with
the spin-orbit energy. For this reason the total atomic quan-
tum numbers S, L, and J of the f" configuration are retained
also in the case of a crystal (at least, for the ground state).
Consequently, the process of magnetization in a rare earth
occurs in a different way from the corresponding process in a
d magnetic.

If// = 0, the vector J = L + S lies along the easy z axis
governed by the minimum of the crystal energy Ecr of the
angular momentum L in a crystal. In a field Hx the coupling
between L and S is retained (because Ecr4Em) and they
rotate as a whole, approaching the direction of Hx (Fig. 2).
The angle of rotation is governed by the ratio g/uBJH /Ecr.
Although the energy Ecr ~ 10 2-10 3 eV for the 4f elec-
trons is the smallest among the energies of other interactions
[Eso (4f) ~ 10~ ' eV], it is considerably higher (by two or
three orders of magnitude) than the effective energy £so

sslO~5eV [see Eq. (18)] responsible for the magnetic an-
isotropy of the 3d metals with quenched orbital angular mo-
menta. This accounts for the giant anisotropy exhibited by
rare-earth magnetics.

The existence of unquenched orbital angular momenta
results in another important consequence in the theory of
magnetic properties of rare earths. We can easily show that
the sf exchange interaction of Eq. (14) leads, in the second
order of perturbation theory, not only to an indirect ff ex-
change of the Heisenberg (or the de Gennes) type, but it also
creates terms of the type

2 (2-
2

{3,3,)-- ^ If, (L,L2). (19)
1 2 '

i.e., it results in orbital exchange. The latter (in contrast to
spin exchange) readily becomes anisotropic after allowance
for the anisotropy of the crystal.

Equation (19) can be deduced directly from the third
term on the right-hand side of Eq. (14). Other anisotropic
contributions (for example, those of the pseudodipole ex-
change type) were considered in Refs. 10 and 11 and corre-
sponding magnetic anisotropy energy was calculated. This
energy is governed by the crystal field and by the anisotropic
exchange (we shall write down only the largest terms):

H=0

FIG. 1. Positions of the vectors representing the orbital I and spin s angu-
lar momenta in 3d ferromagnets in the case of a weak spin-orbit interac-
tion: a) in the absence of an external field; b) in the presence of an external
field H — Hx directed along the difficult axis.

FIG. 2. Strong spin-orbit interaction (4f ferromagnets). The vectors L
and S (related by J = L + S) rotate in an external field (applied along the
difficult axis) as a whole.
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TABLE I

R

Kf, 10' erg/cm3

K ?8,10' erg/cm3

K?f, 10« erg/em3

A0cr,K
A0"
A0"p

Qd

0

0

a* 0,005

0
0

« 0

Tb

- 5 , 5

—5,5

—5,5

44
48
44

Dy

—5,05

- 4 , 6

—5

38
40
48

Ho

-1 ,98

-1,43

-2 ,2

15
21
15

Er

1,97

1,1

—

—16
—25
-29

Tm

5,5

1,85

—

—44
—24 (—66)
—58

+JfiT)cos2d,

— ~ 1,035 ( — -1 .633 ) ,
a a- \ a I
2/ + 1 yr'(J-\-\) ep (20)

Here, a , is the Stevens factor (its relationship to the 6/coef-
ficients can be found in, for example, Ref. 13); Zeff is the
effective charge of the ions; rj is the average of the square of
the radius of the f shell; the rest of the notation is standard.

The expressions in Eq. (20) readily yield estimates of
the orders of magnitude of ATf and K]\ Since A2x 10 ~ H

e rgs 100 K and a , =; 10~2-10~3 (for heavy rare earths), it
follows that Kfx 10-100 K=;107-108 erg/cm3. We then
haveZ>, = 10-2, >ff = 10-15 erg, so that AT r =; 1-10 K = 106-
107 erg/cm3.

We thus find that the magnetic anisotropy of rare earths
is one or two orders of magnitude higher than of the most
strongly anisotropic hexagonal d magnetics. We have seen
that this difference is a consequence of the fact that in the
case of rare earths the magnetic anisotropy is governed by
the electrostatic interaction of the crystal field or anisotropic
exchange type involving unquenched orbital angular mo-
menta and not the weak spin-orbit interaction in the case of
almost completely quenched orbital angular momenta,
which is true of the d magnetics.

Table I gives the anisotropic characteristics of rare
earths: AT, and the anisotropy of the paramagnetic Curie
temperature A0p. The quantity A0P =0{l — 6± represents
the anisotropy of the paramagnetic susceptibility tensor of
uniaxial crystals characterized by X\\ andXi a n d i l i s found
by extrapolation of the Curie-Weiss law Xu = C ~' (T
— 9U) up to the temperature T = du at which x ~' = 0.

The phase transition point, i.e., the Curie point Tc, is not
generally equal to 9p and is isotropic. For clarity, a compari-
son with the experimental results will be made separately for
the crystal field and exchange anisotropy mechanisms."

The largest difference between the theoretical values for
these two mechanisms is found in the case of Tm which is
therefore of the greatest interest from the point of view of the
magnetic anisotropy. Although a complete comparison of
the theory with experiments is difficult because of the ab-
sence of accurate data, the contribution of the crystal field is
clearly dominant and the anisotropic exchange6' contributes
only 10-20% (Ref. 14). A reliable experimental determina-
tion of this exchange would be of fundamental interest in the
theory of the exchange interaction. In contrast to the single-
ion mechanism of the crystal field, the anisotropic exchange
gives rise to a two-ion anisotropy so that it can be separated
on the basis of the composition dependence. It would there-
fore be of interest to study experimentally the magnetic an-
isotropy of rare-earth alloys. One should mention also the
possibility of using methods based on the hyperfine interac-
tions and used to detect the anisotropic exchange.I6

We shall now consider the sign of the magnetic anisot-
ropy. Here the theory provides precise predictions. It is clear
from Table II that the signs of both a} and Z>, are reversed
on transition from the f3 (f10) to the f (f' ') configurations in
the first (second) halves of the rare-earth series and also on
transition from the first to the second half. If we bear in mind
that Pm has not yet been investigated, whereas Eu and Yb
have cubic lattices and, consequently are of no interest to us,
the agreement with the experimental results is satisfactory.
It follows from the simple discussion given below that this
mathematical result has a clear physical meaning.

Since the magnetic anisotropy is related to the orbital
components of the total angular momenta, we must consider
the magnitude and orientation of these components in an
electric crystal field. We shall consider the value of L
throughout the rare-earth series (Table HI). It is clear from
this table that, apart from the trivial electron-hole symmetry
between the first and second halves of the series, there is also
a symmetry within each half associated with the occupancy
of the orbital quantum states. For example, we can see that in
the f1 and f6 states we have the same value L = 3 and it would
seem that the anisotropy should also be the same. However,

TABLE II

R3+

aj

Gd

U

0

Tb

—0,01m

—0,075

Dy

—0,0063
—0.060

Ho

—0,0022
—0,022

Er

0,11025
0,024

Tin

0,0101

0,075
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TABLE III

JJ3+

Con-
figu-
ration

Ce

f1
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3

Pr

[2

H
5

Plane

Nd
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/
6

I>m

I'4

/
6

Sin

t5

H
5

Axis

Eu

[,.

F
3

Gd

V

S
0

Tb

fS

F
3

Dy

[f

If
5

Plane

Ho

fio

/
6

Er

f11

/
6

Tm

fU

H
5

Axis

Yb

{13

F
3

we must bear in mind that L (f') = 3 is the angular momen-
tum of one electron, whereas £(1*) = 3 is the angular mo-
mentum of six electrons or, which is equivalent, of a hole in
the f7 spherical configuration characterized by L = 0. How-
ever, in this case it is obvious that the anisotropy of the distri-
bution of the electric charge will be opposite for the f' and f6

configurations. We can assume that f is equivalent (in the
orbital anisotropy sense) to a hole in the f configuration.7'
Figure 3 shows schematically the electron clouds for the f'
and f6 configurations. The shaded regions represent a hole.

It is worthwhile to point out another factor which
strongly affects both the magnitude and sign of the anisotro-
py. This is the geometric factor of the crystal field
(1.633 — c/a).S) For all the rare-earth metals we find that
c/a = 1.58-1.61 < 1.63. However, in principle, we can alter
the sign of the anisotropy by means of this factor.

To the best of the present author's knowledge, reversal
of the sign of the first anisotropy constant Kx had been ob-
served experimentally not only for pure metals, but also for
all alloys and compounds of rare earths and this happened in
the configurations predicted by the theory. By way of exam-
ple, Table IV gives the experimental values of K^ for inter-
metallics with the formula RCo5.

The theory predicts the possibility of existence of orien-
tational plane-axis transitions in RCo5 compounds with
R = Ce, Pr, Nd, Tb, Dy, Ho. In the case of these elements
the ground state is the orientation of the angular momentum
J in the basal plane of the hexagonal lattice, which is ob-
served at low temperatures. The Co ions have an easy axis,
but because of the exchange interaction with the R ions they
are oriented so that their magnetic moments are aligned in a
plane at low temperatures. As a sample is heated, the magne-
tization of the R sublattice decreases faster than that of the

Co sublattice, so that at some temperature T the plane-axis
transition takes place, so that the increase in the anisotropy
energy of the Co sublattice characterized by a stronger mag-
netization is greater than the reduction in the case of the R
sublattice.17 Such transitions had indeed been observed ex-
perimentally.18

The anisotropy of the f shells plays an important role
also in many other physical properties of rare earths. In most
cases this role is still to be investigated. Here, we shall men-
tion only two possible directions of study (for which some
results are already available): 1) anisotropy of transport ef-
fects; 2) possible existence of a strong local magnetic anisot-
ropy in rare-earth alloys.

1) A very strong anisotropy of many transport effects
had been observed experimentally for rare earths. For exam-
ple, the anisotropy of the electrical resistivity

Ap/p = (pc - p j / p a (21)

(pc andpa are the values of the electrical resistivity along the
c axis and in the basal plane) can reach 10-100%. One of the
possible mechanisms is the anisotropic scattering of carriers
by quadrupole moments of the f shells.1319 An important
role is then played by the terms of the Hamiltonian (14) of
the type

fl(kJv)(k'Jv), (22)

which after allowance for the unbxial anisotropy of the Fer-
mi surface (very important in this effect) become

Bz (k'Jz) + B; (23)

The contribution to Ap/p which follows from Eq. (23)
must be separated from the background of the anisotropy of
the effective mass of carriers in uniaxial rare-earth crystals.
An analysis reported in Refs. 13 and 19 shows that further
investigations (primarily experimental) are needed to solve
this problem.

2) The possibility of appearance of strong local anisot-
ropy effects in rare-earth alloys because of lowering of the
local asymmetry of the environment of a given rare-earth ion
is very interesting. An effect of this kind was considered in

FIG. 3. Anisotropic distribution of the f-electron density (schematic rep-
resentation) expected for the f and f* configurations with L = 3. The
continuous curve in Fig. 3b represents an orbital hole which appears when
f is replaced with f6. If an allowance is made for the magnetic anisotropy
energy (proportional to cos2t? in the case of uniaxial crystals), which has
opposite signs for a hole and an electron, a hole and its vector L' are
rotated by 90° (dashed curve) relative to the electron.

TABLE IV

(RCO;). Ill- erg/cm3
—

i
IT !

i

- 1 . 5 1
1

Nd

—5

Sin

2 2

Gd

'1.0
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Ref. 20. It was found that, apart from the usual anisotropy
constants corresponding to the macroscopic (average) sym-
metry of an alloy, there are also new hitherto uninvestigated
constants of lower symmetry of the local type (for example,
K21). After averaging over the various possible configura-
tions of the immediate environment, these local constants
contribute to the observed macroscopic anisotropy of a crys-
tal giving rise to a specific dependence on the composition of
the alloy. The RfCo^Ni, _x )5 alloy system was considered
specifically in Ref. 20.
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